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Abstract: Two promising optimization techniques for than procedural programs. The frequent calls,
object-oriented languages are type feedback (profilecombined with the scarce opportunities for traditional
based receiver class prediction) and concrete typcode optimizations, can lead to poor run-time
inference (static analysis). We directly compare the¢performance.

two techniques, evaluating their effectiveness on Thus, the key to efficient implementation of object-
suite of 23 &LF programs while keeping other factors oriented languages is to eliminate dynamically-
constant. dispatched calls by statically binding or inlining them.

Our results show that both systems inline over 95% cHowever, to inline a dynamically-dispatched call, the

all sends and deliver similar overall performance witrcompiler must know the exact target of the message
one exception: 8.Fs automatic coercion of machine send. Unfortunately, the method being invoked is often
integers to arbitrary-precision integers upon overflonunknown, even in statically-typed languages. Consider
confounds type inference and slows down arithmeticthe following C++ code fragment:

intensive benchmarks. GraphicalObject* obj;

We discuss several other issues which, given th
comparable run-time performance, may influence th

choice between type feedback and type inference. ~ Despite the type declaration, a C++ compiler cannot
statically bind thenoveTo call because the compiler

. does not know the object’s exact class (e.g., whether it
1. Introduction is an instance of class Point or class Rectangle), and

The dynamic dispatch present in object-orientedhus it cannot (in general) determine whether
languages impairs many static code analysis anfOint:moveTo  or Rectangle:moveTo  will
optimization techniques because they rely on staticallP® invoked. Recently, however, two techniques have
knowing a program’s call graph. Thus, calls not OnWemerged Whlch promise to enable better o_p'glmlzatlon
slow down the program through the calling overhea®f dynamically-dispatched calls by providing the
per se but also through optimization opportunitiescomp”er_ with precise information about the class of
destroyed by dynamically-dispatched calls. To makdhe receiver:

matters even worse, object-oriented programs tend 1 * Type feedbacknonitors previous executions of the
contain more calls at the source level than proceduri  program to determine the set of possible receiver
programs since the object-oriented programming styl ~ classes, and

encourages factoring code into small pieces to obtai * Concrete type inferenceomputes the set of
fine-grained reuse. Because traditional compilers ar  possible receiver classes by analyzing the
unable to remove message sends, object-oriente  program’s source code.

programs usually exhibit a higher calling frequencya priori, each technique can potentially outperform the
other in its ability to support optimization of object-
oriented programs:

6bj->moveTo(0, 0);
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» Type feedback may generate better code becauseimplement the expected message protocalFS pure
takes into account the relative frequencies osemantics result in very frequent message sends; in this
receiver classes rather than treating them all arespect, SLF is even harder to implement efficiently
equally likely. than Smalltalk.

» Type inference may generate better code because

o : 2.2 Terminology
can completely eliminate dispatch for some o
message sends. The term “type” commonly refers to several distinct

concepts, such as abstract types (interfaces), concrete

Previous studies have reported the effectiveness of t . ) )
P y[types (implementations), or sets of classes. To avoid

inference and type feedback (e.g., [PC94a] an ol nfusion il the followin
[HU94a]) but direct comparisons have been impossiblwloossI € contusion, ~we will - use € foflowing

because important other factors were different!€rminology throughout this paper: |
including  programming  language,  compiler * A classis a data structure that exactly describes the

technology, and choice of benchmarks. The maii iMmplementation of its instances, i.e., their size,
contribution of this paper is a detailed comparisor ~layout, and the implementations of all methods
which is: defined for that class. Each object has exactly one

. class, and all instances of a class share the same
« direct, because we have been able to connect bor

. implementation.
type feedback and type inference to the sam P .
compiler back end, use the same run-time systen Classes need not be visible at the language level.

and execute the same suite of benchmarks in bo  FOr example, &LF, the language used in this study,
cases: and is prototype-based and has no notion of classes in

the language. Nevertheless, the implementation
maintains internal descriptors to keep track of each

implementations of these concepts (the underlyin object's layout and methods, and these descriptors

SELF-93 system has been shown to significantly ~ '€ equivalent to what we term “class” here.
outperform commercial Smalltalk implementations * A typeis a set of classes, possibly including the
[HU94a]). unknown class. Thus, a type likePdint }
denotes “an object of class Point” whereas
{Point , unknown} denotes “an object of class
Point or any other class”. The latter kind of type,
though theoretically equivalent taifknown }, is
used by type feedback for reasons that will become
clear shortly.

The remainder of this section briefly reviews type
feedback and type inference; both techniques have
been described in more detail elsewhere ([HU94a,
Ho6194, Age94, Age9d5s)).

« realistic, because both the type feedback syster
and the type inferencer represent high-quality

In the remainder of this paper, we briefly summarize
the two techniques (section 2), quantitatively compar:
them step by step (section 3), and qualitatively discus
their relative strengths and weaknesses (section 4). V
then review related work (section 5) and finally offer
our conclusions (section 6).

2. Background

21 &ELF

SELF [US87] is apure object-oriented languagall 2.3 Type feedback

data are objects, and all computation is performed viThe key idea of type feedback is to extract type
dynamically-bound message sends (including alinformation from previous executions and feed it back
instance variable accesses, integer arithmetic, arto the compiler (Figure 1). This feedback can happen
control structures likef andwhile ). SELF merges  dynamically (i.e., while the program is running) or

state and behavior: syntactically, method invocatiorstatically (after execution completed, as in traditional
and variable access are indistinguishable—the Sendprof”e-based optimization)_ Type feedback uses an
of a message does not know whether the messageinstrumented version of a program to record the
implemented as a simple data access or as a methqprogram’s type profile, i.e., a list of receiver classes
Consequently, all code ipresentation independent (and, optionally, their frequencies) for every single call

since the same code can be reused with objects site in the program. Therefore, it is also called profile-
different structure, as long as these objects correcthased receiver class prediction. To obtain the type



inlining. For example, when inlining the sefom: 1

p;gg{gg‘ the compiler will keep track of the fact thfdo s
\ argument is the integer 1. On the other hand, when
optimization compiling the statementg i. iti + | the
compiler eXfOCUrtg‘r?q'e compiler will testj s class even if a simple dataflow
type information Prog analysis would reveal thatis equal td .

2.4 Type inference

With type feedback, the optimizing compiler uses “type profile” concrete type inference Or constraint-based analysis
information gleaned from previous executions to specialize [PS91, APS93, PC94a], unlike type feedback, does not
code to the frequently occurring receiver classes. rely on executing the program. Given the program
source, this global analysis will statically compute a
type for every expression in the program. The types, as
. ) : in type feedback, are sets of classes, but unlike the
mfor_matlon, eg. by kegplng a table of ObS‘ervectypes obtained by running an instrumented program,
receiver classes per call site. the types computed by type inference safeapproxi-
Based on the type feedback information, the compilemations and never include the unknown class:
car pret ke veceivercasses For e, 190" . te type (Clss , Class ;... Clss ) i
inferred for some expression E, it is guaranteed

Ptc))_|n>t ' tt]re Ocoompner. (t:OltJrl]d ftrl]alns_form c;[h.e call that duringany execution of the progranevery
obj->moveTo(0, 0) Into the Toflowing code- time E is evaluated, the result is an object of

if (obj->class == #Point) { Class 4, Class o, ..., orClass ;.
/* inlined copy of Point::moveTo */

Figure 1. Overview of Type Feedback

profile, the standard method dispatch mechanism |
extended in some way to record the desirec

obj->X = obj->y = 0; The key idga in type inference, and_ong that sets it apart
}else { from traditional data flow analysis, is to compute
* handle non-Point case here */ control flow and data flow information simultaneously.
} This coupling is necessary to analyze dynamically

For Point receivers, the above code sequence wildispatched sends precisely, because:

execute significantly faster since the original virtual « to determine the methods a send may invoke, the
function call is reduced to a simple load instruction anc  possible classes (the type) of the receiver must be
a comparison. Inlining thenoveTo method not only known, and

eliminates the calling overhead but also enables th , {4y determine the type of a send, the methods it may
compiler to optimize the inlined code using dataflow  jnvoke must be known.

information particular to this call site. . , o .
_ , _ Figure 2 shows a typical situation during type
The implementation of type feedback in theLS93  irference. A sendpbj->moveTo(0,0) , is being

optimizing compiler has been described elsewherypna\y7eqd. Previous inference has determined that the
([HoI9_4, HU94}a]_). With type feedback, theel$-93 . receiver expressiomgbj , may evaluate to &oint
compiler can inline more message sends and achi€ypiact 5o the send is analyzed by connecting it to a
better performance than previous compilers [HU94a]tempIate for the Point moveTo method. A

For example, B.F-93 executes a suite of three jompiate represents the control and data flow within a

medium-sized (400-1,100 lines) and six largemathod. If the method contains sends, these will be
(4,000-15,000 lines) programs 1.5 times faster than th.q nected to other templates. When a send is

SELF-91 compiler [HU94a]. For two medium-sized connected to a template, the types of the actual
programs that are also available in Smalltali,FS93 arguments, in this case simplyinfeger }, are

is about three times faster than ParcPlace Smalltalk. propagated into the corresponding formal arguments in
In contrast to a type inference system (and to previotthe template. The type returned by the invoked method
SELF systems), B.F-93 performs very little dataflow is determined by propagating the formal argument
(or typeflow) analysis in an effort to keep the compileitypes through the template to its output. Finally, the

small and fast. The compiler only performs trivial result type of the template becomes the type inferred
propagation of result and argument classes durinfor the send connected to it.



polymorphic code precisely the different uses should
be kept distinct. To accomplish this, our type inference
algorithm is polyvariant i.e., may analyze each
method more than once. Expressed in terms of
templates, polyvariance means that several templates
are created for a single method, with different sends
resul invoking the method being routed to different
templates. Several polyvariance strategies, varying
type of result = Point} widely in precision and efficiency, have been proposed;
see [Age94] for an overview. The strategy used in this
Figure 2. A send is analyzed by connecting it to paper, the Cartesian product algorithm[Age95],

a template for the invoked method. computes the Cartesian product of the actual argument

As type inference proceeds, new classes of objects mitypes and analyzes each combination separately.

be found to be possible receivers of previously _

analyzed sends. For example, the type inferencer m2-5 Summary and Comparison

discover an assignment oR&ctangle object to the Both type feedback and type inference operate with
variable obj . Subsequently it must be assumed thatypes that are sets of classes, and both systems produce
the sendobj->moveTo(0,0) can invoke either types that are approximations. However, the approxi-
Point:moveTo  or RectanglezmoveTo . This  mations differ in nature. Type feedbaakderestimates
situation is handled by connecting the send tihe exact types, i.e., computes lower bounds—no
templates for both of these methods and collecting thmatter how long a given expression is observed, the
result types from each of them, as shown on Figure 3.possibility that it may yield an instance of a new class
Type inference starts in a designatedin method next time remains. Type inference, on the other hand,
(equivalent to themain() function in a C program) overestimateshe exact types, i.e., computes upper
and from there traces sends to other methods, creatibounds. Type inference simply must approximate to
templates for these as they are encountered, aremain computable. For example, finding the exact
recursively processing their sends. Eventually, whetype of this conditional statement is hard (or at least
all possible method invocations have been analyzewas until recently):

type inference is complete and a type is available fc
every expression in the program.

P'olymorphlsm increases code reuse by a_IIowmg The lower bounds versus upper bounds distinction has
piece of code to work on several kinds of objects. Fo,

. important consequences for how the types can be
example, a sort routine that can sort any vector c P g yp

. . o . applied during compilation. We discuss this issue in
< :
objects implementing<” is polymorphic. To analyze sections 3 and 4.

obj->moveTo(0,0)

Point::moveTo
template

if “Fermat’s last theorem is true”
then point else rectangle;

The other major difference between type feedback and
_ type inference is that the former dynamic i.e.,
;%r:;;tgovem - ReCtang'e;:eTnoF;’lzt? requires the program to be executed, whereas the latter
X y X y is static. This difference also has consequences for the
system as a whole, as will be discussed in section 4.

obj->moveTo(0,0

3. Quantitative evaluation

resul resul

type of result = foint , Rectingle ) 3.1 Implementation overview

. . _ To assess type feedback, we used an essentially
Figure 3. Send invoking several methods unmodified version of the currenti$: system which

When a send invokes several methods, it is connected to ajs based on theERF-93 compiler [HU94a]. To enable

template for each of them, and the send’s type is obtained as the . .

T the templates’ result types. yp an unbiased comparison, we made sure that the

compiler used exactly the same optimization




parameters and heuristics as the type inference basmeéssages. All other optimizations usually performed
compiler described next. by the &LF compiler (such as customization, splitting,

To assess type inference for optimization, weCOPY Propagation, etc.) are performed as usual.

combined and extended two existing systems: a typWhenever the compiler has a choice between using the
inferencer and application extractor written igL§  information obtained from the type inferencer or its
and the 8LF93 compiler written in C++. The own information (obtained, for example, by simple
interface between the two systems is a “snapshofocal propagation or by optimizations such as constant-

(image) containing a type-annotated benchmarffolding), the compiler chooses the more precise
program. information. For example, the compiler might know

, . o , . that the result of the expression 3 + 4 is the constant 7
We first modified the application extractor, described ir .
[AU94], to output benchmark programs together With(anOI thus of typelfiteger _}) whereas type inference
. . . . : would give the type aslfteger , Biginteger }.
their type information. The normal functionality of the . ,
: . ) . Thus, the type inferencer benefits from the same local

extractor is to identify a set of methods and objects thi :

- : S . analysis that the standard system uses, so that the two
are sufficient to run a given application and write then : i

o can be fairly compared.

out as &LF source code. The modified extractor

additionally annotates each object with its “group |D,”TW° Iimitatiqns currently affect thg type i.nference
an integer representing the object’s class. Al objectbased compiler. TheESF_thuaI mac_:hlne requires that
with the same group ID are guaranteed to have thall methods be customized to their receiver [CUL89];

same implementation as far as theLs virtual thus, methods will be customized to a specific receiver

machine is concerned. Furthermore, each method €ven if the type inferencer does not require it. Also,
annotated with a “method ID,” an integer serving as afacking support for multiple dispatch means that the

index into an array of method templates. Each methocOmpiler must merge method templates that differ only

template is a vector describing the inferred type for thi their argument types.
method receiver, its result, and each of the expressi0|3 2 Benchmarks and systems

in the method. In the extracted format, a type is | h lati ; ¢ in
represented as a vector of group IDs. The extract('© €valuate the relative performance of type inference

places all of these data structures at the end of the fid"d type feedback, we executed a suite of 23

containing the program source itself. Finally, trers ~ Penchmarks (see Table 1). The benchmark programs
virtual machine is invoked to convert the source file (2" Pe divided into three groups:

a binary snapshot containing all the objects, method: * “Tiny”is a set of very small integer benchmarks on
and type information. This snapshot is the only input ¢~ Which one would expect type inference to do

the type-inference based compiler. particularly well since these programs do not use
polymorphism. They are included for reference

only.

* “Small” is a set of small benchmarks which
primarily operate on integers and arrays and
contain little polymorphism. These benchmarks

We then modified the optimizingeBF-93 compiler to
take advantage of this type information and to not us
type feedback. Using the template array and sever.
auxiliary arrays, the compiler searches for applicabl
method templates whenever it compiles a particula )
source method. In general, the type inferencer ma are mte_nded FO represent the kernels of computa-
generate more than one template per method, each tionally mtenswe program's. _ .
them for a particular combination of receiver or * ‘Large” is a set of application programs which
argument types [Age95]. Using its internal type  Were written by several different programmers and
information about the method's receiver and €xhibit a variety of object-oriented programming
arguments, the compiler discards all templates that ¢~ Styles. These programs most closely approximate
not match (e.g., because they specify an incompatip ~ fypical &LF  applications. One of them,
receiver or argument type). Then, it merges the

remaining templates by merging their entries anc
translates the resulting types into its internal type’We believe that any optimizing compiler would use comparable
representation. While compiling the method, ther better local analysis, so that it would be unrealistic to compare a

- . ; . ' " ttype inference system with purely global analysis to any other
compiler then uses this type information to inlinesystem.




Name gng l’ioztjjl Description
AtAllPut 3| 1,059 | store 7 into all elements of 100,000-element vector
:é SumTo 3 1,049 | sums all integers between 1 and 10,000; repeated 100 times
i= | Recur 3 1,047 tiny recursive benchmark
) Tak 10, 1,055 | derived from Tak benchmark in the Gabriel Lisp benchmark suite
Bubble 20 1,089 | sortan array of 5,000 numbers with Bubblesort
Detabify 21 1,071 | replace tabs by blanks in a string of ASCII characters
Intmm 30| 1,092 | 40x40 integer matrix multiply
Mergesort 50 1,169| sorts a 20,000-element array of integers using MergeSort
. Perm 25 1,082| heavily recursive permutation program
T | Puzzle 170 1,309| solves a tile placement problem
(,E) Queens 35 1,094 solves the eight-queens placement problem 50 times
: Quick 35| 1,101 | sortan array of 5,000 numbers with Quicksort
Quick2 35/ 1,180 | like quick, but written in an object-oriented style
Sieve 25 1,053| computes prime numbers using the sieve of Eratosthenes (sieve size 8191)
Towers 60 1,116| solves Towers of Hanoi problem for 14 disks
Tree 25 1,108 | sorts 5,000 random integers by inserting them into a sorted binary tree
Deltablue 500 1,358| DeltaBlue constraint solver
Diff 300| 1,992 | compares two files using the same algorithm as the Unix diff utility
» |SParser 400 1,442 parser for th$89 language
% PrimMaker| 1,100 2,241| generatest6and C glue stubs from a description of external C functions
= |Richards 400 1,284| simulates a simple operating system
RSA 300, 1,541 | public-key encryption and key computation (uses Biglntegers)
CParser 7,000 10,984 parser for ANSI C; includes lexer, LALR(1) parser, and tree builder

Table 1: Benchmark programs

2 Approx. lines of code, excluding code in standard classes such as integer, lists, etc. All line counts exclude blank lines.
b Lines of code that type inference shows to be part of the application, e.g., including methods in standard data typstssactags, letc. This
size ismuchsmaller than the full SELF environment, but may still contain some dead code. The line counts were obtained on vergioms of the
grams that includes BigIntegers. Without Bigintegers, programs are consistently 450 lines shorter.
PrimMaker, uses dynamic inheritance, i.e., objectintegers if needed. Since the type inferencer performs
that change their inheritance structure on the fly. no range analysis, this automatic conversion means that
Because the programs in the Large suite are the mcthe result of adding two objects of typiateger } is
realistic, we will examine their behavior in detail of type {Integer , Biginteger }. The second
throughout this paper while summarizing the programsystem, Tl-int, prevents this conversion by treating
in the other two sets. Full data on all benchmarks iinteger overflow as a failure that halts the program, so
given in [AH95]. that the result of adding two integers is always of type
{Integer }. Except for RSA, none of the benchmarks
actually use arbitrary-precision integers, so all but RSA
execute correctly under TI-int. In all other aspects, TI-

Name Description

TI SeLF compiler modified to use type inference
same as TI, but arbitrary-precision integer arith-

Tl-int o int is identical to TI.

metic is disabled ) i .
TE SeLF compiler using type feedback TF is the standardesF compiler using type feedback
unoptimized | SELF compiler with all optimization turned off and adaptive optimization. We do not distinguish

between TF and TF-int because the two are virtually
identical in performance.

To illustrate the various effects and trade-offs of typeunless mentioned otherwise, all data in this paper are
inference and type feedback, we measured severdynamic, i.e., take the relative execution frequencies of
systems (see Table 2). The first two systems use tyjsends into account. To streamline the exposition, we
inference. Tl is the standard configuration runnincysually give only summary charts in the main text, but
unchanged source code with unchanged semanticdetailed data can be found in [AH95].

like Smalltalk, this system automatically converts

“small” (30-bit) integers into arbitrary-precision

Table 2: Systems used in the study



Section| Data measured Motivation Main result

3.4 non-inlined sends message inlining is important for performance all systems inline equally well
35 number of ultimate goal of all optimizations is to eliminate TI-int outperforms all others; Tl is marginally
' dispatche® dispatches (and the associated overhead) better than TF but sometimes worse (!)
degree of reflects improvements in precision of type informatio
3.6 . o ; Lo . tsart]me as above
polymorphism even if it doesn'’t lead to complete elimination of dispatc

estimated numberextrapolate results to other languages where integers
3.7 of dispatches in | booleans aren’t objects (e.g., BETA, C++, Eiffel,
other languages | Modula-3, Oberon)

and . o .
type inference eliminates more dispatches
than type feedback (no Biginteger problen

=

Table 3: Overview of detailed measurements and results
a “Dispatch” does not imply “call” in our terminology; see section 3.5.

3.3 Execution time As we will see later (in section 3.5), TI usually
Speed is the ultimate goal of an optimizing compiler"€MOVes mor1e dispatches thaq TF,_ and that is the main
and thus we start our analysis with bottom-ling'®@son for TI's reduced execution tim&L8programs
performance numbers; later sections will go into mordYPically spend about 15% of their execution time in
details. Figure 4 shows the relative execution time oYP€ t€sts implementing message dispatch [H6194]
the benchmarks compiled with TF and the two Tjwhich agrees well with the speedups measured here. Of

systems. On average, Tl-int is fastest, executing thCOUrSe, other factors may also contribute to

large benchmarks a median of 15% faster than TF. T| P€rformance differences (e.g., instruction cache
slower than Tl-int, outperforming TF on only two of misses) but a detalle_d analysis of these effects is
the seven large benchmarks. On the small integéP®yond the scope of this paper.

benchmarks, TI's performance is very poor, two timesAlthough execution speed is important, it only

slower than Tl-int. Apparently, the compiler could notsummarizes the final outcome of many interacting
optimize these benchmarks well after predictingprocesses. In the next sections we will examine several
{Integer , Biginteger } receivers for the performance-related issues in more detail. Table 3
extremely frequent arithmetic operations. contains an overview of the detailed measurements

Of course, the speedup of Tl-int relative to TF shoulPresented in the remainder of this section.
be taken with a grain of salt since TF could handle
arbitrary-precision integers if they occurred Wherea:3'4 Number of message sends

Tl-int couldn't. One of the main goals of optimizing compilers for pure
object-oriented languages is to inline message sends.
How well do type feedback and type inference perform
in this respect? Figure 5 shows that both techniques
inline a large fraction of message sends. For the
smaller integer benchmarks, all configurations inline
virtually all sends; usually, less than 1% of the original
sends remain. In the large benchmarks, somewhat more
non-inlined message sends remain, on average between
4% and 5% of the original sends. The data excludes
non-dispatched callssince they could be inlined if
desired, but the results are very similar when all sends
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ETE °© =z E = A closer look at the large benchmarks reveals no
Figure 4. Relative execution time of benchmarks striking differences between TF and TI for most

_ _ _ _ _ benchmarks—nboth inline virtually the same proportion
TI-int (type inference without BigIntegers) usually is the fagtest
system. Tl performs poorly on some benchmarks because thet| e~ sends that do not require any dispatch. Examples include
extra code to handle Bigintegers enlarges compiled methodssends where type inference determined a single receiver class (but
and negatively affects other optimizations (see section 3.5 for angid not inline the send), or implicit-self sends (which require no
example). dispatch because of customization [CUL89]).




The ELF system implements all dispatches via type
R 0o [] Thint test sequences which sequentially compare the receiver
20% against predicted classes. For non-inlined sends, the
type test is part of an inline cache or polymorphic
inline cache [HCU91], and for inlined sends it
surrounds the inlined code (see Section 2.3).

Type inference can determine the exact receiver class
for many sends. Since such sends no longer require a
dispatch, the overall number of dispatches is
2 reduced® In contrast, type feedback requires a
dispatch test even if it predicts a single class, because
Figure 5. Number of non-inlined message sends the receiver type always includes the_ unknown class.
relative to unoptimized ELF Therefore, one would expect Tl-compiled programs to
This graphs shows that all systems are very successful atexecme strictly fewer dispatches than TF-compiled

inlining message sends; often, less than 5% of the original callsprograms (as long as both systems use the same local
remain. The graph exaggerates the differences between theanalysis to propagate type information within a
systems somewhat since the absolute number of calls is|often .

small. For example, the seemingly large relative difference in cCOmpiled method).

DeltaBlue represents an absolute difference of less that 90,000
calls (see [AH95]) and thus has very little effect on performance 100%—
given the overall execution time. 90% m oo [ Thn
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of message sends on almost all programs. The reas
for this parity in inlining performance is simple: both |
systems have enough type information to inline

virtually all sends. Thus, the remaining sends were nc
inlined because the compiler estimated that it was nc
worthwhile, e.g., because the method was considere

number of dispatches
relative to unoptimized code

too large. The number of remaining sends is therefore £ _T 5 2 £ 35 ¥ £ 3
. . . .. . . 2<S B2 o
function of the compiler’s inlining policy (which was F8 58 g 2 § = s =
the same in all systems), and any variations are caus ° &
by factors unrelated to the type information peT se. Figure 6. Remaining run-time dispatches
. Note: “dispatch” does not imply “call” but also includes the
3.5 Number of dispatches dispatch of inlined sends (see text).

A dispatchis the selection of the correct piece of code

for a particular (receiver, message) pair. Even when Figure 6 shows the number of remaining dispatches in
message send is inlined, it may still require a dispatcoptimized programs relative to the dispatches
if more than one receiver class could occur. In otheperformed in unoptimized programs. At first sight, it
words, whether or not a send requires a dispatch seems to confirm our expectations: on all benchmarks,
independenobf whether it requires a call. Indeed, mostTl-int performs fewer dispatches than TF, which
dispatches select inlined methods, since the vaalready eliminates two thirds of all dispatches with its
majority of message sends are inlined as shown abovsimple local analysis combined with customization and
By measuring the number of dispatches that a prograsplitting. On average, Tl-int executes 2.5 times fewer
performs, we can determine how successful thdispatches than TF. Tl does not do as well but still
optimizer was in creating monomorphic receiver types«consistently executes fewer dispatches than TF for the
where dispatch can be avoided. We include botllarge benchmarks.

inlined and non-inlined dispatches because bonUnfortunater T's performance on the integer
introduce similar overhead. benchmarks squarely contradicts our expectations: on

T - . *Even when the receiver type contains multiple classes, it may be

For example, the system using type feedback compiles methods possible to eliminate the dispatch if all receiver classes lead to the
different order (since it adaptively optimizes the program [H0194]) same method. Whether or not it is advantageous to exploit such an
and thus may generate a different set of methods. opportunity is a non-trivial question (see [DGC95)).



the presence of arbitrary-precision Biglntegers)

performs more dispatches than TF. On average, TI ﬁ'nteger{
performs 8% more dispatches than TF, &ubble i<j?

even shows a disturbing 40% difference to TF (se ‘tem‘;”f:tme‘ ‘tempff'j‘f"alse‘
[AH95] for detailed numbers). What is going on?

The reason for the additional dispatch tests is subtl

almost all integer programs, Tl (i.e., type inference ir

BigInteger

temp := send(i, “<”, j)

and reqUireS a discussion of some details of the&-S integer comparison (inlined) Biginteger comparison; not in-
93 optimizing compiler. One of the optimizations it lined because code is too big
performs ismessage splittingCU90]. Splitting avoids [ send(iemp, True”, - |

dispatches by copying parts of the control flow graph
In the code shown in the left half of Figure 7, the sent S s
. . . . . for the expression “i <j”in Tl
of area requires a dispatch since its receiver could b . . . .
. . o . TI compiles both Integer and Biglnteger versions of the “less
either a circle or a square. Splitting duplicates (0! than” message since it has computed a receiver type of

“splits”) the send and moves the copies into the twe {Integer ., Biginteger }. The result type is fue ,
. . . . false } (in SELF, the two boolean objects have distinct imple-

branches where it can be optimized (right side o mentations, e.g., different methods 6frue: ). Here, the
Figure 7). To keep code expansion at a reasonab comparison is followed by aififrue:  send (as is often the
. . case) which could be split as in Figure 7. However, the compiler

level, the current system only splits a send if the gecides not to spiit (thus leaving a dispatchifftiue: ) since
amount of unrelated code that needs to be copie it would have to duplicate too much code. In TF, where |the
“ . . . Biginteger part is replaced by a smaller conditional trap,|the
(“other code” in Figure 7) is small. compiler splitsifTrue: , creating a situation where TF

Figure 8. Intermediate code

performs fewer dispatches than TI.
X = aCircle X = asquare | x := aCircle | [x = aSquare|
| not exist since only small integers occurred in the past.
‘ other code ‘ ‘ othercode‘ . .
| Therefore, the TF compiler elects to split the
inlined code of inlined code of ifTrue: send since less code needs duplication.
“area” method “area” method — . .
for circles for squares Thus, TF eliminates a dispatch that was not eliminated
in the Tl system, and as a result TF performs fewer
before splitting after splitting dispatches than TI (but not fewer than Tl-int which
also splitsfTrue: ). Fortunately, the large and more
Figure 7. Splitting realistic programs behave as expected (see Figure 6).
In the code on the left, the sendaka requires a dispatch . . . . e
since its receiver type iGircle , Square }. Splitting copies, ~ While this particular example is specific teL8, the
tne send (%ndhany code bet)W_een i}] and thg conthrol f:)ov]y merﬁeproblem is more general and allows us to make two
that created the union type into the two branches before the . . .
merge. There, they can be inlined without a dispatch because thpbservat'ons' First, this .ex_ample shows that 'Fhe value
receiver class is known precisely. of type inference for optimization cannot be discussed

in isolation from other compiler optimizations—in any
compiler, optimizations may interact in unpredictable
(or at least counter-intuitive) ways. Second, the
example illustrates that the precision of the type
information itself isn't necessarily a good predictor of
performance. In the example, Tl has more precise type
information on i and j than TF Ifteger |,
Biginteger } vs. {Integer , unknown}), yet TF

can produce better code since its information includes
data on the relative frequencies of receiver classes.

Figure 8 shows a simplified code segment from the T
system. The code represents the comparison “i < j
and type inference has determined the types of i and
to be {Integer , Biginteger }. After compiling
the comparison, the compiler encounters a send ¢
ifTrue: T to the comparison’s result. The compiler
could optimize this send by splitting th8rue:
message into three copies (two for the integer case al
one for theBiginteger case), but it elects not to
split because it would have to duplicate too much code
Therefore, the send dffrue:  needs a dispatch 3.6 Average degree of polymorphism
since its receiver type idriie ,false }. In the corre-

sponding TF program theiginteger branch does The previous section discussed how often optimized

programs achieved the optimum of zero dispatch
TIn SeLF, if  statements are semantically message sends. overhead per send. This section examines the




“narrowness” of the receiver type information more
generally by measuring the degree of polymorphisn
exhibited by dispatches. ~We  characterize ¢ "
polymorphism by determining tharity of a dispatch,  § 1s-
i.e., the number of possible receiver classes for thes
send. With type inference, arity is simply the g

cardinality of the receiver type set. For example, a sen ;5’1'4’

2.2+

‘ B [Omn [ THnt

—\‘\

with a receiver type of Ifiteger , Biginteger } %12 ’

has an arity of 2. With type feedback, arity is the | v

number of predicted receiver classes for a particule 2% 3% B ¢ £ 3 & ¢ 3

send, plus 1 for the unknown class. For example, PE ‘%E £ % 5 T g =
[N

send predicted for integers has an arity of 2 since it . .
receiver type is teger , unknown}. A perfectly _ Figure 9. Arity of type tests
monomorphic program will thus have an arity of 1 if This graph shows the average arity (i.e., degree of polymor-
. . . phism) for all message sends, whether they have been inlined or
the compiler does a perfect job. However, since not. (A send requiring no dispatch has an arity of one.)
boolean expressions have the typeié , false }in
SELF rather than, say,Boolean }, conditional tests
may involve dispatches (although splitting eliminates

many of these). Consequently, even “C-styl&LiS

An average arity of 1.2 for the integer programs may
seem very high, indicating that many sends required a
dispatch even in the optimized programseLrs
programs are rarely perfectly monomorphic. programs are unusually polymorphic since many
common idioms involve polymorphism. Four cases

The arity is averaged over all sends logically Lo . :
deserve mentioning: integer arithmetic may overflow
performed by the source program, regardless of ho\

they are implemented at run time (i.e., whether they arInto Bigintegers, boolta_ans are polym'orp.h|c (tmg_a

- . . ._andfalse have two distinct classes)] is an object
inlined or not). A send without a dispatch test IS Jther than a special value (so that a reference
counted with arity 1. Average arity is related to thecontainin eithemﬁ or aPoint is polymorphic)
compiler’s success in removing dispatches entirely— 9 Polymorphic),

programs with many eliminated dispatches will have Ean_d strings come in three varieties (canonicalized
low average arity. However, unlike the bIack-and-StrmgS’ mutable strings, and byte vectors). ThEsFS

white measure of the previous section (where a send programs prpbab!y stress type inferencers more.thgn
either eliminated or not, with nothing in-between) programs ertten n other' Ianguages. CParser's grlty IS
average arity reveals more shades of gray. A SysteespeC|aIIy high because it builds a parse tree with 200

that reduces the average arity to 1.2 is arguably bett‘diﬁerem classes'of nodes, one per non-terminal in_the
than another system with an arity of 1.4 since the firsC grammar, using 309 d|_fferent classes of action
system'’s type information is narrower. Even if bothObJeCts' one per production in the C grammar.
systems currently eliminate the same number o
dispatches, the first system is likely to eliminate more
dispatches if further optimizations were introduced.
Figure 9 shows the average arity of message sendsAll data presented so far is specific tL§ in which

the benchmark programs. Since 1 is the lower boun€ven integers are objects. How relevant is this data to
on arity, the y axis starts at 1 instead of 0. Tl-int's arityother object-oriented languages such as C++, Modula-
is about two times closer to the ideal (1.0), but TI's3, or Oberon? An accurate answer, of course, can only
arity is only slightly lower than that of TF. In other be obtained by reimplementing type inferencer,
words, type inference significantly reduces the degrecompiler, and benchmarks in those other languages.
of run-time polymorphism over TF, but only if Since this task was beyond our means, we instead used
arbitrary-precision integer arithmetic is disabled. Thethe SLF system to shed some light on this question by
results roughly mirror those of Figure 6 (remainingexcluding dispatches that wouldn’t occur in other

dispatches), where Tl-int removed twice as manyanguages, namely dispatches on integers, floating-
dispatches as TF. point numbers, blocks (closures), booleans, @ihd.

By excluding these dispatches, we simulate a
hypothetical &LF-like language, &_F++, in which the

3.7 Extrapolating to other
object-oriented languages
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eliminating many dispatches to block objects that exist
in unoptimized code. Furthermore, splitting eliminates
80% many dispatches on boolean results (e.g.,ifin
statements). Thus, unoptimized code has many
“trivial” dispatches in &LF, and since none of them
would occur in &LF++, dispatches in unoptimized
code are reduced much more when going frerr$o
SELF++ than in TF or Tl where many of those trivial
dispatches are optimized away. While Figure 10 also
2 hints at a difference between TF and TI (with TI
having a higher fraction of EBF++ dispatches), a
Figure 10. Dispatches in SLF ++ relative to SELF closer look at the data reveals that while TlI's va,riance
This graph shows the ESF++" dispatches of programs, i.e., 'S_ much hlgher, its mean and median aren't t,hat
those that are not caused bgL8s pure language model that different from TF (see [AH95]). Based on this
treats even “primitive” data (integers, floats, booleans, and nil) observation, we do not believe that the data indicates a

as objects. For example, about 90% of the dispatches in upopti- .~ .. . . .
mized Small programs involve primitive data, so that only about Significant difference between TF and TI in this

10% of the dispatches would remain in an unoptimized program respect.

written in a hypothetical & F++ language that treated primitive . .
data as non-objects. Note that each bar is relative to its systemHoOw well would TF and TI perform in the hypothetical

for example, a value of 30% for both TF and Tl doesmean SELF++ System’) One measure |S the fractlon Of
that TF and Tl would perform the same absolute number of ~. - . .
dispatches—it means that in both systems the numbexLet$ dispatches eliminated relative to unoptimized code.
dispatches would be reduced to 30% relative to He System. Figure 11 shows optimization effects for theL&++

The RSA benchmark uses mixed-mode arithmetic (adding . .

integers to Biglntegers) and thus wouldn’t run LS+, system that are quite different from those seen for the
_ ) _ SELF system. For & F++, both TF and Tl are less
basic data types are non-objects and operations (effective in reducing the number of dispatches
them are non-dispatched. Consequently, it would bexecuted than they were igl$. TF executes a median
impossible in &LF++ to write a polymorphic method 61% of the dispatches executed by unoptimized
that accepted either an integer or a user-defineprograms, up from 34% inESF, an increase of a factor
Biginteger  object as the argument. While we doof 1.8. Similarly, Tl reduces dispatches to 23% of the
not claim that 8LF++ bears much resemblance to anyunoptimized dispatches instead of 14% BLFS an

real object-oriented language, it provides at least aincrease of a factor of 1.6. Apparently, dispatches to
indicator of how much the data presented so far migtintegers, boolean, and the like are easier to eliminate
be biased by our use ofeS- as the experimental than dispatches to other objects. While TF's
vehicle. To clarify the discussion, we will call performance is fairly uniform, TI displays bimodal
dispatches involving primitive objects (integers, performance characteristics: it does very well on some
floating-point numbers, booleans, and nil)ELE’
dispatches and all otherseiS-++" dispatches. oo a4 [@w O |
Figure 10 shows that EEFs object model is 90%

responsible for a significant fraction of all dispatches 80%]

. . 70% |
Typically, about half of all dispatches arecL$ 0% |
dispatches in the large benchmarks, and virtually a 50%-|
dispatches are E&F dispatches in the small integer 0%

. 30% |
benchmarks. In other words, unlesd , true |, 20% |
false , etc. are considered objects, the small intege 10%
benchmarks are completely monomorphic, procedur o
programs. The larger programs show a clear differenc
between unoptimized programs (which have a sma
fraction of FLrF++ dispatches) to TF and TI. This Figure 11. Remaining run-time dispatches in BLF++

difference is a result of inlining and splitting: in both This figure is equivalent to Figure 6, except that all dispatches

TF and TI, most control structures are inlined,| involving primitive objects integers are excluded. (As in|all
other places, “dispatch” does not imply “call"—see section 3.5.)

100% - Il unoptimized ] TF o

SEL F++ dispatches
relative to SELF dispatches
(41
2
S
L

DetaBlue ————— N

Richards
R

number of dispatches
relative to unoptimized code

N

Diff
RSA

Tiny
(median)
Small
(median)
CParser
DeltaBlue
SParser
PrimMaker
Richards
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programs (Diff, SParser, and PrimMaker) but4. Discussion
considerably worse on others (CParser and Richards) ) ) )
While raw execution speed is often an important

These results are only a rough extrapolation based ¢ ; : \
y g P consideration, and an easy one to quantify, other

particular implementations of TF and Tl and on ac ot i also infl the choice betw i
particular programming style. Based on the above dal actors will aiso Influénce the choice between type
feedback or type inference. Indeed, since our

and our intuition, we predict that type feedback anc o :
P yp measurements indicate that both can deliver

type inference for languages like C++, Modula-3, or .
Oberon will behave as follows: comparable and high performance, these other factors
. Tvoe feedback will remove relatively few will likely decide the outcome. In this section we
yp A . y discuss the most important advantages and disad-
dispatches but will inline as many virtual calls as . X
desired. (Recall that “dispatch” does not irm)lyvantages of both kinds of systems in a broader context.

G || . Table 4 outlines the main characteristics that will be
call”, see section 3.5.)

. discussed in more detail below.
» Concrete type inference may be spectacularh

successful in some programs but less so in othercOmpilation time—providing high responsiveness.

In general, it will eliminate more dispatches than'Vhen type feedback was developed fatiS a major

type feedback (but inline about the same number (90 was to bless the programmer with high
calls). performanceand the absence of compilation pauses.

« If the type of a frequently-executed expression isThe goal was met largely dL.Je to the_ incr(_amental hature
de facto monomorphic but theoretically of type feedback: type mformatlo_n IS compute_:d
polymorphic (as in BLFs integer-Biginteger gradue_llly and methc_)ds can be compiled one at a time
arithmetic or in a statement like “if (after inline expansion, of course) [HU94b]. On the

unlikely_condition then return errorObj else return®ther hand, the style of type inference used in this work

obj"), type inference may not perform well without 'S funda}mentally a global a_nalysis:_the u_nit analyzed is
information on receiver class frequency. an entire program. Obviously, inserting a global

Of course, measurements of actual implementations gnalysis into an edit-compile-run loop (or the edit-
the two techniques for other object-oriented Ianguagecontm.ue loop of the BF system) will not go
are needed to substantiate these predictions. We hounnotlced by the programmer.

that the results presented here can be used as a stariThe ELF type inference system supports incremental

point for similar investigations of other object-orientedrecomputation of the types when a previously analyzed
languages. program is modified locally [Age95]. While an

incremental re-analysis is often an order of magnitude
faster than a full analysis, it is still slower than the

typical sub-second compile pauses of type feedback.
Unfortunately, our experimental type-inference-based

Characteristic Type Feedback Type Inference

. incremental, sub-second pauses; suitable for interactivatch style”, multi-second to multi-minute pauses, not (yet)
Responsiveness : . .
systems suitable for interactive systems

may perform poorly if statically compiled with non-

Performan . . ma rform poorly without dynamic information
ormance representative profile data Y periorm poorly out dy ¢ informatio
only need to generate compiled code for cases that .
compiled code can cover all cases
Application actually occur
delivery may need compiler or interpreter at runtime can generate self-contained executable
may need source code (or equivalent) at run time no need to keep around source code
. . . cannot handle entire language; may not scale to very large
Generality handles entire language; supports extensible systems guag Y ylarg

programs; doesn't support extensible systems

. . robably needs two separate compilers (one for devel-
Implementation| can use same compiler for both development and de |verp/ .
opment, one for delivery)

Table 4: Main characteristics of type inference and type feedback
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compiler does not carry the incrementality through (atherefore have access to a compiler or interpreter to
described in section 3.1), so we have not been able handle residual cases which were not encountered
quantify how well an incremental type-inference-base«uring the type feedback training runs, or it must
system may support an interactive environment. Fainclude general compiled code for the entire
these reasons, we consider type feedback the safer lapplication. That is, for each piece of optimized code
if interactiveness is a top priority. (which handles only the frequent cases) the application

Finally, while the type inference system is quite fasimust also include a less optimized version that can
(using at most a few minutes of CPU time for thehandle any type.

largest programs we measured), it needs consideraklf the type profile obtained during type feedback
amounts of memory during extraction. For exampletraining runs accurately reflects typical application use,
the largest programs measured here consumed aboutunpredicted cases will occur only rarely and can
Mbytes of memory during the type inference andprobably be handled efficiently by an interpreter.
extraction steps (out of these 80 Mbytes, the standaincluding an interpreter may save code space since a
SELF system in which the inferencer runs accounts fopyte-coded representation of an application can be
approximately 32 Mbytes). much more compact than general (unoptimized)

Consistent performance Both systems may Mmachine code. However, if a user stresses an
occasionally display poor performance. If typeapplication in unforeseen ways and heavily exercises
feedback is implemented statically (i.e., without run-code that was not optimized for that particular case, the
time compilation), the quality of the generated coderesulting performance could be poor. For example, an
will depend on the quality of the training runs thatapplication part optimized for graphical objects with

supply the type feedback information, i.e., how closelyinteger coordinates would have to be interpreted if the
these runs represent typical usage. Similarly, the statuser’s objects contained floating-point coordinates.
nature of type inference may lead to poor performancWith an adaptively reoptimizing compiler like the

if very few of the statically predicted cases actuallySELF-93 compiler, the delivery runtime system could

occur at run time. Biginteger arithmetic is a primeefficiently handle such cases, but such a compiler of
example of this problem: most arithmetic nevercourse occupies more space than a simple interpreter.

overflows, but the type inferencer cannot prove thisappiication size. While we could not quantify how
For the small integer programs in our benchmarks, thymuch larger the compiled code generated by a type
missing dynamic information led to a slowdown of ajnference based system will be, it is likely to be bigger
factor of two over TI-int (recall Figure 4). For than in a type feedback based system. With type
consistently good performance, it may therefore binference, the code is based on a conservative estimate
necessary to combine type inference with profile datof program flow which is guaranteed to include all
in order to recognize such cases. However, arbitrany,gssible execution paths but which may also include
precision integer arithmetic represents a worst-Caspaths that cannot be executed (after all, type inference
scenario for type infe_rence since integer ar_ithmetlc IS can only approximate the true program behavior). Type
very frequent operation (e.g., evéiy loop includes  feedhack based systems, in contrast, contain code only
i). In general, missing frequency information maytor paths that were actually executed, i.e., for only a
therefore have a smaller impact than shown in Tl (thigpset of all possible program executions. (Programs
is the reason why we included Tl-intin the study). 44 include additional checks and trap instructions to
Application  delivery. Type inference gives cover unexpected cases [HO0I94], but this code
conservative and sound estimates of the types, and thcontributes little to the overall code size.) To cover all
accounts for all cases that may possibly occur durinother executions, a type feedback system needs to
any execution of the program. The completeinclude general code for the entire application, or an
information makes it possible to compile the entireinterpreter or compiler at an additional space cost of as
program and ship an application as a stand-alorlittle as 20 Kbytes for a Smalltalk byte-code interpreter
executable. In contrast, type feedback can at any giveKra83] or as much as 800 Kbytes for an optimizing
time “only” deliver type information that covers casescompiler [H6194]. For smaller applications, the fixed
that have occurred hitherto; new cases may occur cost of the interpreter or compiler will tilt the scales
any time in the future. At run time, an application musttoward type inference, whereas larger applications will
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tend to favor type feedback. Since so many differenapplication extensions provided by third parties.
aspects influence space usage, we are not convincAdapting concrete type inference to work in such an
that either system is inherently more space-efficient. environment remains a major technical challenge.

Of course, type inference can significantly reduce
program size through its use in program extractiol5, Related work
[AU94]. However, program extraction is performed in
a separate step and can easily be used for applicati
delivery with a type feedback based system (in facl
this is what our experimental implementation does).

Type inference for dynamically-typed object-oriented
languages has been an active field since the early
eighties. Suzuki pioneered the field in the Smalltalk
) ) community [Suz81]. Similar to our work, he used sets
Source code protection Since an executable of classes as the basic types and had the same goal of
generated with the help of type inference is complete, gliminating dynamic dispatch to improve execution
need not include the application’s source code or aneficiency. His type inference system was an adaptation
source code equivalent such as byte codes. Sinit Hindley/Milner style type inference, extended with
optimized code usually represents a fairly thorougfsupport for assignable variables, union types, and—
obfuscation of the original source code, an applicatioly,gst importantly—an iterative analysis technique to
is well protected against reverse engineering or SOUrthandle dynamically dispatched sends. Unfortunately,
code theft. A type feedback system based on dynamgzyki was unable to fully implement his system
compilation needs a source code equivalent to exeClyithin the limited heap space of Smalltalk-76 and only
new cases as they occur. Since _typlcal byte ch_es 8managed to test a simplified version of the inference
fairly high-level, an approximation of the original algorithm on some of the number classes.

source c’ode can be generated easily, and thus SOUThe Typed Smalltalk project [JGZ88] incorporated a
code isn't as well protected. type inferencer for Smalltalk which relied on explicit

If type feedback is combined with static Compilation aStype declarations inserted by the programmer; these
discussed above, no compiler or interpreter is needed types were specified as sets of classes. (A second, more
runtime, and thus source code is well protected. abstract kind of type was provided for type checking
Generality. Although type inference systems for but was not used by the compiler). Unfortunately, the
object-oriented languages have made much progresssystem was not completed and the only published
recent years, they are still unable to effectively handlperformance data concerned very small integer
certain language constructs (and indeed there is littlorograms similar to our Tiny benchmark set.

hope they ever will). Most of these limitations relate tomore recently, Palsberg and Schwartzbach described a
reflective operations such as constructing new classiconstraint-based analysis system for a Smalltalk-like
at runtime or sending messages whose names é&oy |anguage [PS91], which was improved and
computed at runtime (“performs”). For programs usingimplemented in cooperation with Oxhgj [OPS92].
these features extensively, type inference may not kpalsherg and Schwartzbach suggested the use of their
effective. Furthermore, we currently have notypes for optimization but did not implement such a
experience with type inference on very large programsystem. The type inferencer used here is a further

(say, a few hundred thousand lines of code), and thusdevelopment of the ideas originally proposed by
is unclear how well type inference will scale to suchpa|sherg and Schwartzbach.

programs. Plevyak and Chien independently improved Palsberg
Static analysis techniques like type inference requirand Schwartzbach’'s algorithm and applied it to

knowledge of the complete program, which can be Concurrent Aggregates (CA), a concurrent, single-
serious problem in today's extensible applicationinheritance,  dynamically-typed  object-oriented

environments. For one, many programs arganguage [PC94a]. Their system employs an iterative
dynamically linked, so that the exact implementatioranalysis which in each iteration uses the types from the
of the dynamic link library is not available until run previous iteration to guide the analysis. The inference
time (its interface is known but of limited help to algorithm can clone classes during analysis to obtain
concrete type inference unless it contains concrete tyfhigh precision on code with data polymorphism. (Our

information).  Furthermore, many programs arealgorithm is less precise in this regard. It only clones
extensible, i.e., allow the user to dynamically link inclasses based on observing initial values of their

14



instances). Plevyak and Chien’s type inferencer hait. However, its local analysis was significantly more
been used in the CA compiler to eliminate dispatchepowerful than the simple analysis used mns93.

in the (non-object-oriented) Livermore Loops [PZC95]gx, £ compilers were the first ones to use type feedback
and in object-oriented _CA programs [PC94b, PC94csq, object-oriented programs [HCU91], [HU94a].
In the latter two studies, the compiler was able «giher systems have used some form of runtime type
completely eliminate dynamic dispatch in six of thejtormation for optimization. For example, Mitchell’'s
nine. be_nchma_rk programs._Becaus_e of '3”9‘_’6‘96 a'system [Mit70] specialized arithmetic operations to the
application differences (in particular, different run-time types of the operands (similar tBL&89's

treatment r?f boolealns, mtr(]egers, Iand nil), it '3 r?ard Ycustomization [CUL89]). Similarly, several APL
compare these results to the results presented here o'compilers created specialized code for certain

estimate how well type feedback would perform in theexpressions (e.g. [Dyk77, GW78, Joh79]). The HP

CA system. APL compiler [Dyk77] specialized compiled code
Recently, Pande and Ryder have made progress according to the specific operand types (number of
extending data-flow techniques to C++ [PR94]. Thedimensions, size of each dimension, element type,
main goal of their work is to extend data-flow analysisetc.). This so-called “hard” code could execute much
techniques to solve static analysis problems for C++more efficiently than more general versions since the
They state—and we agree—that the first problem ticost of an APL operator varies greatly depending on
solve is that of computing concrete type informationthe actual argument types. If the code was invoked
since without it, many other analyses fall apart due tyjth incompatible types, a new version with less
the lack of precise control-flow information for virtual restrictive assumptions was generated (so-called “soft”
calls (i.e., dynamically dispatched sends). Similar tcode). Grove et al. [Gro95] describe a compiler for the
Palsberg and Schwartzbach, Plevyak and Chien, argpiect-oriented language Cecil that uses type feedback

the present system, Pande and Ryder’s analysis staj, combination with static compilation to eliminate
with a control flow graph without virtual invocations dynamically-dispatched calls.

which is subsequently updated whenever new virtue
methods become invocable during type propagatior
For C++, type inference is both harder and simple
than, say, for 8&.F. It is harder because C++ is not
type- and pointer-safe and has many languag
constructs that are difficult to handle. It is simpler
because C++ does not have user-defined contr
structures, closures, or dynamic inheritance.

Dean et al. [DGC95] eliminate dynamic dispatch with

a simple class hierarchy analysis that detects situations
where a method has no overriding definition in any

subclass of the sending method holder. Their study is
the only other study we are presently aware of that
compares a static analysis technique, class hierarchy
analysis, to a dynamic technique, type feedback. In

. . . contrast to our study, type feedback clearly
Traqlltlonal data-flow _anaIyS|s. techn_lques cannot b‘outperformed class hierarchy analysis in the Cecil
E:gfuhiormaerdgxias?grlig tgf021egto'r?{r'glnlfle(:,vlag?;pa;]geifsystem; this discrepancy can be explained by the more
assumed prior to analysis. The strength of the analysPOWFJrful analysis performed by TI.
mentioned above ([PS91, PC94a, PR94, and Age95]) ]
that they acknowledge this problem up-front and solvi. Conclusions
a combined control-flow and data-flow problem. Vitek
et al. demonstrated that this can also be achieved in
data-flow framework [VHU92]: for each program
point, they computed an abstract object graph, a suff
ciently detailed approximation of the full program heap

to allow simulation of lookups. However, no data was__ . .~ . . . . T
. . . optimization technique for object-oriented programs.
given about the effectiveness of this approach. : : . . )
Our comparison is particularly interesting for two
The FLF-91 compiler used iterative type analysis tOreasons:
eliminate dispatches [CU90]. Like the EI$-93
TThe only exception being section 3.3 of [DGC95] which contains

Comp”er used_ here, its analysis was Ioc_al,_ "e'_some quantitative data of a comparison of type feedback and class
restricted to a single method and the methods inlined ihierarchy analysis.

Both type feedback and concrete type inference are
valuable techniques for optimizing object-oriented
programs. We have presented a detailed comparison of
these two techniques. To our knowledge, this is the first
in-depth comparison of a static and a dynamic
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 First, it is direct, because we eliminated other executed (but may also increase them—see
effects by using two identical compilers except forsection 3.5), works statically (without any dependence
their source of receiver class information. on run-time information), and can produce complete

« Second, it igealistic, since the compared systemsexecutables so that no compiler or interpreter need be
are high-quality implementations. Both are basedresent at run time. On the downside, it may perform
on the $LF-93 system which has been shown topoorly in some situations (see above), is not yet
provide excellent performance compared to Suitable for interactive use, and does not support

commercial Smalltalk implementation [HU94a]. extensible programs. Type feedback is well suited to
interactive systems, provides consistently high

performance, and scales well to large and extensible
systems. On the other hand, it usually executes more
dispatches, depends on run-time information (and

other primitive data types as non-objects (as do, e.grepresentatlve profiles, if using static feedback), and

. o . Eintroduces run-time overhead for (re-)compilation or
Beta, C++, Eiffel, etc.), indicated that the relative (re-) P

. . ‘interpretation if using dynamic feedback.
effectiveness of type feedback and type inference i, . . L . .
An interesting direction for future work is to combine

such a system could be quite similar. .

- o _ _ type feedback and type inference. The strengths and
The specific quantitative results of this study includeyeaknesses of the two techniques are largely comple-
the following: mentary, and thus either system might be able take
» Both techniques can deliver high performance anadvantage of the strengths of the other. For example, it
typically inline more than 95% of all sends in ourmight be possible to build a system where type
suite of 23 &LF benchmarks. With the exception feedback is in control but uses type inference to extend

of arbitrary-precision arithmetic, the medianthe analysis from the current local scope to a larger
performance of all systems differed by only 15%. scope (i.e., beyond inlining), or a system where type

- Information about the run-time frequency of inference _is in control but defers analyzing certain
receiver classes is important for performance, acases until type feedback has revealed that they may
was demonstrated most clearly t5L8s arbitrary-  0ccur. Finally (and most simply), a type inference
precision integers where type inference could noPased compiler could use d_ynamlc profile mformatlon
rule out the possibility of arithmetic overflows to select the case_s to be inlined, rather than treating all
whereas type feedback could quantify them aCases as equally likely.
infrequent. Consequently, small integer-intensive
programs compiled with type inference (TI) ran
two times slower than with type feedback (TF). It
should be noted, though, that arbitrary-precisior
integer arithmetic represents a worst-case scenar
for type inference, Sinc@ig'nteger occurs ACkﬂOWledgmentS We W0u|d I|ke to thank Sun
everywhere arithmetic is performed (e.g., loopMicrosystems Laboratories for generously supporting
counters). For larger programs less dominated bthe first author and for providing equipment that

arithmetic, this shortcoming of type inference haddreatly facilitated this work. Furthermore, we are
a smaller overall effect. indebted to John Plevyak, Klaus Schauser, Mario

Wolczko, Jeffrey Dean, and David Grove for their
comments on earlier versions of this paper.

Although the quantitative results are specific BFS
they may nevertheless be interesting to implementot
of other languages. An experiment witlEL&++, a
hypothetical &LF-like language treating integers and

» Without arbitrary-precision integer arithmetic, TI-
int performed 2.5 times fewer dispatches than TF
and improved performance by a median 15%. Witt
arbitrary-precision  integer  arithmetic, TI
performed 1.3 times fewer dispatches than TF ol
the large benchmarks but on some intege
benchmarks performedoredispatches than TF.

Both techniques have their strengths and weaknesst
Type inference can reduce the number of dispatche
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