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Released as open source in November 2009, 
Go has become the foundation for critical 
infrastructure at every major cloud provider. 
Its creators look back on how Go got here 
and why it has stuck around.

BY RUSS COX, ROBERT GRIESEMER, ROB PIKE, 
IAN LANCE TAYLOR, AND KEN THOMPSON

G O IS  A programming language created at Google in 
late 2007 and released as open source in November 
2009. Since then, it has operated as a public project, 
with contributions from thousands of individuals 
and dozens of companies. Go has become a popular 
language for building cloud infrastructure: Docker, a 
Linux container manager, and Kubernetes, a container 
deployment system, are core cloud technologies 
written in Go. Today, Go is the foundation for critical 
infrastructure at every major cloud provider and is the 
implementation language for most projects hosted at 
the Cloud Native Computing Foundation.

Early users were attracted to Go for a 
variety of reasons. A garbage-collected, 
statically compiled language for build-
ing systems was unusual. Go’s native 
support for concurrency and parallel-
ism helped take advantage of the mul-
ticore machines that were becoming 
mainstream at the time. Self-contained 
binaries and easy cross-compilation 
simplified deployment. And Google’s 
name was undoubtedly a draw.

But why did users stay? Why has Go 
grown in popularity when so many oth-
er language projects have not? We be-
lieve that the language itself forms only 
a small part of the answer. The full sto-
ry must involve the entire Go environ-
ment: the libraries, tools, conventions, 
and overall approach to software en-
gineering, which all support program-
ming in the language. The most impor-
tant decisions made in the language’s 
design, then, were the ones that made 
Go better for large-scale software en-
gineering and helped us attract like-
minded developers.

In this article, we examine the de-
sign decisions we believe are most re-
sponsible for Go’s success, exploring 
how they apply not just to the language 
but also to the environment more 
broadly. It is difficult to isolate the con-
tributions of any specific decision, so 
this article should be read not as sci-
entific analysis, but as a presentation 
of our best understanding, based on 
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 key insights
	˽ The Go language enjoys widespread 

adoption despite having few technical 
advances. Instead, Go succeeded by 
focusing on the overall environment for 
engineering software projects.

	˽ Go’s approach is to treat language 
features as no more important than 
environmental ones, such as careful 
handling of dependencies, scalable 
development and production, programs 
that are secure by default, tool-aided 
testing and development, amenability 
to automated changes, and long-term 
guaranteed compatibility.

	˽ Go 1.18, released in March 2022, added 
its first major new language feature in 
a decade: parametric polymorphism 
tailored to fit well with the rest of Go.

http://dx.doi.org/10.1145/3488716


MAY 2022  |   VOL.  65  |   NO.  5  |   COMMUNICATIONS OF THE ACM     71

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

, 
U

S
I

N
G

 G
O

 G
O

P
H

E
R

 B
Y

 R
E

N
E

E
 F

R
E

N
C

H
 (

C
C

 B
Y

 3
.0

) experience and user feedback over the 
past decade of Go.

Origins
Go arose through experience build-
ing large-scale distributed systems at 
Google, working in a large codebase 
shared by thousands of software engi-
neers. We hoped that a language and 
tools designed for such an environ-
ment could address challenges faced 
by the company and industry at large. 
Challenges arose due to the scale of 
both the development efforts and the 
production systems being deployed.

Development scale. On the de-
velopment side, Google in 2007 had 

reading more than 8 GB of data when 
handed a set of files totaling 4.2 MB, 
an expansion factor of almost 2,000 on 
an already large program. If the num-
ber of header files read to compile a 
given source file grows linearly with the 
source tree, the compilation cost for the 
entire tree grows quadratically.

To compensate for the slowdown, 
work began on a new, massively paral-
lel and cacheable build system, which 
eventually became the open source 
Bazel build system.23 But parallelism 
and caching can do only so much to 
repair an inefficient system. We be-
lieved the language itself needed to do 
more to help.

about 4,000 active users working in a 
single, shared, multi-language (C++, 
Java, Python) codebase.3 The single 
codebase made it easy to fix, for ex-
ample, a problem in the memory allo-
cator that was slowing down the main 
web server. But when working on a 
library, it was too easy to unwittingly 
break a previously unknown client be-
cause of the difficulty of finding all the 
dependencies of a package.

Also, in existing languages we used, 
importing one library could cause the 
compiler to recursively load all the li-
braries that one imported. In one C++ 
compilation in 2007, we observed the 
compiler (after #include processing)



72    COMMUNICATIONS OF THE ACM   |   MAY 2022  |   VOL.  65  |   NO.  5

contributed articles

Production scale. On the produc-
tion side, Google was running very large 
systems. For example, in March 2005, 
one 1,500-CPU cluster of the Sawzall 
log analysis system processed 2.8 PB of 
data.26 In August 2006, Google’s 388 Big-
table serving clusters comprised 24,500 
individual tablet servers, with one group 
of 8,069 servers handling an aggregate 
1.2 million requests per second.4

Yet Google, along with the rest of 
the industry, was struggling to write 
efficient programs to take full advan-
tage of multicore systems. Many of 
our systems resorted to running mul-
tiple copies of the same binary on a 
single machine, because existing mul-
tithreading support was both cumber-
some and low performance. Large, 
fixed-size thread stacks, heavyweight 
stack switches, and awkward syntax for 
creating new threads and managing 
interactions between them all made 
it more difficult to use multicore sys-
tems. But it was clear that the number 
of cores in a server was only going to 
grow.

Here too, we believed that the lan-
guage itself could help, by providing 
lightweight, easy-to-use primitives 
for concurrency. We also saw an op-
portunity in those additional cores: a 
garbage collector could run in parallel 
with the main program on a dedicated 
core, reducing its latency costs.

Go is our answer to the question 
of what a language designed to meet 
these challenges might look like. Part 
of Go’s popularity is undoubtedly that 
the entire tech industry now faces these 
challenges daily. Cloud providers make 
it possible for even the smallest compa-
nies to target very large production de-
ployments. And while most companies 
do not have thousands of active em-
ployees writing code, almost all compa-
nies now depend on large amounts of 
open source infrastructure worked on 
by thousands of programmers.

The remainder of this article ex-
amines how specific design decisions 
address these goals of scaling both 
development and production. We 
start with the core language itself and 
work outward to the surrounding en-
vironment. We do not attempt to give 
a complete introduction to the lan-
guage. For that, see the Go language 
specification18 or books such as The Go 
Programming Language.11

Packages
A Go program is made up of one or 
more importable packages, each con-
taining one or more files. The web serv-
er in Figure 1 illustrates many impor-
tant details about the design of Go’s 
package system:

The program starts a local web 
server (line 9) that handles each re-

quest by calling the hello function, 
which responds with the message “hel-
lo, world” (line 14).

A package imports another using an 
explicit import statement (lines 3-6), 
as in many languages but in contrast to 
C++’s textual #include mechanism. 
Unlike most languages, though, Go ar-
ranges that each import reads only a 
single file. For example, the fmt pack-
age’s public API references types from 
the io package: the first argument to 
fmt.Fprintf is an interface value of 
type io.Writer. In most languages, a 
compiler processing the import of fmt 
would also load all of io to make sense 
of fmt’s definitions, which might in 
turn require loading additional pack-
ages to make sense of all of io’s defini-
tions. A single import statement could 
end up processing tens or hundreds of 
packages.

Go avoids this work by arranging, 
similar to Modula-2,13 for the com-
piled fmt package’s metadata to con-
tain everything necessary to know 
about its own dependencies, such as 
the definition of io.Writer. Thus, 
the compilation of import "fmt" 
reads only a single file that completely 
describes fmt and its dependencies. 
Moreover, this flattening is done once, 
when fmt is compiled, avoiding many 
loads each time it is imported. This 
approach leads to less work for the 
compiler and faster builds, helping 
large-scale development. Also, pack-
age import cycles are disallowed: since 
fmt imports io, io cannot import 
fmt, nor anything else that imports 
fmt, even indirectly. This too leads to 
less work for the compiler, guarantee-
ing that a particular build can be split 
up at the level of individual, separately 
compiled packages. This also enables 
incremental program analyses, which 
we run to catch mistakes even before 
running tests, as described below.

Importing fmt does not make the 
name io.Writer available to the cli-
ent. If the main package wants to use 
the type io.Writer, it must import 
"io" for itself. Thus, once all referenc-
es to fmt-qualified names have been 
removed from the source file—for ex-
ample, if the fmt.Fprintf call is de-
leted—the import "fmt" statement is 
safe to remove from the source without 
further analysis. This property makes 
it possible to automate management 

Figure 1. A Go web server.

1 package main
2

3 import (
4

5

6 )
7

8 func main() {
9

10 http.HandlerFunc(hello))
11 }
12

13 func hello(w http.ResponseWriter,
14

req *http.Request) {

15 }

"fmt"
"net/http"

http.ListenAndServe("localhost:8080",

fmt.Fprintf(w, "hello, world\n")

Figure 2. The io package’s writer interface.

type Writer interface {
Write(data []byte) (count int, err error)

}
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of imports in the source code. In fact, 
Go disallows unused imports to avoid 
bloat created by linking unused code 
into programs.

Import paths are quoted string lit-
erals, which enables flexibility in their 
interpretation. A slash-separated 
path identifies the imported pack-
age in the import, but then source 
code refers to the package using the 
short identifier declared in the pack-
age statement. For example, import 
"net/http" declares the top-level 
name http that provides access to its 
contents. Beyond the standard library, 
packages are identified by URL-like 
paths beginning with domain names, 
as in import "github.com/google/
uuid". We will have more to say about 
such packages later.

As a final detail, note the uppercase 
letter in the names fmt.Fprintf and 
io.Writer. Go’s analog of C++ and 
Java’s public, private, and protected 
concepts and keywords is a naming 
convention. Names with a leading up-
percase letter, such as Printf and 
Writer, are “exported” (public). Oth-
ers are not. The case-based, compiler-
enforced export rule applies to pack-
age-level identifiers for constants, 
functions, and types; method names; 
and struct field names. We settled on 
this rule to avoid the syntactic weight 
of having to write a keyword like ex-
port next to every identifier involved 
in the public API. Over time, we have 
come to value the ability to see wheth-
er the identifier is available outside 
the package or is purely internal at 
each of its uses.

Types
Go provides the usual set of basic types: 
Booleans, sized integers such as uint8 
and int32, unsized int and uint (32- 
or 64-bit, depending on machine size), 
and sized floating-point and complex 
numbers. It provides pointers, fixed-
size arrays, and structs in a manner 
similar to C. It also provides a built-in 
string type, a hash table called a map, 
and dynamically sized arrays called 
slices. Most Go programs rely on these 
and no other special container types.

Go does not define classes but al-
lows methods to be bound to any type, 
including structs, arrays, slices, maps, 
and even basic types, such as integers. 
It does not have a type hierarchy; we 

felt that inheritance tended to make 
programs harder to adapt as they grow. 
Instead, Go encourages composition 
of types.9

Go provides object-oriented poly-
morphism through its interface types. 
Like a Java interface or a C++ abstract 
virtual class, a Go interface contains a 
list of method names and signatures. 
For example, the io.Writer interface 
mentioned earlier is defined in the io 
package as shown in Figure 2.

Write accepts a slice of bytes and 
returns an integer and possible er-
ror. Unlike in Java and C++, any Go 
type that has methods with the same 
names and signatures as an interface 
is considered to implement that in-
terface, without explicitly declaring 
that it does so. For example, the type 
os.File has a Write method with 
the same signature, and therefore 
it implements io.Writer, without 
an explicit signal like Java’s “imple-
ments” annotations.

Avoiding the explicit association 
between interfaces and implemen-
tations allows Go programmers to 
define small, nimble, often ad hoc 
interfaces, rather than using them as 
foundation blocks in a complex type 
hierarchy. It encourages capturing 
relationships and operations as they 
arise during development, instead of 
needing to plan and define them all 
ahead of time. This especially helps 
with large programs, in which the 
eventual structure is much more dif-
ficult to see clearly when first begin-
ning development. Removing the 
bookkeeping of declaring implemen-
tations encourages the use of pre-
cise, one- or two-method interfaces, 
such as Writer, Reader, Stringer 
(analogous to Java’s toString meth-
od), and so on, which pervade the 
standard library.

Developers first learning about Go 
often worry about a type accidentally 
implementing an interface. Although 
it is easy to build hypotheticals, in 
practice it is unlikely that the same 
name and signature would be chosen 
for two incompatible operations, and 
we have never seen it happen in real 
Go programs.

Concurrency
When we started designing Go, multi-
core computers were becoming widely 

Today, Go 
is the foundation 
for critical 
infrastructure 
at every major 
cloud provider.
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available, but threads remained a 
heavyweight concept in all popular 
languages and operating systems. The 
difficulty of creating, using, and man-
aging threads made them unpopu-
lar,24 limiting access to the full power 
of multicore CPUs. Resolving this ten-
sion was one of the prime motivations 
for creating Go.

Go includes in the language itself 
the concept of multiple concurrent 
threads of control, called goroutines, 
running in a single shared address 
space and efficiently multiplexed onto 
operating system threads. A call to a 
blocking operation, such as reading 
from a file or network, blocks only 
the goroutine doing the operation; 
other goroutines on the thread may be 
moved to another thread so they can 
continue to execute while the caller is 
blocked. Goroutines start with only a 
few kilobytes of stack, which is resized 
as needed, without programmer in-
volvement. Developers use goroutines 
as a plentiful, inexpensive primitive 
for structuring programs. It is routine 
for a server program to have thousands 
or even millions of goroutines, as they 
are much cheaper than threads.

For example, net.Listener is an 
interface with an Accept method that 
can listen for and return new incoming 
network connections. Figure 3 shows a 
function listen that accepts connec-
tions and starts a new goroutine to run 
the serve function for each.

The infinite for loop in the lis-
ten function body (lines 22–28) 
calls listener.Accept, which re-
turns two values: the connection and 
a possible error. Assuming there is 
no error, the go statement (line 27) 
starts its argument—the function 
call serve(conn)—in a new gorou-
tine, analogous to the & suffix to a 
Unix shell command but inside the 
same operating system process. The 
function to be called as well as its ar-
guments are evaluated in the original 
goroutine; those values are copied to 
create the initial stack frame of the 
new goroutine. Thus, the program 
runs an independent instance of the 
serve function for each incoming 
network connection. An invocation of 
serve handles the requests on a giv-
en connection one at a time (the call 
to handle(req) on line 37 is not pre-
fixed by go); each call can block with-

out affecting the handling of other net-
work connections.

Under the hood, the Go implemen-
tation uses an efficient multiplexing 
operation, such as Linux’s epoll, to 
handle concurrent I/O operations, 
but the user doesn’t see that. The Go 
runtime library instead presents the 
abstraction of blocking I/O, in which 
each goroutine executes sequential-
ly—no callbacks needed—which is 
easy to reason about.

Having created multiple goroutines, 
a program must often coordinate be-
tween them. Go provides channels, 
which allow communication and syn-
chronization between goroutines: a 
channel is a unidirectional, limited-size 
pipe carrying typed messages between 
goroutines. Go also provides a multi-
way select primitive that can control 
execution according to which commu-
nications can proceed. These ideas are 
adapted from Hoare’s “Communicat-
ing Sequential Processes”19 and ear-
lier language experiments, specifically 
Newsqueak,25 Alef,31 and Limbo.12

Figure 4 shows an alternate version 
of listen, written to limit the number 
of connections served at any moment.

This version of listen begins by 
creating a channel named ch (line 42) 
and then starting a pool of 10 server 
goroutines (lines 44–46), which receive 
connections from that single chan-
nel. As new connections are accepted, 
listen sends each on ch using a send 
statement, ch <- conn (line 53). A 
server executes the receive expression 
<-ch (line 59), completing the com-
munication. The channel was created 
without space to buffer values being 
sent (the default in Go), so after the 10 
servers are busy with the first 10 con-
nections, the eleventh ch <- conn will 
block until a server completes its call to 
serve and executes a new receive. The 
blocked communication operations 
create implicit back pressure on the 
listener, stopping it from accepting a 
new connection until it has handed off 
the previous one.

Note the lack of mutexes or other 
traditional synchronization mecha-
nisms in these programs. Commu-
nication of data values on channels 
doubles as synchronization; by con-
vention, sending data on a channel 
passes ownership from sender to re-
ceiver. Go has libraries that provide 

mutexes, condition variables, sema-
phores, and atomic values for low-
level uses, but a channel is often a bet-
ter choice. In our experience, people 
reason more easily and more correctly 
about message passing—using com-
munication to transfer ownership be-
tween goroutines—than they do about 
mutexes and condition variables. An 
early mantra was, “Do not commu-
nicate by sharing memory; instead, 
share memory by communicating.”

Go’s garbage collector greatly sim-
plifies the design of concurrent APIs, 
removing questions about which 
goroutine is responsible for freeing 
shared data. As in most languages (but 
unlike Rust22), ownership of mutable 
data is not tracked statically by the type 
system. Instead, Go integrates with 
TSAN28 to provide a dynamic race de-
tector for testing and limited produc-
tion use.

Security and Safety
Part of the reason for any new language 
is to address deficiencies of previous 
languages, which in Go’s case included 
security issues affecting the safety of 
networked software. Go removes unde-
fined behaviors that cause so many se-
curity problems in C and C++ programs. 
Integer types are not automatically 
coerced to one another. Null pointer 
dereferences and out-of-bounds array 
and slice indexes cause runtime excep-
tions. There are no dangling pointers 
into stack frames: Any variable that 
might possibly outlive its stack frame, 
such as one captured in a closure, will 
be moved to the heap instead. There are 
no dangling pointers in the heap either; 
the use of a garbage collector instead of 
manual memory management elimi-
nates use-after-free bugs. Of course, 
Go doesn’t fix everything, and there 
are things that were missed that per-
haps should have been addressed. For 
instance, integer overflow could have 
been made a runtime error rather than 
defined to wrap around.

Since Go is a language for writing 
systems, which can require machine-
level operations that break type safety, 
it is able to coerce pointers from one 
type to another and to perform ad-
dress arithmetic, but only through the 
use of the unsafe package and its re-
stricted special type unsafe.Point-
er. Care must be taken to keep type-
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system violations compatible with the 
garbage collector—for example, the 
garbage collector must always be able 
to identify whether a particular word is 
an integer or a pointer. In practice, the 
unsafe package appears very rarely: 
safe Go is reasonably efficient. Seeing 
import "unsafe" therefore serves as 
a signal to inspect a source file more 
carefully for possible safety problems.

Go’s safety properties make it a 
much better fit for cryptographic and 
other security-critical code than a 
language such as C or C++. A trivial 
mistake, such as an out-of-bounds ar-
ray index, which can lead to sensitive 
data disclosure or remote execution 
in C and C++, causes a run-time excep-
tion in Go, stopping the program and 
greatly limiting the potential impact. 
Go ships with a full suite of cryptogra-
phy libraries, including SSL/TLS sup-
port; the standard library includes a 
production-ready HTTPS client and 
server. In fact, Go’s combination of 
safety, performance, and high-quality 
libraries has made it a popular proving 
ground for modern security work. For 
example, the freely available certifi-
cate authority Let’s Encrypt depends 
on Go for its production service2 and 
recently crossed a milestone of one 
billion certificates issued.1

Completeness
Go provides the core pieces needed for 
modern development at the language, 
library, and tool levels. This requires a 
careful balance, adding enough to be 
useful “out of the box” while not add-
ing so much that our own development 
processes bog down trying to support 
too many features.

The language provides strings, hash 
maps, and dynamically sized arrays as 
built-in, easily used data types. As not-
ed earlier, these are sufficient for most 
Go programs. The result is greater in-
teroperability between Go programs—
for example, there are no competing 
implementations of strings or hash 
maps to fragment the package ecosys-
tem. Go’s inclusion of goroutines and 
channels is another form of complete-
ness. These provide core concurrent 
functionality required in modern net-
worked programs. Providing them di-
rectly in the language, as opposed to a 
library, makes it easier to tailor the syn-
tax, the semantics, and the implemen-

ready seen the io.Writer interface; 
any output data stream implements 
this interface by convention and inter-
operates with all other I/O adapters. 
Figure 1’s ListenAndServe call, as 
another example, expects a second ar-
gument of type http.Handler, whose 
definition is shown in Figure 5. The ar-
gument http.HandlerFunc(hello) 

tation to make them as lightweight and 
easy to use as possible, while providing 
a uniform approach for all users.

The standard library includes a pro-
duction-ready HTTPS client and server. 
For programs that interact with other 
machines on the Internet, this is criti-
cal. Filling that need directly avoids 
additional fragmentation. We have al-

Figure 4. A Go network server, limited to 10 connections.

41 func listen(l net.Listener) {
42 ch := make(chan net.Conn)
43 const N = 10
44 for i := 0; i < N; i++ {
45 go server(ch)
46 }
47

48 for {
49 conn, err := l.Accept()
50 if err != nil {
51 log.Fatal(err)
52 }
53 ch <- conn
54 }
55 }
56

57 func server(ch chan net.Conn) {
58 for {
59 conn := <-ch
60 serve(conn)
61 }
62 }

Figure 5. The net/http package’s handler interface.

type Handler interface {
ServeHTTP(ResponseWriter, *Request)

}

Figure 3. A Go network server.

21 func listen(listener net.Listener) {
22 for {
23 conn, err := listener.Accept()
24 if err != nil {
25 log.Fatal(err)
26 }
27 go serve(conn)
28 }
29 }
30

31 func serve(conn net.Conn) {
32 for {
33 req, err := readRequest(conn)
34 if err != nil {
35 break
36 }
37 handle(req)
38 }
39 }
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implements its ServeHTTP method 
by calling hello. The library creates a 
new goroutine to handle each connec-
tion, as in the listener examples in this 
article’s “Concurrency” section, so han-
dlers can be written in a simple block-
ing style, and the server can scale auto-
matically to handle many simultaneous 
connections.

The http package also provides a 
basic dispatcher, itself another imple-
mentation of Handler, which allows 
different handlers to be registered 
for different URL paths. Establishing 
Handler as the agreed-upon interface 
has enabled many different types of 
HTTP server middleware to be created 
and to interoperate. We did not need 
to add all these implementations to 
the standard library, but we did need 
to establish the interface that allows 
them to work together.

The standard Go distribution also 
provides integrated support for cross-
compilation, testing, profiling, code 
coverage, fuzzing, and more. Testing is 
another area where establishing agree-
ment about core concepts—such as 
what a test case is and how it is run—
enabled the creation of custom testing 
libraries and test execution environ-
ments that all interoperate well.

Consistency
One goal we had for Go was for it to be-
have the same across different imple-
mentations, execution contexts, and 
even over time. This kind of “boring” 
consistent behavior allows developers 
to focus on their day-to-day work and al-
lows Go to recede into the background.

To start, the language specifies con-
sistent results as much as possible, 
even for erroneous behaviors such as 
null pointer dereferences and out-of-
bounds array indexes, as discussed 
in this article’s “Security and Safety” 
section. One exception where Go in-
stead requires inconsistent behavior 
is iteration over hash maps. We found 
that programmers often inadvertently 
wrote code that depended on the hash 
function, causing different results on 
different architectures or Go imple-
mentations.

To make programs behave the same 
everywhere, one option would have 
been to mandate a specific hash func-
tion. Instead, Go defines that map it-
eration is non-deterministic. The im-

plementation uses a different random 
seed for each map and starts each itera-
tion over a map at a random offset in 
the hash table. The result is that maps 
are consistently unpredictable across 
implementations: Code cannot acci-
dentally depend on implementation de-
tails. In a similar vein, the race detector 
adds extra randomness to scheduling 
decisions, creating more opportunities 
to observe races.

Another aspect of consistency is 
performance over the lifetime of a pro-
gram. The decision to implement Go 
using a traditional compiler, instead 
of the JIT used by languages such as 
Java and Node.js, provides consis-
tent performance at startup time and 
for short-lived programs: There is no 
“slow start” penalizing the first few 
seconds of each process’s lifetime. 
This quick startup has made Go an at-
tractive target both for command-line 
tools, as noted in the previous section, 
and for scaled network servers such as 
Google App Engine.30

Consistent performance includes 
the overhead of garbage collection. 
The original Go prototype used a basic, 
stop-the-world garbage collector that, 
of course, introduced significant tail 
latency in network servers. Today, Go 
uses a fully concurrent garbage collec-
tor with pauses taking less than a mil-
lisecond,21 and usually just a few mi-
croseconds, independent of heap size. 
The dominant delay is the time it takes 
the operating system to deliver a signal 
to a thread that must be interrupted.

A final kind of consistency is that of 
the language and libraries over time. 
For the first few years of Go’s existence, 
we tinkered with and adjusted it in 
each weekly release. Users often had 
to change their programs when updat-
ing to a new Go version. Automated 
tools reduced the burden, but manual 
adjustments were also necessary. Start-
ing with Go version 1, released in 2012, 
we publicly committed to making only 
backward-compatible changes to the 
language and standard library, so that 
programs would continue running un-
changed when compiled with newer Go 
versions.16 That commitment attracted 
industry and has encouraged not just 
long-lived engineering projects but 
also other efforts, such as books, train-
ing courses, and a thriving ecosystem 
of third-party packages.

When we started 
designing 
Go, multicore 
computers 
were becoming 
widely available, 
but threads 
remained a 
heavyweight 
concept in all 
popular languages 
and operating 
systems.
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Tool-Aided Development
Large-scale software development re-
quires significant automation and tool-
ing. From the start, Go was designed to 
encourage such tooling by making it 
easy to create.

A developer’s daily experience of Go 
is through the go command. Unlike 
language commands that only compile 
or run code, the go command provides 
subcommands for all the critical parts 
of the development cycle: go build 
and go install build and install ex-
ecutables, go test runs test cases, and 
go get adds a new dependency. The go 
command also enables the creation of 
new tools by providing programmatic 
access to build details, such as the 
package graph.

One such tool is go vet, which 
performs incremental, package-at-
a-time program analysis that can be 
cached the same way that caching 
compiled object files enables incre-
mental builds. The go vet tool aims 
to identify common correctness prob-
lems with high precision, so that de-
velopers are conditioned to heed its 
reports. Simple examples include 
checking that formats and argu-
ments match in calls to fmt.Printf 
and related functions, or diagnosing 
unused writes to variables or struct 
fields. These are not compiler errors, 
because we do not want old code to 
stop compiling simply because a new 
possible mistake has been identified. 
Nor are they compiler warnings; us-
ers learn to ignore those. Placing the 
checks in a separate tool allows them 
to be run at a time that is convenient 
for the developer, without interfer-
ing with the ordinary build process. It 
also makes the same checks available 
to all developers, even when using an 
alternate implementation of the Go 
compiler, such as Gccgo15 or Gollvm.17 
The incremental approach makes 
these static checks efficient enough 
that we run them automatically dur-
ing go test, before running the tests 
themselves. Testing is a time when us-
ers are looking for bugs anyway, and 
the reports often help explain actual 
test failures. This incremental frame-
work is available for reuse by other 
tools as well.

Tooling that analyzes programs 
is helpful, but tooling that edits pro-
grams is even better, especially for 

Libraries
After the language and tools, the next 
critical aspect of how users experience 
Go is the available libraries. As befits 
a language for distributed computing, 
in Go there is no central server where 
Go packages must be published. In-
stead, each import path beginning 
with a domain name is interpreted 
as a URL (with an implicit leading 
https://) giving the location of remote 
source code. For example, import 
"github.com/google/uuid" fetch-
es code hosted in the corresponding 
GitHub repository.

The most common way to host 
source code is to point to a public Git 
or Mercurial server, but private serv-
ers are equally well supported, and au-
thors have the option of publishing a 
static bundle of files rather than open-
ing access to a source-control system. 
This flexible design and the ease of 
publishing libraries has created a 
thriving community of importable Go 
packages. Relying on domain names 
avoided a rush to claim valuable en-
tries in a flat package name space.

It is not enough just to download 
packages; we must know which ver-
sions to use as well. Go groups pack-
ages into versioned units called 
modules. A module can specify a 
minimum required version for one of 
its dependencies, but no other con-
straints. When building a particular 
program, Go resolves competing re-
quired versions of a dependency mod-
ule by selecting the maximum: If one 
part of the program requires version 
1.2.0 of a dependency and another 
requires version 1.3.0, Go selects ver-
sion 1.3.0—that is, Go requires the use 
of semantic versioning,27 in which ver-
sion 1.3.0 must be a drop-in replace-
ment for 1.2.0. On the other hand, in 
that situation, Go will not select ver-
sion 1.4.0 even when it becomes avail-
able, because no part of the program 
has asked explicitly for that newer 
version. This rule keeps builds repeat-
able and minimizes the potential risk 
of breakage caused by accidentally 
breaking changes introduced by new 
versions.

In semantic versioning, a module 
may introduce intentional breaking 
changes only in a new major version, 
such as 2.0.0. In Go, each major ver-
sion starting at 2.0.0 is identified by a 

program maintenance, much of which 
is tedious and ripe for automation.

The standard layout of a Go pro-
gram is defined algorithmically. A 
tool, gofmt, parses a source file into 
an abstract syntax tree and then for-
mats it back to source code using 
consistently applied layout rules.14 
In Go, it is considered a best practice 
to format code before storing it in 
source control. This approach enables 
thousands of developers to work on 
a shared codebase without the usual 
debates about brace styles and other 
details that accompany such large ef-
forts. Even more significantly, tools 
can modify Go programs by operating 
on the abstract syntax form and then 
writing the result using gofmt’s print-
er. Only the parts actually changed 
are touched, resulting in “diffs” that 
match what a person would have ar-
rived at by hand. People and programs 
can work together seamlessly in the 
same codebase.

To enable this approach, Go’s gram-
mar is designed to enable a source file 
to be parsed without type information 
or any other external inputs, and there 
is no preprocessor or other macro sys-
tem. The Go standard library provides 
packages to allow tools to recreate the 
input and output sides of gofmt, along 
with a full type checker.

Before releasing Go version 1—the 
first stable Go release—we wrote a 
refactoring tool called gofix, which 
used these packages to parse the 
source, rewrite the tree, and write out 
well-formatted code. We used gofix, 
for example, when the syntax of delet-
ing an entry from a map was changed. 
Each time users updated to a new re-
lease, they could run gofix on their 
source files to automatically apply the 
majority of the changes required to up-
date to the new version.5

These techniques also apply to the 
construction of IDE plug-ins29 and 
other tools—profilers, debuggers, ana-
lyzers, build automators, test frame-
works, and so on—that support Go 
programmers. Go’s regular syntax, the 
established algorithmic code-layout 
convention, and the direct standard 
library support make these kinds of 
tools much easier to build than they 
would otherwise be. As a result, the Go 
world has a rich, ever-expanding, and 
interoperating toolkit.
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major version suffix, such as /v2, in its 
import path: Distinct major versions 
are kept as separate as any other mod-
ules with different names. This ap-
proach disallows diamond dependen-
cy problems, and in practice it adapts 
to incompatibilities as well as systems 
with more finely grained constraints.6

To improve the reliability and re-
producibility of builds downloading 
packages from all over the Internet, 
we run two services used by default 
in the Go toolchain: a public mirror 
of available Go packages and a cryp-
tographically signed transparent log 
of their expected contents.8,10,20 Even 
so, widespread use of software pack-
ages downloaded from the Internet 
continues to have security and other 
risks.7 We are working on making 
the Go toolchain able to proactively 
identify and report vulnerable pack-
ages to users.

Conclusion
Although the design of most lan-
guages concentrates on innovations 
in syntax, semantics, or typing, Go is 
focused on the software development 
process itself. Go is efficient, easy to 
learn, and freely available, but we be-
lieve that what made it successful was 
the approach it took toward writing 
programs, particularly with multiple 
programmers working on a shared 
codebase. The principal unusual 
property of the language itself—con-
currency—addressed problems that 
arose with the proliferation of mul-
ticore CPUs in the 2010s. But more 
significant was the early work that 
established fundamentals for packag-
ing, dependencies, build, test, deploy-
ment, and other workaday tasks of the 
software development world, aspects 
that are not usually foremost in lan-
guage design.

These ideas attracted like-minded 
developers who valued the result: easy 
concurrency, clear dependencies, scal-
able development and production, 
secure programs, simple deployment, 
automatic code formatting, tool-aided 
development, and more. Those early 
developers helped popularize Go and 
seeded the initial Go package ecosys-
tem. They also drove the early growth 
of the language by, for example, port-
ing the compiler and libraries to Win-
dows and other operating systems (the 

original release supported only Linux 
and MacOS X).

Not everyone was a fan—for in-
stance, some people objected to the way 
the language omitted common features 
such as inheritance and generic types. 
But Go’s development-focused philoso-
phy was intriguing and effective enough 
that the community thrived while main-
taining the core principles that drove 
Go’s existence in the first place. Thanks 
in large part to that community and 
the technology it has built, Go is now a 
significant component of the modern 
cloud computing environment.

Since Go version 1 was released, 
the language has been all but frozen. 
The tooling, however, has expanded 
dramatically, with better compilers, 
more powerful build and testing tools, 
and improved dependency manage-
ment, not to mention a huge collec-
tion of open source tools that support 
Go. Still, change is coming: Go 1.18, 
released in March 2022, includes the 
first version of a true change to the 
language, one that has been widely 
requested—the first cut at parametric 
polymorphism. We left any form of 
generics out of the original language 
because we were keenly aware that it 
is very difficult to design well and, in 
other languages, too often a source of 
complexity rather than productivity. 
We considered a handful of designs 
during Go’s first decade but only re-
cently found one that we feel fits Go 
well. Making such a large language 
change while staying true to the prin-
ciples of consistency, completeness, 
and community will be a severe test of 
the approach.
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