
Programm- & Systemverifikation
SMT solvers

Josef Widder
184.741



In this talk

I What is SMT?
I Motivation

I equality logic
I uninterpreted functions
I linear arithmetic

I Solving simple SMT instances
I removing constants
I checking equality logic
I reducing uninterpreted functions to equality logic

I Example
I solver Z3
I http://rise4fun.com/z3
I http://z3.codeplex.com

http://rise4fun.com/z3
http://z3.codeplex.com


What is SMT?

recall SAT:
I given a Boolean formula, e.g., (¬a∨¬b∨ c)∧ (¬a∨b∨d ∨e)
I is there an assignment of true and false to variables a, b, c, d ,

e such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT):
I given a formula, e.g.,

x = y ∧ y = z ∧ u 6= x ∧ P(x ,G(y , z)) ∧ G(y , z) = G(x , u)

with
I equality
I functions such as G
I predicates such as P

I is there an assignment of values to u, x , y , z such that
formula evaluates to true?



What is SMT?

recall SAT:
I given a Boolean formula, e.g., (¬a∨¬b∨ c)∧ (¬a∨b∨d ∨e)
I is there an assignment of true and false to variables a, b, c, d ,

e such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT):
I given a formula, e.g.,

x = y ∧ y = z ∧ u 6= x ∧ P(x ,G(y , z)) ∧ G(y , z) = G(x , u)

with
I equality
I functions such as G
I predicates such as P

I is there an assignment of values to u, x , y , z such that
formula evaluates to true?



Example theories we discuss in this lecture

I Equality logic:
I x = y ∧ y = z ∧ u 6= x ∧ z = u
I variables are of arbitrary domain (e.g., integers, reals, strings)

I Equality logic with uninterpreted functions
I x = y ∧ y = z ∧ u 6= x ∧ z = G(x , u) ∧ G(y , z) = G(x , u)
I variables of arbitrary domain, and functions are unrestricted

I (Linear) arithmetic
I (x + y ≤ 1 ∧ 2x + y = 1) ∨ 3x + 2y ≥ 3
I variables are numbers
I symbols have the standard interpretation of arithmetic



Example theories we discuss in this lecture

I Equality logic:
I x = y ∧ y = z ∧ u 6= x ∧ z = u
I variables are of arbitrary domain (e.g., integers, reals, strings)

I Equality logic with uninterpreted functions
I x = y ∧ y = z ∧ u 6= x ∧ z = G(x , u) ∧ G(y , z) = G(x , u)
I variables of arbitrary domain, and functions are unrestricted

I (Linear) arithmetic
I (x + y ≤ 1 ∧ 2x + y = 1) ∨ 3x + 2y ≥ 3
I variables are numbers
I symbols have the standard interpretation of arithmetic



Example theories we discuss in this lecture

I Equality logic:
I x = y ∧ y = z ∧ u 6= x ∧ z = u
I variables are of arbitrary domain (e.g., integers, reals, strings)

I Equality logic with uninterpreted functions
I x = y ∧ y = z ∧ u 6= x ∧ z = G(x , u) ∧ G(y , z) = G(x , u)
I variables of arbitrary domain, and functions are unrestricted

I (Linear) arithmetic
I (x + y ≤ 1 ∧ 2x + y = 1) ∨ 3x + 2y ≥ 3
I variables are numbers
I symbols have the standard interpretation of arithmetic



Other theories

I Arithmetic in general
I e.g., (x · y ≤ 1 ∧ 2x + y = 1) ∨ y2 ≥ 3

I Bit vectors
I reduces essentially to SAT

I Quantifiers (QBF)
I ∀x∃y . x + y = 0

. . . for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.



Other theories

I Arithmetic in general
I e.g., (x · y ≤ 1 ∧ 2x + y = 1) ∨ y2 ≥ 3

I Bit vectors
I reduces essentially to SAT

I Quantifiers (QBF)
I ∀x∃y . x + y = 0

. . . for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.



Other theories

I Arithmetic in general
I e.g., (x · y ≤ 1 ∧ 2x + y = 1) ∨ y2 ≥ 3

I Bit vectors
I reduces essentially to SAT

I Quantifiers (QBF)
I ∀x∃y . x + y = 0

. . . for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.



Other theories

I Arithmetic in general
I e.g., (x · y ≤ 1 ∧ 2x + y = 1) ∨ y2 ≥ 3

I Bit vectors
I reduces essentially to SAT

I Quantifiers (QBF)
I ∀x∃y . x + y = 0

. . . for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.



SMT and software engineering

C code fragment

int n = input();

int x = input();

int m = n;

int y = x;

int z = 0;

assume(n >= 0);

/* loop invariant:

m * x == z + n * y */

while (n > 0) {

if (n % 2) {

z += y;

}

y *= 2;

n /= 2;

}

assert (z == m * x);

blackboard: formalize proof

encoding in Z3 (loop.smt)



SMT and software engineering

C code fragment

int n = input();

int x = input();

int m = n;

int y = x;

int z = 0;

assume(n >= 0);

/* loop invariant:

m * x == z + n * y */

while (n > 0) {

if (n % 2) {

z += y;

}

y *= 2;

n /= 2;

}

assert (z == m * x);

blackboard: formalize proof

encoding in Z3 (loop.smt)



Why can’t we do that in SAT?

If size of integers is fixed
I we can use boolean representation

(recall c32solve from a previous lecture)

If bit precision of integers is not fixed
I required to reason about arithmetic in general
I for certain data types, decision procedure can use specifics

Alert:
I if code should run on fixed-size integers

then verification should not be done for general arithmetic



Why can’t we do that in SAT?

If size of integers is fixed
I we can use boolean representation

(recall c32solve from a previous lecture)

If bit precision of integers is not fixed
I required to reason about arithmetic in general
I for certain data types, decision procedure can use specifics

Alert:
I if code should run on fixed-size integers

then verification should not be done for general arithmetic



Why can’t we do that in SAT?

If size of integers is fixed
I we can use boolean representation

(recall c32solve from a previous lecture)

If bit precision of integers is not fixed
I required to reason about arithmetic in general
I for certain data types, decision procedure can use specifics

Alert:
I if code should run on fixed-size integers

then verification should not be done for general arithmetic



Why can’t we do that in SAT?

If size of integers is fixed
I we can use boolean representation

(recall c32solve from a previous lecture)

If bit precision of integers is not fixed
I required to reason about arithmetic in general
I for certain data types, decision procedure can use specifics

Alert:
I if code should run on fixed-size integers

then verification should not be done for general arithmetic



Simple decision procedures



Equality logic

logical connectives ∧,∨,¬
atoms term = term

term variable name, or constant

domain can be reals, integers, etc.



Equality logic — replace constants

I replace constants by variables
I add constraints imposed by the inequality of distinct constants

e.g., 4 6= 5

E.g. x1 = x2 ∧ x1 = x3 ∧ x1 = 5 ∧ x2 = 4 ∧ x3 = 5

I replace each constant Ci with a variable ci

e.g. replace 5 with c1 and 4 with c2

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1

I for each pair of constants Ci and Cj with i 6= j add ci 6= cj

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2



Equality logic — replace constants

I replace constants by variables
I add constraints imposed by the inequality of distinct constants

e.g., 4 6= 5

E.g. x1 = x2 ∧ x1 = x3 ∧ x1 = 5 ∧ x2 = 4 ∧ x3 = 5

I replace each constant Ci with a variable ci

e.g. replace 5 with c1 and 4 with c2

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1

I for each pair of constants Ci and Cj with i 6= j add ci 6= cj

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2



Equality logic — replace constants

I replace constants by variables
I add constraints imposed by the inequality of distinct constants

e.g., 4 6= 5

E.g. x1 = x2 ∧ x1 = x3 ∧ x1 = 5 ∧ x2 = 4 ∧ x3 = 5

I replace each constant Ci with a variable ci

e.g. replace 5 with c1 and 4 with c2

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1

I for each pair of constants Ci and Cj with i 6= j add ci 6= cj

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2



Equality logic — replace constants

I replace constants by variables
I add constraints imposed by the inequality of distinct constants

e.g., 4 6= 5

E.g. x1 = x2 ∧ x1 = x3 ∧ x1 = 5 ∧ x2 = 4 ∧ x3 = 5

I replace each constant Ci with a variable ci

e.g. replace 5 with c1 and 4 with c2

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1

I for each pair of constants Ci and Cj with i 6= j add ci 6= cj

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term

{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}

{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}

{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}

{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat

e.g., since c1 6= c2, unsat



Equality logic — check satisfiability (cont.)

x1 = x2 ∧ x1 = x3 ∧ x1 = c1 ∧ x2 = c2 ∧ x3 = c1 ∧ c1 6= c2

Using equivalence classes:

{x1, x2}, {x1, x3}, {x1, c1}, {x2, c2}, {x3, c1}

Step 1: merge equivalence classes with shared term
{x1, x2, x3}, {x1, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1}, {x2, c2}, {x3, c1}
{x1, x2, x3, c1, c2}, {x3, c1}
{x1, x2, x3, c1, c2}

Step 2: if there are two equivalent variables a, b, with a 6= b in
original formula return unsat else return sat
e.g., since c1 6= c2, unsat



Equality logic with uninterpreted functions EUF

logical connectives ∧,∨,¬
atoms term = term, predicate with parameters

term variable name, or function symbol with parameters

domain can be reals, integers, etc.



Example for EUF: equivalence of programs

x = (z * z) * z;

A ≡ x = F (F (z, z), z)

y = z;

y = y * z;

y = y * z;

B ≡ y0 = z ∧ y1 = F (y0, z) ∧ y2 = F (y1, z)

program fragments equivalent if

A ∧ B → x = y2



Example for EUF: equivalence of programs

x = (z * z) * z;

A ≡ x = F (F (z, z), z)

y = z;

y = y * z;

y = y * z;

B ≡ y0 = z ∧ y1 = F (y0, z) ∧ y2 = F (y1, z)

program fragments equivalent if

A ∧ B → x = y2



Example for EUF: equivalence of programs

x = (z * z) * z;

A ≡ x = F (F (z, z), z)

y = z;

y = y * z;

y = y * z;

B ≡ y0 = z ∧ y1 = F (y0, z) ∧ y2 = F (y1, z)

program fragments equivalent if

A ∧ B → x = y2



Example for EUF: equivalence of programs

x = (z * z) * z;

A ≡ x = F (F (z, z), z)

y = z;

y = y * z;

y = y * z;

B ≡ y0 = z ∧ y1 = F (y0, z) ∧ y2 = F (y1, z)

program fragments equivalent if

A ∧ B → x = y2



Example for EUF: equivalence of programs

x = (z * z) * z;

A ≡ x = F (F (z, z), z)

y = z;

y = y * z;

y = y * z;

B ≡ y0 = z ∧ y1 = F (y0, z) ∧ y2 = F (y1, z)

program fragments equivalent if

A ∧ B → x = y2



Uninterpreted functions

Functional consistency. Instances of the same function return the
same value if given equal arguments, that is, for all
functions f :

if x = y then f (x) = f (y)

Motivation

I check satisfiability of a formula φ that has a concrete
function g

I replace g with uninterpreted function f to obtain φUF

I check validity of φUF .
I if valid φ is valid
I else: more refined analysis using g necessary



Other axioms can be added

I functional consistency is just the basic property

I if additional axioms are known, they can be added
I commutativity f (x , y) = f (y , x)
I associativity f (f (x , y), z) = f (x , f (y , z))
I neutral element x = f (x , 0)

I Alert: the formula is growing larger. . .



Other axioms can be added

I functional consistency is just the basic property

I if additional axioms are known, they can be added
I commutativity f (x , y) = f (y , x)
I associativity f (f (x , y), z) = f (x , f (y , z))
I neutral element x = f (x , 0)

I Alert: the formula is growing larger. . .



Reducing EUF to equality logic

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

I idea: replace functions by variables
I F (x1) with f1, F (x2) with f2, F (x3) with f3

I capture functional consistency constraints
I F (x1) = F (x2) must be true if x1 = x2
I F (x1) 6= F (x3) must be false if x1 = x3



Reducing EUF to equality logic

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

I idea: replace functions by variables
I F (x1) with f1, F (x2) with f2, F (x3) with f3

I capture functional consistency constraints
I F (x1) = F (x2) must be true if x1 = x2
I F (x1) 6= F (x3) must be false if x1 = x3



Reducing EUF to equality logic (cont.)

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

functional constraints more general:

FC ≡ (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

flattening of function:

flat ≡ (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)

FC → flat
I is in equality logic
I is valid if and only if the original formula is valid



Reducing EUF to equality logic (cont.)

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

functional constraints more general:

FC ≡ (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

flattening of function:

flat ≡ (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)

FC → flat
I is in equality logic
I is valid if and only if the original formula is valid



Reducing EUF to equality logic (cont.)

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

functional constraints more general:

FC ≡ (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

flattening of function:

flat ≡ (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)

FC → flat
I is in equality logic
I is valid if and only if the original formula is valid



Reducing EUF to equality logic (cont.)

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

functional constraints more general:

FC ≡ (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

flattening of function:

flat ≡ (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)

FC → flat
I is in equality logic
I is valid if and only if the original formula is valid



Arithmetic



Linear Arithmetic — a decision procedure you know

consider a system of 3 equations with 2 variables

x + y = 1

2x + y = 1

3x + 2y = 3

. . . Gaussian elimination

In other words, exists there x and y satisfying

x + y = 1 ∧ 2x + y = 1 ∧ 3x + 2y = 3

blackboard: geometric interpretation

(x + y = 1 ∧ 2x + y = 1) ∨ 3x + 2y = 3



Linear Arithmetic — a decision procedure you know

consider a system of 3 equations with 2 variables

x + y = 1

2x + y = 1

3x + 2y = 3

. . . Gaussian elimination

In other words, exists there x and y satisfying

x + y = 1 ∧ 2x + y = 1 ∧ 3x + 2y = 3

blackboard: geometric interpretation

(x + y = 1 ∧ 2x + y = 1) ∨ 3x + 2y = 3



Linear Arithmetic — a decision procedure you know

consider a system of 3 equations with 2 variables

x + y = 1

2x + y = 1

3x + 2y = 3

. . . Gaussian elimination

In other words, exists there x and y satisfying

x + y = 1 ∧ 2x + y = 1 ∧ 3x + 2y = 3

blackboard: geometric interpretation

(x + y = 1 ∧ 2x + y = 1) ∨ 3x + 2y = 3



Linear Arithmetic — a decision procedure you know

consider a system of 3 equations with 2 variables

x + y = 1

2x + y = 1

3x + 2y = 3

. . . Gaussian elimination

In other words, exists there x and y satisfying

x + y = 1 ∧ 2x + y = 1 ∧ 3x + 2y = 3

blackboard: geometric interpretation

(x + y = 1 ∧ 2x + y = 1) ∨ 3x + 2y = 3



Linear Arithmetic — a decision procedure you know

consider a system of 3 equations with 2 variables

x + y = 1

2x + y = 1

3x + 2y = 3

. . . Gaussian elimination

In other words, exists there x and y satisfying

x + y = 1 ∧ 2x + y = 1 ∧ 3x + 2y = 3

blackboard: geometric interpretation

(x + y = 1 ∧ 2x + y = 1) ∨ 3x + 2y = 3



Linear Arithmetic — example

consider a system of 3 equations with 2 variables

x + y ≥ 1

2x + y ≥ 1

3x + 2y ≤ 3

I simplified Simplex algorithm for real numbers
(some similarities to Gaussian elimination)

I Branch and Bound
adding constraints to get integer solutions



Things to take away

I sometimes applying SAT not possible

I closer to first order logic
and sometimes beyond

I efficient procedures for specific theories

I extensive tool support
I similar to SAT, there are competitions
I agreed-upon input language smtlib2



Thanks!


