/ Home / math / 0 / z³=1 /

  •  [Go Up]
  •  image/

z³=1

z³=1

Per Euler's formula this is equal to:

(r⋅e^{i⋅φ})^3=1⋅e^{i⋅2⋅π⋅k},k∈\field{N+}
(e^{i⋅φ})^3=e^{i⋅2⋅π⋅k}
e^{3⋅i⋅φ}=e^{i⋅2⋅π⋅k}
3⋅i⋅φ=i⋅2⋅π⋅k
φ=÷{2⋅π⋅k}{3}
φ_1=0
φ_2=÷{2⋅π}{3}⋅1
φ_3=÷{2⋅π}{3}⋅2
z_1=1
z_2=e^÷{i⋅2⋅π}{3}
z_3=e^÷{i⋅2⋅2⋅π}{3}

Or in traditional coordinates:

z_2=e^÷{i⋅2⋅π}{3}=\cos ÷{2⋅π}{3}+i⋅\sin ÷{2⋅π}{3}
z_3=e^÷{i⋅2⋅2⋅π}{3}=\cos ÷{4⋅π}{3}+i⋅\sin ÷{4⋅π}{3}
z_2=-0.5+i⋅÷{√3}{2}
z_3=-0.5-i⋅÷{√3}{2}

Author: Danny (remove the ".nospam" to send)

Last modification on: Sat, 04 May 2024 .