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Abstract:  Two promising optimization techniques for
object-oriented languages are type feedback (profile-
based receiver class prediction) and concrete type
inference (static analysis). We directly compare the
two techniques, evaluating their effectiveness on a
suite of 23 SELF programs while keeping other factors
constant.

Our results show that both systems inline over 95% of
all sends and deliver similar overall performance with
one exception: SELF’s automatic coercion of machine
integers to arbitrary-precision integers upon overflow
confounds type inference and slows down arithmetic-
intensive benchmarks.

We discuss several other issues which, given the
comparable run-time performance, may influence the
choice between type feedback and type inference.

1. Introduction
The dynamic dispatch present in object-oriented
languages impairs many static code analysis and
optimization techniques because they rely on statically
knowing a program’s call graph. Thus, calls not only
slow down the program through the calling overhead
per se but also through optimization opportunities
destroyed by dynamically-dispatched calls. To make
matters even worse, object-oriented programs tend to
contain more calls at the source level than procedural
programs since the object-oriented programming style
encourages factoring code into small pieces to obtain
fine-grained reuse. Because traditional compilers are
unable to remove message sends, object-oriented
programs usually exhibit a higher calling frequency

than procedural programs. The frequent calls,
combined with the scarce opportunities for traditional
code optimizations, can lead to poor run-time
performance.
Thus, the key to efficient implementation of object-
oriented languages is to eliminate dynamically-
dispatched calls by statically binding or inlining them.
However, to inline a dynamically-dispatched call, the
compiler must know the exact target of the message
send. Unfortunately, the method being invoked is often
unknown, even in statically-typed languages. Consider
the following C++ code fragment:

GraphicalObject* obj;
...
obj->moveTo(0, 0);

Despite the type declaration, a C++ compiler cannot
statically bind themoveTo call because the compiler
does not know the object’s exact class (e.g., whether it
is an instance of class Point or class Rectangle), and
thus it cannot (in general) determine whether
Point::moveTo  or Rectangle::moveTo  will
be invoked. Recently, however, two techniques have
emerged which promise to enable better optimization
of dynamically-dispatched calls by providing the
compiler with precise information about the class of
the receiver:

• Type feedbackmonitors previous executions of the
program to determine the set of possible receiver
classes, and

• Concrete type inference computes the set of
possible receiver classes by analyzing the
program’s source code.

A priori, each technique can potentially outperform the
other in its ability to support optimization of object-
oriented programs:
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• Type feedback may generate better code because it
takes into account the relative frequencies of
receiver classes rather than treating them all as
equally likely.

• Type inference may generate better code because it
can completely eliminate dispatch for some
message sends.

Previous studies have reported the effectiveness of type
inference and type feedback (e.g., [PC94a] and
[HU94a]) but direct comparisons have been impossible
because important other factors were different,
including programming language, compiler
technology, and choice of benchmarks. The main
contribution of this paper is a detailed comparison
which is:

• direct, because we have been able to connect both
type feedback and type inference to the same
compiler back end, use the same run-time system,
and execute the same suite of benchmarks in both
cases; and

• realistic, because both the type feedback system
and the type inferencer represent high-quality
implementations of these concepts (the underlying
SELF-93 system has been shown to significantly
outperform commercial Smalltalk implementations
[HU94a]).

In the remainder of this paper, we briefly summarize
the two techniques (section 2), quantitatively compare
them step by step (section 3), and qualitatively discuss
their relative strengths and weaknesses (section 4). We
then review related work (section 5) and finally offer
our conclusions (section 6).

2. Background

2.1 SELF

SELF [US87] is apure object-oriented language: all
data are objects, and all computation is performed via
dynamically-bound message sends (including all
instance variable accesses, integer arithmetic, and
control structures likeif  andwhile ). SELF merges
state and behavior: syntactically, method invocation
and variable access are indistinguishable—the sender
of a message does not know whether the message is
implemented as a simple data access or as a method.
Consequently, all code isrepresentation independent
since the same code can be reused with objects of
different structure, as long as these objects correctly

implement the expected message protocol. SELF’s pure
semantics result in very frequent message sends; in this
respect, SELF is even harder to implement efficiently
than Smalltalk.

2.2 Terminology
The term “type” commonly refers to several distinct
concepts, such as abstract types (interfaces), concrete
types (implementations), or sets of classes. To avoid
possible confusion, we will use the following
terminology throughout this paper:

• A class is a data structure that exactly describes the
implementation of its instances, i.e., their size,
layout, and the implementations of all methods
defined for that class. Each object has exactly one
class, and all instances of a class share the same
implementation.

Classes need not be visible at the language level.
For example, SELF, the language used in this study,
is prototype-based and has no notion of classes in
the language. Nevertheless, the implementation
maintains internal descriptors to keep track of each
object’s layout and methods, and these descriptors
are equivalent to what we term “class” here.

• A type is a set of classes, possibly including the
unknown class. Thus, a type like {Point }
denotes “an object of class Point” whereas
{ Point , unknown } denotes “an object of class
Point or any other class”. The latter kind of type,
though theoretically equivalent to {unknown }, is
used by type feedback for reasons that will become
clear shortly.

The remainder of this section briefly reviews type
feedback and type inference; both techniques have
been described in more detail elsewhere ([HU94a,
Höl94, Age94, Age95]).

2.3 Type feedback
The key idea of type feedback is to extract type
information from previous executions and feed it back
to the compiler (Figure 1). This feedback can happen
dynamically (i.e., while the program is running) or
statically (after execution completed, as in traditional
profile-based optimization). Type feedback uses an
instrumented version of a program to record the
program’s type profile, i.e., a list of receiver classes
(and, optionally, their frequencies) for every single call
site in the program. Therefore, it is also called profile-
based receiver class prediction. To obtain the type
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profile, the standard method dispatch mechanism is
extended in some way to record the desired
information, e.g., by keeping a table of observed
receiver classes per call site.

Based on the type feedback information, the compiler
can predict likely receiver classes. For example, if type
feedback indicates thatobj ’s class always was
Point , the compiler could transform the call
obj->moveTo(0, 0)  into the following code:

if (obj->class == #Point) {
/* inlined copy of Point::moveTo */
obj->x = obj->y = 0;

} else {
/* handle non-Point case here */

}

For Point  receivers, the above code sequence will
execute significantly faster since the original virtual
function call is reduced to a simple load instruction and
a comparison. Inlining themoveTo method not only
eliminates the calling overhead but also enables the
compiler to optimize the inlined code using dataflow
information particular to this call site.

The implementation of type feedback in the SELF-93
optimizing compiler has been described elsewhere
([Höl94, HU94a]). With type feedback, the SELF-93
compiler can inline more message sends and achieve
better performance than previous compilers [HU94a].
For example, SELF-93 executes a suite of three
medium-sized (400-1,100 lines) and six large
(4,000-15,000 lines) programs 1.5 times faster than the
SELF-91 compiler [HU94a]. For two medium-sized
programs that are also available in Smalltalk, SELF-93
is about three times faster than ParcPlace Smalltalk.

In contrast to a type inference system (and to previous
SELF systems), SELF-93 performs very little dataflow
(or typeflow) analysis in an effort to keep the compiler
small and fast. The compiler only performs trivial
propagation of result and argument classes during

program
source

executable
program

compiler
optimization

Figure 1. Overview of Type Feedback

type information

With type feedback, the optimizing compiler uses “type profile”
information gleaned from previous executions to specialize
code to the frequently occurring receiver classes.

inlining. For example, when inlining the sendfoo: 1
the compiler will keep track of the fact thatfoo ’s
argument is the integer 1. On the other hand, when
compiling the statementsj: i. i: i + j the
compiler will testj ’s class even if a simple dataflow
analysis would reveal thatj  is equal toi .

2.4 Type inference
Concrete type inference or constraint-based analysis
[PS91, APS93, PC94a], unlike type feedback, does not
rely on executing the program. Given the program
source, this global analysis will statically compute a
type for every expression in the program. The types, as
in type feedback, are sets of classes, but unlike the
types obtained by running an instrumented program,
the types computed by type inference aresafe approxi-
mations and never include the unknown class:

• If the type {Class 1, Class 2, ..., Class i} is
inferred for some expression E, it is guaranteed
that duringany execution of the program,every
time E is evaluated, the result is an object of
Class 1, Class 2, ..., orClass i.

The key idea in type inference, and one that sets it apart
from traditional data flow analysis, is to compute
control flow and data flow information simultaneously.
This coupling is necessary to analyze dynamically
dispatched sends precisely, because:

• to determine the methods a send may invoke, the
possible classes (the type) of the receiver must be
known, and

• to determine the type of a send, the methods it may
invoke must be known.

Figure 2 shows a typical situation during type
inference. A send,obj->moveTo(0,0) , is being
analyzed. Previous inference has determined that the
receiver expression,obj , may evaluate to aPoint
object, so the send is analyzed by connecting it to a
template for the Point::moveTo  method. A
template represents the control and data flow within a
method. If the method contains sends, these will be
connected to other templates. When a send is
connected to a template, the types of the actual
arguments, in this case simply {Integer }, are
propagated into the corresponding formal arguments in
the template. The type returned by the invoked method
is determined by propagating the formal argument
types through the template to its output. Finally, the
result type of the template becomes the type inferred
for the send connected to it.
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As type inference proceeds, new classes of objects may
be found to be possible receivers of previously
analyzed sends. For example, the type inferencer may
discover an assignment of aRectangle  object to the
variable obj . Subsequently it must be assumed that
the sendobj->moveTo(0,0)  can invoke either
Point::moveTo  or Rectangle::moveTo . This
situation is handled by connecting the send to
templates for both of these methods and collecting the
result types from each of them, as shown on Figure 3.
Type inference starts in a designatedmain method
(equivalent to themain()  function in a C program)
and from there traces sends to other methods, creating
templates for these as they are encountered, and
recursively processing their sends. Eventually, when
all possible method invocations have been analyzed,
type inference is complete and a type is available for
every expression in the program.
Polymorphism increases code reuse by allowing a
piece of code to work on several kinds of objects. For
example, a sort routine that can sort any vector of
objects implementing “≤” is polymorphic. To analyze

Point::moveTo
template

obj->moveTo(0,0)

x y

result

type of result = {Point}

Figure 2. A send is analyzed by connecting it to
a template for the invoked method.

Point::moveTo
template

obj->moveTo(0,0)

x y

result

type of result = {Point , Rectangle }

Rectangle::moveTo
template

x y

result

Figure 3. Send invoking several methods
When a send invokes several methods, it is connected to a
template for each of them, and the send’s type is obtained as the
union of the templates’ result types.

polymorphic code precisely the different uses should
be kept distinct. To accomplish this, our type inference
algorithm is polyvariant, i.e., may analyze each
method more than once. Expressed in terms of
templates, polyvariance means that several templates
are created for a single method, with different sends
invoking the method being routed to different
templates. Several polyvariance strategies, varying
widely in precision and efficiency, have been proposed;
see [Age94] for an overview. The strategy used in this
paper, the Cartesian product algorithm[Age95],
computes the Cartesian product of the actual argument
types and analyzes each combination separately.

2.5 Summary and Comparison

Both type feedback and type inference operate with
types that are sets of classes, and both systems produce
types that are approximations. However, the approxi-
mations differ in nature. Type feedbackunderestimates
the exact types, i.e., computes lower bounds—no
matter how long a given expression is observed, the
possibility that it may yield an instance of a new class
next time remains. Type inference, on the other hand,
overestimates the exact types, i.e., computes upper
bounds. Type inference simply must approximate to
remain computable. For example, finding the exact
type of this conditional statement is hard (or at least
was until recently):

if  “Fermat’s last theorem is true”
then  point else  rectangle;

The lower bounds versus upper bounds distinction has
important consequences for how the types can be
applied during compilation. We discuss this issue in
sections 3 and 4.

The other major difference between type feedback and
type inference is that the former isdynamic, i.e.,
requires the program to be executed, whereas the latter
is static.This difference also has consequences for the
system as a whole, as will be discussed in section 4.

3. Quantitative evaluation

3.1 Implementation overview

To assess type feedback, we used an essentially
unmodified version of the current SELF system which
is based on the SELF-93 compiler [HU94a]. To enable
an unbiased comparison, we made sure that the
compiler used exactly the same optimization
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parameters and heuristics as the type inference based
compiler described next.

To assess type inference for optimization, we
combined and extended two existing systems: a type
inferencer and application extractor written in SELF,
and the SELF-93 compiler written in C++. The
interface between the two systems is a “snapshot”
(image) containing a type-annotated benchmark
program.

We first modified the application extractor, described in
[AU94], to output benchmark programs together with
their type information. The normal functionality of the
extractor is to identify a set of methods and objects that
are sufficient to run a given application and write them
out as SELF source code. The modified extractor
additionally annotates each object with its “group ID,”
an integer representing the object’s class. All objects
with the same group ID are guaranteed to have the
same implementation as far as the SELF virtual
machine is concerned. Furthermore, each method is
annotated with a “method ID,” an integer serving as an
index into an array of method templates. Each method
template is a vector describing the inferred type for the
method receiver, its result, and each of the expressions
in the method. In the extracted format, a type is
represented as a vector of group IDs. The extractor
places all of these data structures at the end of the file
containing the program source itself. Finally, the SELF

virtual machine is invoked to convert the source file to
a binary snapshot containing all the objects, methods,
and type information. This snapshot is the only input to
the type-inference based compiler.

We then modified the optimizing SELF-93 compiler to
take advantage of this type information and to not use
type feedback. Using the template array and several
auxiliary arrays, the compiler searches for applicable
method templates whenever it compiles a particular
source method. In general, the type inferencer may
generate more than one template per method, each of
them for a particular combination of receiver or
argument types [Age95]. Using its internal type
information about the method’s receiver and
arguments, the compiler discards all templates that do
not match (e.g., because they specify an incompatible
receiver or argument type). Then, it merges the
remaining templates by merging their entries and
translates the resulting types into its internal type
representation. While compiling the method, the
compiler then uses this type information to inline

messages. All other optimizations usually performed
by the SELF compiler (such as customization, splitting,
copy propagation, etc.) are performed as usual.
Whenever the compiler has a choice between using the
information obtained from the type inferencer or its
own information (obtained, for example, by simple
local propagation or by optimizations such as constant-
folding), the compiler chooses the more precise
information. For example, the compiler might know
that the result of the expression 3 + 4 is the constant 7
(and thus of type {Integer }) whereas type inference
would give the type as {Integer , BigInteger }.
Thus, the type inferencer benefits from the same local
analysis that the standard system uses, so that the two
can be fairly compared.†

Two limitations currently affect the type inference
based compiler. The SELF virtual machine requires that
all methods be customized to their receiver [CUL89];
thus, methods will be customized to a specific receiver
even if the type inferencer does not require it. Also,
lacking support for multiple dispatch means that the
compiler must merge method templates that differ only
in their argument types.

3.2 Benchmarks and systems
To evaluate the relative performance of type inference
and type feedback, we executed a suite of 23
benchmarks (see Table 1). The benchmark programs
can be divided into three groups:

• “Tiny” is a set of very small integer benchmarks on
which one would expect type inference to do
particularly well since these programs do not use
polymorphism. They are included for reference
only.

• “Small” is a set of small benchmarks which
primarily operate on integers and arrays and
contain little polymorphism. These benchmarks
are intended to represent the kernels of computa-
tionally intensive programs.

• “Large” is a set of application programs which
were written by several different programmers and
exhibit a variety of object-oriented programming
styles. These programs most closely approximate
typical SELF applications. One of them,

† We believe that any optimizing compiler would use comparable
or better local analysis, so that it would be unrealistic to compare a
type inference system with purely global analysis to any other
system.
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PrimMaker, uses dynamic inheritance, i.e., objects
that change their inheritance structure on the fly.

Because the programs in the Large suite are the most
realistic, we will examine their behavior in detail
throughout this paper while summarizing the programs
in the other two sets. Full data on all benchmarks is
given in [AH95].

To illustrate the various effects and trade-offs of type
inference and type feedback, we measured several
systems (see Table 2). The first two systems use type
inference. TI is the standard configuration running
unchanged source code with unchanged semantics;
like Smalltalk, this system automatically converts
“small” (30-bit) integers into arbitrary-precision

Name Description

TI SELF compiler modified to use type inference

TI-int
same as TI, but arbitrary-precision integer arith-
metic is disabled

TF SELF compiler using type feedback
unoptimized SELF compiler with all optimization turned off

Table 2: Systems used in the study

integers if needed. Since the type inferencer performs
no range analysis, this automatic conversion means that
the result of adding two objects of type {Integer } is
of type {Integer , BigInteger }. The second
system, TI-int, prevents this conversion by treating
integer overflow as a failure that halts the program, so
that the result of adding two integers is always of type
{ Integer }. Except for RSA, none of the benchmarks
actually use arbitrary-precision integers, so all but RSA
execute correctly under TI-int. In all other aspects, TI-
int is identical to TI.
TF is the standard SELF compiler using type feedback
and adaptive optimization. We do not distinguish
between TF and TF-int because the two are virtually
identical in performance.
Unless mentioned otherwise, all data in this paper are
dynamic, i.e., take the relative execution frequencies of
sends into account. To streamline the exposition, we
usually give only summary charts in the main text, but
detailed data can be found in [AH95].

a Approx. lines of code, excluding code in standard classes such as integer, lists, etc. All line counts exclude blank lines.
b Lines of code that type inference shows to be part of the application, e.g., including methods in standard data types such as lists, arrays, etc. This

size ismuch smaller than the full SELF environment, but may still contain some dead code. The line counts were obtained on versions of the pro-
grams that includes BigIntegers. Without BigIntegers, programs are consistently 450 lines shorter.

Name
Appl.
sizea

Total
sizeb

Description

“T
in

y”

AtAllPut 3 1,059 store 7 into all elements of 100,000-element vector
SumTo 3 1,049 sums all integers between 1 and 10,000; repeated 100 times
Recur 3 1,047 tiny recursive benchmark
Tak 10 1,055 derived from Tak benchmark in the Gabriel Lisp benchmark suite

“S
m

al
l”

Bubble 20 1,089 sort an array of 5,000 numbers with Bubblesort
Detabify 21 1,071 replace tabs by blanks in a string of ASCII characters
Intmm 30 1,092 40x40 integer matrix multiply
Mergesort 50 1,169 sorts a 20,000-element array of integers using MergeSort
Perm 25 1,082 heavily recursive permutation program
Puzzle 170 1,309 solves a tile placement problem
Queens 35 1,094 solves the eight-queens placement problem 50 times
Quick 35 1,101 sort an array of 5,000 numbers with Quicksort
Quick2 35 1,180 like quick, but written in an object-oriented style
Sieve 25 1,053 computes prime numbers using the sieve of Eratosthenes (sieve size 8191)
Towers 60 1,116 solves Towers of Hanoi problem for 14 disks
Tree 25 1,108 sorts 5,000 random integers by inserting them into a sorted binary tree

“L
ar

ge
”

Deltablue 500 1,358 DeltaBlue constraint solver
Diff 300 1,992 compares two files using the same algorithm as the Unix diff utility
SParser 400 1,442 parser for the SELF-89 language
PrimMaker 1,100 2,241 generates SELF and C glue stubs from a description of external C functions
Richards 400 1,284 simulates a simple operating system
RSA 300 1,541 public-key encryption and key computation (uses BigIntegers)
CParser 7,000 10,984 parser for ANSI C; includes lexer, LALR(1) parser, and tree builder

Table 1: Benchmark programs
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3.3 Execution time
Speed is the ultimate goal of an optimizing compiler,
and thus we start our analysis with bottom-line
performance numbers; later sections will go into more
details. Figure 4 shows the relative execution time of
the benchmarks compiled with TF and the two TI
systems. On average, TI-int is fastest, executing the
large benchmarks a median of 15% faster than TF. TI is
slower than TI-int, outperforming TF on only two of
the seven large benchmarks. On the small integer
benchmarks, TI’s performance is very poor, two times
slower than TI-int. Apparently, the compiler could not
optimize these benchmarks well after predicting
{ Integer , BigInteger } receivers for the
extremely frequent arithmetic operations.
Of course, the speedup of TI-int relative to TF should
be taken with a grain of salt since TF could handle
arbitrary-precision integers if they occurred whereas
TI-int couldn’t.
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TI-int (type inference without BigIntegers) usually is the fastest
system. TI performs poorly on some benchmarks because the
extra code to handle BigIntegers enlarges compiled methods
and negatively affects other optimizations (see section 3.5 for an
example).

Figure 4. Relative execution time of benchmarks

a “Dispatch” does not imply “call” in our terminology; see section 3.5.

Section Data measured Motivation Main result

3.4 non-inlined sends message inlining is important for performance all systems inline equally well

3.5
number of
dispatchesa

ultimate goal of all optimizations is to eliminate
dispatches (and the associated overhead)

TI-int outperforms all others; TI is marginally
better than TF but sometimes worse (!)

3.6
degree of
polymorphism

reflects improvements in precision of type information
even if it doesn’t lead to complete elimination of dispatch

same as above

3.7
estimated number
of dispatches in
other languages

extrapolate results to other languages where integers and
booleans aren’t objects (e.g., BETA, C++, Eiffel,
Modula-3, Oberon)

type inference eliminates more dispatches
than type feedback (no BigInteger problem)

Table 3: Overview of detailed measurements and results

As we will see later (in section 3.5), TI usually
removes more dispatches than TF, and that is the main
reason for TI’s reduced execution time. SELF programs
typically spend about 15% of their execution time in
type tests implementing message dispatch [Höl94]
which agrees well with the speedups measured here. Of
course, other factors may also contribute to
performance differences (e.g., instruction cache
misses) but a detailed analysis of these effects is
beyond the scope of this paper.

Although execution speed is important, it only
summarizes the final outcome of many interacting
processes. In the next sections we will examine several
performance-related issues in more detail. Table 3
contains an overview of the detailed measurements
presented in the remainder of this section.

3.4 Number of message sends

One of the main goals of optimizing compilers for pure
object-oriented languages is to inline message sends.
How well do type feedback and type inference perform
in this respect? Figure 5 shows that both techniques
inline a large fraction of message sends. For the
smaller integer benchmarks, all configurations inline
virtually all sends; usually, less than 1% of the original
sends remain. In the large benchmarks, somewhat more
non-inlined message sends remain, on average between
4% and 5% of the original sends. The data excludes
non-dispatched calls† since they could be inlined if
desired, but the results are very similar when all sends
are included.

A closer look at the large benchmarks reveals no
striking differences between TF and TI for most
benchmarks—both inline virtually the same proportion
† I.e., sends that do not require any dispatch. Examples include
sends where type inference determined a single receiver class (but
did not inline the send), or implicit-self sends (which require no
dispatch because of customization [CUL89]).
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of message sends on almost all programs. The reason
for this parity in inlining performance is simple: both
systems have enough type information to inline
virtually all sends. Thus, the remaining sends were not
inlined because the compiler estimated that it was not
worthwhile, e.g., because the method was considered
too large. The number of remaining sends is therefore a
function of the compiler’s inlining policy (which was
the same in all systems), and any variations are caused
by factors unrelated to the type information per se.†

3.5 Number of dispatches
A dispatch is the selection of the correct piece of code
for a particular (receiver, message) pair. Even when a
message send is inlined, it may still require a dispatch
if more than one receiver class could occur. In other
words, whether or not a send requires a dispatch is
independentof whether it requires a call. Indeed, most
dispatches select inlined methods, since the vast
majority of message sends are inlined as shown above.
By measuring the number of dispatches that a program
performs, we can determine how successful the
optimizer was in creating monomorphic receiver types
where dispatch can be avoided. We include both
inlined and non-inlined dispatches because both
introduce similar overhead.

† For example, the system using type feedback compiles methods in
different order (since it adaptively optimizes the program [Höl94])
and thus may generate a different set of methods.

Figure 5. Number of non-inlined message sends
relative to unoptimized SELF
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This graphs shows that all systems are very successful at
inlining message sends; often, less than 5% of the original calls
remain. The graph exaggerates the differences between the
systems somewhat since the absolute number of calls is often
small. For example, the seemingly large relative difference in
DeltaBlue represents an absolute difference of less that 90,000
calls (see [AH95]) and thus has very little effect on performance
given the overall execution time.

The SELF system implements all dispatches via type
test sequences which sequentially compare the receiver
against predicted classes. For non-inlined sends, the
type test is part of an inline cache or polymorphic
inline cache [HCU91], and for inlined sends it
surrounds the inlined code (see Section 2.3).

Type inference can determine the exact receiver class
for many sends. Since such sends no longer require a
dispatch, the overall number of dispatches is
reduced.‡ In contrast, type feedback requires a
dispatch test even if it predicts a single class, because
the receiver type always includes the unknown class.
Therefore, one would expect TI-compiled programs to
execute strictly fewer dispatches than TF-compiled
programs (as long as both systems use the same local
analysis to propagate type information within a
compiled method).

Figure 6 shows the number of remaining dispatches in
optimized programs relative to the dispatches
performed in unoptimized programs. At first sight, it
seems to confirm our expectations: on all benchmarks,
TI-int performs fewer dispatches than TF, which
already eliminates two thirds of all dispatches with its
simple local analysis combined with customization and
splitting. On average, TI-int executes 2.5 times fewer
dispatches than TF. TI does not do as well but still
consistently executes fewer dispatches than TF for the
large benchmarks.

Unfortunately, TI’s performance on the integer
benchmarks squarely contradicts our expectations: on
‡ Even when the receiver type contains multiple classes, it may be
possible to eliminate the dispatch if all receiver classes lead to the
same method. Whether or not it is advantageous to exploit such an
opportunity is a non-trivial question (see [DGC95]).
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Figure 6. Remaining run-time dispatches

Note: “dispatch” does not imply “call” but also includes the
dispatch of inlined sends (see text).
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almost all integer programs, TI (i.e., type inference in
the presence of arbitrary-precision BigIntegers)
performs more dispatches than TF. On average, TI
performs 8% more dispatches than TF, andBubble
even shows a disturbing 40% difference to TF (see
[AH95] for detailed numbers). What is going on?

The reason for the additional dispatch tests is subtle
and requires a discussion of some details of the SELF-
93 optimizing compiler. One of the optimizations it
performs ismessage splitting [CU90]. Splitting avoids
dispatches by copying parts of the control flow graph.
In the code shown in the left half of Figure 7, the send
of area  requires a dispatch since its receiver could be
either a circle or a square. Splitting duplicates (or
“splits”) the send and moves the copies into the two
branches where it can be optimized (right side of
Figure 7). To keep code expansion at a reasonable
level, the current system only splits a send if the
amount of unrelated code that needs to be copied
(“other code” in Figure 7) is small.

Figure 8 shows a simplified code segment from the TI
system. The code represents the comparison “i < j”,
and type inference has determined the types of i and j
to be {Integer , BigInteger }. After compiling
the comparison, the compiler encounters a send of
ifTrue: † to the comparison’s result. The compiler
could optimize this send by splitting theifTrue:
message into three copies (two for the integer case and
one for theBigInteger  case), but it elects not to
split because it would have to duplicate too much code.
Therefore, the send ofifTrue:  needs a dispatch
since its receiver type is {true , false }. In the corre-
sponding TF program theBigInteger  branch does
† In SELF, if  statements are semantically message sends.

x := aCircle x := aSquare

Figure 7. Splitting

other code

x := aCircle

inlined code of
“area” method

for circles

x := aSquare

inlined code of
“area” method

for squares

before splitting after splitting

send(x, “area”)

other code other code

In the code on the left, the send ofarea  requires a dispatch
since its receiver type is {Circle , Square }. Splitting copies
the send (and any code between it and the control flow merge
that created the union type) into the two branches before the
merge. There, they can be inlined without a dispatch because the
receiver class is known precisely.

not exist since only small integers occurred in the past.
Therefore, the TF compiler elects to split the
ifTrue:  send since less code needs duplication.
Thus, TF eliminates a dispatch that was not eliminated
in the TI system, and as a result TF performs fewer
dispatches than TI (but not fewer than TI-int which
also splitsifTrue: ). Fortunately, the large and more
realistic programs behave as expected (see Figure 6).

While this particular example is specific to SELF, the
problem is more general and allows us to make two
observations. First, this example shows that the value
of type inference for optimization cannot be discussed
in isolation from other compiler optimizations—in any
compiler, optimizations may interact in unpredictable
(or at least counter-intuitive) ways. Second, the
example illustrates that the precision of the type
information itself isn’t necessarily a good predictor of
performance. In the example, TI has more precise type
information on i and j than TF ({Integer ,
BigInteger } vs. { Integer , unknown }), yet TF
can produce better code since its information includes
data on the relative frequencies of receiver classes.

3.6 Average degree of polymorphism

The previous section discussed how often optimized
programs achieved the optimum of zero dispatch
overhead per send. This section examines the

i < j ?

send(temp, “ifTrue:”, ...)

type of i ?

true

Integer

false

BigInteger

temp := send(i, “<”, j)

Figure 8. Intermediate code
for the expression “i < j” in TI

BigInteger comparison; not in-
lined because code is too big

integer comparison (inlined)

TI compiles both Integer and BigInteger versions of the “less
than” message since it has computed a receiver type of
{ Integer , BigInteger }. The result type is {true ,
false } (in SELF, the two boolean objects have distinct imple-
mentations, e.g., different methods forifTrue: ). Here, the
comparison is followed by anifTrue:  send (as is often the
case) which could be split as in Figure 7. However, the compiler
decides not to split (thus leaving a dispatch forifTrue: ) since
it would have to duplicate too much code. In TF, where the
BigInteger part is replaced by a smaller conditional trap, the
compiler splits ifTrue: , creating a situation where TF
performs fewer dispatches than TI.

temp := falsetemp := true
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“narrowness” of the receiver type information more
generally by measuring the degree of polymorphism
exhibited by dispatches. We characterize
polymorphism by determining thearity of a dispatch,
i.e., the number of possible receiver classes for that
send. With type inference, arity is simply the
cardinality of the receiver type set. For example, a send
with a receiver type of {Integer , BigInteger }
has an arity of 2. With type feedback, arity is the
number of predicted receiver classes for a particular
send, plus 1 for the unknown class. For example, a
send predicted for integers has an arity of 2 since its
receiver type is {Integer , unknown }. A perfectly
monomorphic program will thus have an arity of 1 if
the compiler does a perfect job. However, since
boolean expressions have the type {true , false } in
SELF rather than, say, {Boolean }, conditional tests
may involve dispatches (although splitting eliminates
many of these). Consequently, even “C-style” SELF

programs are rarely perfectly monomorphic.
The arity is averaged over all sends logically
performed by the source program, regardless of how
they are implemented at run time (i.e., whether they are
inlined or not). A send without a dispatch test is
counted with arity 1. Average arity is related to the
compiler’s success in removing dispatches entirely—
programs with many eliminated dispatches will have a
low average arity. However, unlike the black-and-
white measure of the previous section (where a send is
either eliminated or not, with nothing in-between),
average arity reveals more shades of gray. A system
that reduces the average arity to 1.2 is arguably better
than another system with an arity of 1.4 since the first
system’s type information is narrower. Even if both
systems currently eliminate the same number of
dispatches, the first system is likely to eliminate more
dispatches if further optimizations were introduced.
Figure 9 shows the average arity of message sends in
the benchmark programs. Since 1 is the lower bound
on arity, the y axis starts at 1 instead of 0. TI-int’s arity
is about two times closer to the ideal (1.0), but TI’s
arity is only slightly lower than that of TF. In other
words, type inference significantly reduces the degree
of run-time polymorphism over TF, but only if
arbitrary-precision integer arithmetic is disabled. The
results roughly mirror those of Figure 6 (remaining
dispatches), where TI-int removed twice as many
dispatches as TF.

An average arity of 1.2 for the integer programs may
seem very high, indicating that many sends required a
dispatch even in the optimized programs. SELF

programs are unusually polymorphic since many
common idioms involve polymorphism. Four cases
deserve mentioning: integer arithmetic may overflow
into BigIntegers, booleans are polymorphic (i.e.,true
andfalse  have two distinct classes),nil  is an object
rather than a special value (so that a reference
containing eithernil  or a Point  is polymorphic),
and strings come in three varieties (canonicalized
strings, mutable strings, and byte vectors). Thus, SELF

programs probably stress type inferencers more than
programs written in other languages. CParser’s arity is
especially high because it builds a parse tree with 200
different classes of nodes, one per non-terminal in the
C grammar, using 300 different classes of action
objects, one per production in the C grammar.

3.7 Extrapolating to other
object-oriented languages

All data presented so far is specific to SELF, in which
even integers are objects. How relevant is this data to
other object-oriented languages such as C++, Modula-
3, or Oberon? An accurate answer, of course, can only
be obtained by reimplementing type inferencer,
compiler, and benchmarks in those other languages.
Since this task was beyond our means, we instead used
the SELF system to shed some light on this question by
excluding dispatches that wouldn’t occur in other
languages, namely dispatches on integers, floating-
point numbers, blocks (closures), booleans, andnil .
By excluding these dispatches, we simulate a
hypothetical SELF-like language, SELF++, in which the
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Figure 9. Arity of type tests
This graph shows the average arity (i.e., degree of polymor-
phism) for all message sends, whether they have been inlined or
not. (A send requiring no dispatch has an arity of one.)
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basic data types are non-objects and operations on
them are non-dispatched. Consequently, it would be
impossible in SELF++ to write a polymorphic method
that accepted either an integer or a user-defined
BigInteger  object as the argument. While we do
not claim that SELF++ bears much resemblance to any
real object-oriented language, it provides at least an
indicator of how much the data presented so far might
be biased by our use of SELF as the experimental
vehicle. To clarify the discussion, we will call
dispatches involving primitive objects (integers,
floating-point numbers, booleans, and nil) “SELF”
dispatches and all others “SELF++” dispatches.
Figure 10 shows that SELF’s object model is
responsible for a significant fraction of all dispatches.
Typically, about half of all dispatches are SELF

dispatches in the large benchmarks, and virtually all
dispatches are SELF dispatches in the small integer
benchmarks. In other words, unlessnil , true ,
false , etc. are considered objects, the small integer
benchmarks are completely monomorphic, procedural
programs. The larger programs show a clear difference
between unoptimized programs (which have a small
fraction of SELF++ dispatches) to TF and TI. This
difference is a result of inlining and splitting: in both
TF and TI, most control structures are inlined,
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Figure 10. Dispatches in SELF++ relative to SELF

This graph shows the “SELF++” dispatches of programs, i.e.,
those that are not caused by SELF’s pure language model that
treats even “primitive” data (integers, floats, booleans, and nil)
as objects. For example, about 90% of the dispatches in unopti-
mized Small programs involve primitive data, so that only about
10% of the dispatches would remain in an unoptimized program
written in a hypothetical SELF++ language that treated primitive
data as non-objects. Note that each bar is relative to its system:
for example, a value of 30% for both TF and TI doesnot mean
that TF and TI would perform the same absolute number of
dispatches—it means that in both systems the number of SELF++
dispatches would be reduced to 30% relative to the SELF system.
The RSA benchmark uses mixed-mode arithmetic (adding
integers to BigIntegers) and thus wouldn’t run in SELF++.

eliminating many dispatches to block objects that exist
in unoptimized code. Furthermore, splitting eliminates
many dispatches on boolean results (e.g., inif
statements). Thus, unoptimized code has many
“trivial” dispatches in SELF, and since none of them
would occur in SELF++, dispatches in unoptimized
code are reduced much more when going from SELF to
SELF++ than in TF or TI where many of those trivial
dispatches are optimized away. While Figure 10 also
hints at a difference between TF and TI (with TI
having a higher fraction of SELF++ dispatches), a
closer look at the data reveals that while TI’s variance
is much higher, its mean and median aren’t that
different from TF (see [AH95]). Based on this
observation, we do not believe that the data indicates a
significant difference between TF and TI in this
respect.
How well would TF and TI perform in the hypothetical
SELF++ system? One measure is the fraction of
dispatches eliminated relative to unoptimized code.
Figure 11 shows optimization effects for the SELF++
system that are quite different from those seen for the
SELF system. For SELF++, both TF and TI are less
effective in reducing the number of dispatches
executed than they were in SELF. TF executes a median
61% of the dispatches executed by unoptimized
programs, up from 34% in SELF, an increase of a factor
of 1.8. Similarly, TI reduces dispatches to 23% of the
unoptimized dispatches instead of 14% in SELF, an
increase of a factor of 1.6. Apparently, dispatches to
integers, boolean, and the like are easier to eliminate
than dispatches to other objects. While TF’s
performance is fairly uniform, TI displays bimodal
performance characteristics: it does very well on some
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Figure 11. Remaining run-time dispatches in SELF++
This figure is equivalent to Figure 6, except that all dispatches
involving primitive objects integers are excluded. (As in all
other places, “dispatch” does not imply “call”—see section 3.5.)
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Characteristic Type Feedback Type Inference

Responsiveness
incremental, sub-second pauses; suitable for interactive
systems

“batch style”, multi-second to multi-minute pauses, not (yet)
suitable for interactive systems

Performance
may perform poorly if statically compiled with non-
representative profile data

may perform poorly without dynamic information

Application
delivery

only need to generate compiled code for cases that
actually occur

compiled code can cover all cases

may need compiler or interpreter at runtime can generate self-contained executable

may need source code (or equivalent) at run time no need to keep around source code

Generality handles entire language; supports extensible systems
cannot handle entire language; may not scale to very large
programs; doesn’t support extensible systems

Implementation can use same compiler for both development and delivery
probably needs two separate compilers (one for devel-
opment, one for delivery)

Table 4: Main characteristics of type inference and type feedback

programs (Diff, SParser, and PrimMaker) but
considerably worse on others (CParser and Richards).
These results are only a rough extrapolation based on
particular implementations of TF and TI and on a
particular programming style. Based on the above data
and our intuition, we predict that type feedback and
type inference for languages like C++, Modula-3, or
Oberon will behave as follows:

• Type feedback will remove relatively few
dispatches but will inline as many virtual calls as
desired. (Recall that “dispatch” does not imply
“call”, see section 3.5.)

• Concrete type inference may be spectacularly
successful in some programs but less so in others.
In general, it will eliminate more dispatches than
type feedback (but inline about the same number of
calls).

• If the type of a frequently-executed expression is
de facto monomorphic but theoretically
polymorphic (as in SELF’s integer-BigInteger
arithmetic or in a statement like “if
unlikely_condition then return errorObj else return
obj”), type inference may not perform well without
information on receiver class frequency.

Of course, measurements of actual implementations of
the two techniques for other object-oriented languages
are needed to substantiate these predictions. We hope
that the results presented here can be used as a starting
point for similar investigations of other object-oriented
languages.

4. Discussion
While raw execution speed is often an important
consideration, and an easy one to quantify, other
factors will also influence the choice between type
feedback or type inference. Indeed, since our
measurements indicate that both can deliver
comparable and high performance, these other factors
will likely decide the outcome. In this section we
discuss the most important advantages and disad-
vantages of both kinds of systems in a broader context.
Table 4 outlines the main characteristics that will be
discussed in more detail below.

Compilation time—providing high responsiveness.
When type feedback was developed for SELF, a major
goal was to bless the programmer with high
performanceand the absence of compilation pauses.
The goal was met largely due to the incremental nature
of type feedback: type information is computed
gradually and methods can be compiled one at a time
(after inline expansion, of course) [HU94b]. On the
other hand, the style of type inference used in this work
is fundamentally a global analysis: the unit analyzed is
an entire program. Obviously, inserting a global
analysis into an edit-compile-run loop (or the edit-
continue loop of the SELF system) will not go
unnoticed by the programmer.

The SELF type inference system supports incremental
recomputation of the types when a previously analyzed
program is modified locally [Age95]. While an
incremental re-analysis is often an order of magnitude
faster than a full analysis, it is still slower than the
typical sub-second compile pauses of type feedback.
Unfortunately, our experimental type-inference-based
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compiler does not carry the incrementality through (as
described in section 3.1), so we have not been able to
quantify how well an incremental type-inference-based
system may support an interactive environment. For
these reasons, we consider type feedback the safer bet
if interactiveness is a top priority.

Finally, while the type inference system is quite fast
(using at most a few minutes of CPU time for the
largest programs we measured), it needs considerable
amounts of memory during extraction. For example,
the largest programs measured here consumed about 80
Mbytes of memory during the type inference and
extraction steps (out of these 80 Mbytes, the standard
SELF system in which the inferencer runs accounts for
approximately 32 Mbytes).

Consistent performance. Both systems may
occasionally display poor performance. If type
feedback is implemented statically (i.e., without run-
time compilation), the quality of the generated code
will depend on the quality of the training runs that
supply the type feedback information, i.e., how closely
these runs represent typical usage. Similarly, the static
nature of type inference may lead to poor performance
if very few of the statically predicted cases actually
occur at run time. BigInteger arithmetic is a prime
example of this problem: most arithmetic never
overflows, but the type inferencer cannot prove this.
For the small integer programs in our benchmarks, the
missing dynamic information led to a slowdown of a
factor of two over TI-int (recall Figure 4). For
consistently good performance, it may therefore be
necessary to combine type inference with profile data
in order to recognize such cases. However, arbitrary-
precision integer arithmetic represents a worst-case
scenario for type inference since integer arithmetic is a
very frequent operation (e.g., everyfor  loop includes
it). In general, missing frequency information may
therefore have a smaller impact than shown in TI (this
is the reason why we included TI-int in the study).

Application delivery. Type inference gives
conservative and sound estimates of the types, and thus
accounts for all cases that may possibly occur during
any execution of the program. The complete
information makes it possible to compile the entire
program and ship an application as a stand-alone
executable. In contrast, type feedback can at any given
time “only” deliver type information that covers cases
that have occurred hitherto; new cases may occur at
any time in the future. At run time, an application must

therefore have access to a compiler or interpreter to
handle residual cases which were not encountered
during the type feedback training runs, or it must
include general compiled code for the entire
application. That is, for each piece of optimized code
(which handles only the frequent cases) the application
must also include a less optimized version that can
handle any type.

If the type profile obtained during type feedback
training runs accurately reflects typical application use,
unpredicted cases will occur only rarely and can
probably be handled efficiently by an interpreter.
Including an interpreter may save code space since a
byte-coded representation of an application can be
much more compact than general (unoptimized)
machine code. However, if a user stresses an
application in unforeseen ways and heavily exercises
code that was not optimized for that particular case, the
resulting performance could be poor. For example, an
application part optimized for graphical objects with
integer coordinates would have to be interpreted if the
user’s objects contained floating-point coordinates.
With an adaptively reoptimizing compiler like the
SELF-93 compiler, the delivery runtime system could
efficiently handle such cases, but such a compiler of
course occupies more space than a simple interpreter.

Application size. While we could not quantify how
much larger the compiled code generated by a type
inference based system will be, it is likely to be bigger
than in a type feedback based system. With type
inference, the code is based on a conservative estimate
of program flow which is guaranteed to include all
possible execution paths but which may also include
paths that cannot be executed (after all, type inference
can only approximate the true program behavior). Type
feedback based systems, in contrast, contain code only
for paths that were actually executed, i.e., for only a
subset of all possible program executions. (Programs
do include additional checks and trap instructions to
cover unexpected cases [Höl94], but this code
contributes little to the overall code size.) To cover all
other executions, a type feedback system needs to
include general code for the entire application, or an
interpreter or compiler at an additional space cost of as
little as 20 Kbytes for a Smalltalk byte-code interpreter
[Kra83] or as much as 800 Kbytes for an optimizing
compiler [Höl94]. For smaller applications, the fixed
cost of the interpreter or compiler will tilt the scales
toward type inference, whereas larger applications will
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tend to favor type feedback. Since so many different
aspects influence space usage, we are not convinced
that either system is inherently more space-efficient.

Of course, type inference can significantly reduce
program size through its use in program extraction
[AU94]. However, program extraction is performed in
a separate step and can easily be used for application
delivery with a type feedback based system (in fact,
this is what our experimental implementation does).

Source code protection. Since an executable
generated with the help of type inference is complete, it
need not include the application’s source code or any
source code equivalent such as byte codes. Since
optimized code usually represents a fairly thorough
obfuscation of the original source code, an application
is well protected against reverse engineering or source
code theft. A type feedback system based on dynamic
compilation needs a source code equivalent to execute
new cases as they occur. Since typical byte codes are
fairly high-level, an approximation of the original
source code can be generated easily, and thus source
code isn’t as well protected.

If type feedback is combined with static compilation as
discussed above, no compiler or interpreter is needed at
runtime, and thus source code is well protected.

Generality. Although type inference systems for
object-oriented languages have made much progress in
recent years, they are still unable to effectively handle
certain language constructs (and indeed there is little
hope they ever will). Most of these limitations relate to
reflective operations such as constructing new classes
at runtime or sending messages whose names are
computed at runtime (“performs”). For programs using
these features extensively, type inference may not be
effective. Furthermore, we currently have no
experience with type inference on very large programs
(say, a few hundred thousand lines of code), and thus it
is unclear how well type inference will scale to such
programs.

Static analysis techniques like type inference require
knowledge of the complete program, which can be a
serious problem in today’s extensible application
environments. For one, many programs are
dynamically linked, so that the exact implementation
of the dynamic link library is not available until run
time (its interface is known but of limited help to
concrete type inference unless it contains concrete type
information). Furthermore, many programs are
extensible, i.e., allow the user to dynamically link in

application extensions provided by third parties.
Adapting concrete type inference to work in such an
environment remains a major technical challenge.

5. Related work
Type inference for dynamically-typed object-oriented
languages has been an active field since the early
eighties. Suzuki pioneered the field in the Smalltalk
community [Suz81]. Similar to our work, he used sets
of classes as the basic types and had the same goal of
eliminating dynamic dispatch to improve execution
efficiency. His type inference system was an adaptation
of Hindley/Milner style type inference, extended with
support for assignable variables, union types, and—
most importantly—an iterative analysis technique to
handle dynamically dispatched sends. Unfortunately,
Suzuki was unable to fully implement his system
within the limited heap space of Smalltalk-76 and only
managed to test a simplified version of the inference
algorithm on some of the number classes.
The Typed Smalltalk project [JGZ88] incorporated a
type inferencer for Smalltalk which relied on explicit
type declarations inserted by the programmer; these
types were specified as sets of classes. (A second, more
abstract kind of type was provided for type checking
but was not used by the compiler). Unfortunately, the
system was not completed and the only published
performance data concerned very small integer
programs similar to our Tiny benchmark set.
More recently, Palsberg and Schwartzbach described a
constraint-based analysis system for a Smalltalk-like
toy language [PS91], which was improved and
implemented in cooperation with Oxhøj [OPS92].
Palsberg and Schwartzbach suggested the use of their
types for optimization but did not implement such a
system. The type inferencer used here is a further
development of the ideas originally proposed by
Palsberg and Schwartzbach.
Plevyak and Chien independently improved Palsberg
and Schwartzbach’s algorithm and applied it to
Concurrent Aggregates (CA), a concurrent, single-
inheritance, dynamically-typed object-oriented
language [PC94a]. Their system employs an iterative
analysis which in each iteration uses the types from the
previous iteration to guide the analysis. The inference
algorithm can clone classes during analysis to obtain
high precision on code with data polymorphism. (Our
algorithm is less precise in this regard. It only clones
classes based on observing initial values of their
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instances). Plevyak and Chien’s type inferencer has
been used in the CA compiler to eliminate dispatches
in the (non-object-oriented) Livermore Loops [PZC95]
and in object-oriented CA programs [PC94b, PC94c].
In the latter two studies, the compiler was able to
completely eliminate dynamic dispatch in six of the
nine benchmark programs. Because of language and
application differences (in particular, different
treatment of booleans, integers, and nil), it is hard to
compare these results to the results presented here or to
estimate how well type feedback would perform in the
CA system.

Recently, Pande and Ryder have made progress in
extending data-flow techniques to C++ [PR94]. The
main goal of their work is to extend data-flow analysis
techniques to solve static analysis problems for C++.
They state—and we agree—that the first problem to
solve is that of computing concrete type information,
since without it, many other analyses fall apart due to
the lack of precise control-flow information for virtual
calls (i.e., dynamically dispatched sends). Similar to
Palsberg and Schwartzbach, Plevyak and Chien, and
the present system, Pande and Ryder’s analysis starts
with a control flow graph without virtual invocations
which is subsequently updated whenever new virtual
methods become invocable during type propagation.
For C++, type inference is both harder and simpler
than, say, for SELF. It is harder because C++ is not
type- and pointer-safe and has many language
constructs that are difficult to handle. It is simpler
because C++ does not have user-defined control
structures, closures, or dynamic inheritance.

Traditional data-flow analysis techniques cannot be
straightforwardly applied to object-oriented languages
because the existence of a control-flow graph is
assumed prior to analysis. The strength of the analyses
mentioned above ([PS91, PC94a, PR94, and Age95]) is
that they acknowledge this problem up-front and solve
a combined control-flow and data-flow problem. Vitek
et al. demonstrated that this can also be achieved in a
data-flow framework [VHU92]: for each program
point, they computed an abstract object graph, a suffi-
ciently detailed approximation of the full program heap
to allow simulation of lookups. However, no data was
given about the effectiveness of this approach.

The SELF-91 compiler used iterative type analysis to
eliminate dispatches [CU90]. Like the SELF-93
compiler used here, its analysis was local, i.e.,
restricted to a single method and the methods inlined in

it. However, its local analysis was significantly more
powerful than the simple analysis used in SELF-93.

SELF compilers were the first ones to use type feedback
for object-oriented programs [HCU91], [HU94a].
Other systems have used some form of runtime type
information for optimization. For example, Mitchell’s
system [Mit70] specialized arithmetic operations to the
run-time types of the operands (similar to SELF-89’s
customization [CUL89]). Similarly, several APL
compilers created specialized code for certain
expressions (e.g. [Dyk77, GW78, Joh79]). The HP
APL compiler [Dyk77] specialized compiled code
according to the specific operand types (number of
dimensions, size of each dimension, element type,
etc.). This so-called “hard” code could execute much
more efficiently than more general versions since the
cost of an APL operator varies greatly depending on
the actual argument types. If the code was invoked
with incompatible types, a new version with less
restrictive assumptions was generated (so-called “soft”
code). Grove et al. [Gro95] describe a compiler for the
object-oriented language Cecil that uses type feedback
in combination with static compilation to eliminate
dynamically-dispatched calls.

Dean et al. [DGC95] eliminate dynamic dispatch with
a simple class hierarchy analysis that detects situations
where a method has no overriding definition in any
subclass of the sending method holder. Their study is
the only other study we are presently aware of that
compares a static analysis technique, class hierarchy
analysis, to a dynamic technique, type feedback. In
contrast to our study, type feedback clearly
outperformed class hierarchy analysis in the Cecil
system; this discrepancy can be explained by the more
powerful analysis performed by TI.

6. Conclusions
Both type feedback and concrete type inference are
valuable techniques for optimizing object-oriented
programs. We have presented a detailed comparison of
these two techniques. To our knowledge, this is the first
in-depth comparison of a static and a dynamic
optimization technique for object-oriented programs.†

Our comparison is particularly interesting for two
reasons:
† The only exception being section 3.3 of [DGC95] which contains
some quantitative data of a comparison of type feedback and class
hierarchy analysis.
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• First, it is direct, because we eliminated other
effects by using two identical compilers except for
their source of receiver class information.

• Second, it isrealistic, since the compared systems
are high-quality implementations. Both are based
on the SELF-93 system which has been shown to
provide excellent performance compared to a
commercial Smalltalk implementation [HU94a].

Although the quantitative results are specific to SELF,
they may nevertheless be interesting to implementors
of other languages. An experiment with SELF++, a
hypothetical SELF-like language treating integers and
other primitive data types as non-objects (as do, e.g.,
Beta, C++, Eiffel, etc.), indicated that the relative
effectiveness of type feedback and type inference in
such a system could be quite similar.

The specific quantitative results of this study include
the following:

• Both techniques can deliver high performance and
typically inline more than 95% of all sends in our
suite of 23 SELF benchmarks. With the exception
of arbitrary-precision arithmetic, the median
performance of all systems differed by only 15%.

• Information about the run-time frequency of
receiver classes is important for performance, as
was demonstrated most clearly by SELF’s arbitrary-
precision integers where type inference could not
rule out the possibility of arithmetic overflows
whereas type feedback could quantify them as
infrequent. Consequently, small integer-intensive
programs compiled with type inference (TI) ran
two times slower than with type feedback (TF). It
should be noted, though, that arbitrary-precision
integer arithmetic represents a worst-case scenario
for type inference, sinceBigInteger  occurs
everywhere arithmetic is performed (e.g., loop
counters). For larger programs less dominated by
arithmetic, this shortcoming of type inference had
a smaller overall effect.

• Without arbitrary-precision integer arithmetic, TI-
int performed 2.5 times fewer dispatches than TF
and improved performance by a median 15%. With
arbitrary-precision integer arithmetic, TI
performed 1.3 times fewer dispatches than TF on
the large benchmarks but on some integer
benchmarks performedmore dispatches than TF.

Both techniques have their strengths and weaknesses.
Type inference can reduce the number of dispatches

executed (but may also increase them—see
section 3.5), works statically (without any dependence
on run-time information), and can produce complete
executables so that no compiler or interpreter need be
present at run time. On the downside, it may perform
poorly in some situations (see above), is not yet
suitable for interactive use, and does not support
extensible programs. Type feedback is well suited to
interactive systems, provides consistently high
performance, and scales well to large and extensible
systems. On the other hand, it usually executes more
dispatches, depends on run-time information (and
representative profiles, if using static feedback), and
introduces run-time overhead for (re-)compilation or
interpretation if using dynamic feedback.
An interesting direction for future work is to combine
type feedback and type inference. The strengths and
weaknesses of the two techniques are largely comple-
mentary, and thus either system might be able take
advantage of the strengths of the other. For example, it
might be possible to build a system where type
feedback is in control but uses type inference to extend
the analysis from the current local scope to a larger
scope (i.e., beyond inlining), or a system where type
inference is in control but defers analyzing certain
cases until type feedback has revealed that they may
occur. Finally (and most simply), a type inference
based compiler could use dynamic profile information
to select the cases to be inlined, rather than treating all
cases as equally likely.
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