Programm- & Systemverifikation

Assertions & Testing: Exercises

Georg Weissenbacher m
184.741

What happened so far

v

How bugs come into being:
» Fault — cause of an error (e.g., mistake in coding)
» Error — incorrect state that may lead to failure
» Failure — deviation from desired behaviour

v

We specified intended behaviour using assertions

v

We proved our programs correct (inductive invariants).

v

Coverage Metrics tell us when to stop testing.
Heard about Automated Test-Case Generation.

v

In this Lecture

More Examples and Exercises for
> Bugs
» Assertions
» Testing
» Test Case Generation
» Inductive Invariants

Spot the Bug

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[HeartbeatMessage.payload_lengthl;
opaque padding[padding_lengthl];
} HeartbeatMessage;
VA V4
/* Read type and payload length first */
hbtype = *p++;
n2s(p, payload); /* puts 2 bytes of p into payload */

pl = p;
/*x ... x/
if (hbtype == TLS1_HB_REQUEST) {

unsigned char *buffer, *bp;

int r;

buffer = OPENSSL_malloc (1+2+payload+padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp); /* puts 16-bit wvalue into bp */

memcpy (bp, pl, payload);

r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,
3+payload+padding) ;

Heartbleed OpenSSL bug

TLS heartbeat mechanism keeps connections alive

» receiver must send a corresponding response carrying an
exact copy of the payload of the received request

v

v

payload is trusted without bounds check
attacker can request slice of memory up to 218 bytes, obtain

» long-term server private keys
TLS session keys

confidential data like passwords
session ticket keys

affected version: OpenSSL 1.01 through 1.01f

v
v vyy

v

Assertions as formal specifications

> Assume:
unsigned isqrt (unsigned x)
computes largest integer square root of x
» Write assertion that fails if result is wrong!

Assertions as formal specifications

> Assume:
unsigned isqrt (unsigned x)
computes largest integer square root of x
» Write assertion that fails if result is wrong!

unsigned r = isqrt (x);
assert (r*r <= x && x <= (r+1)*(r+1));

Assertions as formal specifications

> Assume:
unsigned isqrt (unsigned x)
computes largest integer square root of x
» Write assertion that fails if result is wrong!

unsigned r = isqrt (x);
assert (r*r <= x && x <= (r+1)*(r+1));

> Note: Assertion doesn’t tell us how isqrt works!

Assertions as formal specifications

> Assume:
unsigned gcd (unsigned x, unsigned y)
computes greatest common divisor of x and y
» Write assertion that fails if result is wrong!

unsigned r = gcd (%, y);

Assertions as formal specifications

unsigned r = gcd (x, y);

What are the properties of the greatest common divisor r?

Assertions as formal specifications

unsigned r = gcd (x, y);

What are the properties of the greatest common divisor r?
> (xhr==0) && (y % r == 0)

Assertions as formal specifications

unsigned r = gcd (x, y);
assert ((x % r==0) & (y % r == 0));

What are the properties of the greatest common divisor r?
> (xhr==0) && (y % r == 0)

Assertions as formal specifications

unsigned r = gcd (x, y);
assert ((x % r==0) & (y % r == 0));

What are the properties of the greatest common divisor r?
> (xhr==0) && (y % r == 0)
» Is this sufficient?

Assertions as formal specifications

unsigned r = gcd (x, y);
assert ((x % r==0) & (y % r == 0));

What are the properties of the greatest common divisor r?
> (xhr==0) && (y % r == 0)
» Is this sufficient?
» What if gcd (12, 36) returns 3?

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));

Properties of r (forr = gcd(x, y))
» ISCD (r, x, y)
» Ate IN.ISCD(t,x,y) A(t>r)

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));

Properties of r (forr = gcd(x, y))
» ISCD (r, x, y)
» Ate IN.ISCD(t,x,y) A(t>r)

» C++ doesn’t have quantifiers
» IN has infinitely many elements

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));

Properties of r (forr = gcd(x, y))
» ISCD (r, x, y)
» Ate IN.ISCD(t,x,y) A(t>r)

» C++ doesn’t have quantifiers
» IN has infinitely many elements
» What else do we know about %?

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));

Properties of r (forr = gcd(x, y))
» ISCD (r, x, y)
» Ate IN.ISCD(t,x,y) A(t>r)

» C++ doesn’t have quantifiers
» IN has infinitely many elements
» What else do we know about %?

> (r>y)= (y%r=y)

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));

Properties of r (forr = gcd(x, y))

» ISCD (r, x, y)

» Ate IN.ISCD(t,x,y) A(t>r)
» C++ doesn’t have quantifiers
» IN has infinitely many elements
» What else do we know about %?

> (r>y) = (y%hr=y)
» therefore, r < min(x, y)

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));

Properties of r (forr = gcd(x, y))
» ISCD (r, x, y)
» At e IN.ISCD(t, x,y) A (t >)A(t < min(x,y))
» C++ doesn’t have quantifiers

» IN has infinitely many elements
» What else do we know about %?

» (r>7y)= (Y%r =7y)
> therefore, r < min(x, y)

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
#define min(x, y) (((x)<(y))7(x):(y))

unsigned r = gcd (x, y);

assert (IS_CD(r, x, y));

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
#define min(x, y) (((x)<(y))7(x):(y))

unsigned r = gcd (x, y);

assert (IS_CD(r, x, y));

assert (At € IN.ISCD(t,x,y) A (t>1)A(t <min(x,y)));

» What about the quantifier?

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(x)==0) && ((y)%(x)==0))
#define min(x, y) (((x)<(y))7(x):(y))

unsigned r = gcd (x, y);

assert (IS_CD(r, x, y));

assert (At € IN.ISCD(t,x,y) A (t>1)A(t <min(x,y)));

» What about the quantifier?
» r <t <min(x,y), we can use a loop!

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(xr)==0) && ((y)%(x)==0))
#define min(x, y) (((x)<(y))?7x):(y))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));
for (unsigned t=r+1; t <= min(x, y); t++)
assert (!ISCD(t, x, y));

» Does not make assumptions about implementation

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(xr)==0) && ((y)%(x)==0))
#define min(x, y) (((x)<(y))?7x):(y))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));
for (unsigned t=r+1; t <= min(x, y); t++)
assert (!ISCD(t, x, y));

» Does not make assumptions about implementation
» Admittedly, not very efficient

» Only for testing!
» Turn it off in release version.

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))
#define min(x, y) (((x)<(y))?(x):(y))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));
for (unsigned t=r+1; t <= min(x, y); t++)
assert (!IS_CD(t, x, y));

» This specification is not executable
» But very close to full-blown (inefficient) implementation

Assertions as formal specifications

#define IS CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))
#define min(x, y) (((x)<(y))?(x):(y))
unsigned r = gcd (%, y);
assert (IS_CD(r, x, y));
for (unsigned t=r+1; t <= min(x, y); t++)
assert (!IS_CD(t, x, y));

» This specification is not executable
» But very close to full-blown (inefficient) implementation
» We can implement a “prototype”

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))
#define min(x, y) (((x)<(y))?(x):(y))
unsigned ged (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS.CD(t, x, y))
return t;

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))
#define min(x, y) (((x)<(y))?(x):(y))
unsigned ged (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS.CD(t, %, y))
return t;

» Wait, can we reach end of function without return?

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))
#define min(x, y) (((x)<(y))?(x):(y))
unsigned ged (x, y) {
for (unsigned t = min(x, y); t > 0; t--) {
if (IS.CD(t, %, y))
return t;
}

return max(x, y);

}

» Wait, can we reach end of function without return?
> Yes, ifmin(x,y) =0
» In this case, return max(x, y) (since gcd(0,x) = x)

Assertions as formal specifications

#define IS_CD(r, x, y) (((x)%(r)==0) && ((y)%(r)==0))
#define min(x, y) (((xX)<(y)?x):(y))
unsigned ged (x, y) {
for (unsigned t = min(x, y); t > 0; t-—-) {
if (IS.CD(t, x, y))
return t;
¥

return max(x, y);

}

» This implementation is inefficient!
» But we can use it as a prototype!

using System;
public class Program {

public static bool
is_cd (uint r, uint x, uint y) {
return ((x % r == 0) && (y % r == 0));

}

public static uint Puzzle (uint x, uint y) {
uint t = Math.Min (x, y);
for (; t > 0; t--) {
if (is_cd (t, x, y))
return t;
}
return Math.Max (x, y);
}

Greatest Common Divisor

How to turn C# implementation of GCD into a Coding Duel

» We can use this as “secret implementation”

>

>
>
>

v

Go to http://www.pexforfun.com, login

Click on the button

Choose “Creating and Publishing Coding Duels”
Under Step Two: Write a Specification

» There’s a link to a puzzle template

Copy and paste the code; then

You can now enter a Coding Duel Name and

> | Turn This Puzzle Into A Coding Duel |

You will get a link for this new puzzle

http://www.pexforfun.com
pexforfun.com

Greatest Common Divisor

How to turn C# implementation of GCD into a Coding Duel

» We can use this as “secret implementation”

>

>
>
>

v

>

Go to http://www.pexforfun.com, login

Click on the button

Choose “Creating and Publishing Coding Duels”
Under Step Two: Write a Specification

» There’s a link to a puzzle template

Copy and paste the code; then

You can now enter a Coding Duel Name and

> | Turn This Puzzle Into A Coding Duel |

You will get a link for this new puzzle

> If pexforfun.com complains about path length:

>

Add PexAssume.IsTrue (x < 100 && y < 100); as
pre-condition and using Microsoft.Pex.Framework; in
preamble

http://www.pexforfun.com
pexforfun.com

Greatest Common Divisor on PexForFun

Welcome new user! Edit Settings: My Duels¥ | Settings¥ 1 Sign Out
Show icks L H i]
yourmeiname Coding-._Duel 2 started, 0 won, 2 crasted
Curious? P, B
Learn More! (D ¢ oL e

[Rondom s | Lown] 2265 o 20848 okt Ak Pt o Voo sese]er
Coding Duel Name: "Greatest Commen Divisor' You created this Coding Duel. Winning Number: 025-836-661
using System;

public class Program

// Can you fill the puzzle method te match the secret implementation?
public static uint Puzzle(uint x, uint y)

throw new NotImplementedException();

-~

Crocren] ==

\ Click Herel Community LiveFeed About
ick Here!

® 2013 Microsolt - Pex v0.84 - .NET v - Terms of Use - Privacy
Microsoft b Phone 7
Research RI1SE

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)

{
uint k = x;
Yy

uint m

while (k != m) {
if (k > m) {
k =k - m;
}
else {

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)
{

uint k = x;

uint m v

while (k != m) {
if (k > m) {
k =k - m;
}
else {

» Why does this work?

Euclid’s Algorithm: Correctness

uint k = x;

uint m = y;

while (k !'= m) {
if (k > m) k =k - m;
else m = m - k;

}

return k;
Properties of gcd:
> Ifx =y,then gcd (x,y) =gcd (x,x) =x
> Ifx >y, then gcd (x,y) =gecd (x-y,y)

Euclid’s Algorithm: Correctness

If x >y, then gcd (x,y) =gcd (x-y,y). Proof:
» Suppose IS CD(r, x, y). Then

do,m.(x=n-r)A(y=mn-r)
Therefore,
x—y=n-r—-m-r=(n—m)-r

and thus ((x — y)%r) = 0.

Euclid’s Algorithm: Correctness

If x >y, then gcd (x,y) =gcd (x-y,y). Proof:
» Suppose IS CD(r, x, y). Then

do,m.(x=n-r)A(y=mn-r)
Therefore,
x—y=n-r—-m-r=(n—m)-r

and thus ((x — y)%r) = 0.
» Using similar reasoning, we can also show that

IS.CD(r,x —y,y) = ISCD(r,x,y).

Euclid’s Algorithm: Correctness

If x >y, then gcd (x,y) =gcd (x-y,y). Proof:
» Suppose IS CD(r, x, y). Then

do,m.(x=n-r)A(y=mn-r)
Therefore,
x—y=n-r—-m-r=(n—m)-r

and thus ((x — y)%r) = 0.
» Using similar reasoning, we can also show that

IS.CD(r,x —y,y) = ISCD(r,x,y).

» Therefore

{r | ISCD(r,x,y)} = {r | ISCD(r,x —y,y)}

Euclid’s Algorithm: Correctness

If x >y, then gcd (x,y) =gcd (x-y,y). Proof:
» Suppose IS CD(r, x, y). Then

do,m.(x=n-r)A(y=mn-r)
Therefore,
x—y=n-r—-m-r=(n—m)-r

and thus ((x — y)%r) = 0.
» Using similar reasoning, we can also show that

IS.CD(r,x —y,y) = ISCD(r,x,y).

» Therefore

{r | ISCD(r,x,y)} = {r | ISCD(r,x —y,y)}

» In particular, the largest element in both sets is the same

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)
{

uint k = x;

uint m = y;

while (k != m) {
if (k > m) {
k =k - m;
}
else {

}

return k;

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)
{

uint k = x;

uint m = y;

while (k != m) {
if (k > m) {
k =k - m;
}
else {

}
}

return k;

» We can copy and paste this into PexForFun

Euclid’s Algorithm

public static uint Puzzle (uint x, uint y)
{

uint k = x;

uint m = y;

while (k != m) {
if (k > m) {
k =k - m;
}
else {

}

return k;

» We can copy and paste this into PexForFun

y your result secret implementation result Outputi/Exception
0 0 0
1
1

path bounds exceeded Help

[SEE
NEOE

1 1

Euclid’s Algorithm

Pex found some inputs that caused your code to run
too long. Improve your code, so that it matches the
other implementation, and 'Ask Pex!" again.

» Pex complains about x=k=0, y=m=1
» What happens in this case?

while (k != m) {
if (k > m) {
k =k - m;
}
else {
m =m - k;
}

}

Euclid’s Algorithm

Pex found some inputs that caused your code to run
too long. Improve your code, so that it matches the
other implementation, and 'Ask Pex!" again.

» Pex complains about x=k=0, y=m=1
» What happens in this case?

while (k != m) {
if (k > m) {
k =k - m;
}
else {
m =m - k;
}
}

» Number of loop iterations: oo

Euclid’s Algorithm

public static uint Puzzle(uint x, uint y)

{
uint k = x;
uint m = y;
if ((x == 0) |l (y == 0))
return Math.Max(x, y);
while (k !'= m) {
if (k > m) {
k =k - m;
}
else {
m=m - k;
}
}

return k;

Euclid’s Algorithm

Pex found some inputs that caused your code to run too
long.
Improve your code, so that it matches the other
implementation, and 'Ask Pex!' again.
your ls&cret . .
X Y result implementation Qutput/Exception
result
3|0 o |0 0
()| 2147483848 [0 |0 0
@2 1|1 1
2|2 3 |1 1
| 82 246 | 82 g2
| 905 2 ezirgedbzznd:elp
@ 512 31 |1 1

Euclid’s Algorithm

The program is correct; What'’s the problem?
» pexforfun.com limits the path length for TCG
» For 905 and 2, Euclid’s algorithm loops 453 times

pexforfun.com

Euclid’s Algorithm

The program is correct; What'’s the problem?
» pexforfun.com limits the path length for TCG
» For 905 and 2, Euclid’s algorithm loops 453 times
» Maybe there is a more efficient algorithm?

pexforfun.com

Euclid’s Algorithm

The program is correct; What'’s the problem?
» pexforfun.com limits the path length for TCG
» For 905 and 2, Euclid’s algorithm loops 453 times

» Maybe there is a more efficient algorithm?

» Euclid’s gcd deducts 2 from 905 452 times
» 905 % 2 would yield the same result in one step!
» Can also avoid k > m comparison by swapping values!

pexforfun.com

Euclid’s Algorithm

public static uint Puzzle(uint x, uint y)

{
uint k = Math.Max(x,y);
uint m = Math.Min(x,y);
while (m !'= 0) {
uint r = k % m;
k = m;
m = r;
}
return k;
}

» Now pexforfun.com is pleased with the result

X ¥ your result secret implementation result
&| 0 0 0 0
@ 1 1 1 1
(2| 905 2 1 1
@ 2 3 1 1
()| 512 31 1 1

pexforfun.com

Euclid’s Algorithm

> Now pexforfun.con is pleased with the result

X 1 your result secret implementation result
@ 0 0 0 0
2| 1 1 1 1
()| 905 2 1 1
FE 3 1 1
Q)| 512 31 1 1

» But are we pleased with these test cases?
» What's the coverage?

pexforfun.com

#include <assert.h>
#define MIN(x, y) ((x)<(y))7(x):(y)
#define MAX(x, y) ((x)<(y))7(y):(x)

unsigned gcd (unsigned x, unsigned y)
{

unsigned k = MAX (x,y);

unsigned m = MIN (x,y);

while (m '= 0) {
unsigned r = k % m;
k =m; m = r;

}

return k;

}
int main(int argc, char**x argv)

{

assert (gcd (0,0) == 0);
assert (gcd (1,1) == 1);
assert (gcd (905,2) == 1);
assert (gcd (905,2) == 1);
assert (gcd (2,3) == 1);
assert (gcd (512,31) == 1);

GCOV Usage Revisited

> gcc -g -fprofile-arcs -ftest-coverage -o gcd gcd.c
(use clang instead of gcc on newer Macs)

> gcov -b gcd

> cat gcd.c.gcov

> ./gcd ; gcov -b gcd

> cat gcd.c.gcov

GCOV Results

function gcd called 6 returned 100% blocks executed 100%

6: 5:unsigned gcd (unsigned x, unsigned y)
- 6:{

18: 7: unsigned k = MAX (x,y);

18: 8: unsigned m = MIN (x,y);

branch 0 taken 17%
branch 1 taken 83Y%
23: 9: while (m '= 0) {
branch O taken 65Y%
branch 1 taken 35Y%

11: 10: unsigned r = k 7 m;
11: 11: k=m; m=r;
11 12: }

6: 13: return k;
-: 14:}

GCOV Results

Why is GCOV ...
» reporting two branches?

» Remember that the macros MAX and MIN both hide the same
branch

» claiming that branch coverage hasn’t been reached?
» assert is actually a macro, too.

Other Control-Flow-Based Coverage Metrics

» Test suite achieves full branch/decision coverage for gcd
» What about
» condition coverage?
condition decision coverage?
MC/DC?
multiple condition coverage?

v vy

Other Control-Flow-Based Coverage Metrics

» Test suite achieves full branch/decision coverage for gcd
» What about
» condition coverage?
» condition decision coverage?
» MC/DC?
multiple condition coverage?
» Only decisions in gcdare (m != 0) and (x < y)
» Therefore, these notions coincide.

v

Data-Flow-Based Coverage Metrics

unsigned k, m;

if (x > y) {
k =x; m=y X y
} else { 0 0
k=y; m=x; 1 1
}
while (m != 0) { 905 | 2
unsigned r = k % m; 2 3
k=m m=r; 512 | 31
}

return k;

» Do we achieve all-p-uses/some-c-uses coverage?
(all definitions used, and if they affect decisions, then all
affected decisions are executed)

How Did pexforfun.com Generate Test Cases?

@ Select a path in the function gcd

@ Generate conditions depending on symbolic inputs

® Find satisfying assignment (using Z3)

@ Run “secret implementation” on generated inputs
» Report generated inputs and output of oracle

@ If coverage reached, terminate; else goto ®

pexforfun.com

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m;
® if (x> y) {
k=x;m=y
} else {
k=y; m
}
@ while (m !'= 0) {
unsigned r = k

X3

b m;
k=m; m=r,;
}

return k;

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m; X = X0,y = Yo
® if x>y {
k=x;m=y
} else {
k=y; m
}
@ while (m !'= 0) {
unsigned r = k

X3

% m;
k=m; m=r,;
}

return k;

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m; X = X0,y = Yo
@ if x>y { (x0 < y0)
k=x;m=y
} else {
k=y; m=x;
}

@ while (m !'= 0) {
unsigned r = k % m;
k=m; m=r,;

}

return k;

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m; X = X0,y = Yo
@ if x>y { (x0 < y0)
k=x;m=y
} else {
k=y; m=x; k— Vo, m— Xo
}

@ while (m !'= 0) {
unsigned r = k % m;
k=m; m=r,;

}

return k;

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m; X = X0,y = Yo
@ if x>y { (x0 < y0)
k=x;m=y
} else {
k=y; m=x; k— Vo, m— Xo
}
@ while (m !'= 0) { (X0 #0)
unsigned r = k % m;

k=m; m=r,;

}

return k;

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m; X = X0,y = Yo
@ if x>y { (x0 < y0)
k=x;m=y
} else {
k=y; m=x; k— Vo, m— Xo
}
@ while (m !'= 0) { (X0 #0)
unsigned r = k % m; r— (Yo % xo)

k=m; m=r,;

}

return k;

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m;
® if (x> y) {
k=x;m=y
} else {
k=y; m
}
@ while (m !'= 0)
unsigned r =

X3

k=m; m=r,;

}

return k;

{
k

% m;

X = X0,y = Yo
(X0 <)

k— Vo, m— Xo

(xo #0)
r = (Yo % Xo)
k — Xxp,m — (Vo % Xo)

Automated Test-Case Generation

» E.g., want to cover else-branch at @, loop at @ once

unsigned k, m;
® if (x> y) {
k=x;m=y
} else {
k=y; m
}

@ while (m !'= 0) {
k

X3

unsigned r =
k=m; m=r,;

}

return k;

% m;

X = X0,y = Yo
(X0 <)

k— Vo, m— Xo

(xo #0)
r = (Yo % Xo)
k — Xxp,m — (Vo % Xo)

(Yo% x0) = 0)

Automated Test-Case Generation

» We generated the constraint

(x0 < ¥o) A (%0 # 0) A (Yo % Xx0) = 0)

» |Is it satisfiable?

Automated Test-Case Generation

» We generated the constraint

(x0 < ¥o) A (%0 # 0) A (Yo % Xx0) = 0)

> Is it satisfiable?
» Yes, for instance xo — 1, yp +— 1

Automated Test-Case Generation

» We generated the constraint

(x0 < ¥o) A (%0 # 0) A (Yo % Xx0) = 0)

» |s it satisfiable?
» Yes, for instance xo — 1, yp +— 1
» Run oracle oninput xp — 1, yg +— 1

Automated Test-Case Generation

» We generated the constraint

(x0 < ¥o) A (%0 # 0) A (Yo % Xx0) = 0)

» Is it satisfiable?
» Yes, for instance xo — 1, yp +— 1
» Run oracle oninput xp — 1, yg +— 1
» We obtain the result 1

Automated Test-Case Generation

» We generated the constraint

(x0 < ¥o) A (%0 # 0) A (Yo % Xx0) = 0)

Is it satisfiable?
» Yes, for instance xo — 1, yp +— 1
Run oracle on input xo — 1, yp > 1
» We obtain the result 1

Report test case, and select next path

v

v

v

Recall: Manual Test-Case Generation

unsigned gcd (unsigned x, unsigned y)

» Which equivalence classes would you generate?
» Which test cases would boundary testing yield?

If You Don’t Trust Testing ...

...you can try to prove the program correct.

» An assertion is an (loop) invariant if

» it holds upon loop entry

» remains true after each iteration of the loop
» An invariant is inductive

» if its validity upon loop entry is sufficient to guarantee that it still
holds after the iteration

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) =x
» (x > y) = GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {
uint r = k % m;

k

m;

=]
]

r;

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) =x
» (x > y) = GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {
uint r = k % m;

k

m;

m=r;
assert ((k > m) A GCD(x,y) = GCD(k, m)) ;
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) =x
» (x > y) = GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {

uint r = k % m;

k = m;
assert ((k >r)A GCD(x,y) = GCD(k,r));
m=r;

assert ((k > m) A GCD(x,y) = GCD(k, m)) ;

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) =x
» (x > y) = GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {

uint r = k % m;

assert ((m>r)A GCD(x,y) = GCD(m,r));

k = m;
assert ((k >r)A GCD(x,y) = GCD(k,r));
m=r;

assert ((k > m) A GCD(x,y) = GCD(k, m)) ;

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) =x
» (x > y) = GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {
assert ((m > (k%m)) A GCD(x,y) = GCD(m, (k%m))) ;
uint r = k % m;

assert ((m>r)A GCD(x,y) = GCD(m,r));

k = m;
assert ((k >r) A GCD(x,y) = GCD(k,r));
m=r;

assert ((k > m) A GCD(x,y) = GCD(k, m)) ;

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) =x
» (x > y) = GCD(x,y) = GCD(x%y,y)

while (m != 0) {
assert ((m > (k%m)) AGCD(x,y) = GCD(m, (k%m))) ;
—_——
true
uint r = k % m;

assert ((m>r)A GCD(x,y) = GCD(m,r));

k = m;
assert ((k >r)A GCD(x,y) = GCD(k,r));
m=r;

assert ((k > m) A GCD(x,y) = GCD(k, m));

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) = x
» (x > y)= GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {
assert (GCD(x,y)= GCD(m,(k%m)));

assert ((k > m) A GCD(x, y) = GCD(k, m)) ;
}

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
» GCD(x,y) = GCD(y, x)
» GCD(0,x) = x
» GCD(x,x) = x
» (x > y)= GCD(x,y) = GCD(x%y,y)

while (m !'= 0) {
assert (GCD(x,y)= GCD(m,(k%m)));

assert ((k > m) A GCD(x, y) = GCD(k, m)) ;
}

Need to show:

(k > m)A(GCD(x,y) = GCD(k, m)) = (GCD(x,y) = GCD(m, (k%m)))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
GCD(x,y) = GCD(y, x)

GCD(0, x) = x

GCD(x, x) = x

(x > y) = GCD(x,y) = GCD(x%y,y)

Need to show:

v

v

v

v

(k > m)A(GCD(x,y) = GCD(k, m)) = (GCD(x, y) = GCD(m, (k%m)))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
GCD(x,y) = GCD(y, x)

GCD(0, x) = x

GCD(x, x) = x

(x > y) = GCD(x,y) = GCD(x%y,y)

Need to show:

v

v

v

v

(k > m)A(GCD(x,y) = GCD(k, m)) = (GCD(x, y) = GCD(m, (k%m)))

» Since (k > m), we have GCD(k, m) = GCD((k%m), m)

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
GCD(x,y) = GCD(y, x)

GCD(0, x) = x

GCD(x, x) = x

(x > y) = GCD(x,y) = GCD(x%y,y)

Need to show:

v

v

v

v

(k > m)A(GCD(x,y) = GCD(k, m)) = (GCD(x, y) = GCD(m, (k%m)))

» Since (k > m), we have GCD(k, m) = GCD((k%m), m)
» Therefore GCD(x,y) = GCD(m, (k%m))

Euclid’s Algorithm and Inductive Invariants

Assume we have a predicate GCD with the following properties:
GCD(x,y) = GCD(y, x)

GCD(0, x) = x

GCD(x, x) = x

(x > y) = GCD(x,y) = GCD(x%y,y)

Need to show:

v

v

v

v

(k > m)A(GCD(x,y) = GCD(k, m)) = (GCD(x, y) = GCD(m, (k%m)))

» Since (k > m), we have GCD(k, m) = GCD((k%m), m)
» Therefore GCD(x,y) = GCD(m, (k%m))
» Loop iteration does not invalidate

(k > m) A GCD(x,y) = GCD(k, m)

Euclid’s Algorithm and Inductive Invariants

Does
(k > m) A GCD(x, y) = GCD(k, m)

hold at the beginning of the loop?

Math.Max(x,y);
Math.Min(x,y) ;

uint k

uint m

Euclid’s Algorithm and Inductive Invariants

Does
(k > m) A GCD(x,y) = GCD(k, m)

guarantee that k = GCD(x, y) after the loop?
» After the loop, we know that m =0

» Therefore

(k > 0) A GCD(x, y) = GCD(k, 0)

Euclid’s Algorithm and Inductive Invariants

Does
(k > m) A GCD(x,y) = GCD(k, m)

guarantee that k = GCD(x, y) after the loop?

» After the loop, we know that m =0
> Therefore

(k > 0) A GCD(x, y) = GCD(k, 0)

» The algorithm is correct!

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
> assert(x==y); x=x"y; y=x"y; x=x"y; assert(x==y);

x=x"y;
y=x"y;

x=x"y;
assert (x==y);

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):

> assert(x==y); x=x"y; y=x"y; x=x"y; assert(x==y);

x=x"y;

y=x"y;

assert ((x"y)==y);
x=x"y;

assert (x==y);

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):

> assert(x==y); x=x"y; y=x"y; x=x"y; assert(x==y);

x=x"y;

assert ((x~ (x"y))==(x"y));
y=x"y;

assert ((x"y)==y);

x=x"y;

assert (x==y);

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
> assert(x==y); x=x"y; y=x"y; x=x"y; assert(x==y);

assert (((x"y) " ((x"y) "y))==((x"y)"y));

x=x"y;

assert ((x~ (x"y))==(x"y));
y=x"y;

assert ((x"y)==y);

x=x"y;

assert (x==y);

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
> assert(x==y); x=x"y; y=x"y; x=x"y; assert(x==y);

assert (((x"y) " ((x"y) "y))==((x"y)"y));

x=xX"Yy;

assert ((x~ (x"y))==(x"y));
y=x"y;

assert ((x"y)==y);

x=x"y;

assert (x==y);

» We know that x"y = y"x
Xy ((Xy)y) = (Xy)y
A
XXyyy

Part 1 of Assignment 1 (Assertions): Solution

Trickiest part (the others are easy):
> assert(x==y); x=x"y; y=x"y; x=x"y; assert(x==y);

assert (((x"y) " ((x"y) "y))==((x"y)"y));

x=x"y;

assert ((x~ (x"y))==(x"y));
y=x"y;

assert ((x"y)==y);

x=x"y;

assert (x==y);

» We know that x"y = y"x
Xy ((Xy)y) = (Xy)y
A
XXyyy

» Furthermore x"x = 0 and x"0 = x, therefore we obtain (y = x)

Part 2 of Assignment 1: Solution

flagh = 0; flagB = 0;
lock (A); lock (B);
flagh = 1; flagB = 1;
assert (!flagB); assert (!flagh);
lock (B); lock (A);
flaghA = 0; flagB = 0;
unlock (B); unlock (A);
unlock (A); unlock (B);

Note:
» If only one thread contains an assertion, then there’s a
potential deadlock without an assertion failure
» If flagh and flagB are reset after the inner locks are
released, then there’s a potential assertion failure even if the
deadlock doesn’t happen

Part 3 of Assignment 1: Solution

assert (j == j + (i - 1));
int x = i;
assert (j == j + (1 - x));
int y = j;

assert (y == j + (1 - x));
while (x != 0) {
assert ((y + 1) == j + (i - (x - 1)));

x==;

assert ((y + 1) == j + (i - x));

y++;

assert (y == j + (i - x)); // # iterations n := 1 - x

}
assert ((x == 0) & y == j + (i - x));
assert ((1 !'= j) || (y == 2 % i));

Part 3 of Assignment 1: Solution (ctd.)

> (y==j+(i-x)) implies (y+1)==j+(i-(x-1))
» Therefore (y==j+(i-x)) is aloop invariant
» (y==j+(i-x)) is inductive
» Holds at beginning of loop, since (j == j + (i - 1)) istrue

» Implies assertion after loop (since x == 0)

Today was a recap of
» Assertions
» Testing
» Test Case Generation
» Inductive Invariants

Today was a recap of
» Assertions
» Testing
» Test Case Generation
» Inductive Invariants

Next time it's getting a bit more formal

» Next few lectures by
Prof. Helmut Veith and Josef
Widder

