Programm- & Systemverifikation

Concurrency

Georg Weissenbacher m
184.741

What happened so far

How bugs come into being:
» Fault — cause of an error (e.g., mistake in coding)
» Error — incorrect state that may lead to failure
» Failure — deviation from desired behaviour

v

v

We specified intended behaviour using assertions

v

We proved our programs correct (inductive invariants).

v

We learned how to test programs.
We heard about logical formalisms:
» Propositional Logic
» First Order Logic
» Temporal Logic

v

v

...and tools to reason in/about these logics.

v

Hoare’s Calculus for reasoning about programs

Concurrency

» Upper limit for processor frequency has been reached
» Chip manufacturers now increase number of cores instead

Concurrency

» Upper limit for processor frequency has been reached
» Chip manufacturers now increase number of cores instead

» Performance improvements depend on multi-threaded
programming

Concurrency

v

Upper limit for processor frequency has been reached

v

Chip manufacturers now increase number of cores instead

v

Performance improvements depend on multi-threaded
programming
Opens Pandora’s Box of new bugs (e.g., Heisenbugs)

v

What kinds of concurrency bugs are there?

Concurrency Bugs

» deadlock

(two tasks wait for same resource)

» livelock/starvation

(thread makes no progress)

» race condition

(two threads accessing resource at same time)

» order violation

(statements executed in unintended order)

» atomicity violation

(interruption of supposedly atomic action)

Synchronization Primitives

» Locks can be used to prevent simultaneous or concurrent
access to critical regions or resources
» Simplified API:
» lock(A) succeeds if lock A is available
» lock(A) blocks if lock is already held/acquired
(by this or another thread)
» unlock(A) releases a lock previously acquired
» unlock(A) never blocks

Deadlocks

» Deadlocks can happen if locks are acquired in wrong order

Thread 1 Thread 2
lock (A); lock (B);

lock (B); lock (A);

unlock (B); unlock (A);
unlock (A); unlock (B);

Deadlocks

» Deadlocks can happen if locks are acquired in wrong order
» Thread one acquires lock A

Thread 1 Thread 2
lock (A); lock (B);

lock (B); lock (A);

unlock (B); unlock (A);
unlock (A); unlock (B);

Deadlocks

» Deadlocks can happen if locks are acquired in wrong order

» Thread one acquires lock A
» Thread two acquires lock B

Thread 1 Thread 2
lock (A); lock (B);

lock (B); lock (A);

unlock (B); unlock (A);
unlock (A); unlock (B);

Deadlocks

» Deadlocks can happen if locks are acquired in wrong order
» Thread one acquires lock A
» Thread two acquires lock B
» Thread one waits for lock B (thread two still running)

Thread 1 Thread 2
lock (A); — lock (B);

lock (B); < | lock (A);

unlock (B); unlock (A);
unlock (A); unlock (B);

Deadlocks

» Deadlocks can happen if locks are acquired in wrong order

Thread one acquires lock A
Thread two acquires lock B
Thread one waits for lock B
Thread two waits for lock A

vV vYyVvVvyy

Thread 1 Thread 2
lock (A); — lock (B);

lock (B); “—| lock (A);

unlock (B); unlock (A);
unlock (A); unlock (B);

Deadlocks

» Deadlocks can happen if locks are acquired in wrong order

» Thread one acquires lock A
Thread two acquires lock B
Thread one waits for lock B

v

>
» Thread two waits for lock A
» Now both threads are stuck. . .
Thread 1 Thread 2
lock (A); — lock (B);
lock (B); — lock (A);
unlock (B); unlock (A);
unlock (A); unlock (B);

1: lock (A);
if (1lock (B))
goto 2;
do some work
unlock (B);
2: unlock (A);
goto 1;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise

3: lock (B);
if (!lock (A))
goto 4;
do some work
unlock (A);
4: unlock (B);
goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise
» Thread one acquires lock A

1: lock (A); 3: lock (B);
if (!lock (B)) if (!lock (A))
goto 2; goto 4;
do some work do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise

» Thread one acquires lock A
» Thread two acquires lock B

1: lock (A); 3: lock (B);
if (!lock (B)) if (!lock (A))
goto 2; goto 4;
do some work do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise
» Thread one acquires lock A
» Thread two acquires lock B
» Thread one fails to acquire lock B

1: lock (A); > 3: lock (B);
if (1ock BN | if (1lock (A))
goto 2; goto 4;
do some work do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise

» Thread one acquires lock A
» Thread two acquires lock B
» Thread one fails to acquire lock B
» Thread two fails to acquire lock A

1: lock (A); > 3: lock (B);
if (1lock (B if (1lock (A))
goto 2; goto 4;
do some work do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise

» Thread one acquires lock A
Thread two acquires lock B
Thread one fails to acquire lock B
Thread two fails to acquire lock A
Thread one releases lock A

vV vy vVvYyYy

1: lock (A); > 3: lock (B);
if (1lock (B if (1lock (A))
goto 2; goto 4;
do some work / do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise

» Thread one acquires lock A
Thread two acquires lock B
Thread one fails to acquire lock B
Thread two fails to acquire lock A
Thread one releases lock A
Thread two releases lock B

vV vy VY VvYy

1: lock (A); > 3: lock (B);
if (1lock (B if (1lock (A))
goto 2; goto 4;
do some work / do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

Attempt to Fix Deadlock

» Assume lock returns true on success, false otherwise
» Thread one acquires lock A

» Thread two acquires lock B
» Thread one fails to acquire lock B
» Thread two fails to acquire lock A
» Thread one releases lock A
» Thread two releases lock B
» Scenario repeats (livelock)
1: lock (A); > 3: lock (B);
/ if (1lock (B))‘// if (1lock (A))
goto 2; goto 4;
do some work / do some work
unlock (B); unlock (A);
2: unlock (A); 4: unlock (B);
goto 1; goto 3;

» Livelock can occur when algorithm detects and recovers from
deadlock
» Deadlock detection can be repeatedly triggered
» Solution: ensure only one process takes action
» randomized, priority, random timing (as in ethernet), ...

Race Conditions

#include <stdio.h>
#include <pthread.h>

int ¢ = 0;
void *count (void #*parg)
{
for (unsigned i=0; i<500000; i++)
c++;
return NULL;
}

int main (int argc, char**x argv)

{
pthread_t threadl, thread2;
pthread_create (&threadl, NULL, count, NULL);
pthread_create (&thread2, NULL, count, NULL);
pthread_join(threadl, NULL);
pthread_join(thread2, NULL);

printf ("%d\n", c);
return 0;

Race Conditions

Thread 1 Thread 2

C++ C++

Race Conditions

Thread 1 Thread 2

Cc = Cc+1 Cc = c+1

Race Conditions

» Compile with gcc -S threads.c

ct++

|
Compiler

movl c, %eax
addl $1, Jeax
movl %eax, c

Race Conditions

movl c, %eax movl c, %eax
addl $1, %eax addl $1, Jeax
movl %eax, c movl %eax, c

Race Conditions

movl c, %eax movl c, %eax
addl $1, %eax addl $1, Jeax
movl %eax, c movl %eax, c

Race Conditions

movl c, %eax movl C,LAeax
addl $1, %eax addl $17 Jeax
movl %eax, c movl %eax, c

Race Conditions

movl c, %eax movl C,LAeax
addl $1, %eax addl $17 Jeax
movl %eax, c movl %eax, c

Race Conditions

movl c, %eax movl C,LAeax
addl $1,, j%eax addl $17 Jeax
movl %eax, c movl %eax, c

Race Conditions

movl c, %eax movl C,LAeax
addl $1,, j%eax addl $17 Jeax
movl %eax, c movl %eax, c

Problem: Conflicting Variable Accesses

» ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [...] Two threads of execution (1.10) can update and access separate
memory locations without interfering with each other”

Problem: Conflicting Variable Accesses

» ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [...] Two threads of execution (1.10) can update and access separate
memory locations without interfering with each other”

» ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [...] Two expression evaluations conflict if one of them modifies a
memory location and the other one accesses or modifies the same memory
location.”

Problem: Conflicting Variable Accesses

» ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [...] Two threads of execution (1.10) can update and access separate
memory locations without interfering with each other”

» ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [...] Two expression evaluations conflict if one of them modifies a
memory location and the other one accesses or modifies the same memory
location.”

» Race condition:

» two threads access same unprotected memory location
» at least one of them is writing

Fixing Race Conditions

Thread 1 Thread 2
lock (A); lock (A);
C = C+1; C = C+1;

unlock (A); unlock (A);

Fixing Race Conditions

Thread 1 Thread 2
lock (A); lock (A);

C = C+1; C = Cc+1;
unlock (A); unlock (A);

» Does absence of race conditions mean program is free of
(non-deadlock) concurrency bugs?

Order Violations

» Instructions can still be executed in unintended order

Thread 1 Thread 2
lock (A); lock (A);
free (array); array[0] = 15;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal
» Fine-grained locking for performance reasons

lock (A); lock (A);
tmpl = balance; tmp2 = balance;
unlock (4); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpl; balance = tmp2;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal
» Fine-grained locking for performance reasons
» Thread one reads shared variable balance

lock (A); lock (A);
tmpl = balance; tmp2 = balance;
unlock (4); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpl; balance = tmp2;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal
» Fine-grained locking for performance reasons

» Thread one reads shared variable balance
» Thread two reads shared variable balance

lock (A); lock (A);
tmpl = balance; tmp2 = balance;
unlock (4); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpl; balance = tmp2;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal
» Fine-grained locking for performance reasons
» Thread one reads shared variable balance
» Thread two reads shared variable balance
» Thread one adds deposit to local copy of balance

lock (A); lock (A);
tmpl = balance; [— tmp2 = balance;
unlock (A); / unlock (A);
tmpl = tmpl + deposit;] tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpl; balance = tmp2;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal

» Fine-grained locking for performance reasons

Thread one reads shared variable balance

Thread two reads shared variable balance

Thread one adds deposit to /ocal copy of balance

Thread two subtracts withdrawal from local copy of balance

v

v vyy

lock (A); lock (A);
tmpl = balance; [— tmp2 = balance;
unlock (A); / unlock (A);
tmpl = tmpl + deposit; “ tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpl; balance = tmp2;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal

» Fine-grained locking for performance reasons

Thread one reads shared variable balance

Thread two reads shared variable balance

Thread one adds deposit to /ocal copy of balance

Thread two subtracts withdrawal from local copy of balance
Thread one stores result of transaction in balance

v

vV vy vVvYyy

lock (A); lock (A);
tmpl = balance; [— tmp2 = balance;

unlock (A); / unlock (A);

tmpl = tmpl + deposit; “ ptmp2 = tmp2 - withdrawal;
lock (A); lock (A);

balance = tmpl;/ balance = tmp2;
unlock (A); unlock (A);

Protecting Access to Shared Variables

» Concurrent account deposit and withdrawal
» Fine-grained locking for performance reasons
» Thread one reads shared variable balance
Thread two reads shared variable balance
Thread one adds deposit to /ocal copy of balance
Thread two subtracts withdrawal from local copy of balance
Thread one stores result of transaction in balance
Thread two overwrites result of transaction of thread one

vV vy vy VvVYYy

lock (A); lock (A);
tmpl = balance; [— tmp2 = balance;

unlock (A); / unlock (A);

tmpl = tmpl + deposit; “ ptmp2 = tmp2 - withdrawal;
lock (A); lock (A);

balance = tmpl'/ balance = tmp2;
unlock (A); unlock (A);

Atomicity Violation

» No race condition (since no conflicting access)
» Program disregards “intended” isolation/atomicity

Atomicity Violation

» No race condition (since no conflicting access)

» Program disregards “intended” isolation/atomicity
» Unlike race condition, depends on programmer’s intention
» Cannot be detected automatically without annotations

Atomicity Violation

» No race condition (since no conflicting access)

» Program disregards “intended” isolation/atomicity
» Unlike race condition, depends on programmer’s intention

» Cannot be detected automatically without annotations
» Unrealistic to ask programmer to indicate “intended” atomic
region (if s/he knew, there’d probably be no bug)

Atomicity Violation

» No race condition (since no conflicting access)

» Program disregards “intended” isolation/atomicity
» Unlike race condition, depends on programmer’s intention

» Cannot be detected automatically without annotations

» Unrealistic to ask programmer to indicate “intended” atomic
region (if s/he knew, there’d probably be no bug)

» Assert result instead (i.e., testing):

assert (balance ==
old balance + deposit - withdrawal);

Atomicity Violation

» No race condition (since no conflicting access)

» Program disregards “intended” isolation/atomicity
» Unlike race condition, depends on programmer’s intention

» Cannot be detected automatically without annotations

» Unrealistic to ask programmer to indicate “intended” atomic
region (if s/he knew, there’d probably be no bug)

» Assert result instead (i.e., testing):

assert (balance ==
old balance + deposit - withdrawal);

» Alternatively, use sequential reference implementation and
compare results! (cf. Pex for Fun!)

old_balance = balance;

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpl;
unlock (A);

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

assert (balance == old_balance + deposit - withdrawal);

old_balance = balance;

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpl;
unlock (A);

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

assert (balance == old_balance + deposit - withdrawal);

old_balance = balance;

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpl;
unlock (A);

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

assert (balance == old_balance + deposit - withdrawal);

old_balance = balance;

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpl;
unlock (A);

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

assert (balance == old_balance + deposit - withdrawal);

old_balance = balance;

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpl;
unlock (A);

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

assert (balance == old_balance + deposit - withdrawal);

Bug does not happen in every execution!

“a software bug that seems to disappear or alter its behavior when
one attempts to study it”

» Concurrency bugs are one example of Heisenbugs
» Why?

“a software bug that seems to disappear or alter its behavior when
one attempts to study it”

» Concurrency bugs are one example of Heisenbugs
» Why? No control over scheduler!

Heisenbugs: Caused by Scheduler

» Assume all inputs of the program are fixed (i.e., test case)
» Then what causes variation of program behaviour?

Heisenbugs: Caused by Scheduler

» Assume all inputs of the program are fixed (i.e., test case)
» Then what causes variation of program behaviour?

» Change of schedule results in change of data-flow
» Remember from lecture on Coverage Criteria:

X =y+z
~~ X\,_/
defined used

» Execution results in (ordered) sequence of read/write events:
R(y) R(2) W(x)

Heisenbugs: Caused by Scheduler

» Assume all inputs of the program are fixed (i.e., test case)
» Then what causes variation of program behaviour?

» Change of schedule results in change of data-flow
» Remember from lecture on Coverage Criteria:

X =y+z
~~ X\,_/
defined used

» Execution results in (ordered) sequence of read/write events:
R(y) R(2) W(x)

data flow

Data Dependencies within a Thread

b=a; a=b>b; b=a;
c=Db; b=c; b=c;

Flow dependency Anti-dependency Output-dependency

» Flow dependency: R(a) W(b) R(b) W(c)

» Read-after-Write (RAW)
» ¢ = bdependsonresultofb = a
» Anti-dependency: R(b) W(a) R(c) W(b)
» Write-after-Read (WAR)
» b = c must happen aftera = b
» Output-dependency: R(a) W(b) R(c) W(b)
» Write-after-Write (WAW)
» b = coverwrites result of b =

Inter-Thread Data Dependencies

Data-dependencies (“hazards”) between threads are similar:

_ {._oOutput = x_anti _ 1. flow

X=1-_ y N X=1-_

Ty —— —A —A
X=2 X' =2 y=X

To F— —3 F—

—

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to

execution (“data hazard”):

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpil;
unlock (A);

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpil;
unlock (A);

Ry (balance)

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A);

tmpl = balance;
unlock (A);
tmpl = tmpl + deposit;
lock (A);

balance = tmpil;
unlock (A);

Ry (balance)

Wy (tmpl)

lock (A);
tmp2 = balance;
unlock (A);
tmp2 = tmp2 - withdrawal;
lock (A);
balance = tmp2;
unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); R1|(balance) lock (A);
tmpl = balance; s CompD) tmp2 = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpil; balance = tmp2;
unlock (A); unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); R1|(balance) lock (A);
tmpl = balance; s CompD) tmp2 = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpil; B (o) balance = tmp2;
unlock (A); unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); R1|(balance) lock (A);
tmpl = balance; s CompD) tmp2 = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpil; R balance = tmp2;
unlock (A); unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); R1|(balance) | R, (balance) FCk (A);
tmpl = balance; s CompD) tmp2 = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpil; R balance = tmp2;
unlock (A); unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); R1|(balance) Rz(balancle) bck (A);
tmpl = balance; s CompD) Wy Comp2) tmp2 = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; tmp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpil; — balance = tmp2;
unlock (A); unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); Ry (balance) || Ry (balance) PCE (A);
tmpl = balance; s CompD) Wy Comp2) tmp2 = balance;
unlock (A); | | / | |unlock (A);
tmpl = tmpl + deposit;| I hp2 = tmp2 - withdrawal;
lock (A); lock (A);
balance = tmpil; balance = tmp2;

unlock (A); unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); Ry (balance) || Ry (balance) PCE (A);
tmpl = balance; s CompD) Wy Comp2) tmp2 = balance;
unlock (A); | | / | | unlock (A);
tmpl = tmpl + deposit;| I hp2 = tmp2 - withdrawal;
lock (A); | / | [10ck (A);
| Ry (tmp1) || Rp (tmp2)

balance = tmpil; balance = tmp2;

unlock (A); M l unlock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

I I

lock (R) 5 Rq (balance) || Rp(balance) bck (A) 5

tmpl = balance; s CompD) Wy Comp2) tmp2 = balance;
unlock (A); | | / | | unlock (A);
tmpl = tmpl + deposit;| I hp2 = tmp2 - withdrawal;
lock (A); | / | [10ck (A);

)

balance = tmpil; | B (ot ” Re (tmp?) balance = tmp2;

wrlleak (A s | W1 (balance) || Wo(balance) L.I ock (A);

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); R1|(balance) Rz(balancle) bck (A);
tmpl = balance; s CompD) Wy Comp2) tmp2 = balance;
unlock (A); | | / | | unlock (A);
tmpl = tmpl + deposit;| I hp2 = tmp2 - withdrawal;
lock (A); | / | [10ck (A);
balance = tmpil; | B (o) ” Re (tmp?) balance = tmp2;
anlock (A); |w1 (balance) || Wp (balance) lﬂ ock (1) :

» Subscripts of Ry, W1, Rz, W indicate thread!

» Intra-thread order not relevant for outcome!

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); lock (A);
tmpl = balance; = tmp2 = balance;
unlock (A); / unlock (A);
tmpl = tmpl + deposit; e Ptmp2 = tmp2 - withdrawal;

lock (A); / lock (A);

balance = tmpl ;/

unlock (A); unlock (A);

balance = tmp2;

» Subscripts of Ry, W1, Rz, Wy indicate thread!

» Intra-thread order not relevant for outcome!

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); lock (A);
tmpl = balance; |* (bal"‘n”)/ﬁ tmp2 = balance;

unlock (A); unlock (A);
tmpl = tmpl + deposit; e Ptmp2 = tmp2 - withdrawal;

lock (A); / lock (A);

balance = tmpl ;/

unlock (A); unlock (A);

balance = tmp2;

» Subscripts of Ry, W1, Rz, Wy indicate thread!

» Intra-thread order not relevant for outcome!

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); | lock (A);
tmpl = balance; |R1 (balance) |—| Rz (balance) | tmpD = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; e Ptmp2 = tmp2 - withdrawal;

lock (A); / lock (A);

balance = tmpl ;/

unlock (A); unlock (A);

balance = tmp2;

» Subscripts of Ry, W1, Rz, Wy indicate thread!

» Intra-thread order not relevant for outcome!

Inter-Thread Data Dependencies

» Intra-Thread (or thread-local) data flow and dependencies are
determined by program/instruction order

» Inter-Thread data dependencies may vary from execution to
execution (“data hazard”):

lock (A); | lock (A);
tmpl = balance; |R1 (balance) |—| Rz (balance) | tmpD = balance;
unlock (A); unlock (A);
tmpl = tmpl + deposit; e Ptmp2 = tmp2 - withdrawal;
lock (A); / lock (A);

balance = tmp2;

balance = tmp1 W; (balance) |—| Wo (balance)

unlock (A); unlock (A);

» Subscripts of Ry, W1, Rz, Wy indicate thread!

» Intra-thread order not relevant for outcome!

Inter-Thread Data Dependencies

» Qutcome depends on inter-thread order of R/'W Accesses to

shared variables

| Ri(balance) |

| Ri (balance) |

WAR |

lindependent

| W1 (balance) |

| Ro (balance) |

RAW |

[war

| Ry (balance) |

| W1 (balance) |

WAR |

| waw

| W2 (balance) |

| W2 (balance) |

Inter-Thread Data Dependencies

» Qutcome depends on inter-thread order of R/'W Accesses to

shared variables

| Ri(balance) |

| Ri (balance) |

WAR |

lindependent

| W1 (balance) |

| Ro (balance) |

RAW |

[war

| Ry (balance) |

| W1 (balance) |

WAR |

| waw

| W2 (balance) |

| W2 (balance) |

X

Inter-Thread Data Dependencies

» Qutcome depends on inter-thread order of R/'W Accesses to

shared variables

| Ri(balance) |

| Ri (balance) |

WAR |

lindependent

| W1 (balance) |

| Ro (balance) |

RAW |

[war

| Ry (balance) |

| W1 (balance) |

WAR |

| waw

| W2 (balance) |

| W2 (balance) |

X

v

Inter-Thread Data Dependencies

» Qutcome depends on inter-thread order of R/'W Accesses to

shared variables
| Ri(balance) | | Ri (balance) |
WARl lindependent
| W1 (balance) | | Ro (balance) |
RAW | [war
| Ry (balance) | | W1 (balance) |
WAR | | waw
| W2 (balance) | | W2 (balance) |
X v

» Note: same input values, different output values

Reproducing Heisenbugs?

» For same input, different schedules produce different result
» Assertion may fail in some executions, not in others

» Resulting Challenges:

1. Reproducing Heisenbugs
2. Understanding Heisenbugs

Reproducing Heisenbugs?

“Poor man’s” strategies:
» Stress testing

» Increase number of threads
» Run program/system with heavy computational load

“Poor man’s” strategies:
» Stress testing

» Increase number of threads
» Run program/system with heavy computational load

Reproducing Heisenbugs?

» Change schedule by adding sleep statements

sleep(0);
lock (A);

sleep(500) ;
lock (A);

tmpl = balance;
unlock (A);
sleep(1000) ;

sleep(1000) ;
lock (A);

> tmp2 = balance;
unlock (A);
sleep(1000) ;

|
tmpl = tmpl + deposit;

/

/
/

Ptmp2 = tmp2 - withdrawal;
sleep(1000) ;
lock (A);

balance = tmpil;
unlock (A);

balance = tmp2;
unlock (A);

Reproducing Heisenbugs?

Systematic approaches:

» “Take over” the scheduler
» Can be achieved by instrumenting synchronization primitives
instr_lock(4) {
ask scheduler to:
perform previously unexplored context switch
acquire lock
}
» Implemented in

» CHESS:
http://research.microsoft.com/en-us/projects/chess/

> INSPECT:
http://formalverification.cs.utah.edu/Inspect/

http://research.microsoft.com/en-us/projects/chess/
http://formalverification.cs.utah.edu/Inspect/

Reproducing Heisenbugs?

Systematic approaches:
» “Take over” the scheduler
» Can be achieved by instrumenting synchronization primitives
instr_lock(4) {
ask scheduler to:
perform previously unexplored context switch
acquire lock
}
» Implemented in

» CHESS:
http://research.microsoft.com/en-us/projects/chess/

> INSPECT:
http://formalverification.cs.utah.edu/Inspect/

Disadvantage of all techniques considered so far:
» Probe effect (bugs may be masked)

http://research.microsoft.com/en-us/projects/chess/
http://formalverification.cs.utah.edu/Inspect/

Reproducing Heisenbugs?

Systematic approaches:
» Model Checking

» Exhaustively explore all possible program interleavings
» Let’s look at a (familiar) example!

Assertions and Concurrency: Solution

flagh = 0; flagB = 0;
lock (A); lock (B);
flagh = 1; flagB = 1;
assert (!flagB); assert (!flagh);
lock (B); lock (A);
flaghA = 0; flagB = 0;
unlock (B); unlock (A);
unlock (A); unlock (B);

» Add assertions that fail if and only if a deadlock is about to
occur!

Note:

» If flagh and f1lagB are reset after the inner locks are
released, then there’s a potential assertion failure even if the
deadlock doesn’t happen

The SPIN Model Checker

http://spinroot.com/spin/whatispin.html

» Open Source verification tool
» Targets verification of multi-threaded software
» Modelling language PROMELA

http://spinroot.com/spin/whatispin.html

SPIN Model of Solution

int flagA = 0; int flagB = 0;
int lockA = 0; int lockB = 0;
int histA =1; int histB=1;

» Locks lockA and lockB are modelled using Boolean values
» histA and histB are set to 0 if assertion fails

SPIN Model of Solution

active proctype A() {

flagh = 0;
atomic { lockA == 0; lockA == 1;}
flagh = 1;
histA = (!flagB);
if
atomic { lockB == 0; lockB = 1; }

:: timeout -> assert('histA || 'histB); goto end;
flaghA = 0;
lockB = 0;
lockA = 0;

assert(histA && histB);

end:

}

SPIN Model of Solution

active proctype B() {

flagB = 0;
atomic { lockB == 0; lockB == 1;}
flagB = 1;
histB = (!flagA);
if
atomic { lockA == 0; lockA = 1; }

:: timeout -> assert('histA || 'histB); goto end;
flagB = 0;
lockA = 0;
lockB = 0;

assert(histA && histB);

end:

}

Model Checking with SPIN

» Run SPIN:

spin -a model.pml

gcc -0 pan pan.c

./pan
» SPIN checks all possible executions
» Condition at beginning of atomic block “waits” until it’s true
» The condition timeout is true if a deadlock happens
» If no assertion in SPIN model fails, then solution is correct
» If there is a counterexample, . /pan -r reports it

Explaining Heisenbugs

» Once we’ve reproduced the Heisenbug, we need to explain it!
» Recall:

1. programmer introduces a fault in the code

Explaining Heisenbugs

» Once we’ve reproduced the Heisenbug, we need to explain it!
» Recall:

_—

1. programmer introduces a fault in the code
2. fault gets excited during execution, results in error

Explaining Heisenbugs

» Once we’ve reproduced the Heisenbug, we need to explain it!
» Recall:

e

1. programmer introduces a fault in the code
2. fault gets excited during execution, results in error
3. error propagates, results in system failure

Explaining Heisenbugs

We want to identify
» Fault
» Error:
» Failure:

Explaining Heisenbugs

We want to identify
» Fault
» Error:
» Failure: Determined by assertion failure/failed test case

Explaining Heisenbugs

We want to identify
» Fault ?
» Error: ?
» Failure: Determined by assertion failure/failed test case

Explaining Heisenbugs

We want to identify
» Fault ?
» Error: ?
» Failure: Determined by assertion failure/failed test case
“Poor man’s” strategy:
» Debugger (e.g., gdb): reproduction challenging/context
switches performed manually
» printf-debugging: instrument program with logging
statements, then analyze/narrow down problem manually

Explaining Heisenbugs

Systematic approaches (incomplete list)
» Run-time monitoring:
» Try to identify “problematic” access patterns (e.g. race
conditions) during run-time
» Disadvantage: relies on patterns (might be incomplete), false
positives

Explaining Heisenbugs

Systematic approaches (incomplete list)
» Run-time monitoring:
» Try to identify “problematic” access patterns (e.g. race
conditions) during run-time
» Disadvantage: relies on patterns (might be incomplete), false
positives
» Trace analysis/data mining:
» Record several failing and passing traces
» Report R/W combinations frequently occurring in bad traces,
but not in good ones
» Disadvantage: requires several traces, may report false
positives

Explaining Heisenbugs

Systematic approaches (incomplete list)
» Run-time monitoring:
» Try to identify “problematic” access patterns (e.g. race
conditions) during run-time
» Disadvantage: relies on patterns (might be incomplete), false
positives
» Trace analysis/data mining:
» Record several failing and passing traces
» Report R/W combinations frequently occurring in bad traces,
but not in good ones
» Disadvantage: requires several traces, may report false
positives
» Slicing:
» Perform symbolic analysis of execution trace
» Slice away statements irrelevant for assertion failure
» Disadvantage: sliced traces may still be long

Problematic Access Patterns

» Recall: Data dependencies

W1 (balance)

independent
Rz (balance)
WAR

Wy (balance)

WAW

W (balance)

» Access pattern can be mapped back to program

Problematic Access Patterns

» Access pattern can be mapped back to program
» Locks only shown for context

lock (A);
tmpl = balance;
unlock (A);
lock (A);
Rz (balance) tmp2 = balance;
unlock (A);
lock (A);
Wi (balance) balance = tmpi;
unlock (A);
lock (A);

Wz (balance) balance = tmp2;

unlock (A);

Problematic Access Patterns

Explanation derived from pattern:
» Fault: Update of balance is not performed atomically
» Error: Value of balance written by Thread 2 is “stale”
» Failure: Balance on account deviates from expected value

Problematic Access Patterns

Explanation derived from pattern:
» Fault: Update of balance is not performed atomically
» Error: Value of balance written by Thread 2 is “stale”
» Failure: Balance on account deviates from expected value

Still requires intuition, but pattern “explanation” helps.

» For more complex programs, however, access pattern may
contain variables not directly related to bug!

Sequential Slicing

» Debugging technique that cuts away irrelevant code
» Backwards, starting from the assertion

» Eliminate statements where there’s no flow dependency
» (For sequential setting)

x = 42;
y = 15;
z =y + 5;

assert (z < 10);

Sequential Slicing

» Debugging technique that cuts away irrelevant code
» Backwards, starting from the assertion

» Eliminate statements where there’s no flow dependency
» (For sequential setting)

x = 42;
y = 15;
z =y + 5;

assert (z < 10);

Sequential Slicing

» Debugging technique that cuts away irrelevant code
» Backwards, starting from the assertion

» Eliminate statements where there’s no flow dependency
» (For sequential setting)

x = 42;
y = 15;
z =y + 5;

assert (z < 10);

Sequential Slicing

» Debugging technique that cuts away irrelevant code
» Backwards, starting from the assertion

» Eliminate statements where there’s no flow dependency
» (For sequential setting)

—x—=425—
y = 15;
z =y + 5;

assert (z < 10);

» Assignment x = 42 has no impact on assertion

Sequential Slicing and Control-Dependency

Sequential Slicing and Control-Dependency

data
[x > 0] x=0
x=5 y=x
[x < 0] z=1

» y=x data-depends on x=0 (but not on z=1)

Sequential Slicing and Control-Dependency

data
control
[x > 0] ’Nx;—o\
x=5 y=x

[x < 0] z=1

» y=x data-depends on x=0 (but not on z=1)
» x=0 is only executed if (x > 0)-branch is taken

» Therefore, branching condition must be included in slice
» “control-flow sensitive slice”

Sequential Slicing and Control-Dependency

data
control
[x > 0] ’Nx;—o\
x=5 y=x

[x < 0] z=1

» y=x data-depends on x=0 (but not on z=1)
» x=0 is only executed if (x > 0)-branch is taken

» Therefore, branching condition must be included in slice
» “control-flow sensitive slice”

» (x > 0) data-depends on x=5, therefore x=5 must be included

Semantic Slicing

» “Syntactic” slicing results in large slices

» many statements included
» doesn’t take semantics of statements into account

x = b;
y = 15;
z=3%hx;

assert (z > 5);

Semantic Slicing

» “Syntactic” slicing results in large slices

» many statements included
» doesn’t take semantics of statements into account

x = b;
y = 15;
z=3%hx;

assert (z > 5);

Semantic Slicing

» “Syntactic” slicing results in large slices

» many statements included
» doesn’t take semantics of statements into account

x = b;
y = 15;
z=3%hx;

assert (z > 5);

Semantic Slicing

» “Syntactic” slicing results in large slices

» many statements included
» doesn’t take semantics of statements into account

x = b;
y = 15;
z=3%hx;

assert (z > 5);

Semantic Slicing

» “Syntactic” slicing results in large slices

» many statements included
» doesn’t take semantics of statements into account

x = b;
y = 15;
z =3 %h X;

assert (z > 5);

» But y=15 is irrelevant, since (y%5) < 5 independently of y!

Semantic Slicing

» Hoare Logic to the rescue!
» Construct Hoare Proof showing that assertion fails

» Execution traces do not contain loops
» Can be automated (using SMT solvers and Craig interpolation)

x = b;
y = 15;
z =y %h X;

assert (z > 5);

Semantic Slicing

» Hoare Logic to the rescue!
» Construct Hoare Proof showing that assertion fails

» Execution traces do not contain loops
» Can be automated (using SMT solvers and Craig interpolation)

x = b;
y = 15;
z =y %h X;
{z<5}

assert (z > 5);

Semantic Slicing

» Hoare Logic to the rescue!
» Construct Hoare Proof showing that assertion fails

» Execution traces do not contain loops
» Can be automated (using SMT solvers and Craig interpolation)

x = b;

y = 15;
{x < 5}
z =y %h X;
{z<5}

assert (z > 5);

Semantic Slicing

» Hoare Logic to the rescue!
» Construct Hoare Proof showing that assertion fails

» Execution traces do not contain loops
» Can be automated (using SMT solvers and Craig interpolation)

{true}

assert (z > 5);

Semantic Slicing

» Hoare Logic to the rescue!
» Construct Hoare Proof showing that assertion fails

» Execution traces do not contain loops
» Can be automated (using SMT solvers and Craig interpolation)

{true}
x = b;
/»{XSS}
unchanged y = 15;
{x < 5}

z =y %h x;
{z<5}

assert (z > 5);

» y=15 does not affect surrounding Hoare assertions

Semantic Slicing

» Hoare Logic to the rescue!
» Construct Hoare Proof showing that assertion fails

» Execution traces do not contain loops
» Can be automated (using SMT solvers and Craig interpolation)

{true}
x = b;

__— {x < 5}
unchanged —y—=165—

{x < 5}
z =y %h X;

{z<5}

assert (z > 5);

» y=15 does not affect surrounding Hoare assertions
» Therefore, y=15 is irrelevant

Semantic Slicing

» Semantic slicing can eliminate irrelevant statements
» Hoare assertions act as annotation, aid understanding

{true}
x = b;
{x < 5}

{x < 5}
z =y % X;

{z < 5}

assert (z > 5);

Concurrent Slicing (First Attempt)

let's apply sequential slicing to concurrent trace.
» Ignore locks for the time being

old_balance = balance;

lock (A); lock (A);

tmpl = balance; [tmp2 = balance;

unlock (A); / unlock (A);

tmpl = tmpl + deposit; 9 ptmp2 = tmp2 - withdrawal;
lock (A); / lock (A);

balance = tmpl;/ balance = tmp2;
unlock (A); unlock (A);

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

tmpl = balance;

tmp2 = balance;

tmpl = tmpl + deposit;

tmp2 = tmp2 - withdrawal;
balance = tmpil;

balance = tmp2;

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

tmpl = balance;

tmp2 = balance;

tmpl = tmpl + deposit;

tmp2 = tmp2 - withdrawal;

balance = tmpil;
balance = tmp2;

{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

tmpl = balance;

tmp2 = balance;

tmpl = tmpl + deposit;

tmp2 = tmp2 - withdrawal;

balance = tmpil;
{ tmp2 == old balance - withdrawal }
balance = tmp2;
{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

balance;

tmpl

tmp2 = balance;

tmpl = tmpl + deposit;

tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

balance;

tmpl

tmp2 = balance;

tmpl = tmpl + deposit;
{ tmp2 == old_balance }
tmp2 = tmp2 - withdrawal;

{ tmp2 == old.balance - withdrawal }

—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
{ balance == old balance - withdrawal }
assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

tmpl = balance;

tmp2 = balance;
{ tmp2 == old_balance }
—tmpl—=tmpl <+ depesits

{ tmp2 == old_balance }

tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

tmpl = balance;

tmp2 = balance;
{ tmp2 == old_balance }
—tmpl—=tmpl <+ depesits

{ tmp2 == old_balance }

tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

tmpl = balance;
{ balance == old_balance }
tmp2 = balance;
{ tmp2 == old_balance }
—tmpl-=tmpl <+ deposits

{ tmp2 == old_balance }

tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
f

{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

{ balance == old_balance }
tmpl = balance;
{ balance == old_balance }

tmp2 = balance;
{ tmp2 == old balance }
—tmpl=—tmpl+deposit;
{ tmp2 == old_balance }
tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
f

{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (First Attempt)

» Thread 1 sliced away entirely
» Slice doesn't reflect concurrency bug (atomicity violation)!

Concurrent Slicing (First Attempt)

» Thread 1 sliced away entirely
» Slice doesn't reflect concurrency bug (atomicity violation)!
» Problem: Sequential slicing ignores data hazards

Concurrent Slicing (First Attempt)

v

Thread 1 sliced away entirely

v

Slice doesn’t reflect concurrency bug (atomicity violation)!

v

Problem: Sequential slicing ignores data hazards

v

Solution: Consider data hazards during slicing

Concurrent Slicing (With Data Hazards)

{ balance == old_balance }
tmpl = balance;
{ balance == old_balance }

tmp2 = balance;
{ tmp2 == old balance }
—tmpl=—tmpl+deposit;
{ tmp2 == old_balance }
tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
—balance—=—tmpli—
{ tmp2 == old_balance - withdrawal }
balance = tmp2;
f

{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (With Data Hazards)

{ balance == old_balance }
tmpl = balance;
{ balance == old_balance }

tmp2 = balance;
{ tmp2 == old balance }
—tmpl-=tmpl <+ deposits
{ tmp2 == old_balance }
tmp2 = tmp2 - withdrawal;
{ tmp2 == old.balance - withdrawal }
balance = tmpil;
{ tmp2>=<_old balance - withdrawal }
WA balance = tmp2;
{ balance == old balance - withdrawal }

assert (balance == old_balance + deposit - withdrawal);

Concurrent Slicing (With Data Hazards)

» tmpl = tmpl + deposit notincluded, since eliminated by
semantic slicing
» Hoare assertions show that value of balance is stale
» Disadvantage: slice contains > 50% of program
» This ratio is better for larger programs

Concurrent Slices as Explanations

Error explanation identifies:
» Fault — derived from statements in slice
» Error — reflected by Hoare assertions
» Failure — determined given by assertion/specification

A More Involved Example

26 int withdraw(int amount)

28 int tmpBalance;
29 int applied = 0;

31 pthread_mutex_lock (balance_lock) ;
32 tmpBalance = balance;
33 pthread_mutex_-unlock (balance_lock) ;

35 if (tmpBalance — amount >= MIN)

37 tmpBalance —= amount;
38 applied = 1;
39

41 pthread_mutex_lock (balance_lock) ;
42 balance = tmpBalance;
43 pthread_mutex_unlock (balance_lock) ;

45 return applied;

48 int deposit(int amount)

49

50 int tmpBalance;

51 int applied = 0;

53 pthread_mutex_lock (balance_lock) ;
54 tmpBalance = balance;

55 pthread_mutex._unlock (balance_lock) ;
57 if (tmpBalance + amount <= MAX)

58

59 tmpBalance += amount;

60 applied = 1;

61

63 pthread_mutex_lock (balance_lock);
64 balance = tmpBalance;

65 pthread_mutex_unlock (balance_lock) ;
67 return applied;

68 }

A More Involved Example

108
109

111
112
113
114
115

117
118
119
120
121
122
123
124
125
127

128
129

int sum_thread1 = 0; // shared vars
int sum_thread2 = 0; // shared vars

voidx threadi (void xnp) {
transactions * t;
t = (transactionsx*)np;
int upper_.bound = t—>num / 2;
int i;
for(i = 0; i < upper-bound; i++){
if (do_transaction(&(t—>t_array/[i
N A
if (t—>t.array[i].type ==

DEPOSIT) {
sum_thread1 += t—>t_array[i].
amount;
else {
sum_thread1 —= t—>t_array[i].
amount;

}
}
}

pthread_exit (NULL) ;
return NULL;

131
132
133
134
135
136

137

138

140
141
142

143
144
145

147
148
149

voidx thread2(void =np) {

transactions * t;
t = (transactionsx*)np;
int upper_bound = t—>num / 2;
int i;
for(i = upper_-bound;
++){
if (do_transaction(&(t—=>t_array/[i
N Ao
if (t—>t._array[i].type ==

i< t—>num; i

DEPOSIT) {
sum_thread2 += t—>t_array[i].
amount;
else {
sum_thread2 —= t—=>t_array[i].
amount ;

}
}
}

pthread_exit (NULL) ;
return NULL;

A More Involved Example

151 void unit_test() {

152
153
154
156
158
160
161
162

164
165

167

169 }

transactions * trs = new_transactions(5);
balance_lock = (pthread_mutex-t =) malloc(sizeof(pthread_mutex_t));
pthread_mutex_.init(balance_lock ,NULL) ;

balance = 40;

int orgBalance = balance;

pthread_-t t1, t2;

pthread._create (&t1 ,NULL, thread1 ,(voidx)trs);
pthread._create (&t2 ,NULL, thread2 , (voidx)trs);

pthread_join (t1 ,NULL) ;
pthread_join (t2 ,NULL) ;

int expBalance = orgBalance + sum_thread1 + sum_thread2;
assert (expBalance == balance);

A More Involved Example: Bug Explanation Pattern

Bug Explanation Pattern
R: read, W:Write
Subscript of R/W: thread id

Line number Source code (T1)

Line number Source code (T2)

Ra(t->num)
Ra(t->array)
Ra(t->array[4].type)

136 for(i = upper_bound; i < t->num; i++){
137 if (do_transaction(&(t->t_array[i]))) {

74

if (t->type == DEPOSIT)

Ra(t->array[4].amount) ;i ?ppl::’i ¥ depobml(b
mpBalance = balance;
Rz(balance) P
64 balance = tmpBalance;

W,(balance) <«——

Wj(balance) «<——

64 balance = tmpBalance;

» Heisenbugs are hard to reproduce

» caused by lack of control over schedule
» excessive instrumentation can hide bugs (probe effect)

» Goal of error explanation is to identify:

» Fault
» Error

for a given Failure (determined by assertion/specification)

Bonus Exercise

June 11, 2pm-4pm in HS17

» Task: 3 concurrency bugs to explain
» Incentive: 15 additional points (count towards grade)
» Sign up via TUWEL until June 10, 4pm!

