/ Home / math / 0 /

  •  [Go Up]
  •  ∫÷{1}{x⋅\ln x}⋅dx/
  •  ÷{d}{dx}(x^x)/
  •  image/
  •  ∫(\ln x)²⋅dx/
  •  ∫(\sin x)²⋅dx/
  •  ∫(\tan x)⋅dx/
  •  ∫{√x}⋅dx/
  •  z³=1/

0

These are what you are expected to be able to solve BEFORE undergoing university education.

Differential Calculus

  • ÷{d}{dx}(3⋅x²+7⋅x³+÷{3}{8}⋅x)=?
  • ÷{d}{dx}(3⋅(\sin x)²+4⋅(\cos x)³)=?
  • ÷{d}{dx}(√{x³})=?
  • ÷{d}{dx}((3⋅x³+7⋅x²+4)⋅√x)=?
  • ÷{d}{dx}(x⋅\sin x+x²⋅\cos x+x³⋅√x)=?
  • ÷{d}{dx}(e^{3⋅x})=?
  • ÷{d}{dx}(\ln(1+x))=?
  • ÷{d}{dx}(√{\sin x})=?
  • ÷{d}{dx}(÷{x³+3⋅x⁴+5⋅x⁷}{1+2⋅x²+7⋅x})=?
  • ÷{d}{dx}(x⋅√x)=?
  • ÷{d}{dx}(÷{1}{√{7⋅x²+5⋅x+3}})=?
  • ÷{d}{dx}(x^x)=?

Integral Calculus

  • ∫(\sin x)²⋅dx=?
  • ∫÷{1}{\cos x}⋅dx=?
  • ∫(\tan x)⋅dx=?
  • ∫\limits_{-÷{π}{2}}^{÷{π}{2}} (\sin x+3⋅\cos x+2⋅\tan x)⋅dx=?
  • ∫(÷{x⁵}{5}+÷{8}{7}⋅x⁷+x³+3)⋅dx=?
  • ∫\limits_{x-1}^{x+1} u^x⋅du=?
  • ∫\limits_{1}^{2} e^{x+3}⋅dx=?
  • ∫(÷{1}{x⁵}+÷{2⋅x+1}{x+x²+3})⋅dx=?
  • ∫\limits_{0}^{1} (x²+3⋅x+7)⋅dx=?
  • ∫{√x}⋅dx=?
  • ∫\limits_{0}^{1} ({√{x³}}+\sqrt[3]{x}-\sqrt[7]{x⁵})⋅dx
  • ∫x^{n²+n}⋅dx=?
  • ∫÷{2⋅x}{x²+1}⋅dx=?
  • ∫\limits_{-1}^{1} x⋅e^x⋅dx=?

Annoying Integral Calculus

  • ∫÷{x²+2⋅x+5}{x³-x²-x+1}⋅dx=?
  • ∫÷{1}{x⋅√{x-1}}⋅dx=?
  • ∫(\cos x)^3⋅(\sin x)^5⋅dx=?
  • ∫÷{x+2}{x²+4⋅x-1}⋅dx=?
  • ∫\limits_{0}^{1} x²⋅(\ln x)⋅dx=?
  • ∫(\ln x)²⋅dx=?
  • ∫÷{1}{x⋅\ln x}⋅dx=?
  • ∫(\arctan x)⋅dx=?
  • ∫e^{√x}⋅dx=?
  • ∫÷{1}{1+√{x+1}}⋅dx=?
  • ∫÷{1-√x}{1+√x}⋅dx=?
  • ∫√{x²+6⋅x+8}⋅dx=?
  • ∫√{4-x²}⋅dx=?
  • ∫÷{1+e^x}{1-e^x}⋅dx=?

Complex Numbers

  • z=4+3⋅i in Polar Coordinates = ?
  • z=-1-i in Polar Coordinates = ?
  • z=1-i⋅(2⋅√2) in Polar Coordinates = ?
  • z_1+z_2 graphical
  • z_1-z_2 graphical
  • z_2-z_1 graphical
  • ÷{z_1}{z_2} graphical
  • z_1⋅z_2 graphical
  • Solve z³=1 for z.
  • Solve z⁴=-i for z.
  • Solve z³=-1-4⋅i for z.
  • Solve ÷{2}{2⋅x+5}-÷{1}{x-1}=÷{1}{x+4}-÷{5}{5⋅x-8} for z.
  • Solve ÷{2⋅x}{x²-x}+÷{x+1}{x²-3⋅x+2}=÷{-8⋅x²+16⋅x-13}{8⋅x²-24⋅x²+16⋅x} for z.

Trigonometry

  • \sin 405°=?
  • \cos 405°=?
  • \tan 405°=?
  • \sin -240°=?
  • \cos -240°=?
  • \tan -240°=?
  • \sin ÷{π}{2}=?
  • \cos ÷{π}{2}=?
  • \tan ÷{π}{2}=?
  • \sin ÷{π}{3}=?
  • \cos ÷{π}{3}=?
  • \tan ÷{π}{3}=?
  • Simplify \sin(x-5⋅π)
  • Simplify \tan(x-5⋅π)
  • Simplify \cos(x-÷{π}{2})
  • Simplify \sin(x-÷{π}{2})

Vector Calculus

Let a⃗:=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.

Let b⃗:=\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}.

Let c⃗:=\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.

  • a⃗∙b⃗=?
  • a⃗⨯b⃗=?
  • |c⃗|=?
  • What is the angle between a⃗ and b⃗?
  • Represent the plane that contains both a⃗ and b⃗ by using the normal vector of the plane.
  • Given a triangle ABC [A(-2,-10), B(8,0), C(-8,8)], determine the height cross points and the equation for the outer circle.

Greek Alphabet

  • α,Α Alpha
  • β,Β Beta
  • γ,Γ Gamma
  • δ,Δ Delta
  • ε,Ε Epsilon (there are more)
  • ζ,Ζ Zeta
  • η,Η Eta
  • ϑ,θ,Θ Theta
  • ι,Ι Iota
  • κ,Κ Kappa
  • λ,Λ Lambda
  • μ,Μ My
  • ν,Ν Ny
  • ξ,Ξ Xi
  • o,O Omikron
  • π,Π Pi
  • ρ,Ρ Rho (there are more)
  • σ,Σ Sigma
  • τ,Τ Tau
  • υ,Υ Ypsilon
  • φ,ϕ,Φ Phi
  • χ,Χ Chi
  • ψ,Ψ Psi
  • ω,Ω Omega

Mathematical Symbols (don't need to know all of them, but at least the names of most)

  • ∇ Nabla
  • \quabla Quabla
  • ∑ Sum
  • ∫ Integral (continuous sum)
  • |x| Absolute value
  • \field{R} Body of real numbers
  • \field{C} body of complex numbers
  • ∀ for all
  • ∃ there exists
  • ħ H-bar
  • a⃗ vector a
  • a⃗∙b⃗ scalar product
  • ⟨A⟩ expected value (or scalar product)
  • ∆ Laplace
  • ∂ Partial derivation
  • ∏ Product
  • ∮ closed loop integral
  • ||x⃗|| Norm (length) of x
  • ∞ infinity
  • a⃗⨯b⃗
  • ⟨a,b⟩ scalar product

Author: FS TPH

Last modification on: Sat, 04 May 2024 .