/ Home / math / 0 / ∫(\sin x)²⋅dx /

  •  [Go Up]
  •  image/

∫(\sin x)²⋅dx

I:=∫(\sin x)²⋅dx=?

It is possible to solve using partial integration directly.

However, I find it easier to first replace the sin²:

(\cos x)²+(\sin x)²=1 normation.
(\cos x)²-(\sin x)²=\cos(x+x) cosine addition theorem.

Hence, it follows that:

-(\sin x)²=\cos(2⋅x)-(\cos x)²
(\sin x)²=(\cos x)²-(\cos(2⋅x))
(\sin x)²=1-(\sin x)²-(\cos(2⋅x))
2⋅(\sin x)²=1-(\cos(2⋅x))
(\sin x)²=÷{1-(\cos(2⋅x))}{2}

And thus:

∫(\sin x)²⋅dx=∫÷{1-(\cos(2⋅x))}{2}⋅dx
I=÷{1}{2}⋅∫(1-(\cos(2⋅x)))⋅dx
I=÷{1}{2}⋅(∫1⋅dx-∫\cos(2⋅x)⋅dx)
I=÷{1}{2}⋅∫1⋅dx-÷{1}{2}⋅∫\cos(2⋅x)⋅dx
I=÷{1}{2}⋅x-÷{1}{2}⋅÷{\sin(2⋅x)}{2}

Author: Danny (remove the ".nospam" to send)

Last modification on: Sat, 04 May 2024 .