
70 COMMUNICATIONS OF THE ACM | MAY 2022 | VOL. 65 | NO. 5

contributed articles
DOI:10.1145/3488716

Released as open source in November 2009,
Go has become the foundation for critical
infrastructure at every major cloud provider.
Its creators look back on how Go got here
and why it has stuck around.

BY RUSS COX, ROBERT GRIESEMER, ROB PIKE,
IAN LANCE TAYLOR, AND KEN THOMPSON

G O IS A programming language created at Google in
late 2007 and released as open source in November
2009. Since then, it has operated as a public project,
with contributions from thousands of individuals
and dozens of companies. Go has become a popular
language for building cloud infrastructure: Docker, a
Linux container manager, and Kubernetes, a container
deployment system, are core cloud technologies
written in Go. Today, Go is the foundation for critical
infrastructure at every major cloud provider and is the
implementation language for most projects hosted at
the Cloud Native Computing Foundation.

Early users were attracted to Go for a
variety of reasons. A garbage-collected,
statically compiled language for build-
ing systems was unusual. Go’s native
support for concurrency and parallel-
ism helped take advantage of the mul-
ticore machines that were becoming
mainstream at the time. Self-contained
binaries and easy cross-compilation
simplified deployment. And Google’s
name was undoubtedly a draw.

But why did users stay? Why has Go
grown in popularity when so many oth-
er language projects have not? We be-
lieve that the language itself forms only
a small part of the answer. The full sto-
ry must involve the entire Go environ-
ment: the libraries, tools, conventions,
and overall approach to software en-
gineering, which all support program-
ming in the language. The most impor-
tant decisions made in the language’s
design, then, were the ones that made
Go better for large-scale software en-
gineering and helped us attract like-
minded developers.

In this article, we examine the de-
sign decisions we believe are most re-
sponsible for Go’s success, exploring
how they apply not just to the language
but also to the environment more
broadly. It is difficult to isolate the con-
tributions of any specific decision, so
this article should be read not as sci-
entific analysis, but as a presentation
of our best understanding, based on

The Go
Programming
Language and
Environment

 key insights
	˽ The Go language enjoys widespread

adoption despite having few technical
advances. Instead, Go succeeded by
focusing on the overall environment for
engineering software projects.

	˽ Go’s approach is to treat language
features as no more important than
environmental ones, such as careful
handling of dependencies, scalable
development and production, programs
that are secure by default, tool-aided
testing and development, amenability
to automated changes, and long-term
guaranteed compatibility.

	˽ Go 1.18, released in March 2022, added
its first major new language feature in
a decade: parametric polymorphism
tailored to fit well with the rest of Go.

http://dx.doi.org/10.1145/3488716

MAY 2022 | VOL. 65 | NO. 5 | COMMUNICATIONS OF THE ACM 71

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 G
O

 G
O

P
H

E
R

 B
Y

 R
E

N
E

E
 F

R
E

N
C

H
 (

C
C

 B
Y

 3
.0

) experience and user feedback over the
past decade of Go.

Origins
Go arose through experience build-
ing large-scale distributed systems at
Google, working in a large codebase
shared by thousands of software engi-
neers. We hoped that a language and
tools designed for such an environ-
ment could address challenges faced
by the company and industry at large.
Challenges arose due to the scale of
both the development efforts and the
production systems being deployed.

Development scale. On the de-
velopment side, Google in 2007 had

reading more than 8 GB of data when
handed a set of files totaling 4.2 MB,
an expansion factor of almost 2,000 on
an already large program. If the num-
ber of header files read to compile a
given source file grows linearly with the
source tree, the compilation cost for the
entire tree grows quadratically.

To compensate for the slowdown,
work began on a new, massively paral-
lel and cacheable build system, which
eventually became the open source
Bazel build system.23 But parallelism
and caching can do only so much to
repair an inefficient system. We be-
lieved the language itself needed to do
more to help.

about 4,000 active users working in a
single, shared, multi-language (C++,
Java, Python) codebase.3 The single
codebase made it easy to fix, for ex-
ample, a problem in the memory allo-
cator that was slowing down the main
web server. But when working on a
library, it was too easy to unwittingly
break a previously unknown client be-
cause of the difficulty of finding all the
dependencies of a package.

Also, in existing languages we used,
importing one library could cause the
compiler to recursively load all the li-
braries that one imported. In one C++
compilation in 2007, we observed the
compiler (after #include processing)

72 COMMUNICATIONS OF THE ACM | MAY 2022 | VOL. 65 | NO. 5

contributed articles

Production scale. On the produc-
tion side, Google was running very large
systems. For example, in March 2005,
one 1,500-CPU cluster of the Sawzall
log analysis system processed 2.8 PB of
data.26 In August 2006, Google’s 388 Big-
table serving clusters comprised 24,500
individual tablet servers, with one group
of 8,069 servers handling an aggregate
1.2 million requests per second.4

Yet Google, along with the rest of
the industry, was struggling to write
efficient programs to take full advan-
tage of multicore systems. Many of
our systems resorted to running mul-
tiple copies of the same binary on a
single machine, because existing mul-
tithreading support was both cumber-
some and low performance. Large,
fixed-size thread stacks, heavyweight
stack switches, and awkward syntax for
creating new threads and managing
interactions between them all made
it more difficult to use multicore sys-
tems. But it was clear that the number
of cores in a server was only going to
grow.

Here too, we believed that the lan-
guage itself could help, by providing
lightweight, easy-to-use primitives
for concurrency. We also saw an op-
portunity in those additional cores: a
garbage collector could run in parallel
with the main program on a dedicated
core, reducing its latency costs.

Go is our answer to the question
of what a language designed to meet
these challenges might look like. Part
of Go’s popularity is undoubtedly that
the entire tech industry now faces these
challenges daily. Cloud providers make
it possible for even the smallest compa-
nies to target very large production de-
ployments. And while most companies
do not have thousands of active em-
ployees writing code, almost all compa-
nies now depend on large amounts of
open source infrastructure worked on
by thousands of programmers.

The remainder of this article ex-
amines how specific design decisions
address these goals of scaling both
development and production. We
start with the core language itself and
work outward to the surrounding en-
vironment. We do not attempt to give
a complete introduction to the lan-
guage. For that, see the Go language
specification18 or books such as The Go
Programming Language.11

Packages
A Go program is made up of one or
more importable packages, each con-
taining one or more files. The web serv-
er in Figure 1 illustrates many impor-
tant details about the design of Go’s
package system:

The program starts a local web
server (line 9) that handles each re-

quest by calling the hello function,
which responds with the message “hel-
lo, world” (line 14).

A package imports another using an
explicit import statement (lines 3-6),
as in many languages but in contrast to
C++’s textual #include mechanism.
Unlike most languages, though, Go ar-
ranges that each import reads only a
single file. For example, the fmt pack-
age’s public API references types from
the io package: the first argument to
fmt.Fprintf is an interface value of
type io.Writer. In most languages, a
compiler processing the import of fmt
would also load all of io to make sense
of fmt’s definitions, which might in
turn require loading additional pack-
ages to make sense of all of io’s defini-
tions. A single import statement could
end up processing tens or hundreds of
packages.

Go avoids this work by arranging,
similar to Modula-2,13 for the com-
piled fmt package’s metadata to con-
tain everything necessary to know
about its own dependencies, such as
the definition of io.Writer. Thus,
the compilation of import "fmt"
reads only a single file that completely
describes fmt and its dependencies.
Moreover, this flattening is done once,
when fmt is compiled, avoiding many
loads each time it is imported. This
approach leads to less work for the
compiler and faster builds, helping
large-scale development. Also, pack-
age import cycles are disallowed: since
fmt imports io, io cannot import
fmt, nor anything else that imports
fmt, even indirectly. This too leads to
less work for the compiler, guarantee-
ing that a particular build can be split
up at the level of individual, separately
compiled packages. This also enables
incremental program analyses, which
we run to catch mistakes even before
running tests, as described below.

Importing fmt does not make the
name io.Writer available to the cli-
ent. If the main package wants to use
the type io.Writer, it must import
"io" for itself. Thus, once all referenc-
es to fmt-qualified names have been
removed from the source file—for ex-
ample, if the fmt.Fprintf call is de-
leted—the import "fmt" statement is
safe to remove from the source without
further analysis. This property makes
it possible to automate management

Figure 1. A Go web server.

1 package main
2

3 import (
4

5

6)
7

8 func main() {
9

10 http.HandlerFunc(hello))
11 }
12

13 func hello(w http.ResponseWriter,
14

req *http.Request) {

15 }

"fmt"
"net/http"

http.ListenAndServe("localhost:8080",

fmt.Fprintf(w, "hello, world\n")

Figure 2. The io package’s writer interface.

type Writer interface {
Write(data []byte) (count int, err error)

}

MAY 2022 | VOL. 65 | NO. 5 | COMMUNICATIONS OF THE ACM 73

contributed articles

of imports in the source code. In fact,
Go disallows unused imports to avoid
bloat created by linking unused code
into programs.

Import paths are quoted string lit-
erals, which enables flexibility in their
interpretation. A slash-separated
path identifies the imported pack-
age in the import, but then source
code refers to the package using the
short identifier declared in the pack-
age statement. For example, import
"net/http" declares the top-level
name http that provides access to its
contents. Beyond the standard library,
packages are identified by URL-like
paths beginning with domain names,
as in import "github.com/google/
uuid". We will have more to say about
such packages later.

As a final detail, note the uppercase
letter in the names fmt.Fprintf and
io.Writer. Go’s analog of C++ and
Java’s public, private, and protected
concepts and keywords is a naming
convention. Names with a leading up-
percase letter, such as Printf and
Writer, are “exported” (public). Oth-
ers are not. The case-based, compiler-
enforced export rule applies to pack-
age-level identifiers for constants,
functions, and types; method names;
and struct field names. We settled on
this rule to avoid the syntactic weight
of having to write a keyword like ex-
port next to every identifier involved
in the public API. Over time, we have
come to value the ability to see wheth-
er the identifier is available outside
the package or is purely internal at
each of its uses.

Types
Go provides the usual set of basic types:
Booleans, sized integers such as uint8
and int32, unsized int and uint (32-
or 64-bit, depending on machine size),
and sized floating-point and complex
numbers. It provides pointers, fixed-
size arrays, and structs in a manner
similar to C. It also provides a built-in
string type, a hash table called a map,
and dynamically sized arrays called
slices. Most Go programs rely on these
and no other special container types.

Go does not define classes but al-
lows methods to be bound to any type,
including structs, arrays, slices, maps,
and even basic types, such as integers.
It does not have a type hierarchy; we

felt that inheritance tended to make
programs harder to adapt as they grow.
Instead, Go encourages composition
of types.9

Go provides object-oriented poly-
morphism through its interface types.
Like a Java interface or a C++ abstract
virtual class, a Go interface contains a
list of method names and signatures.
For example, the io.Writer interface
mentioned earlier is defined in the io
package as shown in Figure 2.

Write accepts a slice of bytes and
returns an integer and possible er-
ror. Unlike in Java and C++, any Go
type that has methods with the same
names and signatures as an interface
is considered to implement that in-
terface, without explicitly declaring
that it does so. For example, the type
os.File has a Write method with
the same signature, and therefore
it implements io.Writer, without
an explicit signal like Java’s “imple-
ments” annotations.

Avoiding the explicit association
between interfaces and implemen-
tations allows Go programmers to
define small, nimble, often ad hoc
interfaces, rather than using them as
foundation blocks in a complex type
hierarchy. It encourages capturing
relationships and operations as they
arise during development, instead of
needing to plan and define them all
ahead of time. This especially helps
with large programs, in which the
eventual structure is much more dif-
ficult to see clearly when first begin-
ning development. Removing the
bookkeeping of declaring implemen-
tations encourages the use of pre-
cise, one- or two-method interfaces,
such as Writer, Reader, Stringer
(analogous to Java’s toString meth-
od), and so on, which pervade the
standard library.

Developers first learning about Go
often worry about a type accidentally
implementing an interface. Although
it is easy to build hypotheticals, in
practice it is unlikely that the same
name and signature would be chosen
for two incompatible operations, and
we have never seen it happen in real
Go programs.

Concurrency
When we started designing Go, multi-
core computers were becoming widely

Today, Go
is the foundation
for critical
infrastructure
at every major
cloud provider.

74 COMMUNICATIONS OF THE ACM | MAY 2022 | VOL. 65 | NO. 5

contributed articles

available, but threads remained a
heavyweight concept in all popular
languages and operating systems. The
difficulty of creating, using, and man-
aging threads made them unpopu-
lar,24 limiting access to the full power
of multicore CPUs. Resolving this ten-
sion was one of the prime motivations
for creating Go.

Go includes in the language itself
the concept of multiple concurrent
threads of control, called goroutines,
running in a single shared address
space and efficiently multiplexed onto
operating system threads. A call to a
blocking operation, such as reading
from a file or network, blocks only
the goroutine doing the operation;
other goroutines on the thread may be
moved to another thread so they can
continue to execute while the caller is
blocked. Goroutines start with only a
few kilobytes of stack, which is resized
as needed, without programmer in-
volvement. Developers use goroutines
as a plentiful, inexpensive primitive
for structuring programs. It is routine
for a server program to have thousands
or even millions of goroutines, as they
are much cheaper than threads.

For example, net.Listener is an
interface with an Accept method that
can listen for and return new incoming
network connections. Figure 3 shows a
function listen that accepts connec-
tions and starts a new goroutine to run
the serve function for each.

The infinite for loop in the lis-
ten function body (lines 22–28)
calls listener.Accept, which re-
turns two values: the connection and
a possible error. Assuming there is
no error, the go statement (line 27)
starts its argument—the function
call serve(conn)—in a new gorou-
tine, analogous to the & suffix to a
Unix shell command but inside the
same operating system process. The
function to be called as well as its ar-
guments are evaluated in the original
goroutine; those values are copied to
create the initial stack frame of the
new goroutine. Thus, the program
runs an independent instance of the
serve function for each incoming
network connection. An invocation of
serve handles the requests on a giv-
en connection one at a time (the call
to handle(req) on line 37 is not pre-
fixed by go); each call can block with-

out affecting the handling of other net-
work connections.

Under the hood, the Go implemen-
tation uses an efficient multiplexing
operation, such as Linux’s epoll, to
handle concurrent I/O operations,
but the user doesn’t see that. The Go
runtime library instead presents the
abstraction of blocking I/O, in which
each goroutine executes sequential-
ly—no callbacks needed—which is
easy to reason about.

Having created multiple goroutines,
a program must often coordinate be-
tween them. Go provides channels,
which allow communication and syn-
chronization between goroutines: a
channel is a unidirectional, limited-size
pipe carrying typed messages between
goroutines. Go also provides a multi-
way select primitive that can control
execution according to which commu-
nications can proceed. These ideas are
adapted from Hoare’s “Communicat-
ing Sequential Processes”19 and ear-
lier language experiments, specifically
Newsqueak,25 Alef,31 and Limbo.12

Figure 4 shows an alternate version
of listen, written to limit the number
of connections served at any moment.

This version of listen begins by
creating a channel named ch (line 42)
and then starting a pool of 10 server
goroutines (lines 44–46), which receive
connections from that single chan-
nel. As new connections are accepted,
listen sends each on ch using a send
statement, ch <- conn (line 53). A
server executes the receive expression
<-ch (line 59), completing the com-
munication. The channel was created
without space to buffer values being
sent (the default in Go), so after the 10
servers are busy with the first 10 con-
nections, the eleventh ch <- conn will
block until a server completes its call to
serve and executes a new receive. The
blocked communication operations
create implicit back pressure on the
listener, stopping it from accepting a
new connection until it has handed off
the previous one.

Note the lack of mutexes or other
traditional synchronization mecha-
nisms in these programs. Commu-
nication of data values on channels
doubles as synchronization; by con-
vention, sending data on a channel
passes ownership from sender to re-
ceiver. Go has libraries that provide

mutexes, condition variables, sema-
phores, and atomic values for low-
level uses, but a channel is often a bet-
ter choice. In our experience, people
reason more easily and more correctly
about message passing—using com-
munication to transfer ownership be-
tween goroutines—than they do about
mutexes and condition variables. An
early mantra was, “Do not commu-
nicate by sharing memory; instead,
share memory by communicating.”

Go’s garbage collector greatly sim-
plifies the design of concurrent APIs,
removing questions about which
goroutine is responsible for freeing
shared data. As in most languages (but
unlike Rust22), ownership of mutable
data is not tracked statically by the type
system. Instead, Go integrates with
TSAN28 to provide a dynamic race de-
tector for testing and limited produc-
tion use.

Security and Safety
Part of the reason for any new language
is to address deficiencies of previous
languages, which in Go’s case included
security issues affecting the safety of
networked software. Go removes unde-
fined behaviors that cause so many se-
curity problems in C and C++ programs.
Integer types are not automatically
coerced to one another. Null pointer
dereferences and out-of-bounds array
and slice indexes cause runtime excep-
tions. There are no dangling pointers
into stack frames: Any variable that
might possibly outlive its stack frame,
such as one captured in a closure, will
be moved to the heap instead. There are
no dangling pointers in the heap either;
the use of a garbage collector instead of
manual memory management elimi-
nates use-after-free bugs. Of course,
Go doesn’t fix everything, and there
are things that were missed that per-
haps should have been addressed. For
instance, integer overflow could have
been made a runtime error rather than
defined to wrap around.

Since Go is a language for writing
systems, which can require machine-
level operations that break type safety,
it is able to coerce pointers from one
type to another and to perform ad-
dress arithmetic, but only through the
use of the unsafe package and its re-
stricted special type unsafe.Point-
er. Care must be taken to keep type-

MAY 2022 | VOL. 65 | NO. 5 | COMMUNICATIONS OF THE ACM 75

contributed articles

system violations compatible with the
garbage collector—for example, the
garbage collector must always be able
to identify whether a particular word is
an integer or a pointer. In practice, the
unsafe package appears very rarely:
safe Go is reasonably efficient. Seeing
import "unsafe" therefore serves as
a signal to inspect a source file more
carefully for possible safety problems.

Go’s safety properties make it a
much better fit for cryptographic and
other security-critical code than a
language such as C or C++. A trivial
mistake, such as an out-of-bounds ar-
ray index, which can lead to sensitive
data disclosure or remote execution
in C and C++, causes a run-time excep-
tion in Go, stopping the program and
greatly limiting the potential impact.
Go ships with a full suite of cryptogra-
phy libraries, including SSL/TLS sup-
port; the standard library includes a
production-ready HTTPS client and
server. In fact, Go’s combination of
safety, performance, and high-quality
libraries has made it a popular proving
ground for modern security work. For
example, the freely available certifi-
cate authority Let’s Encrypt depends
on Go for its production service2 and
recently crossed a milestone of one
billion certificates issued.1

Completeness
Go provides the core pieces needed for
modern development at the language,
library, and tool levels. This requires a
careful balance, adding enough to be
useful “out of the box” while not add-
ing so much that our own development
processes bog down trying to support
too many features.

The language provides strings, hash
maps, and dynamically sized arrays as
built-in, easily used data types. As not-
ed earlier, these are sufficient for most
Go programs. The result is greater in-
teroperability between Go programs—
for example, there are no competing
implementations of strings or hash
maps to fragment the package ecosys-
tem. Go’s inclusion of goroutines and
channels is another form of complete-
ness. These provide core concurrent
functionality required in modern net-
worked programs. Providing them di-
rectly in the language, as opposed to a
library, makes it easier to tailor the syn-
tax, the semantics, and the implemen-

ready seen the io.Writer interface;
any output data stream implements
this interface by convention and inter-
operates with all other I/O adapters.
Figure 1’s ListenAndServe call, as
another example, expects a second ar-
gument of type http.Handler, whose
definition is shown in Figure 5. The ar-
gument http.HandlerFunc(hello)

tation to make them as lightweight and
easy to use as possible, while providing
a uniform approach for all users.

The standard library includes a pro-
duction-ready HTTPS client and server.
For programs that interact with other
machines on the Internet, this is criti-
cal. Filling that need directly avoids
additional fragmentation. We have al-

Figure 4. A Go network server, limited to 10 connections.

41 func listen(l net.Listener) {
42 ch := make(chan net.Conn)
43 const N = 10
44 for i := 0; i < N; i++ {
45 go server(ch)
46 }
47

48 for {
49 conn, err := l.Accept()
50 if err != nil {
51 log.Fatal(err)
52 }
53 ch <- conn
54 }
55 }
56

57 func server(ch chan net.Conn) {
58 for {
59 conn := <-ch
60 serve(conn)
61 }
62 }

Figure 5. The net/http package’s handler interface.

type Handler interface {
ServeHTTP(ResponseWriter, *Request)

}

Figure 3. A Go network server.

21 func listen(listener net.Listener) {
22 for {
23 conn, err := listener.Accept()
24 if err != nil {
25 log.Fatal(err)
26 }
27 go serve(conn)
28 }
29 }
30

31 func serve(conn net.Conn) {
32 for {
33 req, err := readRequest(conn)
34 if err != nil {
35 break
36 }
37 handle(req)
38 }
39 }

76 COMMUNICATIONS OF THE ACM | MAY 2022 | VOL. 65 | NO. 5

contributed articles

implements its ServeHTTP method
by calling hello. The library creates a
new goroutine to handle each connec-
tion, as in the listener examples in this
article’s “Concurrency” section, so han-
dlers can be written in a simple block-
ing style, and the server can scale auto-
matically to handle many simultaneous
connections.

The http package also provides a
basic dispatcher, itself another imple-
mentation of Handler, which allows
different handlers to be registered
for different URL paths. Establishing
Handler as the agreed-upon interface
has enabled many different types of
HTTP server middleware to be created
and to interoperate. We did not need
to add all these implementations to
the standard library, but we did need
to establish the interface that allows
them to work together.

The standard Go distribution also
provides integrated support for cross-
compilation, testing, profiling, code
coverage, fuzzing, and more. Testing is
another area where establishing agree-
ment about core concepts—such as
what a test case is and how it is run—
enabled the creation of custom testing
libraries and test execution environ-
ments that all interoperate well.

Consistency
One goal we had for Go was for it to be-
have the same across different imple-
mentations, execution contexts, and
even over time. This kind of “boring”
consistent behavior allows developers
to focus on their day-to-day work and al-
lows Go to recede into the background.

To start, the language specifies con-
sistent results as much as possible,
even for erroneous behaviors such as
null pointer dereferences and out-of-
bounds array indexes, as discussed
in this article’s “Security and Safety”
section. One exception where Go in-
stead requires inconsistent behavior
is iteration over hash maps. We found
that programmers often inadvertently
wrote code that depended on the hash
function, causing different results on
different architectures or Go imple-
mentations.

To make programs behave the same
everywhere, one option would have
been to mandate a specific hash func-
tion. Instead, Go defines that map it-
eration is non-deterministic. The im-

plementation uses a different random
seed for each map and starts each itera-
tion over a map at a random offset in
the hash table. The result is that maps
are consistently unpredictable across
implementations: Code cannot acci-
dentally depend on implementation de-
tails. In a similar vein, the race detector
adds extra randomness to scheduling
decisions, creating more opportunities
to observe races.

Another aspect of consistency is
performance over the lifetime of a pro-
gram. The decision to implement Go
using a traditional compiler, instead
of the JIT used by languages such as
Java and Node.js, provides consis-
tent performance at startup time and
for short-lived programs: There is no
“slow start” penalizing the first few
seconds of each process’s lifetime.
This quick startup has made Go an at-
tractive target both for command-line
tools, as noted in the previous section,
and for scaled network servers such as
Google App Engine.30

Consistent performance includes
the overhead of garbage collection.
The original Go prototype used a basic,
stop-the-world garbage collector that,
of course, introduced significant tail
latency in network servers. Today, Go
uses a fully concurrent garbage collec-
tor with pauses taking less than a mil-
lisecond,21 and usually just a few mi-
croseconds, independent of heap size.
The dominant delay is the time it takes
the operating system to deliver a signal
to a thread that must be interrupted.

A final kind of consistency is that of
the language and libraries over time.
For the first few years of Go’s existence,
we tinkered with and adjusted it in
each weekly release. Users often had
to change their programs when updat-
ing to a new Go version. Automated
tools reduced the burden, but manual
adjustments were also necessary. Start-
ing with Go version 1, released in 2012,
we publicly committed to making only
backward-compatible changes to the
language and standard library, so that
programs would continue running un-
changed when compiled with newer Go
versions.16 That commitment attracted
industry and has encouraged not just
long-lived engineering projects but
also other efforts, such as books, train-
ing courses, and a thriving ecosystem
of third-party packages.

When we started
designing
Go, multicore
computers
were becoming
widely available,
but threads
remained a
heavyweight
concept in all
popular languages
and operating
systems.

MAY 2022 | VOL. 65 | NO. 5 | COMMUNICATIONS OF THE ACM 77

contributed articles

Tool-Aided Development
Large-scale software development re-
quires significant automation and tool-
ing. From the start, Go was designed to
encourage such tooling by making it
easy to create.

A developer’s daily experience of Go
is through the go command. Unlike
language commands that only compile
or run code, the go command provides
subcommands for all the critical parts
of the development cycle: go build
and go install build and install ex-
ecutables, go test runs test cases, and
go get adds a new dependency. The go
command also enables the creation of
new tools by providing programmatic
access to build details, such as the
package graph.

One such tool is go vet, which
performs incremental, package-at-
a-time program analysis that can be
cached the same way that caching
compiled object files enables incre-
mental builds. The go vet tool aims
to identify common correctness prob-
lems with high precision, so that de-
velopers are conditioned to heed its
reports. Simple examples include
checking that formats and argu-
ments match in calls to fmt.Printf
and related functions, or diagnosing
unused writes to variables or struct
fields. These are not compiler errors,
because we do not want old code to
stop compiling simply because a new
possible mistake has been identified.
Nor are they compiler warnings; us-
ers learn to ignore those. Placing the
checks in a separate tool allows them
to be run at a time that is convenient
for the developer, without interfer-
ing with the ordinary build process. It
also makes the same checks available
to all developers, even when using an
alternate implementation of the Go
compiler, such as Gccgo15 or Gollvm.17
The incremental approach makes
these static checks efficient enough
that we run them automatically dur-
ing go test, before running the tests
themselves. Testing is a time when us-
ers are looking for bugs anyway, and
the reports often help explain actual
test failures. This incremental frame-
work is available for reuse by other
tools as well.

Tooling that analyzes programs
is helpful, but tooling that edits pro-
grams is even better, especially for

Libraries
After the language and tools, the next
critical aspect of how users experience
Go is the available libraries. As befits
a language for distributed computing,
in Go there is no central server where
Go packages must be published. In-
stead, each import path beginning
with a domain name is interpreted
as a URL (with an implicit leading
https://) giving the location of remote
source code. For example, import
"github.com/google/uuid" fetch-
es code hosted in the corresponding
GitHub repository.

The most common way to host
source code is to point to a public Git
or Mercurial server, but private serv-
ers are equally well supported, and au-
thors have the option of publishing a
static bundle of files rather than open-
ing access to a source-control system.
This flexible design and the ease of
publishing libraries has created a
thriving community of importable Go
packages. Relying on domain names
avoided a rush to claim valuable en-
tries in a flat package name space.

It is not enough just to download
packages; we must know which ver-
sions to use as well. Go groups pack-
ages into versioned units called
modules. A module can specify a
minimum required version for one of
its dependencies, but no other con-
straints. When building a particular
program, Go resolves competing re-
quired versions of a dependency mod-
ule by selecting the maximum: If one
part of the program requires version
1.2.0 of a dependency and another
requires version 1.3.0, Go selects ver-
sion 1.3.0—that is, Go requires the use
of semantic versioning,27 in which ver-
sion 1.3.0 must be a drop-in replace-
ment for 1.2.0. On the other hand, in
that situation, Go will not select ver-
sion 1.4.0 even when it becomes avail-
able, because no part of the program
has asked explicitly for that newer
version. This rule keeps builds repeat-
able and minimizes the potential risk
of breakage caused by accidentally
breaking changes introduced by new
versions.

In semantic versioning, a module
may introduce intentional breaking
changes only in a new major version,
such as 2.0.0. In Go, each major ver-
sion starting at 2.0.0 is identified by a

program maintenance, much of which
is tedious and ripe for automation.

The standard layout of a Go pro-
gram is defined algorithmically. A
tool, gofmt, parses a source file into
an abstract syntax tree and then for-
mats it back to source code using
consistently applied layout rules.14
In Go, it is considered a best practice
to format code before storing it in
source control. This approach enables
thousands of developers to work on
a shared codebase without the usual
debates about brace styles and other
details that accompany such large ef-
forts. Even more significantly, tools
can modify Go programs by operating
on the abstract syntax form and then
writing the result using gofmt’s print-
er. Only the parts actually changed
are touched, resulting in “diffs” that
match what a person would have ar-
rived at by hand. People and programs
can work together seamlessly in the
same codebase.

To enable this approach, Go’s gram-
mar is designed to enable a source file
to be parsed without type information
or any other external inputs, and there
is no preprocessor or other macro sys-
tem. The Go standard library provides
packages to allow tools to recreate the
input and output sides of gofmt, along
with a full type checker.

Before releasing Go version 1—the
first stable Go release—we wrote a
refactoring tool called gofix, which
used these packages to parse the
source, rewrite the tree, and write out
well-formatted code. We used gofix,
for example, when the syntax of delet-
ing an entry from a map was changed.
Each time users updated to a new re-
lease, they could run gofix on their
source files to automatically apply the
majority of the changes required to up-
date to the new version.5

These techniques also apply to the
construction of IDE plug-ins29 and
other tools—profilers, debuggers, ana-
lyzers, build automators, test frame-
works, and so on—that support Go
programmers. Go’s regular syntax, the
established algorithmic code-layout
convention, and the direct standard
library support make these kinds of
tools much easier to build than they
would otherwise be. As a result, the Go
world has a rich, ever-expanding, and
interoperating toolkit.

78 COMMUNICATIONS OF THE ACM | MAY 2022 | VOL. 65 | NO. 5

contributed articles

major version suffix, such as /v2, in its
import path: Distinct major versions
are kept as separate as any other mod-
ules with different names. This ap-
proach disallows diamond dependen-
cy problems, and in practice it adapts
to incompatibilities as well as systems
with more finely grained constraints.6

To improve the reliability and re-
producibility of builds downloading
packages from all over the Internet,
we run two services used by default
in the Go toolchain: a public mirror
of available Go packages and a cryp-
tographically signed transparent log
of their expected contents.8,10,20 Even
so, widespread use of software pack-
ages downloaded from the Internet
continues to have security and other
risks.7 We are working on making
the Go toolchain able to proactively
identify and report vulnerable pack-
ages to users.

Conclusion
Although the design of most lan-
guages concentrates on innovations
in syntax, semantics, or typing, Go is
focused on the software development
process itself. Go is efficient, easy to
learn, and freely available, but we be-
lieve that what made it successful was
the approach it took toward writing
programs, particularly with multiple
programmers working on a shared
codebase. The principal unusual
property of the language itself—con-
currency—addressed problems that
arose with the proliferation of mul-
ticore CPUs in the 2010s. But more
significant was the early work that
established fundamentals for packag-
ing, dependencies, build, test, deploy-
ment, and other workaday tasks of the
software development world, aspects
that are not usually foremost in lan-
guage design.

These ideas attracted like-minded
developers who valued the result: easy
concurrency, clear dependencies, scal-
able development and production,
secure programs, simple deployment,
automatic code formatting, tool-aided
development, and more. Those early
developers helped popularize Go and
seeded the initial Go package ecosys-
tem. They also drove the early growth
of the language by, for example, port-
ing the compiler and libraries to Win-
dows and other operating systems (the

original release supported only Linux
and MacOS X).

Not everyone was a fan—for in-
stance, some people objected to the way
the language omitted common features
such as inheritance and generic types.
But Go’s development-focused philoso-
phy was intriguing and effective enough
that the community thrived while main-
taining the core principles that drove
Go’s existence in the first place. Thanks
in large part to that community and
the technology it has built, Go is now a
significant component of the modern
cloud computing environment.

Since Go version 1 was released,
the language has been all but frozen.
The tooling, however, has expanded
dramatically, with better compilers,
more powerful build and testing tools,
and improved dependency manage-
ment, not to mention a huge collec-
tion of open source tools that support
Go. Still, change is coming: Go 1.18,
released in March 2022, includes the
first version of a true change to the
language, one that has been widely
requested—the first cut at parametric
polymorphism. We left any form of
generics out of the original language
because we were keenly aware that it
is very difficult to design well and, in
other languages, too often a source of
complexity rather than productivity.
We considered a handful of designs
during Go’s first decade but only re-
cently found one that we feel fits Go
well. Making such a large language
change while staying true to the prin-
ciples of consistency, completeness,
and community will be a severe test of
the approach.

Acknowledgments
The earliest work on Go benefited
greatly from advice and help from
many colleagues at Google. Since the
public release, Go has grown and im-
proved thanks to an expanded Go team
at Google along with a tremendous set
of open source contributors. Go is now
the work of a literal cast of thousands,
far too many to enumerate here. We are
grateful to everyone who has helped
make Go what it is today.	

References
1.	 Aas, J. and Gran, S. Let’s Encrypt has issued a billion

certificates. Let’s Encrypt (2020), https://letsencrypt.
org/2020/02/27/one-billion-certs.html.

2.	 Aas, J., et al. Let’s Encrypt: An automated certificate
authority to encrypt the entire web. In Proceedings

of the 2019 ACM SIGSAC Conf. on Computer and
Communications Security, 2473–2487.

3.	 Bloch, D. Life on the edge: Monitoring and running a very
large Perforce installation. Presented at 2007 Perforce
User Conf., https://go.dev/s/bloch2007.

4.	 Chang, F., et al. Bigtable: A distributed storage system
for structured data. In 7th USENIX Symposium on
Operating Systems Design and Implementation (2006),
205–218.

5.	 Cox, R. Introducing Gofix. The Go Blog (2011), https://
go.dev/blog/introducing-gofix.

6.	 Cox, R. The principles of versioning in Go. (2019),
https://research.swtch.com/vgo-principles.

7.	 Cox, R. Surviving software dependencies.
Communications of the ACM 62, 9 (Aug. 2019), 36–43.

8.	 Cox, R. Transparent logs for skeptical clients (2019),
https://research.swtch.com/tlog.

9.	 Cox, R. and Pike, R. Go programming. Presented
at Google I/O (2010), https://www.youtube. com/
watch?v=jgVhBThJdXc.

10.	 Crosby, S.A. and Wallach, D.S. Efficient data structures
for tamper-evident logging. In Proceedings of the 18th
USENIX Security Symp. (2009), 317–334.

11.	 Donovan, A.A.A. and Kernighan, B.W. The Go
Programming Language. Addison-Wesley, USA (2015).

12.	 Dorward, S., Pike, R., and Winterbottom, P.
Programming in Limbo. In IEEE COMPCON 97
Proceedings (1997), 245–250.

13.	 Geissmann, L.B. Separate compilation in Modula-2
and the structure of the Modula-2 compiler on the
personal computer Lilith. Ph.D. dissertation. Swiss
Federal Institute of Technology (1983), https://www.
cfbsoftware.com/modula2/ETH7286.pdf.

14.	 Gerrand, A. Go fmt your code. The Go Blog (2013),
https://go.dev/blog/gofmt.

15.	 Go Project. Setting up and using gccgo. (2009), https://
go.dev/doc/install/gccgo.

16.	 Go Project. Go 1 and the future of Go programs.
(2012), https://go.dev/doc/go1compat.

17.	 Go Project. Gollvm, an LLVM-based Go compiler.
(2017), https://go.googlesource.com/gollvm/.

18.	 Go Project. The Go programming language
specification. (2021), https://go.dev/ref/spec.

19.	 Hoare, C.A.R. Communicating Sequential Processes.
Prentice-Hall, Inc., USA (1985).

20.	 Hockman, K. Go Module Proxy: Life of a query.
Presented at GopherCon 2019, https://www.youtube.
com/watch?v=KqTySYYhPUE

21.	 Hudson, R.L. Getting to Go: The journey of Go’s
garbage collector. The Go Blog (2018), https://go.dev/
blog/ismmkeynote.

22.	 Klabnik, S. and Nichols, C. The Rust Programming
Language. No Starch Press, USA (2018).

23.	 Lam, A. Using remote cache service for Bazel.
Communications of the ACM 62, 1 (Dec. 2018), 38–42.

24.	 Ousterhout, J. Why threads are a bad idea (for most
purposes). (1995), https://web.stanford.edu/~ouster/
cgi-bin/papers/threads.pdf

25.	 Pike, R. The implementation of Newsqueak. Software:
Practice and Experience 20, 7 (1990), 649–659.

26.	 Pike, R., Dorward, S., Griesemer, R., and Quinlan, S.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming Journal 13 (2005), 277–298.

27.	 Preston-Werner, T. Semantic versioning 2.0.0. (2013),
https://semver. org/

28.	 Serebryany, K., Potapenko, A., Iskhodzhanov, T., and
Vyukov, D. Dynamic race detection with LLVM compiler:
Compile-time instrumentation for ThreadSanitizer. In
Runtime Verification, S. Khurshid, and K. Sen (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg (2012),
110–114.

29.	 Stambler, R. Go, pls stop breaking my editor.
Presented at GopherCon 2019, https://www.youtube.
com/watch?v=EFJfdWzBHwE.

30.	 Symonds, D., Tao, N., and Gerrand, A. Go and Google
App Engine. The Go Blog (2011), https://go.dev/blog/
appengine

31.	 Winterbottom, P. Alef language reference manual.
In Plan 9: Programmer’s Manual Volume 2. Harcourt
Brace and Co., New York (1996).

Russ Cox (rsc@go.dev), Robert Griesemer,
Rob Pike, Ian Lance Taylor, and Ken Thompson
created the Go programming language and environment
as software engineers at Google in Mountain View,
California, USA. Cox, Griesemer, and Taylor continue to
lead the Go project at Google, while Pike and Thompson
have since retired.

This work is licensed under a http://
creativecommons.org/licenses/by/4.0/

