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2 HESSE, ALLENDER AND BARRINGTON

It has been known since the mid-1980's [15, 46, 47] that integer division can
be performed by poly-time uniform constant-depth circuits of MAJORITY gates;
equivalently, thedivision problemliesin P-uniform TC. Recently thiswasimproved
to L-uniform TCP [19], but it remained unknown whether division can be performed
by DLOGTIME-uniform TC? circuits. The DLOGTIME uniformity condition is
regarded by many as being the most natural notion of uniformity to apply to small
circuit complexity classes such as TC?; DLOGTIME-uniform TC® is also known
as FOM, becauseit correspondsto first-order logic with M aJoRITY quantifiers, in
the setting of finite model theory. Integer division has been the outstanding example
of a natural problem known to be in a P-uniform circuit complexity class, but not
known to be inits DLOGTIME-uniform version.

We show that indeed division isin DLOGTIME-uniform TC?.

First we show that division lies in the complexity class FOM + POW obtained
by augmenting FOM with a predicate for powering modulo small primes. Then
we show that the predicate POW itself lies in FOM. (In fact, it lies in FO, or
DLOGTIME-uniform AC°.)

Theessential ideain thefast parallel computation of division and related problems
isthat of Chinese remainder representation (CRR) — storing a number in the form of
its residuesmodulo many small primes. Thefact that CRR operationscan be carried
out in log space has interesting implications for small space classes. We define
two versions of s(n) space for s(n) = o(logn): dspace(s(n)) as the traditional
version where the worktape begins blank, and DSPACE(s(n)) where the space
bound is established by endmarkersbefore the computation starts. \We present anew
translational lemma characterizing the unary languagesin the DSPACE classes. It
isknown [30] that {0™ : n isprime} ¢ dspace(loglogn). We show that if this can
beimproved to {0™ : nisprime} ¢ DSPACE(loglog n), it followsthat L # NP.

Key Words: computer arithmetic, division, iterated multiplication, threshold circuits, uniformity,
circuit complexity, complexity classes, finite model theory, Chinese remainder representation, com-
putation in abelian groups

1. INTRODUCTION

In 1984 Beame, Cook, and Hoover [15] presented new parallel agorithmsfor division,
powering, and iterated multiplication of integers. They showed that these problems can be
solved by familiesof circuitswithfan-intwo and O(log n) depth, placing theminthecircuit
classNC'. AsReif [46, 47] observed soon &fter, their algorithms can aso be implemented
by families of threshold circuits with constant depth and polynomia size, placing these
problems in the circuit class TC®. Equivaently [17], these problems are reducible in a
strong sense to ordinary integer multiplication — they can be solved by constant-depth
poly-size circuits of multiplication gates.

1 Supported by NSF grant CCR-9877078.
2 Supported in part by NSF grants CCR-9734918 and CCR-0104823.
3 Supported in part by NSF grant CCR-9988260.
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The outstanding issue remaining after [15] was the degree of uniformity of the circuit
familiesfor division and iterated multiplication. The circuits of Beame, Cook, and Hoover
are “P-uniform”, meaning that the n'" circuit can be constructed by a poly-time Turing
machine from the number n given in unary. Thus they are apparently more difficult to
congtruct than to evaluate (for example, they were not known to be constructible by a
logspace Turing machine and hence did not serve to divide numbers in logspace). In a
recent breakthrough, Chiu, Davida and Litow [19] developed logspace uniform circuits
and thus showed these problems to be in L-uniform TC". They thus also solved an even
ol der open problem by showing these problemsto be solvablein L itself. (L isthe class of
functionsthat can be computed by deterministic Turing machines using logarithmic space.)

If (asiswidely believed) L is different from TC?, the work of [19] till yields circuits
that are more difficult to construct than to evaluate. There isa natura definition of “fully
uniform TC®”, which is robust across several different models of computation [13]. Two
formulations of this class are DLOGTIME-uniform circuits and problems definable by
first-order formulas with MAJoRITY quantifiers. Are division, powering, and iterated
multiplication computable within this class?

Weresolve thisquestion affirmatively. All three of these problems can be solved by fully
uniform families of threshold circuits of constant depth and polynomial size. Equivalently,
all three are reducible to integer multiplication by fully uniform circuits of constant depth
and polynomial size.

There are two parts to our proof. First (in work first reported in [6]), we show that
the non-uniformity necessary for the construction of [19] is quite limited: In Immerman’s
descriptive complexity setting [36], we need only first-order formulas with MAJORITY
quantifiers and a single extra numerical predicate. This predicate expresses powering of
integers modulo a prime of O(log n) hits.

Next (in work first reported in [35]), we show that powering modulo any small prime
isin DLOGTIME-uniform AC". (Equivaently, it can be expressed in first-order logic on
ordered structures, with addition and multiplication.)

We also consider the implications of the new division algorithm for the study of small-
space complexity classes. Most prior work on Turing machines with O (loglogn) space,
for example, has assumed that the work tape starts out blank, with no marker to indicate
the end of the available space. We call thisclass dspace(log log n), in contrast to the class
DSPACE(loglogn) where thisinitia marker is given.

The space-efficient CRR algorithms alow us to prove more efficient translational ar-
guments, showing that the unary languages in DSPACE(loglogn) are simply the unary
encodings of thelanguagesin log space. Thishighlightsthe difference between dspace and
DSPACE classes. For example, a classic result of Hartmanis and Berman [30] says that
the set of unary strings of prime length is not in dspace(o(logn)). The new trandational
lemma shows that proving an anal ogous result for DSPACE(log logn) would separate the
classes L and NP,

In Section 2 we present the necessary definitions and background. In Section 3 we
review the history and context of the numeric problems we study. In Section 4 we outline
an agorithm based on that of Chiu, Davida, and Litow [19], showing that the necessary
CRR operationsfor divisioncan be carried out by circuitsthat are uniform, given apredicate
for powering modulo small numbers. In Sections 5 and 6 we show that this predicate is
in DLOGTIME-uniform AC®. Finally, our results on small space-bounded classes are
presented in Section 7.
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2. DEFINITIONS
We are concerned with the complexity of threebasic problemsininteger arithmetic (with
input and output in binary representation):

e DrvisioN: Givenanumber X of n bitsand anumber Y of a most n bits, find | X/Y |,

e POWERING: Given anumber X of n bitsand anumber k of O(logn) bits, find X*,
and

e ITERATED MULTIPLICATION: Givenn numbers X4, ..., X, each of a most n bits,
find the product X; X5 ... X,,.

A number of our formal definitionsrequirethat we consider these problemsto beformally
given as predicates rather than as functions. Thus, for example, wewill expressdivision as
apredicate D1visioN(X, Y, ) which istrueif and only if bit i of | X/Y | is1. Similarly,
the iterated multiplication problem will be written as the predicate IMULT (A, . . ., Ay, @)
whichistrueif biti of [[7_, A; is1; 4 rangesfrom0ton® — 1, and so has 2logn bits.

We denotenumberswithn or n©() bitsby uppercase letters, and numberswith O (log n)
bits by lowercase letters. We aso refer to numbers with O(logn) bits as short, and those
with n®™) bits as long. We will always note the size of numbers with log®®) n bits
explicitly.

Notethat all the circuit complexity classesand descriptive complexity classeswe consider
are closed under a polynomial change in the input size. Therefore, though the size of the
input to divisionis 2n 4 log n and that of theinput to iterated multiplicationisn? 4-2log n,
we will consider theinput size to ben for all problemsin this paper.

2.1. Circuit Classes

We begin by formally defining the three circuit complexity classes that will concern us
here. These are given by combinatorial restrictions on the circuits of the family. We will
then define the uniformity restrictions we will use. Findly, we will give the equivalent
formulations of uniform circuit complexity classes in terms of descriptive complexity
classes.

NC! isthe class of languages A for which there exist circuit families {C,, : n € N}
where each circuit C,,

e computes the characteristic function of A oninputsof lengthn,
e consistsof AND and ORr gates of fan-in two, and NoT gates,
o has depth O(log n) (and consequently has size n©(1)).

TC? is the class of languages A for which there exist circuit families {C,, : n € N}
where each circuit C,,

e computes the characteristic function of A oninputsof lengthn,

e consistsof MAJORITY gates (with no bound on the fan-in),and NoT gates,
e hasdepth O(1),

o hassizen©®,

AC' is the class of languages A for which there exist circuit families {C,, : n € N}
where each circuit C,,

e computes the characteristic function of A oninputsof lengthn,
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e consistsof AND and OR gates (with no bound on the fan-in),and NoT gates,
e has depth O(1),
e hassizen®M,

It will cause no confusion to use the terms NC* and TC also to refer to classes of
functions computed by these classes of circuits, instead of merely focusing on languages.

2.2.  Uniformity

The circuit classes NC*, TC?, and AC® each come in different flavors corresponding to
different uniformity conditions. As defined above, these classes are nonuniform. That is,
thereis no restriction on how difficult it is to compute the function n. — C,, (i.e., on how
hard it is to build the circuits). In order to make circuit classes comparable to standard
sequential complexity classes such as P and L, we need to place such restrictions.

In particular, our three circuit classes are only known to be contained within P if they
are P-uniform, meaning that thefunctionn — C,, must be computablein polynomia time.
They are only known to become subclasses of L if we make them L-uniformby making this
function computable in L. But even L-uniformity is unsatisfactory in that the L-uniform
versions of these classes apparently contain languages that are solvable because of the
capabilities of the machine constructing the circuit rather than those of the circuit itself.

Barrington, Immerman and Straubing [13] proposed a robust definition of fully uniform
versions of each of these classes. Following Ruzzo [49], the condition requires that a
DLOGTIME Turing machine (with random access to itsinput) be able to answer particular
questions about each circuit, such as “is gate 7 of the n-input circuit a child of gate j”.
(More complex questions are needed in the case of NC' for technical reasons [49, 13].)

A consensushas devel oped among researchersin circuit complexity that thisDLOGTIME
uniformity is the “right” uniformity condition. This argument is made in some detail in
[12] —in particular:

e DLOGTIME uniformity isequivalent to P or L uniformity except in the case of small
circuit complexity classes; i.e. inthosecaseswherethecircuitsarenot capableof simulating
the machine constructing them,

e All the standard constructionsrelating circuitsto sequential models can be carried out
with DLOGTIME uniform circuits, and most importantly,

e The new complexity classes defined in terms of DLOGTIME uniform circuits have
many equivaent characterizations in terms of other models such as aternating Turing
machines, first-order logic, and functional algebra[13, 20, 7].

Thusfor therest of thispaper, any referenceto” uniform” circuitsmeans” DLOGTIME-
uniform” circuits, unless some other uniformity condition is explicitly mentioned.
Similarly, any mention of ACY, TC®, or NC* will refer to the DLOGTIME-uniform ver-
sions of these classes, unless another uniformity condition is explicitly mentioned.

We will make use of some standard parallel algorithmsin arithmetic, all of which can
be carried out by DLOGTIME-uniform circuits. For example, in AC” one can add two
n-bit numbers and determine the number of onesin abinary string of lengthlog®* n. (In
fact one can also determine the number of ones in a string of length n if this number is
1og®™M n.) In TC® one can multiply two n-bit numbers, and add together n n-bit numbers.
For background on these algorithms, the reader can consult [17, 36, 13, 24, 44, 34].
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Only one strict containment relation is known among the complexity classes that are
mentioned above. Itisknownthat AC° C TCC CNC' CL CP

2.3. Descriptive Complexity Classes

Our goal in this paper isto show that DivisioN and ITERATED MULTIPLICATION are
inthe class DLOGTIME-uniform TC°. Applyingthe definitiondirectly, thiswould require
usto describe afamily of constant-depth polynomial-sizethreshold circuits and then argue
that they meet the uniformity condition. Instead, we will make use of one of the alternate
characterizations of DLOGTIME-uniform circuit classes given above, that of descriptive
complexity.

A problemisin thecomplexity class FO (first-order) if the predicate correspondingto the
decision problem can beexpressed by afirst-order formulainterpreted over afiniteuniverse:
the set of natural numbers0,...,n — 1. The inputsto a problem are encoded as relations
(i.e, X,Y, etc.) over theuniverse. Formulas are formed in the usua way using universa
and existentia quantifiers and the rdlations X, Y, etc., aswell as the numeric relations* <
and BIT. The problems in FO coincide exactly with the problems in the complexity class
DLOGTIME-uniform AC® [13].

The complexity class FOM (first-order with MAJORITY) is defined anal ogously, except
that MAJORITY quantifiers are allowed, in addition to the usual universal and existential
quantifiers. The majority quantifier (Mx) can appear anywhere that an (3x) or a (Vx)
can appear. The formula (M z)(x) istrueiff ¢(j) is true for more than half the values
0 < j < n. The classes FOM and DLOGTIME-uniform TC® are equal [13].

Some examples may help clarify the situation. Consider the DivisionN problem. Then
bits of the input X to DivisioN are represented by the values of a unary predicate X (-)
on the elements of the universe: X (0), X(1),...,X(n — 1). An n? bit input can be
represented by abinary predicate, sotheinputs Ay, . . ., A, 1 to IMULT are represented as
abinary predicate A(-, -). Short inputsto a problem, such as ¢, theindex of the result bit
queried, may be represented by a constant intherangeo, ..., n — 1.

The predicate BITSUM(z, y), which is defined to be true if the binary representation of
x contains y ones, isdefinablein FO [13, 36].

Since an FO or FOM formula over the universe 0, . .., n* — 1 can be simulated by an
equivaent formula over the universe 0, ..., n — 1, DrvisioN and ImuLT with inputs X,
Y, and A; having n* bits, encoded by k-ary relations over 0,...n — 1, are in the same
descriptive complexity class as Division and IMuLT with n-bit inputs.

This methodology will afford us two key advantages. First, the notion of defining one
problem in terms of another, along with simple operations, is a very natural one. The
circuit components naturally constructed for arithmetic operationsare very regular inform,
and the logical descriptions of them can capture this without worrying about uniformity
machines. Secondly, adding more atomic predicates to the logical formalism allows for
very fine distinctionsin the amount of non-uniformity added to the circuits. The class
FOM + POW defined in section 4 was akey step toward our eventua result, and thisclass
would have been considerably harder to define without the first-order logic formalism.

4Following [36], we consider FO to include ordering and BIT. The BIT predicate allows us to look at the bits
of numbers. BIT(z, x) istrueif bit ¢ of the number x writtenin binary is 1. Thisis equivalentin expressivepower
to having addition and multiplication on numbersbetween 0 and n — 1.
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In order to present our results, we frequently make use of the notion of “FO-Turing
reducibility” between problems. Thisisformally defined using generaized quantifiersin
[36]. For our applications, this notion is equivaent to the notion of DLOGTIME-uniform
ACP-Turing reducibility, as described in [55] (using “oracle gates”). In all cases, when we
say that A is FO-Turing-reducibleto B, it should be clear that if B isin DLOGTIME-
uniform AC?, thenso is A.

For further background on descriptive complexity, please consult Immerman’s mono-

graph [36].

3. CIRCUITSFOR DIVISION: AN OVERVIEW

Beame, Cook, and Hoover [15] showed that DivisioN, POWERING, and ITERATED
MurtIPLICATION are al easily reducible to one another. We find it convenient to work
mostly with ITERATED MULTIPLICATION in this paper, but for completeness we review
here why uniform circuits for ITERATED MULTIPLICATION provide uniform circuits for
Division.

Since thereis a convergent power series for thereciproca of areal number, we can use
iterated multiplication to approximate that power series. Since1/(1 — a) = Y.~ o, for
any real number o with |a] < 1,thenfor1/2 < a <1,

n

a=> (1-a)+0(2™").

=0

Todivide X by Y, let j = [log Y] beroughly the number of bitsinY. Thenuse277Y,
which is between 1/2 and 1, as « in the preceding formula. Multiplying by 2™/ to create
an integer computation, we find

XY =X (2 -Y)(2)" T+ O(X2M )
=0

SincetheerrorisO(2"7), wefind | X/Y | to within an additive error of O(1) by dropping
the lowest nj bits of the result. The exact value of | X/Y | can be found by multiplying
our approximation by Y and comparing to X.

Since addition of polynomially many numbers can be performed in TC?, this entire
algorithm can be viewed as an efficient reduction from D1vision to POWERING, whichis
aspecial case of ITERATED MULTIPLICATION.

For amore detailed exposition, consult [15], where it isa so observed that thistechnique
allows the approximate computation of any function given by a convergent power series.

It was shown in [15] that ITERATED MULTIPLICATION isin P-uniform NC'. It was
observed later by Reif [46, 47] that the same a gorithm can be implemented in P-uniform
TCP. It was aso noticed that the construction is logspace uniform, given access to the
product of thefirst n* primes[37, 15], and hence thefull constructionis TC' uniform. There
has also been work reducing the size and depth of division circuits. Division circuits of
depth O(logn) and size n' < were presented in [50, 33, 48]. Polynomial-size MAJORITY
circuits of depth three are known for Division and POWERING; depth four suffices for
ITERATED MULTIPLICATION[51]. On the related model of circuits with Axp, Or, and
MAJORITY gates, it is known that two layers of MAJoORITY gates suffice to compute
DrvisioN and POWERING; threelayers suffice for ITERATED MULTIPLICATION[41].
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It remained unknown whether Drvision could be computed in logarithmic space, al-
though an algorithm using nearly-logarithmic space was presented already by Reif in the
1980's[45]. Thissituation was remedied when Chiu, Davida, and Litow [19] presented an
improved algorithm that can be implemented in L-uniform TC?.

Chiu'sMaster’s thesis [ 18] aso shows that divisionliesin fully uniform NC!.

In the next section, we present a simplified division algorithm that was inspired by [19].
Our presentation is in terms of descriptive complexity, but can equally well be thought
of explicitly in terms of circuits. Each step is a description of a paralel computation of
some predicate in terms of previously computed predicates and basic operationsthat can be
expressed by quantifiersor (equivaently) clearly be performed by polynomid size parallel
circuitswith asimple structure. For example we can say “Compute the product p? for each
prime p less than n2”. Thisis simple because deciding whether a short number isprimeis
in FO.

Since our prime focus is on potential non-uniformity in the circuit, we must take note
when we need inputsthat are not obviously computable. In particular, we will need to use
the values a* mod p for short values a, i, and p. In descriptive complexity terms, we will
refer to the fixed numeric predicate POW, where

POW(a,i,b,p) <= a'=b (mod p)

and al of theinputs have O(logn) bits. Thisisrepresented in logic as afixed relation of
arity 4k and size n**, assuming the inputs have k log n bits.

We define the descriptive complexity classes FO + POW and FOM + POW to be FO
and FOM, respectively, augmented with this new atomic predicate POW. Just as FO and
FOM are DLOGTIME-uniform versions of AC® and TC?, these new classes are “dightly
less uniform” versions of the same classes, in that answering questions about the circuits
might require access to powers of short numbers. (We will sometimes call such circuits
“POW-uniform”.) Aswe will eventually show, the predicate POW isitself computablein
FO (and thus also in FOM), so in fact FO + POW and FOM + POW collapse to FO and
FOM respectively.

4. DIVISIONISIN FOM + POW

The central ideaof al the TC® agorithmsfor ITERATED MULTIPLICATION and rel ated
problemsisthat of Chineseremainder representation (CRR). An n-bit number is uniquely
determined by its residues modul o polynomially many primes, each of O(logn) bits. The
Prime Number Theorem guarantees that there will be more than enough primes of that

length.
Tofix notation, we now recapitul ate the devel opment of CRR. If we are given a sequence
of distinct primesmy, .. ., my, each ashort number, let M betheir product. Any number

X < M can be represented uniquely as (z1, . ..,xx) With X = z; (mod m;) for al 4.
For each number 4, let C; bethe product of al them;’s except m;, and let h; betheinverse
of C; modulo m;. Itiseasy to verify that X is congruent modulo M to Zle x;h;C;. In
fact X isequal, asan integer, to (Zle x;h;C;) —rM for some particular number r, called
therank of X with respect to M (denoted rank;(X)). Notethat » isashort number. Itis
equal to theinteger part of the sum of the k rational numbers x;h;C; /M or x;h; /m;, each
of which isbetween 0 and m;.
The agorithm for ITERATED MULTIPLICATION iS easy to describe;
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Sep 1. Convert theinput from binary to CRR.
Sep 2. Computetheiterated product in CRR.
Sep 3. Convert the answer from CRR to binary.

Step 1 iseasy to accomplishin FOM + POW. A proof is provided in Lemma 4.1.

Step 2 is solved by adding discrete logarithms. The following few paragraphs explain
thisin more detail.

Sincethe multiplicativegroup Z;, of aprimenumber iscyclic, of order p—1, thepredicate
POW dlows usto identify the smallest generator of thisgroup. Thisisthe least g such that
g'#1 (mod p) for0 < i < p — 1. Thisimplies that the vaues ¢¢ are al distinct for
0<i<p-1,adtha ¢’ =a (mod p)hasauniquesolutionforeach 0 < a < p; this
number ¢ is known as the discrete logarithmof a. Thereisclearly an FO + POW formula
GEN(g, p) stating that ¢ isthe smallest generator of Z*, and an equivaent POW-uniform
AC? circuit computing g from p. Remember that p and ¢ are short numbers, with O(log n)
bits.

Similarly, thereisan FO + POW formulaGEN(g, p) AND POW(g, 7, a, p) stating that ¢
isthe discrete logarithm of a.

Now note that if the input and output are in CRR, the iterated multiplication problem
simply reduces to the iterated addition problem (by adding the discrete logs). That is, in
order to compute [] A; mod p, where A; is equivalent to g“ mod p, we simply compute
b= >"¢; and output g mod p —which iseasy to doin FOM + POW.

Steps 1 and 2 are essentially identical to theinitial part of the construction that was used
in[15].

Step 3 (converting from CRR to binary) requires additiona work. In order to convert
from binary to CRR, Beame, Cook and Hoover needed an additional predicate: the binary
representation of theproduct of thefirst n3 primes. Whilethe power predicateiseasily seen
to be computable in logspace, this prime-product predicate was not known to be so easy to
compute. The centra contribution of [19] was to devel op better methods for working with
CRR, so that the prime-product predicateis no longer needed. In this section, we present a
procedure for conversion from CRR to binary that can be computed in FOM + POW. Thus
the power predicate, the essential ingredient in converting a binary number into CRR, is
powerful enough (along with FOM operations) to get anumber out of CRR into binary.

The computation of the rank function is centrd to the argument of [19] that DivisiON
isin L-uniform TC. It is computablein logspace [23, 40], and in fact the agorithms can
be adapted to put it in FOM + POW. (For more detail on thissee [5].) Here we present
a self-contained argument, without computing rank directly, that conversion from CRR to
binary isin FOM + POW.

First we note again that we can carry out the other conversion, from binary to CRR.

LEmMA 4.1. If X,mq, ..., my areeach giveninbinaryand X < M, we can compute
(z1,-..,2k) (the CRR), formof X) in FOM + POW.

Proof. For each modulusm; and each j < nwemust calculate2’ mod m; (given by the
power predicate), add the results (using iterated addition in FOM), and take the result mod-

uom; (inFO). =

It will be useful to observe that dividing by a short primeis easy.
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LEMMA 4.2. Let p be a short prime. Then the binary representation of 1/p can be
computed to n°(M) bits of accuracy in FO 4+ POW.

Proof. Let p be odd and write 2° as ap + b with b = 2° mod p. The sth bit of the
binary expansion of therationa number 1/p isequal to thelow-order bit of a. Sinceap + b
is congruent to zero modulo 2, and since p is odd, it follows that the low-order bit of a is

alsothelow-order bitof b. Sincebis2® mod p, it can clearly be computed inFO+POW. B

LEMMA 4.3. [23,25] Let X and Y be numberslessthan M givenin CRR,, form. In
FOM + POW we can determinewhether X < Y.

Proof. Clearly, X <Y ifandonly if X/M < Y /M. Thusit issufficient to show that
we can compute X /M to polynomially many bits of accuracy.

Recall that X = (3%, @;h,C;)—ranky, (z) M. Thus X/M isequal to (324, zihi(1/m;))—
ranks (x). The numbers z; are given to us as the CRR); of X. The number C; mod m;
can be computed in FOM + POW (by adding the discrete |ogs of the m; for j # ), and h;
issimply theinverse of that number mod m;. By Lemma 4.2, each summand can be com-
puted in FOM + POW to n©() bitsof accuracy. Sinceiterated additionisin FOM, we can
thus compute polynomially-many bits of the binary representation of (Zle zihi(1/my)),
which is equd to X/M —+ rank,;(X). Since the rank is an integer, X/M is simply the

fractional part of thisvalue and we now have each bit of it available. ]

One useful consequence of being able to compare integersin CRR is that it enables us
easily to convert from one CRR basisto another. That is, if we are given X in CRR,, for
onelist of moduli my, ..., mg, M = Hle m; and we want to convert to CRRp for some
list of distinct short primes py,...,p;, P = Hf,:l p;, al that is necessary isto compute X
mod p for an arbitrary short prime p.

LeEMMA 4.4. Given X in CRR,; and a short prime p, we can compute X mod p in
FOM + POW.

Proof. If p isoneof themoduli in M, the answer is given explicitly in theinput. Thus
we assume that p does not divide M. In this case, consider the CRR base M’ = Mp. We
would liketo compute X in CRR,,, sincethiswould give us X mod p.

Trying each of thep = n®() possible valuesi for X mod p, we obtain the C RR -+ of
n©M) different numbers Xo, X1, ..., X,,_1, one of whichis X. Itiseasy to seethat X is
the only one of these numbers that islessthan M.

Observethat in FOM + POW we can computethe C RR - of M (by adding thediscrete
logsof them; modp). Thuswe can compute X mod p by finding the unique X; that isless

than M, carrying out al comparisonsin CRR,,, by Lemma4.3. ®

Our next step in the division algorithm is to show how to divide by products of distinct
short primes.

LEMMA 4.5. Letby,..., by bedistinct short primes, B be the product of the b;’s, and
let X be given in CRR,, form. Then we can compute | X/B], also in CRR,, form, in
FOM + POW.
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Proof. Assume without loss of generality that B divides M. (Otherwise, extend the
basis, usingLemma4.4.) Thenlet M = BP.
In FOM + POW we can compute the following quantities:

e X mod B in CRRp (by dropping the primesin P from our basis),
e X mod B in CRR,, (by extending the basis),
e X — (X mod B) = B|X/B] inCRRy;.

Since B and P are relatively prime, there isa B~! such tha BB~! = 1 (mod P).
We can find its representation in CRR p, by merely finding the inverse of each component
relative to the (short) modulusfor that component, using discrete logs.

Then

B™'B|X/B| =|X/B] (mod P),
and since X < M, |X/B| < P sowe can cdculate | X/B| in CRR), by calculating
B~1B| X/B] in CRRp and extending the basis. [

THEOREM 4.1. Let X begivenin CRRy, form(0 < X < M). Then we can compute
the binary representation of X in FOM + POW.

Weremark that a simple extension of thisresult and Lemma 4.1 showsthat it ispossible
in FOM + POW to convert numbers from any base to another, by first converting to CRR.

Proof. It is sufficient to show that we can compute the CRR,, of | X/27] for any s.
Thisis because, to get the s-th bit of anumber X that isgiven to usin CRR, we compute
u=|X/2%| andv = | X/2°T! |, and note that the desired bitisu — 2v. We get thisbit as
a CRR number, but it is easy to recognize the CRR forms of the numbers0 and 1.

First, wecreate numbers Ay, . . ., Ay, each aproduct of polynomially many distinct short
odd primes that do not divide M, with each A; > M, and A; relatively primeto A; for
i # j. Hereishow we create the A;. Recall that M = H’“ 1 m;; assume that my, is the
largest of the prime factorsof M. Notethat the product of any consecutive & larger primes
islarger than M. Thus each A; can be taken to be HJ 1 Dik+j (Where py 1, pr42, ... IS
the list of consecutive primes larger than m;,). The list of primes less than n°(1) can be
computed by an FOM circuit; the prime number theorem guarantees that there are enough
primeson thislist for our needs.

Our approach to computing | X/2¢ | isto note that dividing X by 2° is quite similar to
multiplying X by (TT;_, (1 + A;)/2)/(IT;—, Ai). Let P = M T];_, A;, and compute X
in CRRp. By Lemma 4.5 (or directly) we can compute the integer (1 4+ A4;)/2 in CRRp.
It iseasy to show that (T];_,(A; + 1))/ 1=, 4i < (14 1/M)*, and inturnthisis less
than1+ (s +1)/M,sinces < log M < M.

Note that in FOM + POW (using Lemma 4.5) we can compute the CRRp represen-
tation of @ = [ X TI;_, (1 + 4:)/2)/ [T;—; Ai). But XT[_, (1 + A:)/2)/ TTi- As
is equal to (X/2°) ([T, (4; + 1))/ TTi, Ar < (X/29)(1+ (s + 1)/M)). ThusQ <
{1X/2%], | X/2%] +1}. Wedeterminewhich of {Q), Q — 1} isthecorrect answer by check-
ingif Q2% > X (usingthe CRRp representation). M

COROLLARY 4.1. DIVISION, ITERATED MULTIPLICATION, and POWERING are all
in FOM + POW.
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5. TWO SPECIAL CASESIN FO
This section will provetwo partia stepstoward our main theorem, which will be used in
the proof. We will show that POW, ImurT, and Division are al in FO when the size of
theinputsis reduced exponentially.

LEMMA 5.1. POW(a,r, b, p), where the inputs have O(loglog n) bits, isin FO.

Proof. If a,r,b, and p dl have kloglogn bits, then we can compute o” mod p in FO
using repested squaring. Consider the sequence of exponentsrg, 1, . . ., Tk log log n., Where
ri = [r/2']. Thenry = r and 7k 10g10gn = 0. AlSO, r; = 2741 OF 7; = 2141 + 1,
depending on the corresponding bit of .

We will simultaneously guess the numbers a; = o™ mod p, and verify that they obey
the conditions ax 10g10g» = 1 @d a; = a?,; mod p or a; = a?,,a mod p, depending on
the bits of ». We do thisby checking al possible combinations of the a; in paralldl. Since
the k log log n numbers a; each have k log log n bits, there are 2+°(log g ) possible ways
of choosing these bits. This is asymptoticaly fewer than n possibilities, so we need to
do fewer than n computationsin paralel. The a; can be encoded into the log n bits of a
number between 1 and n in a simple way, so the verification that one of these guesses for
the sequence «; is correct, and that ag = b for this sequence, can be done by an FO
formula. =

TureoREM 5.1. ImuLT and D1vision, where the inputs have (logn)©() bits, arein
FO.

Proof. We have shown in section 4 that ImuLT and Division with inputs of size r
can be expressed by FOM + POW formulae over the universe 0, ..., — 1. If we set
r = (logn)¥, then we see that ImuLT and D1vision with inputs of size (logn)* can be
expressed by FOM + POW formulae over the universe 0, . . ., (logn)* — 1. We show that
these FOM + POW formul ae are equivalent to FO formulae over the universe0, ..., n — 1.

Notethat all uses of POW in these formulae are called with inputs of O (log(logn)*) =
O(loglogn) bits. Therefore, by Lemma 5.1, these uses of POW can be replaced by FO
formulae with the quantified variables in the range 0, ...,n — 1. The uses of majority
guantifiers in the FOM + POW formula, where the quantified variable is in the range
0,...,(logn)*¥ — 1, can be replaced by expressions using universal and existential quanti-
fiersover therangeO, . .., n — 1. Thisisbecause (as we noted earlier) counting the number
of onesin an input of polylogarithmically many bitsisin FO [28, 24].

Inthisway, an FOM + POW formulaover the universe0, . . ., (logn)* — 1 can betrans-

formed into an equivalent FO formulaover theuniverse0,...,n —1. H

This theorem will be needed for our proof that POW isin FO. It is aso aworthwhile
resultinit own right, and gives atight bound on the size of ImuLT and D1visiON problems
that arein FO. Sincefindingthe parity of abit string of length f(n) isin FO (with universe
of size n) if and only if f(n) = (logn)®™ [28, 32], and parity of f(n) bits reduces
to ImuLT of f(n) numbers [17], we see that IMuLT of f(n) numbersis not in FO if
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f(n) = (logn)“™M). We proved above that it isin FO if f(n) = (logn)°(), so the two
bounds match.

6. THE FINAL STEP: POW ISIN FO

In this section, we prove our main results. First we prove a genera result, showing
that powering in any group is efficiently reducible to the problem of multiplying a small
number of group elements. Thisenables usto prove that POW is FO-reducibleto instances
of Drvision and ImuLT with inputsof size (logn)°("). By Theorem 5.1, thisimpliesthat
POW isin FO. Since we showed Drvision and IMULT to bein FOM + POW (Corollary
4.1) thisimpliesthat they are also in FOM itself. At the end of the section, we consider a
variety of applications of these results.

6.1. Poweringin groups

To show that POW isin FO, we will prove a more genera lemma about finding powers
in groups (in the spirit of [14]). Thisisinterestingin its own right, and necessary for the
extension to finding powers modul o prime power moduli. We consider agroup to be given
in FOif group e ements are label ed by el ements of the universe and the product operationis
givenby an FO formula. Notethat theidentity e ement and inverse operation can be defined
in FO from the product operation. We can a so continueto use arithmetic operationson the
universe, considered as the numberso,...,n — 1.

LeEMmMA 6.1. Finding small powersin any group of order n is FO-Turing-reducibleto
finding the product of log n € ements.

Proof. Suppose we want to find a”, where a is an element of a group of order n. We
will compute aset of lementsay, . . ., ar and exponentsw, uq, . . ., ur (Withk = o(logn))
such that

CLT — aua}u . aZk
and u; < 2logn, u < 2(logn)?. Theimportant thing to note isthat we will compute each
a; by taking the product of a small number of group elements, and then each term in the
final product is also obtainable using a small number of multiplications.

Our overall strategy for identifyingthe a; and u; isto choosethe a; to be approximations
tod-throotsof unity for small primesd. Theserootsarewell distributed inthe multiplicative
subgroup generated by a; hence any power a” can be approximated by multiplying (small)
powers of the a;. The exponents u; are calculated by doing Chinese remaindering on the
space of exponents.

Step 1. Wefind a CRR basis D of primes, each of which is O(logn), such that D > n,
the order of thegroup. More precisely, we choosea set of k = o(logn) primesdy, . .., d,
such that d; < 2logn and d; isrelatively primeto n, for all <. We choose them such that
n < D =dyds---dy < n% Wecan dothiswith afirst order formulaby choosing the first
D > n suchthat D issquare-free, D and n are relatively prime, and all prime factors of D
are less than 2logn. We can decide, given D, whether a number is one of our d; or not.
To compute the number & from D, and to find our list d; as a relation between 7 and d;,
requires, for each prime py < 2 logn, counting the number of primes p dividing D which
areless than py. We can do thisusing the BITSUM predicate.

Step 2. We cdculate a; = al™/%! asfollows:
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We first compute o ! using the inverse operation. Next we calculate n; = n mod d; in
FO. We find a=™¢ by multiplyingn; copies of a~! together. Thisis one place where our
Turing reduction to multiplication of logn group elementsis used.

We can find al™/%) by observing that

(a|_7z/d7¢j)d7¢ _ a|_71,/d7¢jd7¢ _ CLn—(n mod d;) N

=q .
Observe that there is exactly one group element z such that 2% = a~": Let d; ' be the
multiplicativeinverse to d; mod n, i.e. that d;d; ' = mn + 1 for somem. Then

T = xmn—i—l —_ (xdi)di_l —_ (a—7z7¢)d;1 .
Thuswe can find a; = al”/%! asthevalue of z in the expression
(3z) x4 =a™™

For each element x of the group, we compute =% using multiplication of logn elements.

We could not compute ¢ !"/4:! directly as (a=™)% " sinced; " isnot necessarily O(log n).
Step 3. Now we find the exponents w,u, . . . ,u, suchthat a“ai" - - -ap* = a”.
Sincea; = al™/%] we have that

k
aql’l'l e azk e a(Ei:l Ui |_71/d7j) .

Since we want to obtain u, uq, . . ., ux such that

a" =a"alt - -apt = (i uiln/di]) ,

our goa can be expressed as.

k
uEr—Zud%J (mod n) . (1)
i=1 '

Thus, to make the final correction term o* computable by multiplying only a small
number of group elements, we must make u as small as possible. Thus we want to make
Zle u;|n/d;| modn asclosetor aspossible.

We approximate r as a linear combination of [n/d;] in the following way. Compute
f=|rD/n]. (Thiscanbeperformedin FOsincer hasO(logn) bits.) Letting D; = D/d;,
compute u; = fD;* modd;. (D; ' can befound in FO since we can guess possibilities
for D; ' in FO.) Then, we have

k
> wiD;=f (mod D).
=1

Let m besuch that 3% w;D; = f +mD.
Cdculating u from the u; using Equation 1 involves a sum of & short numbers, which,
since k < logn, isin FO. This, again, uses thefact that BITSUM isin FO.

Wenow show that u < (logn)?. Wecal culatethedifference betweenrand Y u;|n/d; |:
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The quantity y — |y| isawaysbetween O and 1, and sincen/D < 1, u; < 2logn, and
k < logn, we seethat u < 2(logn)? + 1. Thuswe can calculate a* using two rounds of
multiplyinglog n group el ements.

Thuswe have described group elements a; and numbers u, u; suchthat a*aj" - - - ap* =
a” and the computation of a“aj" - --ay* is FO-Turing-reducible to finding products of

log n group elements. ]

Because FO is closed under polynomia change in input size, and the product of
log(n*) = klogn group eements is FO-reducibleto the product of log n group elements,
we have

COROLLARY 6.1. Finding powersin any group of order n* is FO-Turing-reducible to
finding the product of log n e ements.

Representing a group of order n* means representing elements as k-tuples of universe
elements, and representing the product operationin FO.

6.2. Powering Modulo Small Numbersin FO

We now apply this to the integers modulo p, where p = O(n*) is a prime. The
multiplicativegroup Z,, containsthep — 1 integers1, ..., p — 1, and multiplicationin this
group is clearly first-order definable from multiplication and additionon 0, ...,n — 1. If
a in POW(a, r, b, p) is zero, then we only need to check that b is zero. Otherwise, we find
a” in the multiplicative group Z;. The product of log n group elements can be computed
with ImuLT and D1vISION, using inputs of sizelog? n, so we have the main lemma of this
section:

LEMMA 6.2. POW is FO-Turing-reducibleto instances of ImurT and Division with
inputs of size (logn)°M.
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COROLLARY 6.2. POW isinFO.

COROLLARY 6.3. DivisioN and IMULT are in FOM.

Coroallary 6.2 can be extended to exponentiation modulo any short number n, not just
modulo a prime. We can see that the equation

a"=b (mod n)

istrueif and only if it istrue modulo &l the prime power factors of n:

a”"=b (mod p*) Vp'|n .

We can show that for o relatively primeto p?, a isin the group L, and the above proof
can be applied. If p dividesa, thenif r > logn, a” = (mod p?). If r < logn, thenwe
can caculate ™ mod n directly using small instances of ImuLT and D1vision. Since the
prime power factors of a short number n can be found in FO, we have

COROLLARY 6.4. Thepredicatea” =b (mod n), withtheinputswrittenin unary, is
in FO.

Finally, notethat because any predicate expressiblein FO over theuniverse0, ..., n*F —1
isaso expressiblein FO over 0, ..., n — 1, we seethat the predicatea” =b (mod m) is
in FO if the inputs have O(logn) bits. We cannot conclude from our present results that
thispredicateisin FO when theinputshave (log 7)°(!) bits. This contrastswith theresults
we have for ImuLT and DivisioN with log®®) n-bit inputs,

6.3. Additional Applications
Efficient division circuits have found application in many settingsin complexity theory.
In this section we state a number of improved upper boundsthat follow from the existence
of DLOGTIME-uniform TCP circuits for division. We do not provide definitions for the
problems under consideration; the reader should consult the cited references.

COROLLARY 6.5. The following problemsarein DLOGTIME-uniformTC?:

eDivision of Polynomials (with remainder)

elterated Multiplication of Polynomials

ePolynomial Interpolation (also known as Cauchy interpol ation)
eHermite Interpolation of Polynomials

eComputingn®™) bitsoflog X, X '/*, and any other problemefficiently computed using
power series approximations.

Proof. The first three of these problems are shown in [26] to be FO-reducible to
ITERATED MULTIPLICATION. (Eberly claimed only NC* reducibility, but his reductions
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are easily seen to be computablein DLOGTIME-uniform AC®.) The corresponding reduc-
tionfor Hermiteinterpol ation can befoundin[27]. For background on approximating power

seriesin TCY, consult [47,42]. m

Workinginthearea of proof theory, Johannsen augmented the bounded arithmetic theory
CY (whichisclosdly related to FOM) with afunction symbol for integer division, to obtain
aclass hecaled C9[div]. The following are now immediate from [38].

COROLLARY 6.6. [38]

oCI[div] = C9.

eDLOGTIME-uniform TC' is equal to Constable'sclass K [21].

eThe A theoremsof C'§ do not have Craig-inter polantsof polynomial circuit size, unless
the Diffie-Hellman key exchange protocol isinsecure.

The complexity classes #AC° and GapAC? were introduced in [1] and have been studied
in [6, 4, 54]. The main motivation for introducing and studying these classes comes from
the fact that they give rise to several characterizations of TCC.

However, there was a problem with these characterizations — some of them were not
known to hold in the uniform setting. For instance, four different language classes arising
fromarithmetic ACY circuitswere shownin[1] to coincidewith TC® inthenon-uniformand
P-uniform settings, but were not known to coincide in the DLOGTIME-uniform setting.
Some more of these classes were shown to coincide in [10], but there still remained a
question as to whether these classes were really the same as DLOGTIME-uniform TC°.
The answer to this question is now known.

COROLLARY 6.7. All functions in DLOGTIME-uniform #AC° can be computed in
DLOGTIME-uniform TC°. Thusthe equalitiesC_AC® = PAC® = PAC?, . = C_ACY, . =
TCO all hold in the DLOGTIME-uniform setting.

Arithmetic NC! circuits have aso been the object of considerable attention [16]; func-
tions computed by such circuitsgiverisetotheclass#NC!. A typical functioninthisclass
is the problem of taking as input a sequence of & x k matrices of n-bit numbers (where
k = O(1)), and computing their product. It had not been known if #NC! functions can be
evaluated in logspace. However, it is easy to show that a logspace-bounded machine can
evaluate a#NC! function modulo a small prime, and thus obtain the CRR representation
of theresult. Now it is aso known that this CRR representation can be converted back to
binary.

COROLLARY 6.8. If fisin#NC', then f can be computed in deterministic |ogspace.

Thereare twowell-studied ways of using anondetermini sticlogspace machineto specify
afunction. One of these gives rise to the class FNL (which can be defined as the class of
functions FO-reducible to a problem in NL). The other gives rise to the complexity class
#L, consisting of functions that count the number of accepting computation paths of a
nondeterministiclogspace machine. As a consequence of the new upper bound on division
and iterated multiplication, we get the following improvement of aresultin [9]:
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CoROLLARY 6.9. If fandgarein#L, and f isbounded by a polynomial in the length
of itsinput, then (g) isin FNL.

It was observed in [2] that the techniques used here can be used to show that powering
in small finite fields can be performed in FO. Other consequences of the new division
algorithmsare discussed in[3].

7. SMALL SPACE-BOUNDED COMPLEXITY CLASSES

For many people working in computational complexity theory, space-bounded compu-
tation only “begins’ with logarithmic space. To be sure, there isalarge literature dealing
with space bounds between loglog n and logn. (For example, see [39] for a perspective
on the sequence of difficult papers leading up to a separation of the bounded-alternation
hierarchy for sublogarithmic-space-bounded machines.) Nonetheless, this work relies
on the automata-theoretic limitations of small-space-bounded machines. For instance, if
s(n) = o(logn) isafully-space-constructiblefunction, then thereis aconstant & such that,
for infinitely many n, s(n) < k. Thus every infinite unary language in dspace(o(logn))
has an infinite regular subset. This provides easy proofs of lower bounds for the space
complexity of many languages, such as the proof in [30] that the set {0™ : n is prime}
cannot be accepted in space o(log n).

However, it isstill an open question whether the set of (binary encodings of) primes can
be accepted in space o(logn). How can thisbe? Surely thebinary encoding of a set cannot
be easier than the unary encoding of the same set!

Let us see why thisis till an open question. Firgt, let us define some notation. Given
any set A, theunary encoding of A, un(A) istheset {0™ : n € A}, where we make use of
the usual correspondence between natural numbers and binary strings.

Usually alower bound on the complexity of the binary encoding of a set followsfrom a
bound on the complexity of the unary encoding, using a standard translation lemma, such
as:

LEMMA 7.1. (Traditional Trandation Lemma) If s(logn) = Q(loglogn) is fully
space-constructible, then the first statement bel ow impliesthe second:

e A € dspace(s(n)).
eun(A) € dspace(logn + s(logn)).

The converse also holds, if s(logn) = Q(logn).

Note in particular that this trandation lemma does not alow one to derive any lower
bound on the space complexity of A, assuming only alogarithmiclower bound onthe space
complexity of un(A). As an example to see that thisis unavoidable, consider the regular
set A = 10*. Arguing as in [30] it is easy to see that un(A) = {02" : k € N} isnotin
dspace(o(logn)) (since it has no infiniteregular subset).

Thereisanother reasonable way to define space complexity classes. Let DSPACE(s(n))
be the class of languages accepted by Turing machines that begin their computation with
a worktape consisting of s(n) cells (delimited by endmarkers), as opposed to the more
common complexity classes dspace(s(n)) where the worktape is initialy blank, and the
machine must use its own computational power to make sure that it respects the space
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bound of s(n). Viewed another way, DSPACE(s(n)) is simply dspace(s(n)) augmented
by a small amount of “advice”, alowing the machine to compute the space bound. (This
model was defined under the name “DEMONSPACE” by Hartmanis and Ranjan [31]. See
also Szepietowski’sbook [53] on sublogarithmic space. We have chosen to usethe notation
DSPACE and dspace merely to let the capitalization emphasize that DSPACE has more
computational power than dspace.)

DSPACE(s(n)) seems &t first glance to share many of the propertiesof dspace(s(n)). In
particular, itis ill relatively straightforwardto show that there are natural problems, such
as the set of palindromes, that are not in DSPACE(o(logn)). (Thisfollowsfromasimple
crossing-sequence and Kolmogorov-complexity argument [31].)

The main contribution of this section is an easy argument, showing that the efficient
division agorithm of [19] provides a new trandation lemma.

LeMMA 7.2. Newtrandationlemmalets(n) = Q(logn) befully space-constructible.
Then the following are eguival ent:

e A € dspace(s(n))
eun(A) € DSPACE(loglogn + s(log n)).

Proof. For the forward direction, it is sufficient to present a small-space agorithm for
un(A4).

Note that log log n space can hold the binary representation of a short prime p. Thuson
input 0", a DSPACE(log log ) machine can compute the pieces of the Chinese Remainder
Representation of n.

Thus, by [19] (see dso Corallary 6.3), in space log(|n|) = loglogn we can compute the
bits of the binary representation of n. Hence, on input 0™ a Turing machine can simulate
a s(|n|)-space-bounded computation (of a machine M having input n) in space s(log n),
since s(logn) space is sufficient to store the worktape contents of the machine M, and
it is aso enough space to store the position of the input head of A (which requires only
log |n| = loglogn bits), aswell as enough space to determine what symbol M is reading
(i.e., the bits of the binary representation of n).

For the converse, given a Turing machine accepting un(A) in spacelog log(x) + s(log )
on input 0%, we want to use log(|z|) + s(|x|) = O(s(|z|)) space to determine if x € A.
We provide merely a sketch here.

The most naive approach to carry out thissimulationwill not work, since we do not have
enough space to record the location of the input head in a ssimulated computation on 07,
and thus we cannot perform a step-by-step simulation. However, we do have enough space
to carry out asimulation until either

(8 theinput head returns to an endmarker without repesting a worktape configuration,
or
(b) some worktape configuration is repeated.

In case (8), astep-by-step simulation is sufficient. In case (b), we can determine the period
of theloop, and by means of some simple cal culationsthat can be done in small space, we
can determine the state the machine will be in when it encounters the other end marker.

Thusin either case, the simulation can proceed. ®
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COROLLARY 7.1. Let C be any complexity class. In order to show C is not contained
inL, itsufficesto present aset A € C such that un(A) ¢ DSPACE(loglogn).

We remark that the argument above can easily be adapted to show that the unary lan-
guages in NSPACE(loglogn + log(s(n))) are exactly the unary encodings of languages
in NSPACE(s(n)). It should be remarked that a different translational method was pre-
sented by Szepietowski [52] for relating the L = NL question to the dspace(loglogn) =
nspace(log log n) question. However, aswe have seen, thereisnodirect anal og to Corollary
7.1 for the dspace or nspace classes.

In fact, it is not very difficult to show that there are unary languages in P (and even
in dspace((loglogn)?)) that are not in DSPACE(loglogn). A straightforward delayed
diagonalization (as in [30]) can be used to construct such aset A C 0*. Note that this
does not prove P =£ L, since un(A) (avery sparse set) isin DSPACE(loglogn). Stating
this another way, the unary set A € dspace((loglogn)?) is equa to un(B) for some
B ¢ dspace((logn)?), where B isnot knownto bein P

Observe that al unary languages in NSPACE(log logn) are in FO. This follows since
if B isaunary language in NSPACE(loglogn), then B = un(A) for some A € NL.
Thus, by [43] (see dso [29]), A € RUD = J, £, TIME(n). It was observed in [8] that
B =un(A) € FOifandonly if A € RUD.

In some ways, DSPACE (loglog n) isamore natural class than dspace(loglogn), in the
sense that thisclassisrelated to a natural class of branching programs, whereas no similar
characterization is known for dspace(loglogn). The following result makes this more
precise.

A branching program is leveled if the vertex set can be partitioned into columns, where
all edges from vertices column ¢ go to verticesin column ¢ 4+ 1. We need not assume that
all vertices in a given column query the same input location. We assume that vertices are
labeled by apair (¢, j) where ¢ isthe number of the column, and j istheindex of the node
within column ¢. The width of a branching program is the maximum number of vertices
in any column. In this paper, we consider only deterministic branching programs though
parale results on NSPACE classes and hondeterministic branching programs (or “contact
schemes”) can be obtained by the same techniques.

THEOREM 7.1. A isaccepted by DLOGTIM E-uniformbranching programs of polyno-
mial size and width O(log® ") n) if and only if A is FO-reducible to a language accepted
by an oblivious DSPACE(log log n) machine.

Proof. First, consider alanguage accepted by an obliviousmachine M with aworktape
of size O(loglog n). By definition of “oblivious’, theinput location scanned by M at time
t can be computed in FO. Thusit isan easy matter to construct abranching program with a
node for each worktape configuration on each level, with edges simulating M's transition
function. Theresulting branching programwill be FO-uniform, and thiscan betransformed
into an equivalent DLOGTIM E-uniform branching program by standard techniques.

Conversdly, let A be accepted by a DLOGTIME-uniform leveled branching program of
width 10go(1) n. Itiseasy to show that thereis a FO reduction that, given an input string
x, produces a sequence of theform

#H#NH o S AH
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where ¢ isthe number of columns, and each f; isafunction f; : {1,...w} — {1,...w},
where w = 10go(1) n is the width of the branching program, with the property that
fi(j) = j' iff the branching program, when in vertex j in column ¢, moves to vertex ;' in
column i + 1 when querying the specified bit of x.

Note that an input « is accepted by M if and only if fi(fi—1(...(f1(1))...)) isan
accepting state of M. We encode each function f in the sequence as alist

(L ()2, f(2) - - (w, f(w)).

Notethat thereisan obliviousmachine with space bound O (loglog n) that takes such ase-

guence of functionsas input and computes the composition. B

Essentially equivalent observations appear elsewhere. For instance, it is shown in [22]
that leveled branching programs of width O(25(")) correspond to non-uniform finite au-
tomata with space bound s(n).

We do not know if the restriction to oblivious machines is necessary. If the behavior
of amachine's input head is alowed to depend on the input contents, then the machine
potentialy has access to the log n bits of memory contained in the input head position.
This might allow an otherwise space-bounded machine to solve L-compl ete problems. For
example, the “non-uniform automata’ of [11] are oblivious, correspond to constant-width
poly-si ze branching programs and have the power of NC'. But as shown by Barrington and
Immerman (reportedin[22]), if theobliviousnessrestrictionisremoved, the same machines
have the power of genera poly-size branching programs or L. But these machines make
important use of non-uniformity, in the form of aread-only “program tape’. It isnot clear
whether a DSPACE(log logn) machine, for example, would be able to exploit the input
position in the same way.

8. CONCLUSIONS

Our main theorem states that division and iterated multiplication are in fully uniform
TC’. This s significant on its own and also because it diminates the most important
example of aproblem known to bein acircuit complexity class, but not known to bein the
corresponding uniform complexity class.

We also proved that exponentiation modulo a number is in FO when the inputs have
O(logn) bits. Thisresult was quite unexpected, since the problem was previously not even
known to bein FOM. It remains unknown whether exponentiation modulo a number with
log®M n bitsisin FO, or even in FOM.

Finally, we have found atight bound on the size of division and iterated multiplication
problemsthat are in FO. We now know that these problems are in FO if and only if their
inputs have 10go(1) n bits. Instances of the problems with larger inputs are known not to
bein FO.
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