Supero: Making Haskell Faster

Neil Mitchell and Colin Runciman

University of York, UK, http://www.cs.york.ac.uk/~ndm

Abstract. Haskell is a functional language, with features such as higher
order functions and lazy evaluation, which allow succinct programs. These
high-level features are difficult for fast execution, but GHC is a ma-
ture and widely used optimising compiler. This paper presents a whole-
program approach to optimisation, which produces speed improvements
of between 10% and 60% when used with GHC, on eight benchmarks.

1 Introduction

Haskell [15] can be used in a highly declarative manner, to express specifications
which are themselves executable. Take for example the task of counting the
number of words in a file read from the standard input. In Haskell, one could
write:

main = print o length o words =« getContents

From right to left, the getContents function reads the input as a list of char-
acters, words splits this list into a list of words, length counts the number of
words, and finally print writes the value to the screen.

An equivalent C program is given in Figure 1. Compared to the C program,
the Haskell version is more concise and more easily seen to be correct. Unfor-
tunately, the Haskell program (compiled with GHC) is also three times slower
than the C version (compiled with GCC). This slowdown is caused by several
factors:

Intermediate Lists The Haskell program produces and consumes many inter-
mediate lists as it computes the result. The getContents function produces
a list of characters, words consumes this list and produces a list of lists of
characters, length then consumes the outermost list. The C version uses no
intermediate data structures.

Functional Arguments The words function is defined using the dropWhile
function, which takes a predicate and discards elements from the input list
until the predicate becomes true. The predicate is passed as an invariant
function argument in all applications of dropWhile.

Laziness and Thunks The Haskell program proceeds in a lazy manner, first
demanding one character from getContents, then processing it with each of
the functions in the pipeline. At each stage, a lazy thunk for the remainder
of each function is created.

int main()

{
int i = 0;
int c, last_space = 1, this_space;
while ((c = getchar()) != EOF) {
this_space = isspace(c);
if (last_space && !this_space)
it++;
last_space = this_space;
¥
printf ("%i\n", 1i);
return O;
}

Fig. 1. Word counting in C.

Using the optimiser developed in this paper we can eliminate all these over-
heads. We obtain a program that performs faster than the C version. The central
idea of the optimiser is to evaluate as much of the program as possible at com-
pile time, leaving a residual program consisting only of actions dependent on the
input data.

Our goal is an automatic optimisation that makes high-level Haskell programs
run as fast as low-level equivalents, eliminating the current need for hand-tuning
and low-level techniques to obtain competitive performance. We require no an-
notations on any part of the program, including the library functions.

1.1 Roadmap

We first introduce a Core language in §2, on which all transformations are ap-
plied. Next we describe our optimisation method in §3. We then give a number of
benchmarks, comparing both against C (compiled with GCC) in §4 and Haskell
(compiled with GHC) in §5. Finally, we review related work in §6 and conclude
in §7.

2 Core Language

All our optimisations operate on a standard Core language, documented in [6].
The expression type is given in Figure 2. A program is a mapping of function
names to expressions. Our Core language is higher order and lazy, but lacks much
of the syntactic sugar found in Haskell. Pattern matching occurs only in case
expressions, and all case expressions are exhaustive. All names are fully qualified.
Haskell’s type classes have been removed by the dictionary transformation [24].

The Yhe compiler, a fork of nhe [20], can output Core files. Yhe can also
link in all definitions from all required libraries, producing a single Core file
representing the whole program.

expr = v variable

| ¢ constructor

| f function

| zy application

| Aov—z lambda abstraction
| letv=2ziny let binding

| case z of {p; — y1;...; pn — Yn } case expression
pat = c U3

Where v ranges over variables, ¢ ranges over constructors, f ranges over functions, x,
y and z range over expressions and p ranges over patterns.

Fig. 2. Core syntax

The primary difference between Yhe-Core and GHC-Core [22] is that Yhe-
Core is untyped. The Core is generated from well-typed Haskell, and is guaran-
teed not to fail with a type error. All the transformations could be implemented
equally well in a typed Core language, but we prefer to work in an untyped
language for simplicity of implementation.

In order to avoid accidental variable name clashes while performing transfor-
mations, we demand that all variables within a program are unique. All trans-
formations may assume this invariant, and must ensure it as a postcondition.

3 Optimisation

Our optimisation procedure takes a Core program as input, and produces a new
equivalent Core program as output. To improve the program we do not make
small local changes to the original, but instead evaluate it so far as possible at
compile time, leaving a residual program to be run.

Each function in the output program is an optimised version of some associ-
ated expression in the input program. Optimisation starts at the main function,
and optimises the expression associated with main. Once the expression has been
optimised, the outermost element in the expression becomes part of the residual
program. All the subexpressions are assigned names, and will be given defini-
tions in the residual program. If any expression (up to alpha renaming) already
has a name in the residual program, then the same name is used. Each of these
named inner expressions is then optimised as before.

Optimisation uses the O rules in Figure 3, and the simplification rules in
Figure 4. We define O* to be the result of applying both O and the simplification
rules until no further changes are made. Optimisation is like evaluation, but
stops if the expression to reduce is a free variable, a constructor, a primitive, or
a CAF (constant applicative form — see §3.3 for more details). The one difference
is that in a let expression the bound expression and the inner expression are both

Olcase z of cﬁe]] = case O[z] of alts

Oletv=ziny] = let v =0][z] in Ofy]

Oz y [= Olly

olf] = unfold f, where f is a non-primitive, non-CAF function
=f , otherwise

Ofv = v

Ole = ¢

O A — 2z = w—z

Fig. 3. Optimisation rules.

optimised — see §3.2 for the reasons. The simplification rules are all standard,
and similar rules would be found in most optimising compilers.

Example 1

main = Azs — map inc s

map = A\f — Azs — case zs of

=1

y:ys — fy:mapfys

inc= Az — z+1

This program defines a main function which increments each value in the list
by one. Our main function is not a valid Haskell program, as it has the wrong
type, but serves to illustrate the techniques. Note that f is passed around at run-
time, when it could be frozen in at compile time. By following the optimisation
procedure we end up with:

main = \zs — case zs of

[=1

y:ys — f0y ys
f0 = Ay — A\ys — (y+1) : main ys
And finally by performing some trivial inlining we can obtain:
main = Azs — case s of
[=

y:ys — (y+1) : main ys

The residual program is now optimised — there is no runtime passing of the
inc function, only a direct arithmetic operation. O

case (case z of {p; — y1;...;pn — yn}) Of alts
—_
= case z of {p; — case y; of alts

3 eee

; pn — case y, of alts}

case cT$ of {...;c T8 — y;...}
=y [v3 / T3]

case v of {..;cT8 — z;...}
=casevof {.;cU8—z[v/cTs];..}

case (let v = z in y) of alts
. —
= let v = z in case y of alts

(letv==ziny) z
=letv=zinyz

(case z of {p; — y1;..5Pn — Yn}) 2
= casez of {p; — y; z;...;00n — Yn 2}

A —12)y
=letv=yinz

let v==zin (case y of {p: — y1;...;Pn — Yn})
= case y of {p; — let v =1z in y;
ipn — letv=2xiny,}
where v is not used iny

letv==ziny

=y [v/z]
where z is a lambda, variable, or used once in y

letv=cux...t, iny
= letv; = z; in

let v, = z, in
y[v/czi.x]
where v;...v, are fresh

Fig. 4. Simplification rules.

Example 2

Our next example shows how our optimisation rules can carry out list deforesta-
tion [23].

main zs = map (+1) (map (x2) xs)

map f zs = case zs of

[=1

y:ys — fy:mapfys
The main definition is transformed (after trivial inlining) into:

main zs = case zs of

[=1

y:ys — (y+2)+1: main ys

The intermediate list has been removed, and the higher order functions elimi-
nated by specialisation. O

3.1 Termination

A problem with the method as presented so far is that it may not terminate.
There are several ways that non-termination can arise. We consider, and elimi-
nate, each in turn.

Infinite Unfolding Consider the definition:
name = Az — name

If the expression name x was being optimised then the optimisation func-
tion O* would not terminate. We can solve this problem by either bounding the
number of unfoldings, or by keeping a list of previously encountered interme-
diate expressions in O*. In practice, this situation is rare, and either choice is
acceptable. We choose to bound the number of unfoldings. A large limiting value
is used, which does not impact either compilation time or memory consumption
in the common case.

Accumulating parameters Consider the definition:

reverseAcc = A\zs — A\ys — case zs of

[=1

z: 28 — reverseAcc zs (7 : ys)

This function is the standard reverse function, with an accumulator. The
problem is that successive iterations of the optimisation produce progressively
larger subexpressions. A definition is first created for reverseAcc _ _, then for
reverseAcc _ (_: _), then reverseAcc _ (_: _:_). The residual program is infinite.

The solution is to bound the size of the input expression associated with each
definition in the residual program. The size of the expression being optimised
can be reduced by lifting subexpressions into a let binding, then placing this
let binding in the residual program. By bounding the size of the expression, we
bound the number of functions in the residual program.

If the bound is too high, optimisation takes too long and the residual pro-
gram is excessively large. If the bound is too low then too little is achieved by
optimisation. We return to the issue of the size of this bound in §5.2.

Direct Repetition We claim that O* terminates with bounded unfoldings and
bounded expression size. It is often useful to detect an expression which appears
to be repeating, and preemptively bound it. Consider the reverseAcc example —
the recursive pattern is an instance of direct repetition. Let o be a context, and
a(e) be the result of substituting e for the hole in the context cv. An expression
z is directly repeating if ~ a(a(3)) where (3 is an expression, « is a non-empty
context and ~ is equality where all variables are considered equal.

Example 3

The following expressions have direct repetition.

z:y:2s wherea=2:e 3 =us

f(fz) wherea=f e ==z

case z; of {[] — nil;y: ys — case zz of {[] — nil; z: zs — cons}}
where o = case z; of {[] — nil;y:ys — e}, 3 = cons

O
If direct repetition is encountered, then the repeating expression is lifted to
a top-level let binding, and output directly into the residual program.

Example 4

Take the reverseAcc example. During optimisation, the expression becomes:
reverseAcc zs (y; : Yz : Ys)

The second argument to reverseAcc is an instance of direct repetition, and is
lifted to a let binding.

let v=19y;:ys:ys
in reverseAcc zs v

Now the expression bound at the let, and the inner expression, are optimised
separately. O

3.2 Let Bindings

The rule for let bindings in Figure 3 may seem curious. The other rules simply
follow evaluation order, but the let rule optimises both the bound expression and
the inner expression. This is a critical choice, which enhances the optimisation
performed by the system, without duplicating computation of let bindings.

In the Core language a let expression introduces a binding, which is shared.
Given the expression let v = z in y, even if v is referred to multiple times in
1y, then the expression x is computed at most once. It is important that sharing
of expensive functions is preserved. Yet, by inlining cheap let expressions, better
optimisation can be achieved. Taking the following fragment from a previous
example:

let f = inc
infy:mapf ys

If f is not inlined, then the recursive call to map would still contain a func-
tional variable to be passed at runtime. But how can we tell whether inc is cheap
enough to be inlined? The solution is to optimise inc first:

let f = Az — z+1
infy:mapfys

It is now clear that f is a lambda, so no shared computation is lost by inlining
it.

3.3 CAF’s

A CAF (constant applicative form) is a top level definition of zero arity. In
Haskell, CAFs are computed at most once per program run, and retained as
long as references to them remain. Consider the program:

caf = expensive
main = caf+caf

In this program caf would only be computed once. If a CAF is inlined then
this may result in a computation being performed more than would otherwise
occur. To ensure that we do not duplicate computations, we never inline CAF’s.

4 Performance Compared With C Programs

The benchmarks we have chosen are inspired by the Unix wc command — namely
character, word and line counting. We require the program to read from the
standard input, and write out the number of elements in the file. To ensure that
we test computation speed, not 10 speed (which is usually determined by the
buffering strategy, rather than optimisation) we demand that all input is read

g5 Seconds [] ¢ [superorcrc E= cHC

20

154

10

characters lines words

Fig. 5. Benchmarks with C, Supero+GHC and GHC alone.

using the standard C getchar function only. Any buffering improvements, such
as reading in blocks or memory mapping of files, could be performed equally in
all compilers.

All the C versions are implemented following a similar pattern to Figure 1.
Characters are read in a loop, with an accumulator recording the current value.
Depending on the program, the body of the loop decides when to increment
the accumulator. The Haskell versions all follow the same pattern as in the
Introduction, merely replacing words with lines, or removing the words function
for character counting.

We performed all benchmarks on a machine running Windows XP, with a
3GHz processor and 1Gb RAM. All benchmarks were run over a 50Mb log file,
repeated 10 times, and the lowest value was taken. The C versions used GCC!
version 3.4.2 with -O3. The Haskell version used GHC [21] 6.6.1 with -O2. The
Supero version was compiled using our optimiser, then written back as a Haskell
file, and compiled once more with GHC 6.6.1 and -O2.

The results are given in Figure 5. In all the benchmarks C and Supero are
within 10% of each other, while GHC trails further behind.

4.1 Identified Haskell Speedups

During initial trials using these benchmarks, we identified two unnecessary bot-
tlenecks in the Haskell version of word counting. Both were remedied before the
presented results were obtained.

! nttp://gcc.gnu.org/

words :: String — [String]
words s = case dropWhile isSpace s of
[1—=1]
z — w:words y
where (w, y) = break isSpace z

words’ s = case dropWhile isSpace s of

[=1
T:xzs — (z:w):words’ (dropl z)
where (w, z) = break isSpace zs

dropl [] =1
dropl (z : zs) = s

Fig. 6. The words function from the Haskell standard libraries, and an improved words’.

Slow isSpace function The first issue is that isSpace in Haskell is much more
expensive than isspace in C. The simplest solution is to use a FFI (Foreign
Function Interface) [14] call to the C isspace function in all cases, removing this
factor from the benchmark. A GHC bug (number 1473) has been filed about the
slow performance of isSpace.

Inefficient words function The second issue is that the standard definition of
the words function (given in Figure 6) performs two additional isSpace tests per
word. By appealing to the definitions of dropWhile and break it is possible to
show that in words the first character of z is not a space, and that if y is non-
empty then the first character is a space. The revised words’ function uses these
facts to avoid the redundant isSpace tests.

4.2 Potential GHC Speedups

We have identified three factors limiting the performance of residual programs
when compiled by GHC. These problems cannot be solved at the level of Core
transformations. We suspect that by fixing these problems, the Supero execution
time would improve by between 5% and 15%.

Strictness inference The GHC compiler is overly conservative when determining
strictness for functions which use the FFI (GHC bug 1592). The getchar function
is treated as though it may raise an exception, and terminate the program,
so strict arguments are not determined to be strict. If GHC provided some
way to mark an FFI function as not generating exceptions, this problem could
be solved. The lack of strictness information means that in the line and word
counting programs, every time the accumulator is incremented, the number is
first unboxed and then reboxed [17].

Heap checks The GHC compiler follows the standard STG machine [12] design,
and inserts heap checks before allocating memory. The purpose of a heap check
is to ensure that there is sufficient memory on the heap, so that allocation of
memory is a cheap operation guaranteed to succeed. GHC also attempts to lift
heap checks: if two branches of a case expression both have heap checks, they are
replaced with one shared heap check before the case expression. Unfortunately,
with lifted heap checks, a tail-recursive function that allocates memory only upon
exit can have the heap test executed on every iteration (GHC bug 1498). This
problem affects the character counting example, but if the strictness problems
were solved, it would apply equally to all the benchmarks.

Stack checks The final source of extra computation relative to the C version are
stack checks. Before using the stack to store arguments to a function call, a test
is performed to check that there is sufficient space on the stack. Unlike the heap
checks, it is necessary to analyse a large part of the flow of control to determine
when these checks are unnecessary. So it is not clear how to reduce stack checks
in GHC.

4.3 Why Supero Outperforms C for the Wordcount Benchmark

The most curious result is that Supero outperforms C on wordcounting, by about
6% — even with the problems discussed! The C program presented in Figure
1 is not optimal. The variable last_space is a boolean, indicating whether
the previous character was a space, or not. Each time round the loop a test is
performed on last_space, even though its value was determined and tested on
the previous iteration. The way to optimise this code is to have two specialised
variants of the loop, one for when last_space is true, and one for when it is
false. When the value of last_space changes, the program would transition
to the other loop. This pattern effectively encodes the boolean variable in the
program counter, and is what the Haskell program has managed to generate
from the high-level code.

However, in C it is quite challenging to capture the required control flow! The
program needs two loops, where both loops can transition to the other. Using
goto turn off many critical optimisations in the C compiler. Tail recursion is
neither required by the C standard, nor supported by most compilers. The only
way to express the necessary pattern is using nested while loops, but unlike
newer imperative languages such as Java, C does not have named loops — so the
inner loop cannot break from the outer loop if it reaches the end of the file. The
only solution is to place the nested while loops in a function, and use return
to break from the inner loop. This solution would not scale to a three-valued
control structure, and substantially increases the complexity of the code.

5 Performance Compared With GHC Alone

The standard set of Haskell benchmarks is the nofib suite [11]. It is divided
into three categories of increasing size: imaginary, spectral and real. Many small

100 % of GHC run-time

90
80
70
60
50
40
30
20 1
10

digits-of-el digits-of-e2 exp3_8 primes queens

Fig. 7. Runtime, relative to GHC.

Program Source Residual Bound % GHC Size % GHC Time

digits-of-el 521 1676 13 110 90
digits-of-e2 1235 515 12 99 75
exp3.8 380 1138 5 104 35
primes 422 356 12 101 87
queens 637 4265 8 116 78

Program is the name of the program; Source is the number of lines of pretty printed
source code including all libraries; Residual is the number of lines after optimisation;
Bound is the termination bound used; Size is the size of the resultant binary as a
percentage of the GHC binary size; Time is the runtime as a percentage of GHC
run-time.

Table 1. Result on the nofib suite.

Haskell programs increase in size substantially once the libraries are included,
particularly when type classes are involved. Because of the relatively large source
code size of even small examples, we have limited our focus to five benchmarks
drawn from the imaginary section. We have chosen programs which do not per-
form large amounts of 10.

The benchmarks are: digits-of-el and digits-of-e2, both of which compute the
digits of e by different methods; exp3_8 computes 3° using Peano numbers and
the Num class; primes computes a list of prime numbers; and queens counts the
safe layouts of queen pieces on a chess board. All benchmarks were run with
parameters that require runtimes of between 3 and 5 seconds for GHC.

The results of these benchmarks are given in Figure 7, along with detailed
breakdowns in Table 1. In all benchmarks Supero+GHC performs at least 10%
faster than GHC alone, and in one case is nearly three times faster. Binaries
were at most 10% larger than those from GHC alone, and in one case the binary
was even marginally smaller.

5.1 GHC'’s optimisations

For these benchmarks it is important to clarify which optimisations are per-
formed by GHC, and which are performed by Supero. Core output from Yhe,
compiled using GHC without any prior optimisation, would not perform as well
as the original program compiled using GHC. GHC has two special optimisations
that work in a restricted number of cases, but which Supero is unable to take
advantage of.

Dictionary Removal Functions which make use of type classes are given an addi-
tional dictionary argument. In practice, GHC specialises many such functions by
creating code with a particular dictionary frozen in. This optimisation is specific
to type classes — a tuple of higher order functions is not similarly specialised.
After compilation with Yhe, the type classes have already been converted to
tuples, so Supero must be able to remove the dictionaries itself. One benchmark
where dictionary removal is critical is digits-of-e2.

List Fusion GHC relies on names of functions, particularly foldr/build [19], to
apply special optimisation rules such as list fusion. Many of GHC’s library func-
tions, for example iterate, are defined in terms of foldr to take advantage of these
special properties. After transformation with Yhe, these names are destroyed, so
no rule based optimisation can be performed. One example where list fusion is
critical is primes, although it occurs in most of the benchmarks to some extent.

Supero has no special purpose optimisations which rely on named functions or
desugaring knowledge. The one benchmark where no GHC specific optimisations
apply is exp3_8, which operates solely on Peano numbers — a type GHC has no
inbuilt knowledge of. Hence the advantage of Supero in exp3_8: while GHC is
limited to basic inline/simplify transformations, Supero is able to remove some
intermediate data structures.

5.2 Termination Bound

Table 1 includes a column indicating the size bound that was applied to ex-
pressions. Out of the five benchmarks, both primes and queens could be run
at any greater bound and would still produce the same program — the direct
repetition criteria (see §3.1) bounds the expressions on its own. For the remain-
ing programs, a bound was chosen to ensure that the compilation process was
quick (under two seconds). By increasing the termination bound the size of the
residual program would increase, but the generated program may execute faster.

The existence of a termination bound requiring different values for different
programs is a cause for concern. In a large program it is likely that different
parts of the program would require different bounds on the size of the generated
expression — something not currently possible. We suspect that the most promis-
ing direction is to augment the direct repetition criterion to obtain termination
in all practical cases without resorting to a depth bound.

6 Related Work

Partial evaluation There has been a lot of work on partial evaluation [7], where
a program is specialised with respect to some static data. The emphasis is on
determining which variable can be entirely computed at compile time, and which
must remain in the residual program. Partial evaluation is particularly appropri-
ate for specialising an interpreter with an expression tree to generate a compiler
automatically, often with an order of magnitude speedup, known as the First
Futamura Projection [4]. The difference between our work and partial evalua-
tion is that we fold back definitions, and perform no binding time analysis. Our
method is certainly less appropriate for specialising an interpreter, but in the
absence of static data, is still able to show improvements.

Deforestation The deforestation technique [23] removes intermediate lists in
computations. This technique has been extended in many ways to encompass
higher order deforestation [8] and work on other data types [3]. Probably the
most practically motivated work on deforestation has come from those attempt-
ing to restrict deforestation, in particular shortcut deforestation [5], and newer
approaches such as stream fusion [2]. In this work certain named functions are
automatically fused together. By rewriting library functions in terms of these
special functions, fusion occurs. Shortcut deforestation is limited to cases where
the correct underlying function is used — sometimes requiring unnatural defini-
tions.

GRIN The GRIN approach [1] is currently being implemented in the jhe com-
piler [10], with promising initial results. GRIN works by first translating to a
monadic intermediate language, then repeatedly performing a series of optimi-
sations, using whole program transformation. The intermediate language is at
a much lower level than our Core language, so jhc is able to perform detailed
optimisations that we are unable to express.

Other Transformations One of the central operations within our optimisation
in inlining, a technique that has been used extensively within GHC [18]. We
generalise the constructor specialisation technique [16], by allowing specialisation
on any arbitrary expression, including constructors.

Lower Level Optimisations Our optimisation works at the Core level, but even
once optimal Core has been generated there is still some work before optimal
machine code can be produced. Key optimisations include strictness analysis
and unboxing [17]. In GHC both of these optimisations are done at the Core
level, using a Core language extended with unboxed types. After this lower level
Core has been generated, it is then transformed in to STG machine instructions
[13], before being transformed into assembly code. There is still work being
done to modify the lowest levels to take advantage of the current generation of
microprocessors [9]. We rely on GHC to perform all these optimisations after
Supero generates a residual program.

7 Conclusions and Future Work

We have introduced an optimising front-end which can enhance the results of
back-end compilation using GHC — at least for some small programs. Our opti-
miser is simple — the Core transformation is expressed in just 300 lines of Haskell,
yet it replicates many of the performance enhancements of GHC in a more gen-
eral way. Our initial results are promising, but incomplete. There are three main
obstacles that need to be tackled:

Termination We are confident that Supero terminates, but only by use of
a crude bound on expression size whose optimal value varies for different
programs. To increase the applicability of our optimiser, we would like to
remove the depth bound, or at least reduce our reliance upon it.

Benchmarks Eight small benchmarks are not enough. We would like to obtain
results for all the remaining benchmarks in the nofib suite.

Performance The performance results presented in §5 are disappointing. Ear-
lier versions of Supero were able to obtain a 50% speed up in the primes
benchmark, but decreased performance in other benchmarks. We suspect
that much better performance can be obtained.

The Programming Language Shootout? has shown that low-level Haskell can
compete with with low-level imperative languages such as C. Our goal is that
Haskell programs can be written in a high-level declarative style, yet still perform
competitively.

Acknowledgements We would like to thank Simon Peyton Jones, Simon Marlow
and Tim Chevalier for help understanding the low-level details of GHC, and
Peter Jonsson for helpful discussions.

References

1. Urban Boquist and Thomas Johnsson. The GRIN project: A highly optimising
back end for lazy functional languages. In Proc IFL ’96, volume 1268 of LNCS,
pages 58-84. Springer-Verlag, 1996.

2. Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists
to streams to nothing at all. In Proc ICFP ’07. ACM Press, April 2007.

3. Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting Haskell strings.
In Proc PADL 2007, pages 50—64. Springer-Verlag, January 2007.

4. Yoshihiko Futamura. Partial evaluation of computation process - an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381-391, 1999.

5. Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to defor-
estation. In Proc FPCA 93, pages 223-232. ACM Press, June 1993.

6. Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core - from Haskell
to Core. The Monad.Reader, (7):45-61, April 2007.

7. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Fvaluation and
Automatic Program Generation. Prentice-Hall International, 1993.

2 http://shootout.alioth.debian.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Simon Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis,
University of Glasgow, 1996.

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones. Faster
laziness using dynamic pointer tagging. In Proc. ICFP ’07. ACM Press, October
2007.

John Meacham. jhc: John’s haskell compiler. http://repetae.net/john/
computer/jhc/, 2007.

Will Partain et al. The nofib Benchmark Suite of Haskell Programs. http:
//darcs.haskell.org/nofib/, 2007.

Simon Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

Simon Peyton Jones. Implementing lazy functional languages on stock hardware:
The spineless tagless G-machine. JFP, 2(2):127-202, 1992.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in haskell. In Engineering theories
of software construction, Marktoberdorf Summer School, 2002.

Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

Simon Peyton Jones. Constructor specialisation for Haskell programs. In Proc.
ICFP ’07. ACM Press, October 2007.

Simon Peyton Jones and John Launchbury. Unboxed values as first class citizens in
a non-strict functional language. In J. Hughes, editor, Proc FPCA ’91, volume 523
of LNCS, pages 636—666, Cambridge, Massachussets, USA, August 1991. Springer-
Verlag.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler
inliner. JFP, 12:393-434, July 2002.

Simon Peyton-Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules:
Rewriting as a practical optimisation technique in GHC. In Proc. Haskell 01,
pages 203—233. ACM Press, 2001.

Niklas R6jemo. Highlights from nhc - a space-efficient Haskell compiler. In Proc.
FPCA 795, pages 282-292. ACM Press, 1995.

The GHC Team. The GHC compiler, version 6.6. http://www.haskell.org/ghc/,
October 2006.

Andrew Tolmach. An External Representation for the GHC Core Language. http:
//www.haskell.org/ghc/docs/papers/core.ps.gz, September 2001.

P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proc ESOP
’88, volume 300 of LNCS, pages 344-358. Berlin: Springer-Verlag, 1988.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Proc. POPL 89, pages 60-76. ACM Press, 1989.

