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What happened so far

I How bugs come into being:
I Fault – cause of an error (e.g., mistake in coding)
I Error – incorrect state that may lead to failure
I Failure – deviation from desired behaviour

I We specified intended behaviour using assertions
I We proved our programs correct (inductive invariants).
I Coverage Metrics tell us when to stop testing.
I Heard about Automated Test-Case Generation.



In this Lecture

More Examples and Exercises for
I Bugs
I Assertions
I Testing
I Test Case Generation
I Inductive Invariants



Spot the Bug

struct {

HeartbeatMessageType type;

uint16 payload_length;

opaque payload[HeartbeatMessage.payload_length ];

opaque padding[padding_length ];

} HeartbeatMessage;

/* ... */

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload); /* puts 2 bytes of p into payload */

p1 = p;

/* ... */

if (hbtype == TLS1_HB_REQUEST) {

unsigned char *buffer , *bp;

int r;

buffer = OPENSSL_malloc (1+2+ payload+padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;

s2n(payload , bp); /* puts 16-bit value into bp */

memcpy(bp, p1, payload);

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT , buffer ,

3+ payload+padding);

}



Heartbleed OpenSSL bug

I TLS heartbeat mechanism keeps connections alive
I receiver must send a corresponding response carrying an

exact copy of the payload of the received request

I payload is trusted without bounds check
I attacker can request slice of memory up to 216 bytes, obtain

I long-term server private keys
I TLS session keys
I confidential data like passwords
I session ticket keys

I affected version: OpenSSL 1.01 through 1.01f



Assertions as formal specifications

I Assume:

unsigned isqrt (unsigned x)

computes largest integer square root of x
I Write assertion that fails if result is wrong!

unsigned r = isqrt (x);

assert (r*r <= x && x <= (r+1)*(r+1));

I Note: Assertion doesn’t tell us how isqrt works!
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Assertions as formal specifications

I Assume:

unsigned gcd (unsigned x, unsigned y)

computes greatest common divisor of x and y

I Write assertion that fails if result is wrong!

unsigned r = gcd (x, y);

. . .



Assertions as formal specifications

unsigned r = gcd (x, y);

. . .

What are the properties of the greatest common divisor r?

I (x % r == 0) && (y % r == 0)

I Is this sufficient?
I What if gcd (12, 36) returns 3?
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Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

Properties of r (for r = gcd(x, y))
I IS CD (r, x, y)

I 6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r)

∧(t ≤ min(x , y))
I C++ doesn’t have quantifiers
I N has infinitely many elements
I What else do we know about %?

I (r > y)⇒ (y%r = y)

I therefore, r ≤ min(x , y)
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Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

assert (6 ∃t ∈ N . IS CD(t , x , y) ∧ (t > r) ∧ (t ≤ min(x , y)));

I What about the quantifier?
I r < t ≤ min(x , y), we can use a loop!
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Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I Does not make assumptions about implementation

I Admittedly, not very efficient
I Only for testing!
I Turn it off in release version.



Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I Does not make assumptions about implementation
I Admittedly, not very efficient

I Only for testing!
I Turn it off in release version.



Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned r = gcd (x, y);

assert (IS CD(r, x, y));

for (unsigned t=r+1; t <= min(x, y); t++)

assert (!IS CD(t, x, y));

I This specification is not executable
I But very close to full-blown (inefficient) implementation

I We can implement a “prototype”
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Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS CD(t, x, y))

return t;

}

return max(x, y);

}

I Wait, can we reach end of function without return?
I Yes, if min(x, y) = 0
I In this case, return max(x, y) (since gcd(0, x) = x)
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Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))

#define min(x, y) (((x)<(y))?(x):(y))

unsigned gcd (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
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return max(x, y);
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I This implementation is inefficient!
I But we can use it as a prototype!



using System;

public class Program {

public static bool

is_cd (uint r, uint x, uint y) {

return ((x % r == 0) && (y % r == 0));

}

public static uint Puzzle (uint x, uint y) {

uint t = Math.Min (x, y);

for (; t > 0; t--) {

if (is_cd (t, x, y))

return t;

}

return Math.Max (x, y);

}

}



Greatest Common Divisor

How to turn C# implementation of GCD into a Coding Duel

I We can use this as “secret implementation”
I Go to http://www.pexforfun.com, log in
I Click on the Learn button
I Choose “Creating and Publishing Coding Duels”
I Under Step Two: Write a Specification

I There’s a link to a puzzle template

I Copy and paste the code; then Ask Pex!
I You can now enter a Coding Duel Name and

I Turn This Puzzle Into A Coding Duel

I You will get a link for this new puzzle

I If pexforfun.com complains about path length:
I Add PexAssume.IsTrue (x < 100 && y < 100); as

pre-condition and using Microsoft.Pex.Framework; in
preamble

http://www.pexforfun.com
pexforfun.com
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Greatest Common Divisor on PexForFun



Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{

uint k = x;

uint m = y;

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}

I Why does this work?
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Euclid’s Algorithm: Correctness

uint k = x;

uint m = y;

while (k != m) {

if (k > m) k = k - m;

else m = m - k;

}

return k;

Properties of gcd:
I If x = y, then gcd (x,y) = gcd (x,x) = x

I If x > y, then gcd (x,y) = gcd (x-y,y)



Euclid’s Algorithm: Correctness

If x > y, then gcd (x,y) = gcd (x-y,y). Proof:
I Suppose IS CD(r, x, y). Then

∃n, m . (x = n · r) ∧ (y = m · r)

Therefore,

x− y = n · r− m · r = (n− m) · r

and thus ((x− y)%r) = 0.

I Using similar reasoning, we can also show that

IS CD(r, x− y, y)⇒ IS CD(r, x, y).

I Therefore

{r | IS CD(r, x, y)} = {r | IS CD(r, x− y, y)}

I In particular, the largest element in both sets is the same
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Euclid’s Algorithm

Pex found some inputs that caused your code to run
too long. Improve your code, so that it matches the
other implementation, and ’Ask Pex!’ again.

I Pex complains about x=k=0, y=m=1
I What happens in this case?

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

I Number of loop iterations: ∞



Euclid’s Algorithm

Pex found some inputs that caused your code to run
too long. Improve your code, so that it matches the
other implementation, and ’Ask Pex!’ again.

I Pex complains about x=k=0, y=m=1
I What happens in this case?

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

I Number of loop iterations: ∞



Euclid’s Algorithm

public static uint Puzzle(uint x, uint y)

{

uint k = x;

uint m = y;

if ((x == 0) || (y == 0))

return Math.Max(x, y);

while (k != m) {

if (k > m) {

k = k - m;

}

else {

m = m - k;

}

}

return k;

}



Euclid’s Algorithm



Euclid’s Algorithm

The program is correct; What’s the problem?
I pexforfun.com limits the path length for TCG
I For 905 and 2, Euclid’s algorithm loops 453 times

I Maybe there is a more efficient algorithm?
I Euclid’s gcd deducts 2 from 905 452 times
I 905 % 2 would yield the same result in one step!
I Can also avoid k > m comparison by swapping values!

pexforfun.com
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Euclid’s Algorithm

public static uint Puzzle(uint x, uint y)

{

uint k = Math.Max(x,y);

uint m = Math.Min(x,y);

while (m != 0) {

uint r = k % m;

k = m;

m = r;

}

return k;

}

I Now pexforfun.com is pleased with the result

pexforfun.com


Euclid’s Algorithm

I Now pexforfun.com is pleased with the result

I But are we pleased with these test cases?
I What’s the coverage?

pexforfun.com


#include <assert.h>

#define MIN(x, y) ((x)<(y))?(x):(y)

#define MAX(x, y) ((x)<(y))?(y):(x)

unsigned gcd (unsigned x, unsigned y)

{

unsigned k = MAX (x,y);

unsigned m = MIN (x,y);

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

}

int main(int argc , char** argv)

{

assert (gcd (0,0) == 0);

assert (gcd (1,1) == 1);

assert (gcd (905 ,2) == 1);

assert (gcd (905 ,2) == 1);

assert (gcd (2,3) == 1);

assert (gcd (512 ,31) == 1);

}



GCOV Usage Revisited

I gcc -g -fprofile-arcs -ftest-coverage -o gcd gcd.c

(use clang instead of gcc on newer Macs)
I gcov -b gcd

I cat gcd.c.gcov

I ./gcd ; gcov -b gcd

I cat gcd.c.gcov



GCOV Results

function gcd called 6 returned 100% blocks executed 100%

6: 5:unsigned gcd (unsigned x, unsigned y)

-: 6:{

18: 7: unsigned k = MAX (x,y);

18: 8: unsigned m = MIN (x,y);

branch 0 taken 17%

branch 1 taken 83%

23: 9: while (m != 0) {

branch 0 taken 65%

branch 1 taken 35%

11: 10: unsigned r = k % m;

11: 11: k = m; m = r;

11: 12: }

6: 13: return k;

-: 14:}



GCOV Results

Why is GCOV . . .
I reporting two branches?

I Remember that the macros MAX and MIN both hide the same
branch

I claiming that branch coverage hasn’t been reached?
I assert is actually a macro, too.



Other Control-Flow-Based Coverage Metrics

I Test suite achieves full branch/decision coverage for gcd
I What about

I condition coverage?
I condition decision coverage?
I MC/DC?
I multiple condition coverage?

I Only decisions in gcd are (m != 0) and (x < y)
I Therefore, these notions coincide.
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Data-Flow-Based Coverage Metrics

unsigned k, m;

if (x > y) {

k = x; m = y

} else {

k = y; m = x;

}

while (m != 0) {

unsigned r = k % m;

k = m; m = r;

}

return k;

x y

0 0
1 1

905 2
2 3

512 31

I Do we achieve all-p-uses/some-c-uses coverage?
(all definitions used, and if they affect decisions, then all
affected decisions are executed)



How Did pexforfun.com Generate Test Cases?

À Select a path in the function gcd

Á Generate conditions depending on symbolic inputs

Â Find satisfying assignment (using Z3)
Ã Run “secret implementation” on generated inputs

I Report generated inputs and output of oracle

Ã If coverage reached, terminate; else goto À

pexforfun.com


Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m;

x 7→ x0, y 7→ y0

À if (x > y) {

(x0 ≤ y0)

k = x; m = y

} else {
k = y; m = x;

k 7→ y0, m 7→ x0

}
Á while (m != 0) {

(x0 6= 0)

unsigned r = k % m;

r 7→ (y0 % x0)

k = m; m = r;

k 7→ x0, m 7→ (y0 % x0)

}
return k;

((y0 % x0) = 0)
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Automated Test-Case Generation

I E.g., want to cover else-branch at À, loop at Á once

unsigned k, m; x 7→ x0, y 7→ y0

À if (x > y) { (x0 ≤ y0)
k = x; m = y

} else {
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Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?

I Yes, for instance x0 7→ 1, y0 7→ 1
I Run oracle on input x0 7→ 1, y0 7→ 1

I We obtain the result 1

I Report test case, and select next path
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Automated Test-Case Generation

I We generated the constraint

(x0 ≤ y0) ∧ (x0 6= 0) ∧ ((y0 % x0) = 0)

I Is it satisfiable?
I Yes, for instance x0 7→ 1, y0 7→ 1

I Run oracle on input x0 7→ 1, y0 7→ 1
I We obtain the result 1
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Recall: Manual Test-Case Generation

unsigned gcd (unsigned x, unsigned y)

I Which equivalence classes would you generate?
I Which test cases would boundary testing yield?



If You Don’t Trust Testing . . .

. . . you can try to prove the program correct.

I An assertion is an (loop) invariant if
I it holds upon loop entry
I remains true after each iteration of the loop

I An invariant is inductive
I if its validity upon loop entry is sufficient to guarantee that it still

holds after the iteration



Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
I GCD(x , y) = GCD(y , x)
I GCD(0, x) = x
I GCD(x , x) = x
I (x > y)⇒ GCD(x , y) = GCD(x%y , y)

while (m != 0) {

assert ( ∧ GCD(x , y) = GCD(m, (k%m)));

uint r = k % m;

assert ((m ≥ r) ∧ GCD(x , y) = GCD(m, r));

k = m;

assert ((k ≥ r) ∧ GCD(x , y) = GCD(k , r));

m = r;

assert ((k ≥ m) ∧ GCD(x , y) = GCD(k ,m));

}
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(k ≥ m)∧(GCD(x , y) = GCD(k ,m))⇒ (GCD(x , y) = GCD(m, (k%m)))
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I Since (k ≥ m), we have GCD(k ,m) = GCD((k%m),m)

I Therefore GCD(x , y) = GCD(m, (k%m))

I Loop iteration does not invalidate

(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)
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Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

hold at the beginning of the loop?

uint k = Math.Max(x,y);

uint m = Math.Min(x,y);



Euclid’s Algorithm and Inductive Invariants

Does
(k ≥ m) ∧ GCD(x , y) = GCD(k ,m)

guarantee that k = GCD(x , y) after the loop?

I After the loop, we know that m = 0
I Therefore

(k ≥ 0) ∧ GCD(x , y) = GCD(k , 0)

I The algorithm is correct!
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Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)



Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)



Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)



Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)



Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)



Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
I assert(x==y); x=x^y; y=x^y; x=x^y; assert(x==y);

assert(((x^y)^((x^y)^y))==((x^y)^y));

x=x^y;

assert((x^(x^y))==(x^y));

y=x^y;

assert((x^y)==y);

x=x^y;

assert(x==y);

I We know that x^y = y^x

(xˆy)ˆ((xˆy)ˆy)︸ ︷︷ ︸
xˆxˆyˆyˆy

= (xˆy)ˆy

I Furthermore x^x = 0 and xˆ0 = x, therefore we obtain (y = x)



Part 2 of Assignment 1: Solution

flagA = 0;

lock (A);

flagA = 1;

assert (!flagB);

lock (B);

flagA = 0;

unlock (B);

unlock (A);

flagB = 0;

lock (B);

flagB = 1;

assert (!flagA);

lock (A);

flagB = 0;

unlock (A);

unlock (B);

Note:
I If only one thread contains an assertion, then there’s a

potential deadlock without an assertion failure
I If flagA and flagB are reset after the inner locks are

released, then there’s a potential assertion failure even if the
deadlock doesn’t happen



Part 3 of Assignment 1: Solution

assert (j == j + (i - i));

int x = i;

assert (j == j + (i - x));

int y = j;

assert (y == j + (i - x));

while (x != 0) {
assert ((y + 1) == j + (i - (x - 1)));

x--;

assert ((y + 1) == j + (i - x));

y++;

assert (y == j + (i - x)); // # iterations n := i - x

}
assert ((x == 0) && y == j + (i - x));

assert ((i != j) || (y == 2 * i));



Part 3 of Assignment 1: Solution (ctd.)

I (y==j+(i-x)) implies (y+1)==j+(i-(x-1))
I Therefore (y==j+(i-x)) is a loop invariant

I (y==j+(i-x)) is inductive
I Holds at beginning of loop, since (j == j + (i - i)) is true

I Implies assertion after loop (since x == 0)



Summary

Today was a recap of
I Assertions
I Testing
I Test Case Generation
I Inductive Invariants

Next time it’s getting a bit more formal

I Next few lectures by
Prof. Helmut Veith and Josef
Widder
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