Programm- & Systemverifikation

SMT solvers

Josef Widder M
184.741



What is SMT?
Motivation
» equality logic
» uninterpreted functions
> linear arithmetic
Solving simple SMT instances
» removing constants
» checking equality logic
» reducing uninterpreted functions to equality logic
Example
» solver Z3
» http://rise4fun.com/z3
» http://z3.codeplex.com

v

v

v

v


http://rise4fun.com/z3
http://z3.codeplex.com

What is SMT?

recall SAT:
» given a Boolean formula, e.g., (maVv-bVc)A(-avbVvdVe)

> is there an assignment of true and false to variables a, b, c, d,
e such that the formula evaluates to true?



What is SMT?

recall SAT:
» given a Boolean formula, e.g., (maVv-bVc)A(-avbVvdVe)

> is there an assignment of true and false to variables a, b, c, d,
e such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT):
» given a formula, e.g.,

XxX=y Ny=zANu#xANP(x,G(y,z)) N G(y,z) = G(x,u)

with
» equality
» functions such as G
» predicates such as P
» is there an assignment of values to u, x, y, z such that
formula evaluates to true?



Example theories we discuss in this lecture

» Equality logic:
> X=y AN Yy=ZANU#X AN zZ=uU
» variables are of arbitrary domain (e.g., integers, reals, strings)



Example theories we discuss in this lecture

» Equality logic:
> X=y AN Yy=ZANU#X AN zZ=uU
» variables are of arbitrary domain (e.g., integers, reals, strings)

» Equality logic with uninterpreted functions
»X=y AN y=zANu#xANz=G(x,u) A G(y,z)= G(x,u)
» variables of arbitrary domain, and functions are unrestricted



Example theories we discuss in this lecture

» Equality logic:
> X=y AN Yy=ZANU#X AN zZ=uU
» variables are of arbitrary domain (e.g., integers, reals, strings)

» Equality logic with uninterpreted functions
»X=y AN y=zANu#xANz=G(x,u) A G(y,z)= G(x,u)
» variables of arbitrary domain, and functions are unrestricted

> (Linear) arithmetic
» (x+y<1A2x+y=1) Vv 3x+2y>3
» variables are numbers
» symbols have the standard interpretation of arithmetic



Other theories

» Arithmetic in general
»eg,(xy<1t A2x+y=1)V y2>3



Other theories

» Arithmetic in general
»eg,(xy<1t A2x+y=1)V y2>3

» Bit vectors
» reduces essentially to SAT



Other theories

» Arithmetic in general
»eg,(xy<1t A2x+y=1)V y2>3

» Bit vectors
» reduces essentially to SAT

» Quantifiers (QBF)
» Vxdy.x+y=0



Other theories

» Arithmetic in general
»eg,(xy<1t A2x+y=1)V y2>3

» Bit vectors
» reduces essentially to SAT

» Quantifiers (QBF)
» Vxdy.x+y=0

... for details: Kroening, Strichman. Decision Procedures. Springer
Verlag.



SMT and software engineering

C code fragment

int n = input();
int x = input () ;

int m = n;
int y = x;
int z = 0;

assume (n >= 0);

/* loop invariant:
m* x ==z +n *xy */

while (n > 0) {

if (n % 2) {
z += y,;

}

y o*= 2

n /= 2;

assert (z == m * x);



SMT and software engineering

C code fragment

int n = input();
int x = input () ;

int m = n;
int y = x;
int z = 0;

assume (n >= 0);
blackboard: formalize proof

/* loop invariant:

m* x ==z +1n %y */ encoding in Z3 (Loop.smt)
while (n > 0) {
if (n % 2) {
z += y;
¥
y *= 2;
n /= 2;

assert (z == m * x);



Why can’t we do that in SAT?



Why can’t we do that in SAT?

If size of integers is fixed

» we can use boolean representation
(recall c32solve from a previous lecture)



Why can’t we do that in SAT?

If size of integers is fixed

» we can use boolean representation
(recall c32solve from a previous lecture)

If bit precision of integers is not fixed
» required to reason about arithmetic in general
» for certain data types, decision procedure can use specifics



Why can’t we do that in SAT?

If size of integers is fixed

» we can use boolean representation
(recall c32solve from a previous lecture)

If bit precision of integers is not fixed
» required to reason about arithmetic in general
» for certain data types, decision procedure can use specifics

Alert:

» if code should run on fixed-size integers
then verification should not be done for general arithmetic



Simple decision procedures



Equality logic

logical connectives A,V,—
atoms term = term
term variable name, or constant
domain can be reals, integers, etc.



Equality logic —replace constants

» replace constants by variables

» add constraints imposed by the inequality of distinct constants
eg.,4#5



Equality logic —replace constants

» replace constants by variables

» add constraints imposed by the inequality of distinct constants
eg.,4#5

Egxi=x AXxy=x3 AN X3=5 AN Xxx=4 AN x3=5



Equality logic —replace constants

» replace constants by variables

» add constraints imposed by the inequality of distinct constants
eg.,4#5

Egxi=x AXxy=x3 AN X3=5 AN Xxx=4 AN x3=5

» replace each constant C; with a variable ¢;
e.g. replace 5 with ¢ and 4 with ¢,

Xy =Xo AN Xy =X3 N Xy =0C N Xo=0C N X3 = Cy



Equality logic —replace constants

» replace constants by variables

» add constraints imposed by the inequality of distinct constants
eg.,4#5

Egxi=x AXxy=x3 AN X3=5 AN Xxx=4 AN x3=5

» replace each constant C; with a variable ¢;
e.g. replace 5 with ¢ and 4 with ¢,

Xy =Xo AN Xy =X3 N Xy =0C N Xo=0C N X3 = Cy

» for each pair of constants C; and C; with i # j add ¢; # ¢;

X1=Xo AX1=X3 A ANX1=C AXo=C ANX3=0C N Cl #C



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{X‘I sy X2, X3}7 {X'I , C1 }a {X2a 02}5 {X37 C'I}



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{X‘I sy X2, X3}7 {X'I , C1 }a {X2a 02}5 {X37 C'I}
{x1,x2,x3, ¢1}, {x2, C2}, {x3, C1}



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{x1, %2, x3}, {x1,¢1}, {xe, 2}, {x3,C1}
{x1,x2,x3,¢1}, {x2, C2}, {x3,¢1}

{x1,X2,x3,¢C1,Co}, {X3,C1}



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{x1, %2, x3}, {x1,¢1}, {xe, 2}, {x3,C1}
{x1,x2,x3,¢1}, {x2, C2}, {x3,¢1}

{x1,X2,x3,¢C1,Co}, {X3,C1}

{x1,x2,x3,¢1,C2}



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{x1, %2, x3}, {x1,¢1}, {xe, 2}, {x3,C1}
{x1,x2,x3,¢1}, {x2, C2}, {x3,¢1}

{x1,X2,x3,¢C1,Co}, {X3,C1}

{x1,x2,x3,¢1,C2}

Step 2: if there are two equivalent variables a, b, with a # bin
original formula return unsat else return sat



Equality logic — check satisfiability (cont.)

X1=Xo AN Xy=X3 AN X1=C AN Xo=C N X3=C A C #C
Using equivalence classes:

{x1, %}, {x1,x3}, {x1,c1}, {x2, c2}, {x3, €1}

Step 1: merge equivalence classes with shared term
{x1, %2, x3}, {x1,¢1}, {xe, 2}, {x3,C1}
{x1,x2,x3,¢1}, {x2, C2}, {x3,¢1}

{x1,X2,x3,¢C1,Co}, {X3,C1}

{x1,x2,x3,¢1,C2}

Step 2: if there are two equivalent variables a, b, with a # bin
original formula return unsat else return sat
e.g., since ¢y # ¢, unsat



Equality logic with uninterpreted functions EUF

logical connectives A,V,—
atoms term = term, predicate with parameters
term variable name, or function symbol with parameters
domain can be reals, integers, etc.



Example for EUF: equivalence of programs

x = (z % z) *x z;



Example for EUF: equivalence of programs

>
11

x = F(F(z,2),2)



Example for EUF: equivalence of programs

(z *x z) * z;

o]
]

>
11

x = F(F(z,2),2)

<
won n

~

N



Example for EUF: equivalence of programs

(z *x z) * z;

o]
]

A = x=F(F(z,2),2)
vy o= z;
vy =y o*z;
y =y *z;

B = y=zAy1=FW,2) N yo=F(y1,2)



Example for EUF: equivalence of programs

(z *x z) * z;

o]
]

A = x=F(F(z,2),2)
vy o=z
y =y *z;
y =y *z;

B = y=zAy1=FW,2) N yo=F(y1,2)

program fragments equivalent if

AANB — x=y»



Uninterpreted functions

Functional consistency. Instances of the same function return the
same value if given equal arguments, that is, for all
functions f:

if x =y then f(x) = f(y)

Motivation

» check satisfiability of a formula ¢ that has a concrete
function g
» replace g with uninterpreted function f to obtain ¢YF
» check validity of ¢Ur.
» if valid ¢ is valid
» else: more refined analysis using g necessary



Other axioms can be added

» functional consistency is just the basic property

» if additional axioms are known, they can be added
» commutativity f(x, y) = f(y, x)
» associativity f(f(x,y),z) = f(x, f(y, 2))
» neutral element x = f(x, 0)



Other axioms can be added

» functional consistency is just the basic property

» if additional axioms are known, they can be added
» commutativity f(x, y) = f(y, x)
» associativity f(f(x,y),z) = f(x, f(y, 2))
» neutral element x = f(x, 0)

» Alert: the formula is growing larger. ..



Reducing EUF to equality logic

(x1 #x2) V (F(x1) = F(x2)) V (F(x1) # F(x3))

» idea: replace functions by variables
» F(x1) with f;, F(x) with f,, F(x3) with f;



Reducing EUF to equality logic

(1 #x2) V (F(xa) = FOx)) Vv (F(x1) # F(xs))

» idea: replace functions by variables
» F(x1) with f;, F(x) with f,, F(x3) with f;

» capture functional consistency constraints
» F(x1) = F(x2) must be true if x; = xo
» F(x1) # F(x3) must be false if xi = x3



Reducing EUF to equality logic (cont.)

(x1 # %) V (F(x1) = F(x)) V (F(x1) # F(xs))



Reducing EUF to equality logic (cont.)

(x1 # %) V (F(x1) = F(x)) V (F(x1) # F(xs))

functional constraints more general:

FC = (X1 =X — f = fz) VAN
(X1 =x3 — f = f3) VAN
(Xg = X3 — f2 = f3)



Reducing EUF to equality logic (cont.)

(x1 # %) V (F(x1) = F(x)) V (F(x1) # F(xs))

functional constraints more general:

FC = (X1 =X — f = f2) VAN
(X1 =x3 — f = f3) VAN
(Xg = X3 — f2 = f3)

flattening of function:

flat = (X1 75 X2) \Y (f1 = fg) V (f1 #+ f3)



Reducing EUF to equality logic (cont.)

(x1 # %) V (F(x1) = F(x)) V (F(x1) # F(xs))

functional constraints more general:

FC = (X1 =X — f = f2) VAN
(X1 =x3 — f = f3) VAN
(Xg = X3 — f2 = f3)

flattening of function:
flat = (X1 75 X2) \Y (f1 = fg) V (f1 #+ f3)

FC — flat
> is in equality logic

» is valid if and only if the original formula is valid



Arithmetic



Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3



Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3

...Gaussian elimination



Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3

...Gaussian elimination

In other words, exists there x and y satisfying

X+y=1AN2x+y=1AN3x+2y=3



Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3

...Gaussian elimination

In other words, exists there x and y satisfying
X+y=1AN2x+y=1AN3x+2y=3

blackboard: geometric interpretation



Linear Arithmetic—a decision procedure you know

consider a system of 3 equations with 2 variables

xX+y = 1
2x+y =
3x+2y = 3

...Gaussian elimination

In other words, exists there x and y satisfying
X+y=1AN2x+y=1AN3x+2y=3

blackboard: geometric interpretation

(x+y=1A2x+y=1) Vv 3x+2y=3



Linear Arithmetic —example

consider a system of 3 equations with 2 variables

X+y 1
2x+y

3x+2y

IN IV IV

» simplified Simplex algorithm for real numbers
(some similarities to Gaussian elimination)

» Branch and Bound
adding constraints to get integer solutions



Things to take away

v

sometimes applying SAT not possible

v

closer to first order logic
and sometimes beyond

v

efficient procedures for specific theories

v

extensive tool support

» similar to SAT, there are competitions
» agreed-upon input language smt1lib2






