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It has been known since the mid-1980’s [15, 46, 47] that integer division can

be performed by poly-time uniform constant-depth circuits of Majority gates;

equivalently, the division problem lies in P-uniform TC0. Recently this was improved

to L-uniform TC0 [19], but it remained unknown whether division can be performed

by DLOGTIME-uniform TC0 circuits. The DLOGTIME uniformity condition is

regarded by many as being the most natural notion of uniformity to apply to small

circuit complexity classes such as TC0; DLOGTIME-uniform TC0 is also known

as FOM, because it corresponds to first-order logic with Majority quantifiers, in

the setting of finite model theory. Integer division has been the outstanding example

of a natural problem known to be in a P-uniform circuit complexity class, but not

known to be in its DLOGTIME-uniform version.

We show that indeed division is in DLOGTIME-uniform TC0.

First we show that division lies in the complexity class FOM + POW obtained

by augmenting FOM with a predicate for powering modulo small primes. Then

we show that the predicate POW itself lies in FOM. (In fact, it lies in FO, or

DLOGTIME-uniform AC0.)

The essential idea in the fast parallel computation of division and related problems

is that of Chinese remainder representation (CRR) – storing a number in the form of

its residues modulo many small primes. The fact that CRR operations can be carried

out in log space has interesting implications for small space classes. We define

two versions of s(n) space for s(n) = o(logn): dspace(s(n)) as the traditional

version where the worktape begins blank, and DSPACE(s(n)) where the space

bound is established by endmarkers before the computation starts. We present a new

translational lemma characterizing the unary languages in the DSPACE classes. It

is known [30] that {0n : n is prime} 6∈ dspace(log logn). We show that if this can

be improved to {0n : n is prime} 6∈ DSPACE(log logn), it follows that L 6= NP.

Key Words: computer arithmetic, division, iterated multiplication, threshold circuits, uniformity,

circuit complexity, complexity classes, finite model theory, Chinese remainder representation, com-

putation in abelian groups

1. INTRODUCTION

In 1984 Beame, Cook, and Hoover [15] presented new parallel algorithms for division,
powering, and iterated multiplication of integers. They showed that these problems can be
solved by families of circuits with fan-in two andO(logn) depth, placing them in the circuit
class NC1. As Reif [46, 47] observed soon after, their algorithms can also be implemented
by families of threshold circuits with constant depth and polynomial size, placing these
problems in the circuit class TC0. Equivalently [17], these problems are reducible in a
strong sense to ordinary integer multiplication — they can be solved by constant-depth
poly-size circuits of multiplication gates.

1Supported by NSF grant CCR-9877078.
2Supported in part by NSF grants CCR-9734918 and CCR-0104823.
3Supported in part by NSF grant CCR-9988260.
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The outstanding issue remaining after [15] was the degree of uniformity of the circuit
families for division and iterated multiplication. The circuits of Beame, Cook, and Hoover
are “P-uniform”, meaning that the nth circuit can be constructed by a poly-time Turing
machine from the number n given in unary. Thus they are apparently more difficult to
construct than to evaluate (for example, they were not known to be constructible by a
logspace Turing machine and hence did not serve to divide numbers in logspace). In a
recent breakthrough, Chiu, Davida and Litow [19] developed logspace uniform circuits
and thus showed these problems to be in L-uniform TC0. They thus also solved an even
older open problem by showing these problems to be solvable in L itself. (L is the class of
functions that can be computed by deterministic Turing machines using logarithmic space.)

If (as is widely believed) L is different from TC0, the work of [19] still yields circuits
that are more difficult to construct than to evaluate. There is a natural definition of “fully
uniform TC0”, which is robust across several different models of computation [13]. Two
formulations of this class are DLOGTIME-uniform circuits and problems definable by
first-order formulas with Majority quantifiers. Are division, powering, and iterated
multiplication computable within this class?

We resolve this question affirmatively. All three of these problems can be solved by fully
uniform families of threshold circuits of constant depth and polynomial size. Equivalently,
all three are reducible to integer multiplication by fully uniform circuits of constant depth
and polynomial size.

There are two parts to our proof. First (in work first reported in [6]), we show that
the non-uniformity necessary for the construction of [19] is quite limited: In Immerman’s
descriptive complexity setting [36], we need only first-order formulas with Majority

quantifiers and a single extra numerical predicate. This predicate expresses powering of
integers modulo a prime of O(logn) bits.

Next (in work first reported in [35]), we show that powering modulo any small prime
is in DLOGTIME-uniform AC0. (Equivalently, it can be expressed in first-order logic on
ordered structures, with addition and multiplication.)

We also consider the implications of the new division algorithm for the study of small-
space complexity classes. Most prior work on Turing machines with O(log logn) space,
for example, has assumed that the work tape starts out blank, with no marker to indicate
the end of the available space. We call this class dspace(log logn), in contrast to the class
DSPACE(log logn) where this initial marker is given.

The space-efficient CRR algorithms allow us to prove more efficient translational ar-
guments, showing that the unary languages in DSPACE(log logn) are simply the unary
encodings of the languages in log space. This highlights the difference between dspace and
DSPACE classes. For example, a classic result of Hartmanis and Berman [30] says that
the set of unary strings of prime length is not in dspace(o(logn)). The new translational
lemma shows that proving an analogous result for DSPACE(log logn) would separate the
classes L and NP.

In Section 2 we present the necessary definitions and background. In Section 3 we
review the history and context of the numeric problems we study. In Section 4 we outline
an algorithm based on that of Chiu, Davida, and Litow [19], showing that the necessary
CRR operations for divisioncan be carried out by circuits that are uniform, given a predicate
for powering modulo small numbers. In Sections 5 and 6 we show that this predicate is
in DLOGTIME-uniform AC0. Finally, our results on small space-bounded classes are
presented in Section 7.
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2. DEFINITIONS

We are concerned with the complexity of three basic problems in integer arithmetic (with
input and output in binary representation):

• Division: Given a numberX ofn bits and a number Y of at most n bits, find bX/Y c,
• Powering: Given a number X of n bits and a number k of O(logn) bits, find Xk ,

and

• Iterated Multiplication: Given n numbersX1, . . . , Xn, each of at most n bits,
find the productX1X2 . . .Xn.

A number of our formal definitions require that we consider these problems to be formally
given as predicates rather than as functions. Thus, for example, we will express division as
a predicate Division(X, Y, i) which is true if and only if bit i of bX/Y c is 1. Similarly,
the iterated multiplication problem will be written as the predicate Imult(A1, . . . , An, i)
which is true if bit i of

∏n
j=1Aj is 1; i ranges from 0 to n2 − 1, and so has 2 logn bits.

We denote numbers withn ornO(1) bits by uppercase letters, and numbers withO(logn)
bits by lowercase letters. We also refer to numbers with O(logn) bits as short, and those
with nO(1) bits as long. We will always note the size of numbers with logO(1) n bits
explicitly.

Note that all the circuit complexity classes and descriptive complexity classes we consider
are closed under a polynomial change in the input size. Therefore, though the size of the
input to division is 2n+logn and that of the input to iterated multiplication is n2 +2 logn,
we will consider the input size to be n for all problems in this paper.

2.1. Circuit Classes
We begin by formally defining the three circuit complexity classes that will concern us

here. These are given by combinatorial restrictions on the circuits of the family. We will
then define the uniformity restrictions we will use. Finally, we will give the equivalent
formulations of uniform circuit complexity classes in terms of descriptive complexity
classes.

NC1 is the class of languages A for which there exist circuit families {Cn : n ∈ N}
where each circuit Cn

• computes the characteristic function of A on inputs of length n,
• consists of And and Or gates of fan-in two, and Not gates,

• has depthO(logn) (and consequently has size nO(1)).

TC0 is the class of languages A for which there exist circuit families {Cn : n ∈ N}
where each circuit Cn

• computes the characteristic function of A on inputs of length n,
• consists of Majority gates (with no bound on the fan-in),and Not gates,

• has depthO(1),
• has size nO(1).

AC0 is the class of languages A for which there exist circuit families {Cn : n ∈ N}
where each circuit Cn

• computes the characteristic function of A on inputs of length n,
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• consists of And and Or gates (with no bound on the fan-in),and Not gates,

• has depthO(1),

• has size nO(1).

It will cause no confusion to use the terms NC1 and TC0 also to refer to classes of
functions computed by these classes of circuits, instead of merely focusing on languages.

2.2. Uniformity

The circuit classes NC1, TC0, and AC0 each come in different flavors corresponding to
different uniformity conditions. As defined above, these classes are nonuniform. That is,
there is no restriction on how difficult it is to compute the function n 7→ Cn (i.e., on how
hard it is to build the circuits). In order to make circuit classes comparable to standard
sequential complexity classes such as P and L, we need to place such restrictions.

In particular, our three circuit classes are only known to be contained within P if they
are P-uniform, meaning that the functionn 7→ Cn must be computable in polynomial time.
They are only known to become subclasses of L if we make them L-uniform by making this
function computable in L. But even L-uniformity is unsatisfactory in that the L-uniform
versions of these classes apparently contain languages that are solvable because of the
capabilities of the machine constructing the circuit rather than those of the circuit itself.

Barrington, Immerman and Straubing [13] proposed a robust definition of fully uniform
versions of each of these classes. Following Ruzzo [49], the condition requires that a
DLOGTIME Turing machine (with random access to its input) be able to answer particular
questions about each circuit, such as “is gate i of the n-input circuit a child of gate j”.
(More complex questions are needed in the case of NC1 for technical reasons [49, 13].)

A consensus has developed among researchers in circuit complexity that this DLOGTIME
uniformity is the “right” uniformity condition. This argument is made in some detail in
[12] – in particular:

• DLOGTIME uniformity is equivalent to P or L uniformity except in the case of small
circuit complexity classes; i.e. in those cases where the circuits are not capable of simulating
the machine constructing them,

• All the standard constructions relating circuits to sequential models can be carried out
with DLOGTIME uniform circuits, and most importantly,

• The new complexity classes defined in terms of DLOGTIME uniform circuits have
many equivalent characterizations in terms of other models such as alternating Turing
machines, first-order logic, and functional algebra [13, 20, 7].

Thus for the rest of this paper, any reference to “uniform” circuits means “DLOGTIME-
uniform” circuits, unless some other uniformity condition is explicitly mentioned.
Similarly, any mention of AC0, TC0, or NC1 will refer to the DLOGTIME-uniform ver-
sions of these classes, unless another uniformity condition is explicitly mentioned.

We will make use of some standard parallel algorithms in arithmetic, all of which can
be carried out by DLOGTIME-uniform circuits. For example, in AC0 one can add two
n-bit numbers and determine the number of ones in a binary string of length logO(1) n. (In
fact one can also determine the number of ones in a string of length n if this number is
logO(1) n.) In TC0 one can multiply two n-bit numbers, and add together n n-bit numbers.
For background on these algorithms, the reader can consult [17, 36, 13, 24, 44, 34].
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Only one strict containment relation is known among the complexity classes that are
mentioned above. It is known that AC0 ( TC0 ⊆ NC1 ⊆ L ⊆ P.

2.3. Descriptive Complexity Classes
Our goal in this paper is to show that Division and Iterated Multiplication are

in the class DLOGTIME-uniform TC0. Applying the definition directly, this would require
us to describe a family of constant-depth polynomial-size threshold circuits and then argue
that they meet the uniformity condition. Instead, we will make use of one of the alternate
characterizations of DLOGTIME-uniform circuit classes given above, that of descriptive
complexity.

A problem is in the complexity class FO (first-order) if the predicate corresponding to the
decision problem can be expressed by a first-order formula interpreted over a finite universe:
the set of natural numbers 0, . . . , n− 1. The inputs to a problem are encoded as relations
(i.e., X, Y , etc.) over the universe. Formulas are formed in the usual way using universal
and existential quantifiers and the relations X, Y , etc., as well as the numeric relations4 <

and BIT. The problems in FO coincide exactly with the problems in the complexity class
DLOGTIME-uniform AC0 [13].

The complexity class FOM (first-order with Majority) is defined analogously, except
that Majority quantifiers are allowed, in addition to the usual universal and existential
quantifiers. The majority quantifier (Mx) can appear anywhere that an (∃x) or a (∀x)
can appear. The formula (Mx)ϕ(x) is true iff ϕ(j) is true for more than half the values
0 ≤ j < n. The classes FOM and DLOGTIME-uniform TC0 are equal [13].

Some examples may help clarify the situation. Consider the Division problem. The n
bits of the input X to Division are represented by the values of a unary predicate X(·)
on the elements of the universe: X(0), X(1), . . . , X(n − 1). An n2 bit input can be
represented by a binary predicate, so the inputsA0, . . . , An−1 to Imult are represented as
a binary predicate A(·, ·). Short inputs to a problem, such as i, the index of the result bit
queried, may be represented by a constant in the range 0, . . . , n− 1.

The predicate BITSUM(x, y), which is defined to be true if the binary representation of
x contains y ones, is definable in FO [13, 36].

Since an FO or FOM formula over the universe 0, . . . , nk − 1 can be simulated by an
equivalent formula over the universe 0, . . . , n − 1, Division and Imult with inputs X,
Y , and Ai having nk bits, encoded by k-ary relations over 0, . . .n − 1, are in the same
descriptive complexity class as Division and Imult with n-bit inputs.

This methodology will afford us two key advantages. First, the notion of defining one
problem in terms of another, along with simple operations, is a very natural one. The
circuit components naturally constructed for arithmetic operations are very regular in form,
and the logical descriptions of them can capture this without worrying about uniformity
machines. Secondly, adding more atomic predicates to the logical formalism allows for
very fine distinctions in the amount of non-uniformity added to the circuits. The class
FOM + POW defined in section 4 was a key step toward our eventual result, and this class
would have been considerably harder to define without the first-order logic formalism.

4Following [36], we consider FO to include ordering and BIT. The BIT predicate allows us to look at the bits
of numbers. BIT(i, x) is true if bit i of the numberx written in binary is 1. This is equivalent in expressive power
to having addition and multiplication on numbers between 0 and n− 1.
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In order to present our results, we frequently make use of the notion of “FO-Turing
reducibility” between problems. This is formally defined using generalized quantifiers in
[36]. For our applications, this notion is equivalent to the notion of DLOGTIME-uniform
AC0-Turing reducibility, as described in [55] (using “oracle gates”). In all cases, when we
say that A is FO-Turing-reducible to B, it should be clear that if B is in DLOGTIME-
uniform AC0, then so is A.

For further background on descriptive complexity, please consult Immerman’s mono-
graph [36].

3. CIRCUITS FOR DIVISION: AN OVERVIEW

Beame, Cook, and Hoover [15] showed that Division, Powering, and Iterated

Multiplication are all easily reducible to one another. We find it convenient to work
mostly with Iterated Multiplication in this paper, but for completeness we review
here why uniform circuits for Iterated Multiplication provide uniform circuits for
Division.

Since there is a convergent power series for the reciprocal of a real number, we can use
iterated multiplication to approximate that power series. Since 1/(1− α) =

∑∞
i=0 α

i, for
any real number α with |α| < 1, then for 1/2 < α ≤ 1,

1/α =
n∑
i=0

(1− α)i + O(2−n) .

To divideX by Y , let j = dlogY e be roughly the number of bits in Y . Then use 2−jY ,
which is between 1/2 and 1, as α in the preceding formula. Multiplying by 2nj to create
an integer computation, we find

2njX/Y = X
n∑
i=0

(2j − Y )i(2j)n−i +O(X2nj−n) .

Since the error is O(2nj), we find bX/Y c to within an additive error of O(1) by dropping
the lowest nj bits of the result. The exact value of bX/Y c can be found by multiplying
our approximation by Y and comparing to X.

Since addition of polynomially many numbers can be performed in TC0, this entire
algorithm can be viewed as an efficient reduction from Division to Powering, which is
a special case of Iterated Multiplication.

For a more detailed exposition, consult [15], where it is also observed that this technique
allows the approximate computation of any function given by a convergent power series.

It was shown in [15] that Iterated Multiplication is in P-uniform NC1. It was
observed later by Reif [46, 47] that the same algorithm can be implemented in P-uniform
TC0. It was also noticed that the construction is logspace uniform, given access to the
product of the firstn3 primes [37, 15], and hence the full construction is TC1 uniform. There
has also been work reducing the size and depth of division circuits. Division circuits of
depthO(logn) and size n1+ε were presented in [50, 33, 48]. Polynomial-size Majority

circuits of depth three are known for Division and Powering; depth four suffices for
Iterated Multiplication[51]. On the related model of circuits with And, Or, and
Majority gates, it is known that two layers of Majority gates suffice to compute
Division and Powering; three layers suffice for Iterated Multiplication[41].
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It remained unknown whether Division could be computed in logarithmic space, al-
though an algorithm using nearly-logarithmic space was presented already by Reif in the
1980’s [45]. This situation was remedied when Chiu, Davida, and Litow [19] presented an
improved algorithm that can be implemented in L-uniform TC0.

Chiu’s Master’s thesis [18] also shows that division lies in fully uniform NC1.
In the next section, we present a simplified division algorithm that was inspired by [19].

Our presentation is in terms of descriptive complexity, but can equally well be thought
of explicitly in terms of circuits. Each step is a description of a parallel computation of
some predicate in terms of previously computed predicates and basic operations that can be
expressed by quantifiers or (equivalently) clearly be performed by polynomial size parallel
circuits with a simple structure. For example we can say “Compute the product p2 for each
prime p less than n2”. This is simple because deciding whether a short number is prime is
in FO.

Since our prime focus is on potential non-uniformity in the circuit, we must take note
when we need inputs that are not obviously computable. In particular, we will need to use
the values ai mod p for short values a, i, and p. In descriptive complexity terms, we will
refer to the fixed numeric predicate POW, where

POW(a, i, b, p) ⇐⇒ ai ≡ b (mod p)

and all of the inputs have O(logn) bits. This is represented in logic as a fixed relation of
arity 4k and size n4k, assuming the inputs have k logn bits.

We define the descriptive complexity classes FO + POW and FOM + POW to be FO
and FOM, respectively, augmented with this new atomic predicate POW. Just as FO and
FOM are DLOGTIME-uniform versions of AC0 and TC0, these new classes are “slightly
less uniform” versions of the same classes, in that answering questions about the circuits
might require access to powers of short numbers. (We will sometimes call such circuits
“POW-uniform”.) As we will eventually show, the predicate POW is itself computable in
FO (and thus also in FOM), so in fact FO + POW and FOM + POW collapse to FO and
FOM respectively.

4. DIVISION IS IN FOM + POW

The central idea of all the TC0 algorithms for Iterated Multiplication and related
problems is that of Chinese remainder representation (CRR). An n-bit number is uniquely
determined by its residues modulo polynomially many primes, each of O(logn) bits. The
Prime Number Theorem guarantees that there will be more than enough primes of that
length.

To fix notation, we now recapitulate the development of CRR. If we are given a sequence
of distinct primes m1, . . . , mk, each a short number, let M be their product. Any number
X < M can be represented uniquely as (x1, . . . , xk) with X ≡ xi (mod mi) for all i.
For each number i, letCi be the product of all themj ’s except mi, and let hi be the inverse
of Ci modulo mi. It is easy to verify that X is congruent modulo M to

∑k
i=1 xihiCi. In

factX is equal, as an integer, to (
∑k
i=1 xihiCi)−rM for some particular number r, called

the rank of X with respect to M (denoted rankM (X)). Note that r is a short number. It is
equal to the integer part of the sum of the k rational numbers xihiCi/M or xihi/mi, each
of which is between 0 and mi.

The algorithm for Iterated Multiplication is easy to describe:
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Step 1. Convert the input from binary to CRR.

Step 2. Compute the iterated product in CRR.

Step 3. Convert the answer from CRR to binary.

Step 1 is easy to accomplish in FOM + POW. A proof is provided in Lemma 4.1.
Step 2 is solved by adding discrete logarithms. The following few paragraphs explain

this in more detail.
Since the multiplicativegroupZ∗p of a prime number is cyclic, of order p−1, the predicate

POW allows us to identify the smallest generator of this group. This is the least g such that
gi 6≡ 1 (mod p) for 0 < i < p − 1. This implies that the values gi are all distinct for
0 ≤ i < p− 1, and that gi ≡ a (mod p) has a unique solution for each 0 < a < p; this
number i is known as the discrete logarithm of a. There is clearly an FO + POW formula
GEN(g, p) stating that g is the smallest generator of Z∗p, and an equivalent POW-uniform
AC0 circuit computing g from p. Remember that p and g are short numbers, withO(logn)
bits.

Similarly, there is an FO + POW formula GEN(g, p) And POW(g, i, a, p) stating that i
is the discrete logarithm of a.

Now note that if the input and output are in CRR, the iterated multiplication problem
simply reduces to the iterated addition problem (by adding the discrete logs). That is, in
order to compute

∏
Ai mod p, where Ai is equivalent to g`i mod p, we simply compute

b =
∑
`i and output gb mod p – which is easy to do in FOM + POW.

Steps 1 and 2 are essentially identical to the initial part of the construction that was used
in [15].

Step 3 (converting from CRR to binary) requires additional work. In order to convert
from binary to CRR, Beame, Cook and Hoover needed an additional predicate: the binary
representation of the product of the first n3 primes. While the power predicate is easily seen
to be computable in logspace, this prime-product predicate was not known to be so easy to
compute. The central contribution of [19] was to develop better methods for working with
CRR, so that the prime-product predicate is no longer needed. In this section, we present a
procedure for conversion from CRR to binary that can be computed in FOM + POW. Thus
the power predicate, the essential ingredient in converting a binary number into CRR, is
powerful enough (along with FOM operations) to get a number out of CRR into binary.

The computation of the rank function is central to the argument of [19] that Division

is in L-uniform TC0. It is computable in logspace [23, 40], and in fact the algorithms can
be adapted to put it in FOM + POW. (For more detail on this see [5].) Here we present
a self-contained argument, without computing rank directly, that conversion from CRR to
binary is in FOM + POW.

First we note again that we can carry out the other conversion, from binary to CRR.

Lemma 4.1. If X,m1, . . . , mk are each given in binary andX < M , we can compute
(x1, . . . , xk) (the CRRM form of X) in FOM + POW.

Proof. For each modulusmi and each j < nwe must calculate 2j mod mi (given by the
power predicate), add the results (using iterated addition in FOM), and take the result mod-

ulomi (in FO).

It will be useful to observe that dividing by a short prime is easy.
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Lemma 4.2. Let p be a short prime. Then the binary representation of 1/p can be
computed to nO(1) bits of accuracy in FO + POW.

Proof. Let p be odd and write 2s as ap + b with b = 2s mod p. The sth bit of the
binary expansion of the rational number 1/p is equal to the low-order bit of a. Since ap+ b

is congruent to zero modulo 2, and since p is odd, it follows that the low-order bit of a is

also the low-order bit of b. Since b is 2s mod p, it can clearly be computed in FO+POW.

Lemma 4.3. [23, 25] Let X and Y be numbers less than M given in CRRM form. In
FOM + POW we can determine whether X < Y .

Proof. Clearly, X < Y if and only if X/M < Y/M . Thus it is sufficient to show that
we can compute X/M to polynomially many bits of accuracy.

Recall thatX = (
∑k
i=1 xihiCi)−rankM (x)M . ThusX/M is equal to (

∑k
i=1 xihi(1/mi))−

rankM (x). The numbers xi are given to us as the CRRM of X. The number Ci mod mi

can be computed in FOM + POW (by adding the discrete logs of the mj for j 6= i), and hi
is simply the inverse of that number mod mi . By Lemma 4.2, each summand can be com-
puted in FOM + POW to nO(1) bits of accuracy. Since iterated addition is in FOM, we can
thus compute polynomially-many bits of the binary representation of (

∑k
i=1 xihi(1/mi)),

which is equal to X/M + rankM (X). Since the rank is an integer, X/M is simply the

fractional part of this value and we now have each bit of it available.

One useful consequence of being able to compare integers in CRR is that it enables us
easily to convert from one CRR basis to another. That is, if we are given X in CRRM for
one list of moduli m1, . . . , mk , M =

∏k
i=1mi and we want to convert to CRRP for some

list of distinct short primes p1, . . . , pl, P =
∏l
i=1 pi, all that is necessary is to compute X

mod p for an arbitrary short prime p.

Lemma 4.4. Given X in CRRM and a short prime p, we can compute X mod p in
FOM + POW.

Proof. If p is one of the moduli inM , the answer is given explicitly in the input. Thus
we assume that p does not divide M . In this case, consider the CRR base M ′ = Mp. We
would like to compute X in CRRM ′, since this would give us X mod p.

Trying each of the p = nO(1) possible values i for X mod p, we obtain the CRRM ′ of
nO(1) different numbers X0, X1, . . . , Xp−1, one of which is X. It is easy to see that X is
the only one of these numbers that is less than M .

Observe that in FOM + POW we can compute theCRRM ′ ofM (by adding the discrete
logs of themj mod p). Thus we can computeX mod p by finding the uniqueXi that is less

than M , carrying out all comparisons in CRRM ′, by Lemma 4.3.

Our next step in the division algorithm is to show how to divide by products of distinct
short primes.

Lemma 4.5. Let b1, . . . , b` be distinct short primes, B be the product of the bi’s, and
let X be given in CRRM form. Then we can compute bX/Bc, also in CRRM form, in
FOM + POW.
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Proof. Assume without loss of generality that B divides M . (Otherwise, extend the
basis, using Lemma 4.4.) Then let M = BP .

In FOM + POW we can compute the following quantities:

• X mod B in CRRB (by dropping the primes in P from our basis),
• X mod B in CRRM (by extending the basis),
• X − (X mod B) = BbX/Bc in CRRM .

Since B and P are relatively prime, there is a B−1 such that BB−1 ≡ 1 (mod P ).
We can find its representation in CRRP , by merely finding the inverse of each component
relative to the (short) modulus for that component, using discrete logs.

Then

B−1BbX/Bc ≡ bX/Bc (mod P ),

and since X < M , bX/Bc < P so we can calculate bX/Bc in CRRM by calculating

B−1BbX/Bc in CRRP and extending the basis.

Theorem 4.1. Let X be given in CRRM form (0 ≤ X < M ). Then we can compute
the binary representation of X in FOM + POW.

We remark that a simple extension of this result and Lemma 4.1 shows that it is possible
in FOM + POW to convert numbers from any base to another, by first converting to CRR.

Proof. It is sufficient to show that we can compute the CRRM of bX/2sc for any s.
This is because, to get the s-th bit of a number X that is given to us in CRR, we compute
u = bX/2sc and v = bX/2s+1c, and note that the desired bit is u− 2v. We get this bit as
a CRR number, but it is easy to recognize the CRR forms of the numbers 0 and 1.

First, we create numbersA1, . . . , As, each a product of polynomially many distinct short
odd primes that do not divide M , with each Ai > M , and Ai relatively prime to Aj for
i 6= j. Here is how we create the Ai. Recall that M =

∏k
j=1 mi; assume that mk is the

largest of the prime factors ofM . Note that the product of any consecutive k larger primes
is larger than M . Thus each Ai can be taken to be

∏k
j=1 pik+j (where pk+1, pk+2, . . . is

the list of consecutive primes larger than mk). The list of primes less than nO(1) can be
computed by an FOM circuit; the prime number theorem guarantees that there are enough
primes on this list for our needs.

Our approach to computing bX/2sc is to note that dividing X by 2s is quite similar to
multiplyingX by (

∏s
i=1(1 + Ai)/2)/(

∏s
i=1Ai). Let P = M

∏s
i=1Ai, and compute X

in CRRP . By Lemma 4.5 (or directly) we can compute the integer (1 + Ai)/2 in CRRP .
It is easy to show that (

∏s
i=1(Ai + 1))/

∏s
i=1 Ai < (1 + 1/M)s, and in turn this is less

than 1 + (s+ 1)/M , since s < logM �M .
Note that in FOM + POW (using Lemma 4.5) we can compute the CRRP represen-

tation of Q = bX
∏s
i=1((1 + Ai)/2)/

∏s
i=1 Aic. But X

∏s
i=1((1 + Ai)/2)/

∏s
i=1Ai

is equal to (X/2s)(
∏s
i=1(Ai + 1))/

∏s
i=1 Ai < (X/2s)(1 + ((s + 1)/M)). Thus Q ∈

{bX/2sc, bX/2sc+1}. We determine which of {Q,Q−1} is the correct answer by check-

ing if Q2s > X (using the CRRP representation).

Corollary 4.1. Division, Iterated Multiplication, and Powering are all
in FOM + POW.



12 HESSE, ALLENDER AND BARRINGTON

5. TWO SPECIAL CASES IN FO

This section will prove two partial steps toward our main theorem, which will be used in
the proof. We will show that POW, Imult, and Division are all in FO when the size of
the inputs is reduced exponentially.

Lemma 5.1. POW(a, r, b, p), where the inputs have O(log logn) bits, is in FO.

Proof. If a,r,b, and p all have k log logn bits, then we can compute ar mod p in FO
using repeated squaring. Consider the sequence of exponents r0, r1, . . . , rk log logn, where
ri = br/2ic. Then r0 = r and rk log logn = 0. Also, ri = 2ri+1 or ri = 2ri+1 + 1,
depending on the corresponding bit of r.

We will simultaneously guess the numbers ai = ari mod p, and verify that they obey
the conditions ak log log n = 1 and ai = a2

i+1 mod p or ai = a2
i+1a mod p, depending on

the bits of r. We do this by checking all possible combinations of the ai in parallel. Since
the k log logn numbers ai each have k log logn bits, there are 2k

2(log log n)2
possible ways

of choosing these bits. This is asymptotically fewer than n possibilities, so we need to
do fewer than n computations in parallel. The ai can be encoded into the logn bits of a
number between 1 and n in a simple way, so the verification that one of these guesses for
the sequence ai is correct, and that a0 = b for this sequence, can be done by an FO
formula.

Theorem 5.1. Imult and Division, where the inputs have (logn)O(1) bits, are in
FO.

Proof. We have shown in section 4 that Imult and Division with inputs of size r
can be expressed by FOM + POW formulae over the universe 0, . . . , r − 1. If we set
r = (logn)k, then we see that Imult and Division with inputs of size (logn)k can be
expressed by FOM + POW formulae over the universe 0, . . . , (logn)k − 1. We show that
these FOM + POW formulae are equivalent to FO formulae over the universe 0, . . . , n−1.

Note that all uses of POW in these formulae are called with inputs of O(log(logn)k) =
O(log logn) bits. Therefore, by Lemma 5.1, these uses of POW can be replaced by FO
formulae with the quantified variables in the range 0, . . . , n − 1. The uses of majority
quantifiers in the FOM + POW formula, where the quantified variable is in the range
0, . . . , (logn)k − 1, can be replaced by expressions using universal and existential quanti-
fiers over the range 0, . . . , n−1. This is because (as we noted earlier) counting the number
of ones in an input of polylogarithmically many bits is in FO [28, 24].

In this way, an FOM + POW formula over the universe 0, . . . , (logn)k − 1 can be trans-

formed into an equivalent FO formula over the universe 0, . . . , n− 1.

This theorem will be needed for our proof that POW is in FO. It is also a worthwhile
result in it own right, and gives a tight bound on the size of Imult and Division problems
that are in FO. Since finding the parity of a bit string of length f(n) is in FO (with universe
of size n) if and only if f(n) = (logn)O(1) [28, 32], and parity of f(n) bits reduces
to Imult of f(n) numbers [17], we see that Imult of f(n) numbers is not in FO if
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f(n) = (logn)ω(1). We proved above that it is in FO if f(n) = (logn)O(1), so the two
bounds match.

6. THE FINAL STEP: POW IS IN FO

In this section, we prove our main results. First we prove a general result, showing
that powering in any group is efficiently reducible to the problem of multiplying a small
number of group elements. This enables us to prove that POW is FO-reducible to instances
of Division and Imult with inputs of size (logn)O(1). By Theorem 5.1, this implies that
POW is in FO. Since we showed Division and Imult to be in FOM + POW (Corollary
4.1) this implies that they are also in FOM itself. At the end of the section, we consider a
variety of applications of these results.

6.1. Powering in groups
To show that POW is in FO, we will prove a more general lemma about finding powers

in groups (in the spirit of [14]). This is interesting in its own right, and necessary for the
extension to finding powers modulo prime power moduli. We consider a group to be given
in FO if group elements are labeled by elements of the universe and the product operation is
given by an FO formula. Note that the identity element and inverse operation can be defined
in FO from the product operation. We can also continue to use arithmetic operations on the
universe, considered as the numbers 0, . . . , n− 1.

Lemma 6.1. Finding small powers in any group of order n is FO-Turing-reducible to
finding the product of logn elements.

Proof. Suppose we want to find ar, where a is an element of a group of order n. We
will compute a set of elements a1, . . . , ak and exponents u, u1, . . . , uk (with k = o(logn))
such that

ar = auau1
1 · · ·a

uk
k

and ui < 2 logn, u < 2(logn)2. The important thing to note is that we will compute each
ai by taking the product of a small number of group elements, and then each term in the
final product is also obtainable using a small number of multiplications.

Our overall strategy for identifying the ai and ui is to choose the ai to be approximations
to d-th roots of unity for small primes d. These roots are well distributed in the multiplicative
subgroup generated by a; hence any power ar can be approximated by multiplying (small)
powers of the ai. The exponents ui are calculated by doing Chinese remaindering on the
space of exponents.

Step 1. We find a CRR basis D of primes, each of which is O(logn), such that D > n,
the order of the group. More precisely, we choose a set of k = o(logn) primes d1, . . . , dk,
such that di < 2 logn and di is relatively prime to n, for all i. We choose them such that
n < D = d1d2 · · ·dk < n2. We can do this with a first order formula by choosing the first
D > n such that D is square-free, D and n are relatively prime, and all prime factors ofD
are less than 2 logn. We can decide, given D, whether a number is one of our di or not.
To compute the number k from D, and to find our list di as a relation between i and di,
requires, for each prime p0 < 2 logn, counting the number of primes p dividingD which
are less than p0. We can do this using the BITSUM predicate.

Step 2. We calculate ai = abn/dic as follows:
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We first compute a−1 using the inverse operation. Next we calculate ni = n mod di in
FO. We find a−ni by multiplying ni copies of a−1 together. This is one place where our
Turing reduction to multiplication of logn group elements is used.

We can find abn/dic by observing that

(abn/dic)di = abn/dicdi = an−(n mod di) = an−ni = a−ni .

Observe that there is exactly one group element x such that xdi = a−ni : Let d−1
i be the

multiplicative inverse to di mod n, i.e. that did
−1
i = mn + 1 for some m. Then

x = xmn+1 = (xdi )d
−1
i = (a−ni)d

−1
i .

Thus we can find ai = abn/dic as the value of x in the expression

(∃x) xdi = a−ni

For each element x of the group, we compute xdi using multiplication of logn elements.
We could not compute abn/dic directly as (a−ni)d

−1
i since d−1

i is not necessarilyO(logn).
Step 3. Now we find the exponents u,u1, . . . ,uk such that auau1

1 · · ·a
uk
k = ar.

Since ai = abn/dic, we have that

au1
1 · · ·a

uk
k = a(Pk

i=1 uibn/dic) .

Since we want to obtain u, u1, . . . , uk such that

ar = auau1
1 · · ·a

uk
k = a(u+

Pk
i=1 uibn/dic) ,

our goal can be expressed as:

u ≡ r −
k∑
i=1

uib
n

di
c (mod n) . (1)

Thus, to make the final correction term au computable by multiplying only a small
number of group elements, we must make u as small as possible. Thus we want to make∑k
i=1 uibn/dic mod n as close to r as possible.
We approximate r as a linear combination of bn/dic in the following way. Compute

f = brD/nc. (This can be performed in FO since r hasO(logn) bits.) LettingDi = D/di,
compute ui = fD−1

i mod di. (D−1
i can be found in FO since we can guess possibilities

for D−1
i in FO.) Then, we have

k∑
i=1

uiDi ≡ f (mod D).

Let m be such that
∑k
i=1 uiDi = f +mD.

Calculating u from the ui using Equation 1 involves a sum of k short numbers, which,
since k < logn, is in FO. This, again, uses the fact that BITSUM is in FO.

We now show that u < (logn)2. We calculate the difference between r and
∑
uibn/dic:
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k∑
i=1

uib
n

di
c =

k∑
i=1

uin

di
−

k∑
i=1

(
uin

di
− uib

n

di
c)

=
n

D

k∑
i=1

uiDi −
k∑
i=1

ui(
n

di
− b n

di
c)

=
n

D
(f +mD) −

k∑
i=1

ui(
n

di
− b n

di
c)

=
n

D
brD
n
c+ nm−

k∑
i=1

ui(
n

di
− b n

di
c)

= r − n

D
(
rD

n
− brD

n
c) + nm−

k∑
i=1

ui(
n

di
− b n

di
c) , so

u = r −
k∑
i=1

uib
n

di
c mod n =

n

D
(
rD

n
− brD

n
c) +

k∑
i=1

ui(
n

di
− b n

di
c) .

The quantity y − byc is always between 0 and 1, and since n/D < 1, ui < 2 logn, and
k < logn, we see that u < 2(logn)2 + 1. Thus we can calculate au using two rounds of
multiplying logn group elements.

Thus we have described group elements ai and numbers u, ui such that auau1
1 · · ·a

uk
k =

ar and the computation of auau1
1 · · ·a

uk
k is FO-Turing-reducible to finding products of

logn group elements.

Because FO is closed under polynomial change in input size, and the product of
log(nk) = k logn group elements is FO-reducible to the product of logn group elements,
we have

Corollary 6.1. Finding powers in any group of order nk is FO-Turing-reducible to
finding the product of logn elements.

Representing a group of order nk means representing elements as k-tuples of universe
elements, and representing the product operation in FO.

6.2. Powering Modulo Small Numbers in FO

We now apply this to the integers modulo p, where p = O(nk) is a prime. The
multiplicative group Z∗p contains the p− 1 integers 1, . . . , p− 1, and multiplication in this
group is clearly first-order definable from multiplication and addition on 0, . . . , n − 1. If
a in POW(a, r, b, p) is zero, then we only need to check that b is zero. Otherwise, we find
ar in the multiplicative group Z∗p. The product of logn group elements can be computed
with Imult and Division, using inputs of size log2 n, so we have the main lemma of this
section:

Lemma 6.2. POW is FO-Turing-reducible to instances of Imult and Division with
inputs of size (logn)O(1).
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Corollary 6.2. POW is in FO.

Corollary 6.3. Division and Imult are in FOM.

Corollary 6.2 can be extended to exponentiation modulo any short number n, not just
modulo a prime. We can see that the equation

ar ≡ b (mod n)

is true if and only if it is true modulo all the prime power factors of n:

ar ≡ b (mod pi) ∀pi|n .

We can show that for a relatively prime to pi, a is in the group Z∗pi , and the above proof
can be applied. If p divides a, then if r > logn, ar ≡ 0 (mod pi). If r ≤ logn, then we
can calculate ar mod n directly using small instances of Imult and Division. Since the
prime power factors of a short number n can be found in FO, we have

Corollary 6.4. The predicate ar ≡ b (mod n), with the inputs written in unary, is
in FO.

Finally, note that because any predicate expressible in FO over the universe 0, . . . , nk−1
is also expressible in FO over 0, . . . , n− 1, we see that the predicate ar ≡ b (mod m) is
in FO if the inputs have O(logn) bits. We cannot conclude from our present results that
this predicate is in FO when the inputs have (logn)O(1) bits. This contrasts with the results
we have for Imult and Division with logO(1) n-bit inputs.

6.3. Additional Applications
Efficient division circuits have found application in many settings in complexity theory.

In this section we state a number of improved upper bounds that follow from the existence
of DLOGTIME-uniform TC0 circuits for division. We do not provide definitions for the
problems under consideration; the reader should consult the cited references.

Corollary 6.5. The following problems are in DLOGTIME-uniform TC0:

•Division of Polynomials (with remainder)

•Iterated Multiplication of Polynomials

•Polynomial Interpolation (also known as Cauchy interpolation)

•Hermite Interpolation of Polynomials

•ComputingnO(1) bits of logX,X1/k , and any other problem efficiently computed using
power series approximations.

Proof. The first three of these problems are shown in [26] to be FO-reducible to
Iterated Multiplication. (Eberly claimed only NC1 reducibility, but his reductions
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are easily seen to be computable in DLOGTIME-uniform AC0.) The corresponding reduc-
tion for Hermite interpolation can be found in [27]. For background on approximating power

series in TC0, consult [47, 42].

Working in the area of proof theory, Johannsen augmented the bounded arithmetic theory
C0

2 (which is closely related to FOM) with a function symbol for integer division, to obtain
a class he called C0

2 [div]. The following are now immediate from [38].

Corollary 6.6. [38]

•C0
2 [div] = C0

2 .

•DLOGTIME-uniform TC0 is equal to Constable’s class K [21].

•The ∆b
1 theorems ofC0

2 do not have Craig-interpolantsof polynomial circuit size, unless
the Diffie-Hellman key exchange protocol is insecure.

The complexity classes #AC0 and GapAC0 were introduced in [1] and have been studied
in [6, 4, 54]. The main motivation for introducing and studying these classes comes from
the fact that they give rise to several characterizations of TC0.

However, there was a problem with these characterizations – some of them were not
known to hold in the uniform setting. For instance, four different language classes arising
from arithmetic AC0 circuits were shown in [1] to coincide with TC0 in the non-uniformand
P-uniform settings, but were not known to coincide in the DLOGTIME-uniform setting.
Some more of these classes were shown to coincide in [10], but there still remained a
question as to whether these classes were really the same as DLOGTIME-uniform TC0.
The answer to this question is now known.

Corollary 6.7. All functions in DLOGTIME-uniform #AC0 can be computed in
DLOGTIME-uniform TC0. Thus the equalities C=AC0 = PAC0 = PAC0

circ = C=AC0
circ =

TC0 all hold in the DLOGTIME-uniform setting.

Arithmetic NC1 circuits have also been the object of considerable attention [16]; func-
tions computed by such circuits give rise to the class #NC1. A typical function in this class
is the problem of taking as input a sequence of k × k matrices of n-bit numbers (where
k = O(1)), and computing their product. It had not been known if #NC1 functions can be
evaluated in logspace. However, it is easy to show that a logspace-bounded machine can
evaluate a #NC1 function modulo a small prime, and thus obtain the CRR representation
of the result. Now it is also known that this CRR representation can be converted back to
binary.

Corollary 6.8. If f is in #NC1, then f can be computed in deterministic logspace.

There are two well-studied ways of using a nondeterministic logspace machine to specify
a function. One of these gives rise to the class FNL (which can be defined as the class of
functions FO-reducible to a problem in NL). The other gives rise to the complexity class
#L, consisting of functions that count the number of accepting computation paths of a
nondeterministic logspace machine. As a consequence of the new upper bound on division
and iterated multiplication, we get the following improvement of a result in [9]:
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Corollary 6.9. If f and g are in #L, and f is bounded by a polynomial in the length
of its input, then

(
f
g

)
is in FNL.

It was observed in [2] that the techniques used here can be used to show that powering
in small finite fields can be performed in FO. Other consequences of the new division
algorithms are discussed in [3].

7. SMALL SPACE-BOUNDED COMPLEXITY CLASSES

For many people working in computational complexity theory, space-bounded compu-
tation only “begins” with logarithmic space. To be sure, there is a large literature dealing
with space bounds between log logn and logn. (For example, see [39] for a perspective
on the sequence of difficult papers leading up to a separation of the bounded-alternation
hierarchy for sublogarithmic-space-bounded machines.) Nonetheless, this work relies
on the automata-theoretic limitations of small-space-bounded machines. For instance, if
s(n) = o(logn) is a fully-space-constructible function, then there is a constant k such that,
for infinitely many n, s(n) < k. Thus every infinite unary language in dspace(o(logn))
has an infinite regular subset. This provides easy proofs of lower bounds for the space
complexity of many languages, such as the proof in [30] that the set {0n : n is prime}
cannot be accepted in space o(logn).

However, it is still an open question whether the set of (binary encodings of) primes can
be accepted in space o(logn). How can this be? Surely the binary encoding of a set cannot
be easier than the unary encoding of the same set!

Let us see why this is still an open question. First, let us define some notation. Given
any set A, the unary encoding of A, un(A) is the set {0n : n ∈ A}, where we make use of
the usual correspondence between natural numbers and binary strings.

Usually a lower bound on the complexity of the binary encoding of a set follows from a
bound on the complexity of the unary encoding, using a standard translation lemma, such
as:

Lemma 7.1. (Traditional Translation Lemma) If s(logn) = Ω(log logn) is fully
space-constructible, then the first statement below implies the second:

•A ∈ dspace(s(n)).

•un(A) ∈ dspace(logn+ s(logn)).

The converse also holds, if s(logn) = Ω(logn).

Note in particular that this translation lemma does not allow one to derive any lower
bound on the space complexity ofA, assuming only a logarithmic lower bound on the space
complexity of un(A). As an example to see that this is unavoidable, consider the regular
set A = 10∗. Arguing as in [30] it is easy to see that un(A) = {02k : k ∈ N} is not in
dspace(o(logn)) (since it has no infinite regular subset).

There is another reasonable way to define space complexity classes. Let DSPACE(s(n))
be the class of languages accepted by Turing machines that begin their computation with
a worktape consisting of s(n) cells (delimited by endmarkers), as opposed to the more
common complexity classes dspace(s(n)) where the worktape is initially blank, and the
machine must use its own computational power to make sure that it respects the space
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bound of s(n). Viewed another way, DSPACE(s(n)) is simply dspace(s(n)) augmented
by a small amount of “advice”, allowing the machine to compute the space bound. (This
model was defined under the name “DEMONSPACE” by Hartmanis and Ranjan [31]. See
also Szepietowski’s book [53] on sublogarithmic space. We have chosen to use the notation
DSPACE and dspace merely to let the capitalization emphasize that DSPACE has more
computational power than dspace.)

DSPACE(s(n)) seems at first glance to share many of the properties of dspace(s(n)). In
particular, it is still relatively straightforward to show that there are natural problems, such
as the set of palindromes, that are not in DSPACE(o(logn)). (This follows from a simple
crossing-sequence and Kolmogorov-complexity argument [31].)

The main contribution of this section is an easy argument, showing that the efficient
division algorithm of [19] provides a new translation lemma.

Lemma 7.2. New translation lemma Let s(n) = Ω(logn) be fully space-constructible.
Then the following are equivalent:

•A ∈ dspace(s(n))
•un(A) ∈ DSPACE(log logn+ s(log n)).

Proof. For the forward direction, it is sufficient to present a small-space algorithm for
un(A).

Note that log logn space can hold the binary representation of a short prime p. Thus on
input 0n, a DSPACE(log logn) machine can compute the pieces of the Chinese Remainder
Representation of n.

Thus, by [19] (see also Corollary 6.3), in space log(|n|) = log lognwe can compute the
bits of the binary representation of n. Hence, on input 0n a Turing machine can simulate
a s(|n|)-space-bounded computation (of a machine M having input n) in space s(logn),
since s(logn) space is sufficient to store the worktape contents of the machine M , and
it is also enough space to store the position of the input head of M (which requires only
log |n| = log logn bits), as well as enough space to determine what symbol M is reading
(i.e., the bits of the binary representation of n).

For the converse, given a Turing machine accepting un(A) in space log log(x)+s(log x)
on input 0x, we want to use log(|x|) + s(|x|) = O(s(|x|)) space to determine if x ∈ A.
We provide merely a sketch here.

The most naı̈ve approach to carry out this simulation will not work, since we do not have
enough space to record the location of the input head in a simulated computation on 0x,
and thus we cannot perform a step-by-step simulation. However, we do have enough space
to carry out a simulation until either

(a) the input head returns to an endmarker without repeating a worktape configuration,
or

(b) some worktape configuration is repeated.

In case (a), a step-by-step simulation is sufficient. In case (b), we can determine the period
of the loop, and by means of some simple calculations that can be done in small space, we
can determine the state the machine will be in when it encounters the other end marker.

Thus in either case, the simulation can proceed.
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Corollary 7.1. Let C be any complexity class. In order to show C is not contained
in L, it suffices to present a set A ∈ C such that un(A) 6∈ DSPACE(log logn).

We remark that the argument above can easily be adapted to show that the unary lan-
guages in NSPACE(log logn + log(s(n))) are exactly the unary encodings of languages
in NSPACE(s(n)). It should be remarked that a different translational method was pre-
sented by Szepietowski [52] for relating the L = NL question to the dspace(log logn) =
nspace(log logn) question. However, as we have seen, there is no direct analog to Corollary
7.1 for the dspace or nspace classes.

In fact, it is not very difficult to show that there are unary languages in P (and even
in dspace((log logn)2)) that are not in DSPACE(log logn). A straightforward delayed
diagonalization (as in [30]) can be used to construct such a set A ⊆ 0∗. Note that this
does not prove P 6= L, since un(A) (a very sparse set) is in DSPACE(log logn). Stating
this another way, the unary set A ∈ dspace((log logn)2) is equal to un(B) for some
B ∈ dspace((logn)2), where B is not known to be in P.

Observe that all unary languages in NSPACE(log logn) are in FO. This follows since
if B is a unary language in NSPACE(log logn), then B = un(A) for some A ∈ NL.
Thus, by [43] (see also [29]), A ∈ RUD =

⋃
k ΣkTIME(n). It was observed in [8] that

B = un(A) ∈ FO if and only if A ∈ RUD.
In some ways, DSPACE(log logn) is a more natural class than dspace(log logn), in the

sense that this class is related to a natural class of branching programs, whereas no similar
characterization is known for dspace(log logn). The following result makes this more
precise.

A branching program is leveled if the vertex set can be partitioned into columns, where
all edges from vertices column i go to vertices in column i+ 1. We need not assume that
all vertices in a given column query the same input location. We assume that vertices are
labeled by a pair (c, j) where c is the number of the column, and j is the index of the node
within column c. The width of a branching program is the maximum number of vertices
in any column. In this paper, we consider only deterministic branching programs though
parallel results on NSPACE classes and nondeterministic branching programs (or “contact
schemes”) can be obtained by the same techniques.

Theorem 7.1. A is accepted by DLOGTIME-uniform branching programs of polyno-
mial size and widthO(logO(1) n) if and only if A is FO-reducible to a language accepted
by an oblivious DSPACE(log logn) machine.

Proof. First, consider a language accepted by an oblivious machineM with a worktape
of size O(log logn). By definition of “oblivious”, the input location scanned by M at time
t can be computed in FO. Thus it is an easy matter to construct a branching program with a
node for each worktape configuration on each level, with edges simulating M ’s transition
function. The resulting branching program will be FO-uniform, and this can be transformed
into an equivalent DLOGTIME-uniform branching program by standard techniques.

Conversely, let A be accepted by a DLOGTIME-uniform leveled branching program of
width logO(1) n. It is easy to show that there is a FO reduction that, given an input string
x, produces a sequence of the form

##f1#f2# . . .#ft##
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where t is the number of columns, and each fi is a function fi : {1, . . .w} → {1, . . .w},
where w = logO(1) n is the width of the branching program, with the property that
fi(j) = j′ iff the branching program, when in vertex j in column i, moves to vertex j′ in
column i+ 1 when querying the specified bit of x.

Note that an input x is accepted by M if and only if ft(ft−1(. . . (f1(1)) . . .)) is an
accepting state of M . We encode each function f in the sequence as a list

(1, f(1))(2, f(2)) . . . (w, f(w)).

Note that there is an oblivious machine with space boundO(log logn) that takes such a se-

quence of functions as input and computes the composition.

Essentially equivalent observations appear elsewhere. For instance, it is shown in [22]
that leveled branching programs of width O(2s(n)) correspond to non-uniform finite au-
tomata with space bound s(n).

We do not know if the restriction to oblivious machines is necessary. If the behavior
of a machine’s input head is allowed to depend on the input contents, then the machine
potentially has access to the logn bits of memory contained in the input head position.
This might allow an otherwise space-bounded machine to solve L-complete problems. For
example, the “non-uniform automata” of [11] are oblivious, correspond to constant-width
poly-size branching programs and have the power of NC1. But as shown by Barrington and
Immerman (reported in [22]), if the obliviousness restriction is removed, the same machines
have the power of general poly-size branching programs or L. But these machines make
important use of non-uniformity, in the form of a read-only “program tape”. It is not clear
whether a DSPACE(log logn) machine, for example, would be able to exploit the input
position in the same way.

8. CONCLUSIONS

Our main theorem states that division and iterated multiplication are in fully uniform
TC0. This is significant on its own and also because it eliminates the most important
example of a problem known to be in a circuit complexity class, but not known to be in the
corresponding uniform complexity class.

We also proved that exponentiation modulo a number is in FO when the inputs have
O(logn) bits. This result was quite unexpected, since the problem was previously not even
known to be in FOM. It remains unknown whether exponentiation modulo a number with
logO(1) n bits is in FO, or even in FOM.

Finally, we have found a tight bound on the size of division and iterated multiplication
problems that are in FO. We now know that these problems are in FO if and only if their
inputs have logO(1) n bits. Instances of the problems with larger inputs are known not to
be in FO.
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Circuits: Counting and Closure. In Proc. 26th International Colloquium on Automata, Languages, and
Programming (ICALP) Lecture Notes in Computer Science 1644, 1999, pp. 149–158.

5. E. Allender and D. A. Mix Barrington. Uniform circuits for division: Consequencesand problems. Electronic
Colloquium on Computational Complexity 7:065 (2000). Preliminary version of this paper.

6. E. Allender, D. A. Mix Barrington, and W. Hesse. Uniform circuits for division: Consequencesand problems.
Proceedings of the 16th Annual IEEE Conference on Computational Complexity (CCC-2001), 150-159. IEEE
Computer Society, 2001.

7. E. Allender and V. Gore. Rudimentary reductions revisited. Information Processing Letters, 40:89–95, 1991.

8. E. Allender and V. Gore. On strong separations from AC0 . In Advances in Computational Complexity
Theory, Jin-Yi Cai, ed., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume
13, AMS Press, 1993, pp. 21–37.

9. E. Allender, K. Reinhardt and S. Zhou. Isolation, Matching, and Counting: Uniform and Nonuniform Upper
Bounds. Journal of Computer and System Sciences, 59:164–181, 1999.
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