
Programm- & Systemverifikation
Concurrency

Georg Weissenbacher
184.741



What happened so far

I How bugs come into being:
I Fault – cause of an error (e.g., mistake in coding)
I Error – incorrect state that may lead to failure
I Failure – deviation from desired behaviour

I We specified intended behaviour using assertions
I We proved our programs correct (inductive invariants).
I We learned how to test programs.
I We heard about logical formalisms:

I Propositional Logic
I First Order Logic
I Temporal Logic

I . . . and tools to reason in/about these logics.
I Hoare’s Calculus for reasoning about programs



Concurrency

I Upper limit for processor frequency has been reached
I Chip manufacturers now increase number of cores instead

I Performance improvements depend on multi-threaded
programming

I Opens Pandora’s Box of new bugs (e.g., Heisenbugs)
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What kinds of concurrency bugs are there?

Concurrency Bugs

I deadlock
(two tasks wait for same resource)

I livelock/starvation
(thread makes no progress)

I race condition
(two threads accessing resource at same time)

I order violation
(statements executed in unintended order)

I atomicity violation
(interruption of supposedly atomic action)



Synchronization Primitives

I Locks can be used to prevent simultaneous or concurrent
access to critical regions or resources

I Simplified API:
I lock(A) succeeds if lock A is available
I lock(A) blocks if lock is already held/acquired

(by this or another thread)
I unlock(A) releases a lock previously acquired
I unlock(A) never blocks



Deadlocks

I Deadlocks can happen if locks are acquired in wrong order

I Thread one acquires lock A
I Thread two acquires lock B
I Thread one waits for lock B
I Thread two waits for lock A
I Now both threads are stuck. . .

Thread 1 Thread 2

lock (A);

lock (B);

unlock (B);

unlock (A);

lock (B);

lock (A);

unlock (A);

unlock (B);
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Attempt to Fix Deadlock

I Assume lock returns true on success, false otherwise

I Thread one acquires lock A
I Thread two acquires lock B
I Thread one fails to acquire lock B
I Thread two fails to acquire lock A
I Thread one releases lock A
I Thread two releases lock B
I Scenario repeats (livelock)

1: lock (A);

if (!lock (B))

goto 2;

do some work

unlock (B);

2: unlock (A);

goto 1;

3: lock (B);

if (!lock (A))

goto 4;

do some work

unlock (A);

4: unlock (B);

goto 3;
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Livelock

I Livelock can occur when algorithm detects and recovers from
deadlock

I Deadlock detection can be repeatedly triggered
I Solution: ensure only one process takes action

I randomized, priority, random timing (as in ethernet), . . .



Race Conditions

#include <stdio.h>

#include <pthread.h>

int c = 0;

void *count (void *parg)

{

for (unsigned i=0; i <500000; i++)

c++;

return NULL;

}

int main (int argc , char** argv)

{

pthread_t thread1 , thread2;

pthread_create (&thread1 , NULL , count , NULL);

pthread_create (&thread2 , NULL , count , NULL);

pthread_join(thread1 , NULL);

pthread_join(thread2 , NULL);

printf ("%d\n", c);

return 0;

}



Race Conditions

Thread 1

c++

Thread 2

c++
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c = c+1
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Race Conditions

I Compile with gcc -S threads.c

c++

Compiler

movl c, %eax

addl $1, %eax

movl %eax, c
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Problem: Conflicting Variable Accesses

I ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [. . . ] Two threads of execution (1.10) can update and access separate

memory locations without interfering with each other”

I ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [. . . ] Two expression evaluations conflict if one of them modifies a

memory location and the other one accesses or modifies the same memory

location.”

I Race condition:
I two threads access same unprotected memory location
I at least one of them is writing
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Fixing Race Conditions

Thread 1
lock (A);

c = c+1;
unlock (A);

Thread 2
lock (A);

c = c+1;
unlock (A);

I Does absence of race conditions mean program is free of
(non-deadlock) concurrency bugs?
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Order Violations

I Instructions can still be executed in unintended order

Thread 1
lock (A);

free (array);
unlock (A);

Thread 2
lock (A);

array[0] = 15;
unlock (A);



Protecting Access to Shared Variables

I Concurrent account deposit and withdrawal
I Fine-grained locking for performance reasons

I Thread one reads shared variable balance
I Thread two reads shared variable balance
I Thread one adds deposit to local copy of balance
I Thread two subtracts withdrawal from local copy of balance
I Thread one stores result of transaction in balance
I Thread two overwrites result of transaction of thread one

lock (A);

tmp1 = balance;

unlock (A);

tmp1 = tmp1 + deposit;

lock (A);

balance = tmp1;

unlock (A);

lock (A);

tmp2 = balance;

unlock (A);

tmp2 = tmp2 - withdrawal;

lock (A);

balance = tmp2;

unlock (A);
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Atomicity Violation

I No race condition (since no conflicting access)
I Program disregards “intended” isolation/atomicity

I Unlike race condition, depends on programmer’s intention
I Cannot be detected automatically without annotations

I Unrealistic to ask programmer to indicate “intended” atomic
region (if s/he knew, there’d probably be no bug)

I Assert result instead (i.e., testing):

assert (balance ==

old balance + deposit - withdrawal);

I Alternatively, use sequential reference implementation and
compare results! (cf. Pex for Fun!)
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Heisenbugs
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Bug does not happen in every execution!
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Heisenbugs: Caused by Scheduler

I Assume all inputs of the program are fixed (i.e., test case)
I Then what causes variation of program behaviour?

I Change of schedule results in change of data-flow
I Remember from lecture on Coverage Criteria:

x︸︷︷︸
defined

:= y+ z︸ ︷︷ ︸
used

I Execution results in (ordered) sequence of read/write events:

R(y) R(z) W(x)

data flow
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Data Dependencies within a Thread

b = a;

c = b;

a = b;

b = c;

b = a;

b = c;

Flow dependency Anti-dependency Output-dependency

I Flow dependency: R(a) W(b) R(b) W(c)
I Read-after-Write (RAW)
I c = b depends on result of b = a

I Anti-dependency: R(b) W(a) R(c) W(b)
I Write-after-Read (WAR)
I b = c must happen after a = b

I Output-dependency: R(a) W(b) R(c) W(b)
I Write-after-Write (WAW)
I b = c overwrites result of b = a



Inter-Thread Data Dependencies

Data-dependencies (“hazards”) between threads are similar:

T1

T2

x = 1
x = 2

output y = x

x = 2

anti x = 1
y = x

flow



Inter-Thread Data Dependencies

I Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

I Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A);

tmp1 = balance;

unlock (A);

tmp1 = tmp1 + deposit;

lock (A);

balance = tmp1;

unlock (A);

lock (A);

tmp2 = balance;

unlock (A);

tmp2 = tmp2 - withdrawal;

lock (A);

balance = tmp2;

unlock (A);

R1(balance)

W1(tmp1)

. . .

R1(tmp1)

W1(balance)

R2(balance)

W2(tmp2)

. . .

R2(tmp2)

W2(balance)

I Subscripts of R1, W1, R2, W2 indicate thread!

I Intra-thread order not relevant for outcome!
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Inter-Thread Data Dependencies

I Outcome depends on inter-thread order of R/W Accesses to
shared variables

R1(balance)

W1(balance)

R2(balance)

W2(balance)
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RAW

WAR

R1(balance)

R2(balance)

W1(balance)

W2(balance)

independent

WAR

WAW

7 3

I Note: same input values, different output values
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Reproducing Heisenbugs?

I For same input, different schedules produce different result
I Assertion may fail in some executions, not in others
I Resulting Challenges:

1. Reproducing Heisenbugs
2. Understanding Heisenbugs



Reproducing Heisenbugs?

“Poor man’s” strategies:
I Stress testing

I Increase number of threads
I Run program/system with heavy computational load

I Change schedule by adding sleep statements

sleep(0);

lock (A);

tmp1 = balance;

unlock (A);

sleep(1000);

tmp1 = tmp1 + deposit;

sleep(1000);

lock (A);

balance = tmp1;

unlock (A);

sleep(500);

lock (A);

tmp2 = balance;

unlock (A);

sleep(1000);

tmp2 = tmp2 - withdrawal;

sleep(1000);

lock (A);

balance = tmp2;

unlock (A);



Reproducing Heisenbugs?

“Poor man’s” strategies:
I Stress testing

I Increase number of threads
I Run program/system with heavy computational load

I Change schedule by adding sleep statements

sleep(0);

lock (A);

tmp1 = balance;

unlock (A);

sleep(1000);

tmp1 = tmp1 + deposit;

sleep(1000);

lock (A);

balance = tmp1;

unlock (A);

sleep(500);

lock (A);

tmp2 = balance;

unlock (A);

sleep(1000);

tmp2 = tmp2 - withdrawal;

sleep(1000);

lock (A);

balance = tmp2;

unlock (A);



Reproducing Heisenbugs?

Systematic approaches:
I “Take over” the scheduler

I Can be achieved by instrumenting synchronization primitives
instr lock(A) {

ask scheduler to:
perform previously unexplored context switch
acquire lock

}
I Implemented in

I CHESS:
http://research.microsoft.com/en-us/projects/chess/

I INSPECT:
http://formalverification.cs.utah.edu/Inspect/

Disadvantage of all techniques considered so far:
I Probe effect (bugs may be masked)

http://research.microsoft.com/en-us/projects/chess/
http://formalverification.cs.utah.edu/Inspect/
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Reproducing Heisenbugs?

Systematic approaches:
I Model Checking

I Exhaustively explore all possible program interleavings
I Let’s look at a (familiar) example!



Assertions and Concurrency: Solution

flagA = 0;

lock (A);

flagA = 1;

assert (!flagB);

lock (B);

flagA = 0;

unlock (B);

unlock (A);

flagB = 0;

lock (B);

flagB = 1;

assert (!flagA);

lock (A);

flagB = 0;

unlock (A);

unlock (B);

I Add assertions that fail if and only if a deadlock is about to
occur!

Note:
I If flagA and flagB are reset after the inner locks are

released, then there’s a potential assertion failure even if the
deadlock doesn’t happen



The SPIN Model Checker

http://spinroot.com/spin/whatispin.html

I Open Source verification tool
I Targets verification of multi-threaded software
I Modelling language PROMELA

http://spinroot.com/spin/whatispin.html


SPIN Model of Solution

int flagA = 0; int flagB = 0;

int lockA = 0; int lockB = 0;

int histA = 1; int histB = 1;

I Locks lockA and lockB are modelled using Boolean values
I histA and histB are set to 0 if assertion fails



SPIN Model of Solution

active proctype A() {
flagA = 0;

atomic { lockA == 0; lockA == 1;}
flagA = 1;

histA = (!flagB);

if

:: atomic { lockB == 0; lockB = 1; }
:: timeout -> assert(!histA || !histB); goto end;

flagA = 0;

lockB = 0;

lockA = 0;

assert(histA && histB);

end:

}



SPIN Model of Solution

active proctype B() {
flagB = 0;

atomic { lockB == 0; lockB == 1;}
flagB = 1;

histB = (!flagA);

if

:: atomic { lockA == 0; lockA = 1; }
:: timeout -> assert(!histA || !histB); goto end;

flagB = 0;

lockA = 0;

lockB = 0;

assert(histA && histB);

end:

}



Model Checking with SPIN

I Run SPIN:

spin -a model.pml

gcc -o pan pan.c

./pan

I SPIN checks all possible executions
I Condition at beginning of atomic block “waits” until it’s true
I The condition timeout is true if a deadlock happens
I If no assertion in SPIN model fails, then solution is correct
I If there is a counterexample, ./pan -r reports it



Explaining Heisenbugs

I Once we’ve reproduced the Heisenbug, we need to explain it!
I Recall:

1. programmer introduces a fault in the code

2. fault gets excited during execution, results in error

3. error propagates, results in system failure
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Explaining Heisenbugs

We want to identify
I Fault

?

I Error:

?

I Failure:

Determined by assertion failure/failed test case

“Poor man’s” strategy:
I Debugger (e.g., gdb): reproduction challenging/context

switches performed manually
I printf-debugging: instrument program with logging

statements, then analyze/narrow down problem manually
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Explaining Heisenbugs

Systematic approaches (incomplete list)

I Run-time monitoring:
I Try to identify “problematic” access patterns (e.g. race

conditions) during run-time
I Disadvantage: relies on patterns (might be incomplete), false

positives

I Trace analysis/data mining:
I Record several failing and passing traces
I Report R/W combinations frequently occurring in bad traces,

but not in good ones
I Disadvantage: requires several traces, may report false

positives
I Slicing:

I Perform symbolic analysis of execution trace
I Slice away statements irrelevant for assertion failure
I Disadvantage: sliced traces may still be long
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Problematic Access Patterns

I Recall: Data dependencies

W1(balance)

R2(balance)

W1(balance)

W2(balance)

independent

WAR

WAW

I Access pattern can be mapped back to program



Problematic Access Patterns

I Access pattern can be mapped back to program
I Locks only shown for context

lock (A);

tmp1 = balance;

unlock (A);

lock (A);

balance = tmp1;

unlock (A);

lock (A);

tmp2 = balance;

unlock (A);

lock (A);

balance = tmp2;

unlock (A);

R1(balance)

R2(balance)

W1(balance)

W2(balance)



Problematic Access Patterns

Explanation derived from pattern:
I Fault: Update of balance is not performed atomically
I Error: Value of balance written by Thread 2 is “stale”
I Failure: Balance on account deviates from expected value

Still requires intuition, but pattern “explanation” helps.

I For more complex programs, however, access pattern may
contain variables not directly related to bug!
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Sequential Slicing

I Debugging technique that cuts away irrelevant code
I Backwards, starting from the assertion

I Eliminate statements where there’s no flow dependency
I (For sequential setting)

x = 42;

y = 15;

z = y + 5;

assert (z ≤ 10);

I Assignment x = 42 has no impact on assertion
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Sequential Slicing and Control-Dependency

x=5
[x > 0]

[x ≤ 0] z=1

x=0
y=x

datacontrol

I y=x data-depends on x=0 (but not on z=1)
I x=0 is only executed if (x > 0)-branch is taken

I Therefore, branching condition must be included in slice
I “control-flow sensitive slice”

I (x > 0) data-depends on x=5, therefore x=5 must be included
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Semantic Slicing

I “Syntactic” slicing results in large slices
I many statements included
I doesn’t take semantics of statements into account

x = 5;

y = 15;

z = y % x;

assert (z ≥ 5);

I But y=15 is irrelevant, since (y%5) < 5 independently of y!
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Semantic Slicing

I Hoare Logic to the rescue!
I Construct Hoare Proof showing that assertion fails

I Execution traces do not contain loops
I Can be automated (using SMT solvers and Craig interpolation)

{true}

x = 5;

{x ≤ 5}

y = 15;

{x ≤ 5}

z = y % x;

{z < 5}

assert (z ≥ 5);

unchanged

I y=15 does not affect surrounding Hoare assertions
I Therefore, y=15 is irrelevant
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I Hoare Logic to the rescue!
I Construct Hoare Proof showing that assertion fails

I Execution traces do not contain loops
I Can be automated (using SMT solvers and Craig interpolation)
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{x ≤ 5}
y = 15;
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I y=15 does not affect surrounding Hoare assertions
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Semantic Slicing

I Semantic slicing can eliminate irrelevant statements
I Hoare assertions act as annotation, aid understanding

{true}
x = 5;

{x ≤ 5}
. . .

{x ≤ 5}
z = y % x;

{z < 5}
assert (z ≥ 5);



Concurrent Slicing (First Attempt)

let’s apply sequential slicing to concurrent trace.
I Ignore locks for the time being

old balance = balance;

lock (A);

tmp1 = balance;

unlock (A);

tmp1 = tmp1 + deposit;

lock (A);

balance = tmp1;

unlock (A);

lock (A);

tmp2 = balance;

unlock (A);

tmp2 = tmp2 - withdrawal;

lock (A);

balance = tmp2;

unlock (A);

assert (balance == old balance + deposit - withdrawal);
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Concurrent Slicing (First Attempt)

I Thread 1 sliced away entirely
I Slice doesn’t reflect concurrency bug (atomicity violation)!

I Problem: Sequential slicing ignores data hazards
I Solution: Consider data hazards during slicing
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Concurrent Slicing (First Attempt)

I Thread 1 sliced away entirely
I Slice doesn’t reflect concurrency bug (atomicity violation)!
I Problem: Sequential slicing ignores data hazards
I Solution: Consider data hazards during slicing



Concurrent Slicing (With Data Hazards)

tmp1 = balance;

tmp2 = balance;

tmp1 = tmp1 + deposit;

tmp2 = tmp2 - withdrawal;

balance = tmp1;

balance = tmp2;

assert (balance == old balance + deposit - withdrawal);

{ balance == old balance }

{ balance == old balance }

{ tmp2 == old balance }

{ tmp2 == old balance }

{ tmp2 == old balance - withdrawal }

{ tmp2 == old balance - withdrawal }

{ balance == old balance - withdrawal }

WAW



Concurrent Slicing (With Data Hazards)

tmp1 = balance;

tmp2 = balance;

tmp1 = tmp1 + deposit;

tmp2 = tmp2 - withdrawal;

balance = tmp1;

balance = tmp2;

assert (balance == old balance + deposit - withdrawal);

{ balance == old balance }

{ balance == old balance }

{ tmp2 == old balance }

{ tmp2 == old balance }

{ tmp2 == old balance - withdrawal }

{ tmp2 == old balance - withdrawal }

{ balance == old balance - withdrawal }
WAW



Concurrent Slicing (With Data Hazards)

I tmp1 = tmp1 + deposit not included, since eliminated by
semantic slicing

I Hoare assertions show that value of balance is stale
I Disadvantage: slice contains > 50% of program

I This ratio is better for larger programs



Concurrent Slices as Explanations

Error explanation identifies:
I Fault – derived from statements in slice
I Error – reflected by Hoare assertions
I Failure – determined given by assertion/specification



A More Involved Example

26 i n t withdraw ( i n t amount )
27 {
28 i n t tmpBalance ;
29 i n t app l ied = 0;

31 pthread mutex lock ( ba lance lock ) ;
32 tmpBalance = balance ;
33 pthread mutex unlock ( ba lance lock ) ;

35 i f ( tmpBalance − amount >= MIN)
36 {
37 tmpBalance −= amount ;
38 app l ied = 1;
39 }

41 pthread mutex lock ( ba lance lock ) ;
42 balance = tmpBalance ;
43 pthread mutex unlock ( ba lance lock ) ;

45 return app l ied ;
46 }

48 i n t depos i t ( i n t amount )
49 {
50 i n t tmpBalance ;
51 i n t app l ied = 0;

53 pthread mutex lock ( ba lance lock ) ;
54 tmpBalance = balance ;
55 pthread mutex unlock ( ba lance lock ) ;

57 i f ( tmpBalance + amount <= MAX)
58 {
59 tmpBalance += amount ;
60 app l ied = 1;
61 }

63 pthread mutex lock ( ba lance lock ) ;
64 balance = tmpBalance ;
65 pthread mutex unlock ( ba lance lock ) ;

67 return app l ied ;
68 }



A More Involved Example

108 i n t sum thread1 = 0; / / shared vars
109 i n t sum thread2 = 0; / / shared vars

111 void∗ thread1 ( void ∗np ) {
112 t r ansac t i ons ∗ t ;
113 t = ( t r ansac t i ons ∗)np ;
114 i n t upper bound = t−>num / 2 ;
115 i n t i ;
116 for ( i = 0 ; i < upper bound ; i ++){
117 i f ( do t ransac t i on (&( t−>t a r r a y [ i

] ) ) ) {
118 i f ( t−>t a r r a y [ i ] . type ==

DEPOSIT) {
119 sum thread1 += t−>t a r r a y [ i ] .

amount ;
120 }
121 else {
122 sum thread1 −= t−>t a r r a y [ i ] .

amount ;
123 }
124 }
125 }

127 p t h r e a d e x i t (NULL) ;
128 return NULL;
129 }

131 void∗ thread2 ( void ∗np ) {
132 t r ansac t i ons ∗ t ;
133 t = ( t r ansac t i ons ∗)np ;
134 i n t upper bound = t−>num / 2 ;
135 i n t i ;
136 for ( i = upper bound ; i < t−>num; i

++){
137 i f ( do t ransac t i on (&( t−>t a r r a y [ i

] ) ) ) {
138 i f ( t−>t a r r a y [ i ] . type ==

DEPOSIT) {
139 sum thread2 += t−>t a r r a y [ i ] .

amount ;
140 }
141 else {
142 sum thread2 −= t−>t a r r a y [ i ] .

amount ;
143 }
144 }
145 }

147 p t h r e a d e x i t (NULL) ;
148 return NULL;
149 }



A More Involved Example

151 void u n i t t e s t ( ) {
152 t r ansac t i ons ∗ t r s = new t ransact ions ( 5 ) ;
153 ba lance lock = ( p thread mutex t ∗) mal loc ( sizeof ( p thread mutex t ) ) ;
154 p t h r e a d m u t e x i n i t ( ba lance lock ,NULL) ;

156 balance = 40;

158 i n t orgBalance = balance ;

160 p th read t t1 , t2 ;
161 p th read crea te (& t1 ,NULL, thread1 , ( void∗) t r s ) ;
162 p th read crea te (& t2 ,NULL, thread2 , ( void∗) t r s ) ;

164 p t h r e a d j o i n ( t1 ,NULL) ;
165 p t h r e a d j o i n ( t2 ,NULL) ;

167 i n t expBalance = orgBalance + sum thread1 + sum thread2 ;
168 assert ( expBalance == balance ) ;
169 }



A More Involved Example: Bug Explanation Pattern

 

Bug Explanation Pattern 

R: read, W:Write 

Subscript of R/W: thread id 

Source code (T1) Line number Source code (T2) Line number 

 

R2(t->num) 

R2(t->array) 

R2(t->array[4].type) 

R2(t->array[4].amount) 
R2(balance) 

 

 

 

 

 

 

 

 

   

  for(i = upper_bound; i < t->num; i++){ 136

if (do_transaction(&(t->t_array[i]))) { 137  

if (t->type == DEPOSIT) 74    

applied = deposit(t->amount); 76    

tmpBalance = balance; 54    

 

 

 

W2(balance)  balance = tmpBalance; 64    

W1(balance) balance = tmpBalance; 64   



Summary

I Heisenbugs are hard to reproduce
I caused by lack of control over schedule
I excessive instrumentation can hide bugs (probe effect)

I Goal of error explanation is to identify:
I Fault
I Error

for a given Failure (determined by assertion/specification)



Bonus Exercise

June 11, 2pm-4pm in HS17

I Task: 3 concurrency bugs to explain
I Incentive: 15 additional points (count towards grade)
I Sign up via TUWEL until June 10, 4pm!


