VU Programm- und Systemverifikation Assignment 2: Equivalence Partitioning and Boundary Value Testing

Name:	Matr. number:
	Due: April 29, 4pm

Task 1: Equivalence Partitioning (5 points). A univariate polynomial equation of degree n is an equation of the form

$$\sum_{i=0}^{n} a_i \cdot x^i = 0 \quad \text{or} \quad a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0,$$

where $a_i \in \mathbb{R}$ (for $0 \le i \le n$) are numerical constants called *coefficients* and x is a variable. A polynomial equation is zero if all coefficients are zero, and non-zero otherwise. The solutions of this equation are the roots of the polynomial. A number a is a root if and only if the polynomial (x-a) (where $a \in \mathbb{R}$) divides $\sum_{i=0}^{n} a_i \cdot x^i$. If $(x-a)^2$ divides $\sum_{i=0}^{n} a_i \cdot x^i$ then a is called a multiple root, otherwise a is a simple root. For non-zero polynomials, there is a highest power m such that $(x-a)^m$ divides $\sum_{i=0}^{n} a_i \cdot x^i$, which is called the multiplicity of the root a. If the polynomial is non-zero, the number of roots cannot exceed its degree (even counting the respective multiplicities). Note that there are polynomial equations which have no roots (e.g. $x^2 + 1 = 0$).

Let unsigned roots (float a_0 , ...) be a function (which takes at least one parameter) that returns the number of roots of the non-zero polynomial determined by the coefficients given as a parameter. Multiplicities are counted accordingly, i.e., for the polynomial equation $x^3 + 2 \cdot x^2 - 7 \cdot x + 4 = 0$ which can be written as $(x+4) \cdot (x-1)^2$ and has the roots -4 and 1 with multiplicity 1 and 2, respectively, the output should be 3.

Provide at least 5 equivalence classes derived using equivalence partitioning.

Condition	Valid	ID	Invalid	ID
non-zero polynomial	non-zero $(n+1 \text{ coeff.})$:	(1)	zero	(2)
	no roots (e.g. x^2+1)	(3)		
	$k \le n \text{ roots}$:			
	multiplicity = 1	(4)		
	multiplicity > 1	(5)		
	real roots exist	(6)		

Task 2: Boundary Value Testing (10 points). Use *Boundary Value Testing* to derive a test-suite for the method roots. For each test case, provide a brief explanation (why is this a boundary case?) and indicate which equivalence class(es) it covers. You can receive up to 1 point per test case.

Input	Output	Classes Covered
(0)	error	(2)
(0,0,0,0)	error	(2)
(1) $(1 = 0, no roots, n=0)$	0	(1),(3)
$(1,0,1)$ $(x^2+1=0, no roots, n=1)$	0	(1),(3)
(-1,1) $(x-1=0, n=1, k=1)$	1	(1),(4)
$(-1,0,1)$ $(x^2 - 1 = 0, n = k = 2, simple)$	2	(1),(4)
$(0,1,0,1)$ $(x^3 + x = 0, n = 3, k = 1, simple)$	1	(1),(4)
$(1,-2,1)$ $((x-1)^2=0, k=2, multipl=2)$	2	(1),(5)
(4,-7,2,1) (see text)	3	(1),(5)
$(1,1,0,1) (x^3 + x + 1 = 0, x = 0.68)$	1	(4,6)

Please hand in your assignment via TUWEL (as a single PDF file) by April 29, 2015, $4 \mathrm{pm}$.