
Programm- & Systemverifikation
Assertions & Testing: Exercises

Georg Weissenbacher
184.741

What happened so far

I How bugs come into being:
I Fault – cause of an error (e.g., mistake in coding)
I Error – incorrect state that may lead to failure
I Failure – deviation from desired behaviour

I We specified intended behaviour using assertions
I We proved our programs correct (inductive invariants).
I Coverage Metrics tell us when to stop testing.
I Heard about Automated Test-Case Generation.

In this Lecture

More Examples and Exercises for
I Bugs
I Assertions
I Testing
I Test Case Generation
I Inductive Invariants

Spot the Bug

struct {

HeartbeatMessageType type;

uint16 payload_length;

opaque payload[HeartbeatMessage.payload_length];

opaque padding[padding_length];

} HeartbeatMessage;

/* ... */

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload); /* puts 2 bytes of p into payload */

p1 = p;

/* ... */

if (hbtype == TLS1_HB_REQUEST) {

unsigned char *buffer , *bp;

int r;

buffer = OPENSSL_malloc (1+2+ payload+padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;

s2n(payload , bp); /* puts 16-bit value into bp */

memcpy(bp, p1, payload);

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT , buffer ,

3+ payload+padding);

}

Heartbleed OpenSSL bug

I TLS heartbeat mechanism keeps connections alive
I receiver must send a corresponding response carrying an

exact copy of the payload of the received request

I payload is trusted without bounds check
I attacker can request slice of memory up to 216 bytes, obtain

I long-term server private keys
I TLS session keys
I confidential data like passwords
I session ticket keys

I affected version: OpenSSL 1.01 through 1.01f

Assertions as formal specifications

I Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
I Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

I Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

I Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
I Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

I Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

I Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
I Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

I Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

I Assume:

unsigned gcd (unsigned x, unsigned y)

computes greatest common divisor of x and y

I Write assertion that fails if result is wrong!

unsigned r = gcd (x, y);

. . .

Assertions as formal specifications

unsigned r = gcd (x, y);

. . .

What are the properties of the greatest common divisor r?

I (x % r == 0) && (y % r == 0)

I Is this sufficient?
I What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

. . .

What are the properties of the greatest common divisor r?
I (x % r == 0) && (y % r == 0)

I Is this sufficient?
I What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

assert ((x % r == 0) && (y % r == 0));

What are the properties of the greatest common divisor r?
I (x % r == 0) && (y % r == 0)

I Is this sufficient?
I What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

assert ((x % r == 0) && (y % r == 0));

What are the properties of the greatest common divisor r?
I (x % r == 0) && (y % r == 0)

I Is this sufficient?

I What if gcd (12, 36) returns 3?

Assertions as formal specifications

unsigned r = gcd (x, y);

assert ((x % r == 0) && (y % r == 0));

What are the properties of the greatest common divisor r?
I (x % r == 0) && (y % r == 0)

I Is this sufficient?
I What if gcd (12, 36) returns 3?

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))
I C++ doesn’t have quantifiers
I N has infinitely many elements
I What else do we know about %?

I (r > y)⇒ (y%r = y)

I therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

I C++ doesn’t have quantifiers
I N has infinitely many elements

I What else do we know about %?
I (r > y)⇒ (y%r = y)

I therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

I C++ doesn’t have quantifiers
I N has infinitely many elements
I What else do we know about %?

I (r > y)⇒ (y%r = y)

I therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

I C++ doesn’t have quantifiers
I N has infinitely many elements
I What else do we know about %?

I (r > y)⇒ (y%r = y)

I therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))

I C++ doesn’t have quantifiers
I N has infinitely many elements
I What else do we know about %?

I (r > y)⇒ (y%r = y)
I therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)∧(t ≤ min(x , y))
I C++ doesn’t have quantifiers
I N has infinitely many elements
I What else do we know about %?

I (r > y)⇒ (y%r = y)
I therefore, r ≤ min(x , y)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

I What about the quantifier?
I r < t ≤ min(x , y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

I What about the quantifier?

I r < t ≤ min(x , y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

I What about the quantifier?
I r < t ≤ min(x , y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I Does not make assumptions about implementation

I Admittedly, not very efficient
I Only for testing!
I Turn it off in release version.

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I Does not make assumptions about implementation
I Admittedly, not very efficient

I Only for testing!
I Turn it off in release version.

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I This specification is not executable
I But very close to full-blown (inefficient) implementation

I We can implement a “prototype”

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I This specification is not executable
I But very close to full-blown (inefficient) implementation

I We can implement a “prototype”

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}

return max(x, y);

}

I Wait, can we reach end of function without return?
I Yes, if min(x, y) = 0
I In this case, return max(x, y) (since gcd(0, x) = x)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}

return max(x, y);

}

I Wait, can we reach end of function without return?

I Yes, if min(x, y) = 0
I In this case, return max(x, y) (since gcd(0, x) = x)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}
return max(x, y);

}

I Wait, can we reach end of function without return?
I Yes, if min(x, y) = 0
I In this case, return max(x, y) (since gcd(0, x) = x)

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}
return max(x, y);

}

I This implementation is inefficient!
I But we can use it as a prototype!

using System;

public class Program {

public static bool

is_cd (uint r, uint x, uint y) {

return ((x % r == 0) && (y % r == 0));

}

public static uint Puzzle (uint x, uint y) {

uint t = Math.Min (x, y);

for (; t > 0; t--) {

if (is_cd (t, x, y))

return t;

}

return Math.Max (x, y);

}

}

Greatest Common Divisor

How to turn C# implementation of GCD into a Coding Duel

I We can use this as “secret implementation”
I Go to http://www.pexforfun.com, log in
I Click on the Learn button
I Choose “Creating and Publishing Coding Duels”
I Under Step Two: Write a Specification

I There’s a link to a puzzle template

I Copy and paste the code; then Ask Pex!
I You can now enter a Coding Duel Name and

I Turn This Puzzle Into A Coding Duel

I You will get a link for this new puzzle

I If pexforfun.com complains about path length:
I Add PexAssume.IsTrue (x < 100 && y < 100); as

pre-condition and using Microsoft.Pex.Framework; in
preamble

http://www.pexforfun.com
pexforfun.com

Greatest Common Divisor

How to turn C# implementation of GCD into a Coding Duel

I We can use this as “secret implementation”
I Go to http://www.pexforfun.com, log in
I Click on the Learn button
I Choose “Creating and Publishing Coding Duels”
I Under Step Two: Write a Specification

I There’s a link to a puzzle template

I Copy and paste the code; then Ask Pex!
I You can now enter a Coding Duel Name and

I Turn This Puzzle Into A Coding Duel

I You will get a link for this new puzzle
I If pexforfun.com complains about path length:

I Add PexAssume.IsTrue (x < 100 && y < 100); as
pre-condition and using Microsoft.Pex.Framework; in
preamble

http://www.pexforfun.com
pexforfun.com

Greatest Common Divisor on PexForFun

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{

uint k = x;

uint m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

I Why does this work?

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{

uint k = x;

uint m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

I Why does this work?

Euclid’s Algorithm: Correctness

uint k = x;

uint m = y;

while (k != m) {

if (k > m) k = k - m;

else m = m - k;

}

return k;

Properties of gcd:
I If x = y, then gcd (x,y) = gcd (x,x) = x

I If x > y, then gcd (x,y) = gcd (x-y,y)

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
I Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.

I Using similar reasoning, we can also show that

IS CD(r, x− y, y)⇒ IS CD(r, x, y).

I Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

I In particular, the largest element in both sets is the same

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
I Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.
I Using similar reasoning, we can also show that

IS CD(r, x− y, y)⇒ IS CD(r, x, y).

I Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

I In particular, the largest element in both sets is the same

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
I Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.
I Using similar reasoning, we can also show that

IS CD(r, x− y, y)⇒ IS CD(r, x, y).

I Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

I In particular, the largest element in both sets is the same

Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
I Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.
I Using similar reasoning, we can also show that

IS CD(r, x− y, y)⇒ IS CD(r, x, y).

I Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

I In particular, the largest element in both sets is the same

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{

uint k = x;

uint m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

I We can copy and paste this into PexForFun

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{

uint k = x;

uint m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

I We can copy and paste this into PexForFun

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{

uint k = x;

uint m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

I We can copy and paste this into PexForFun

Euclid’s Algorithm

Pex found some inputs that caused your code to run
too long. Improve your code, so that it matches the
other implementation, and ’Ask Pex!’ again.

I Pex complains about x=k=0, y=m=1
I What happens in this case?

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

I Number of loop iterations: ∞

Euclid’s Algorithm

Pex found some inputs that caused your code to run
too long. Improve your code, so that it matches the
other implementation, and ’Ask Pex!’ again.

I Pex complains about x=k=0, y=m=1
I What happens in this case?

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

I Number of loop iterations: ∞

Euclid’s Algorithm

public static uint Puzzle(uint x, uint y)

{

uint k = x;

uint m = y;

if ((x == 0) || (y == 0))

return Math.Max(x, y);

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

Euclid’s Algorithm

Euclid’s Algorithm

The program is correct; What’s the problem?
I pexforfun.com limits the path length for TCG
I For 905 and 2, Euclid’s algorithm loops 453 times

I Maybe there is a more efficient algorithm?
I Euclid’s gcd deducts 2 from 905 452 times
I 905 % 2 would yield the same result in one step!
I Can also avoid k > m comparison by swapping values!

pexforfun.com

Euclid’s Algorithm

The program is correct; What’s the problem?
I pexforfun.com limits the path length for TCG
I For 905 and 2, Euclid’s algorithm loops 453 times
I Maybe there is a more efficient algorithm?

I Euclid’s gcd deducts 2 from 905 452 times
I 905 % 2 would yield the same result in one step!
I Can also avoid k > m comparison by swapping values!

pexforfun.com

Euclid’s Algorithm

The program is correct; What’s the problem?
I pexforfun.com limits the path length for TCG
I For 905 and 2, Euclid’s algorithm loops 453 times
I Maybe there is a more efficient algorithm?

I Euclid’s gcd deducts 2 from 905 452 times
I 905 % 2 would yield the same result in one step!
I Can also avoid k > m comparison by swapping values!

pexforfun.com

Euclid’s Algorithm

public static uint Puzzle(uint x, uint y)

{

uint k = Math.Max(x,y);

uint m = Math.Min(x,y);

while (m != 0) {

uint r = k % m;

k = m;

m = r;

}

return k;

}

I Now pexforfun.com is pleased with the result

pexforfun.com

Euclid’s Algorithm

I Now pexforfun.com is pleased with the result

I But are we pleased with these test cases?
I What’s the coverage?

pexforfun.com

#include <assert.h>

#define MIN(x, y) ((x)<(y))?(x):(y)

#define MAX(x, y) ((x)<(y))?(y):(x)

unsigned gcd (unsigned x, unsigned y)

{

unsigned k = MAX (x,y);

unsigned m = MIN (x,y);

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

}

int main(int argc , char** argv)

{

assert (gcd (0,0) == 0);

assert (gcd (1,1) == 1);

assert (gcd (905 ,2) == 1);

assert (gcd (905 ,2) == 1);

assert (gcd (2,3) == 1);

assert (gcd (512 ,31) == 1);

}

GCOV Usage Revisited

I gcc -g -fprofile-arcs -ftest-coverage -o gcd gcd.c

(use clang instead of gcc on newer Macs)
I gcov -b gcd

I cat gcd.c.gcov

I ./gcd ; gcov -b gcd

I cat gcd.c.gcov

GCOV Results

function gcd called 6 returned 100% blocks executed 100%

6: 5:unsigned gcd (unsigned x, unsigned y)

-: 6:{

18: 7: unsigned k = MAX (x,y);

18: 8: unsigned m = MIN (x,y);

branch 0 taken 17%

branch 1 taken 83%

23: 9: while (m != 0) {

branch 0 taken 65%

branch 1 taken 35%

11: 10: unsigned r = k % m;

11: 11: k = m; m = r;

11: 12: }

6: 13: return k;

-: 14:}

GCOV Results

Why is GCOV . . .
I reporting two branches?

I Remember that the macros MAX and MIN both hide the same
branch

I claiming that branch coverage hasn’t been reached?
I assert is actually a macro, too.

Other Control-Flow-Based Coverage Metrics

I Test suite achieves full branch/decision coverage for gcd
I What about

I condition coverage?
I condition decision coverage?
I MC/DC?
I multiple condition coverage?

I Only decisions in gcd are (m != 0) and (x < y)
I Therefore, these notions coincide.

Other Control-Flow-Based Coverage Metrics

I Test suite achieves full branch/decision coverage for gcd
I What about

I condition coverage?
I condition decision coverage?
I MC/DC?
I multiple condition coverage?

I Only decisions in gcd are (m != 0) and (x < y)
I Therefore, these notions coincide.

Data-Flow-Based Coverage Metrics

unsigned k, m;

if (x > y) {

k = x; m = y

} else {

k = y; m = x;

}

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

x y

0 0
1 1

905 2
2 3

512 31

I Do we achieve all-p-uses/some-c-uses coverage?
(all definitions used, and if they affect decisions, then all
affected decisions are executed)

How Did pexforfun.com Generate Test Cases?

À Select a path in the function gcd

Á Generate conditions depending on symbolic inputs

Â Find satisfying assignment (using Z3)
Ã Run “secret implementation” on generated inputs

I Report generated inputs and output of oracle

Ã If coverage reached, terminate; else goto À

pexforfun.com

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m;

x 7→ x0, y 7→ y0

À if (x > y) {

(x0 ≤ y0)

k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
Á while (m != 0) {

(x0 6= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) {

(x0 ≤ y0)

k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
Á while (m != 0) {

(x0 6= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
Á while (m != 0) {

(x0 6= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
Á while (m != 0) {

(x0 6= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
Á while (m != 0) { (x0 6= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
Á while (m != 0) { (x0 6= 0)

unsigned r = k % m; r 7→ (y0 % x0)
k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
Á while (m != 0) { (x0 6= 0)

unsigned r = k % m; r 7→ (y0 % x0)
k = m; m = r; k 7→ x0, m 7→ (y0 % x0)
}
return k;

((y0 % x0) = 0)

Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
k = y; m = x; k 7→ y0, m 7→ x0

}
Á while (m != 0) { (x0 6= 0)

unsigned r = k % m; r 7→ (y0 % x0)
k = m; m = r; k 7→ x0, m 7→ (y0 % x0)
}
return k; ((y0 % x0) = 0)

Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?

I Yes, for instance x0 7→ 1, y0 7→ 1
I Run oracle on input x0 7→ 1, y0 7→ 1

I We obtain the result 1

I Report test case, and select next path

Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?
I Yes, for instance x0 7→ 1, y0 7→ 1

I Run oracle on input x0 7→ 1, y0 7→ 1

I We obtain the result 1

I Report test case, and select next path

Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?
I Yes, for instance x0 7→ 1, y0 7→ 1

I Run oracle on input x0 7→ 1, y0 7→ 1

I We obtain the result 1

I Report test case, and select next path

Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?
I Yes, for instance x0 7→ 1, y0 7→ 1

I Run oracle on input x0 7→ 1, y0 7→ 1
I We obtain the result 1

I Report test case, and select next path

Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?
I Yes, for instance x0 7→ 1, y0 7→ 1

I Run oracle on input x0 7→ 1, y0 7→ 1
I We obtain the result 1

I Report test case, and select next path

Recall: Manual Test-Case Generation

unsigned gcd (unsigned x, unsigned y)

I Which equivalence classes would you generate?
I Which test cases would boundary testing yield?

If You Don’t Trust Testing . . .

. . . you can try to prove the program correct.

I An assertion is an (loop) invariant if
I it holds upon loop entry
I remains true after each iteration of the loop

I An invariant is inductive
I if its validity upon loop entry is sufficient to guarantee that it still

holds after the iteration

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧ GCD(x , y) = GCD(m, (k%m)));

uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));

m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));

}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧ GCD(x , y) = GCD(m, (k%m)));

uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));

m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧ GCD(x , y) = GCD(m, (k%m)));

uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert (∧ GCD(x , y) = GCD(m, (k%m)));

uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));
k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert ((m ≥ (k%m)) ∧ GCD(x , y) = GCD(m, (k%m)));
uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));
k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert ((m ≥ (k%m))︸ ︷︷ ︸

true

∧GCD(x , y) = GCD(m, (k%m)));

uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));
k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));
m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert (GCD(x , y) = GCD(m, (k%m)));
. . .
assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {
assert (GCD(x , y) = GCD(m, (k%m)));
. . .
assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));
}

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))

I Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

I Therefore GCD(x , y) = GCD(m, (k%m))

I Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))

I Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

I Therefore GCD(x , y) = GCD(m, (k%m))

I Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))

I Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

I Therefore GCD(x , y) = GCD(m, (k%m))

I Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

Need to show:

(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))

I Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

I Therefore GCD(x , y) = GCD(m, (k%m))

I Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

hold at the beginning of the loop?

uint k = Math.Max(x,y);

uint m = Math.Min(x,y);

Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

guarantee that k = GCD(x , y) after the loop?

I After the loop, we know that m = 0
I Therefore

(k ≥ 0) ∧ GCD(x , y) = GCD(k , 0)

I The algorithm is correct!

Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

guarantee that k = GCD(x , y) after the loop?

I After the loop, we know that m = 0
I Therefore

(k ≥ 0) ∧ GCD(x , y) = GCD(k , 0)

I The algorithm is correct!

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)

Part 2 of Assignment 1: Solution

flagA = 0;

lock (A);

flagA = 1;

assert (!flagB);

lock (B);

flagA = 0;

unlock (B);

unlock (A);

flagB = 0;

lock (B);

flagB = 1;

assert (!flagA);

lock (A);

flagB = 0;

unlock (A);

unlock (B);

Note:
I If only one thread contains an assertion, then there’s a

potential deadlock without an assertion failure
I If flagA and flagB are reset after the inner locks are

released, then there’s a potential assertion failure even if the
deadlock doesn’t happen

Part 3 of Assignment 1: Solution

assert (j == j + (i - i));

int x = i;

assert (j == j + (i - x));

int y = j;

assert (y == j + (i - x));

while (x != 0) {
assert ((y + 1) == j + (i - (x - 1)));

x--;

assert ((y + 1) == j + (i - x));

y++;

assert (y == j + (i - x)); // # iterations n := i - x

}
assert ((x == 0) && y == j + (i - x));

assert ((i != j) || (y == 2 * i));

Part 3 of Assignment 1: Solution (ctd.)

I (y==j+(i-x)) implies (y+1)==j+(i-(x-1))
I Therefore (y==j+(i-x)) is a loop invariant

I (y==j+(i-x)) is inductive
I Holds at beginning of loop, since (j == j + (i - i)) is true

I Implies assertion after loop (since x == 0)

Summary

Today was a recap of
I Assertions
I Testing
I Test Case Generation
I Inductive Invariants

Next time it’s getting a bit more formal

I Next few lectures by
Prof. Helmut Veith and Josef
Widder

Summary

Today was a recap of
I Assertions
I Testing
I Test Case Generation
I Inductive Invariants

Next time it’s getting a bit more formal

I Next few lectures by
Prof. Helmut Veith and Josef
Widder

