
Introduction

Gödel’s incompleteness theorems are among the most important results in mathematical logic.
In order to fully appreciate their significance, it is necessary to explain the historical background.
At the turn from the 19th to the 20th century, several paradoxes surfaced in the foundations
of mathematics, leading to increasing uncertainty concerning the solidity of these foundations.
There have been a number of reactions to that situation, the most far-reaching of them was
Hilbert’s.

At the beginning of the 1920ies, Hilbert put forward a proposal for the foundations of math-
ematics which is now called “Hilbert’s programme”. This programme is based on a simple
but striking observation which underlies all formalisation efforts, in particular also Russel and
Whitehead’s Principia Mathematica: in mathematics we talk about infinite sets, real numbers,
real-valued functions, operators transforming such functions, etc. in short: about abstract, in-
finite objects. However, we do so in an inherently finite way; every proof is a finite sequence
of symbols, taken from some finite set, every theory is a finite succession of such proofs. What
we say and prove about such objects is thus inherently finite. For Hilbert, the part of mathe-
matics which deals with elementary properties of finite sequences of symbols was relying only
on a purely intuitive basis. Their elementary properties and relations are immediate and not
mediated by logic. Therefore they are not susceptible to the possibility of a contradiction.
Elementary statements about such sequences thus form a secure basis for the foundations of
mathematics. Hilbert proposed to use this basis for giving an axiomatic formalisation of all of
mathematics and to prove this formalisation consistent, i.e., to show that no contradiction can
arise based on consideration of finite sequences of symbols alone. Thus, so Hilbert thought, one
could justify the use of abstract concepts in mathematics.

However, this hope was shattered by Gödel’s incompleteness theorems, which were published
in 1931. Informally, they can be stated as follows:

Theorem (First Incompleteness Theorem). Let T be a consistent and axiomatisable theory
“containing arithmetic”, then there is a sentence σ s.t. T 0 σ and T 0 ¬σ.

Theorem (Second Incompleteness Theorem). Let T be a consistent and axiomatisable theory
“containing arithmetic”, then T 0 ConT .

Without explaining these statements in detail, let us just note that the conditions imposed on T
in these two theorems are not identical but, in both cases, encompass all situations envisaged by
Hilbert in his programme to prove consistency statements. The second incompleteness theorem
clearly destroys Hilbert’s programme, for if a theory cannot prove its own consistency, then an
even weaker theory, for example one that speaks only about finite sequences of symbols, cannot
prove it either. Thus, after publication of the incompleteness theorems, Hilbert’s programme
had to be given up.

Nevertheless, the investigation of the logical foundations of mathematics that has been carried
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out since, while not leading to consistency proofs as envisaged by Hilbert, has led to an improve-
ment of our understanding which was sufficient for dissipating doubts about the consistency of
mathematical reasoning. Gödel’s incompletess theorems have become a cornerstone of logic (in
mathematics, philosophy, and computer science). The proof techniques introduced by Gödel in
these results, arithmetisation (also called “Gödelisation”) in conjunction with diagonalisation,
have become central for many results in mathematical logic.

This course is designed as a second course in mathematical logic, centered around the in-
completeness theorems. We are assuming passive and active knowledge of first-order logic, in
particular, the syntax and semantics of formulas, proof calculi, models, and the completeness
theorem. We will take the incompleteness theorems as central aims of this course. However, we
will not proceed there in the most direct way possible. Instead, we take them as occasion to
study important notions and results surrounding them, in particular, in computability theory
and formal theories of arithmetic.

As further literature, [4] can be recommended as a compact presentation of the incompleteness
theorems and [1] as a comprehensive reference on theories of arithmetic. Furthermore, [2]
provides a more model-theoretic perspective on theories of arithmetic and [5, 3] are useful for
background in computability theory. These lecture notes owe a debt to all of these sources.
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Chapter 1

Computability

Computability theory is, along with proof theory, set theory, and model theory, one of the four
main areas of mathematical logic. The incompleteness theorems are strongly connected, both
historically and mathematically, to central notions and techniques of computability theory. We
will therefore start this couse on the former with a brief introduction to the latter. The aim
of this chapter is to prove the existence of a recursively enumerable but undecidable set. From
this result we will soon be able to obtain a weak version of the first incompleteness theorem
as a corollary. As we go along, we pick up some notions, in particular concerning coding, also
called arithmetisation or “Gödelisation”, that will be useful later on.

1.1 The partial recursive functions

One approach to defining the set of functions which are computable in the intuitive sense is to
start “from below”: define some functions which are obviously computable, then define closure
operators which transform computable functions in computable functions. We will follow this
approach here.

Definition 1.1. The basic functions are:

1. the constant (nullary function) 0 ∈ N,

2. the successor function S : N→ N, x 7→ x+ 1,

3. for all k ≥ 1, 1 ≤ i ≤ k, the projection function Pk
i : Nk → N : (x1, . . . , xk) 7→ xi.

All of the basic functions are obviously computable.

Definition 1.2. Let f : Nn → N, g1 : Nk → N, . . . , gn : Nk → N. Then the function obtained
by composition of f with g1, . . . , gn is

Cn[f, g1, . . . , gn] : Nk → N, x 7→ f(g1(x), . . . , gn(x)).

If n = 1, then Cn[f, g] is usually written as f ◦g. If f, g1, . . . , gn are computable, then so is h: in
order to compute h, we first compute yi = gi(x) for i = 1, . . . , n which is possible by assumption
and then we compute f(y1, . . . , yn) which is, again, possible by assumption. Another way to
put the above definition is to say that, for k, n ∈ N, Cnk

n is an operator, transforming functions
into functions, i.e., Ck

n is of type (Nn → N)× (Nk → N)n → (Nk → N).
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Definition 1.3. Let f : Nk → N and g : Nk+2 → N. Then the function obtained by primitive
recursion of f and g is Pr[f, g] = h : Nk+1 → N defined by

h(x, 0) = f(x), and

h(x, y + 1) = g(x, y, h(x, y)).

If f and g are computable then so is h. Let x ∈ Nk. We argue, informally, by induction on y ∈ N:
if y = 0 then, by assumption, f(x) can be computed and thus h(x, y) can be. If y > 0, say
y = y′ + 1, we can compute z = h(x, y′) by induction hypothesis and then h(x, y) = g(x, y′, z)
from it by assumption.

Definition 1.4. A function f : Nk → N is called primitive recursive if it can be obtained from
the basic functions by a finite number of applications of the operators composition and primitive
recursion.

Example 1.1. Consider the functions f = P1
1 : N → N and g : N3 → N, (x, y, z) 7→ z + 1. Then

g = S ◦ P3
3. By primitive recursion of f and g we obtain the function h : N2 → N defined by

h(x, 0) = P1
1(x) = x, and

h(x, y + 1) = g(x, y, h(x, y)) = h(x, y) + 1.

In other words, h is the addition of natural numbers which is hence primitive recursive. This
fact can also be written as + = Pr[P1

1,Cn[S,P3
3]].

Lemma 1.1. The following functions are primitive recursive

1. addition (x, y) 7→ x+ y,

2. the constant function ckz : Nk → N, (x1, . . . , xk) 7→ z,

3. multiplication (x, y) 7→ x · y

4. truncated predecessor x 7→ p(x) =

{
0 if x = 0

x− 1 if x > 0

5. truncated subtraction (x, y) 7→ x .− y =

{
0 if x ≤ y
x− y if x > y

6. the characteristic function of less than or equal (x, y) 7→ χ≤(x, y) =

{
1 if x ≤ y
0 if x > y

7. the characteristic function of equality (x, y) 7→ χ=(x, y) =

{
1 if x = y

0 if x 6= y

Proof. 1. has been shown in Example 1.1. For showing 2., first note that c0
z = Cn[S,Cn[S · · ·Cn[S, 0] · · · ]].

For k = 1 we use a trick based on the Pr-operator and define c1
z = Pr[c0

z,P
2
2]. Then c1

z(0) = c0
z =

z and c1
z(y + 1) = P2

2(y, c1
z(y)) = c1

z(y) = z. For k ≥ 2 we can simply define ckz = Cn[c1
z,P

k
1].

For 3. consider that x · 0 = 0 and x · (y + 1) = x · y + x, i.e., · = Pr[f, g] where f(x) = 0 and
g(x, y, z) = z + x, i.e., f = c1

0 and g = Cn[+,P3
3,P

3
1]. For 4. we can simply define p = Pr[0,P2

1].
For 5. we use a primitive recursive definition based on x .− 0 = x and x .− (y + 1) = p(x .− y).
For 6. observe that χ≤(x, y) = 1 .− (x .− y). For 7. note that χ=(x, y) = χ≤(x, y) · χ≤(y, x).
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At this point one may start to wonder: are the primitive recursive functions all computable
functions? did we miss some? The following informal argument shows that there are computable
functions which are not primitive recursive. Every primitive recursive function can be defined
by a finite string of symbols from a fixed alphabet. Thus all such definitions can be effectively
listed. Let fn be the n-th function in that list and define g(n) = fn(n) + 1. Then g cannot be
in this list, for suppose it were, i.e., g = fe, then g(e) = fe(e) = fe(e) + 1, contradiction. So g is
not primitive recursive. However, g is computable in the intuitive sense. This kind of argument,
diagonalisation, will reappear at several central places in this course. This argument applies to
every set of total functions which can be effectively enumerated. However, diagonalisation is
not an obstacle for partial functions, since fe(e) may simply be undefied. This motivates the
following considerations.

Definition 1.5. A partial function from Nk to N, in symbols f : Nk ↪→ N, is a function
f : D → N for some D ⊆ Nn.

If x ∈ D, we say that f is defined on x and write f(x) ↓. Analogously, if x ∈ Nk \D, we say that
f is not defined on x, in symbols: f(x) ↑. If, for a partial function f : Nk ↪→ N and a k ∈ N, we
write f(x) = k this includes f(x) ↓. Similarly, given a second partial function g : Nk ↪→ N, if
we write f = g, then this includes both the statement that the domain of g is equal to that of
f and that f and g have the same value on every element of their domain. The definitions of
composition and primitive recursion generalise naturally to partial functions (where a result of
a function is only defined if all results required for computing it by the respective operator are
defined).

Example 1.2. If f : N ↪→ N, x 7→
{

x
2 if x is even

undefined otherwise
and g : N ↪→ N is defined by

g = Cn[·, c1
0, f ], then g(x) =

{
0 if x is even

undefined otherwise
.

In all programming languages there are constructs that allow to start a recursion or an iteration
without knowing in advance how often it will be repeated. Instead a condition is given which
decides when to terminate the recursion/iteration, for example while- or repeat ... until-
loops in imperative programming languages. Functions defined using such loops are clearly
computable in the intuitive sense. However, in such constructs we do not have a guarantee
that the condition will eventually be met, the computation may not terminate. In case of non-
termination the value of the function that is computed is not defined. In our setting of operator
terms, this behviour is modelled with the minimisation operator.

Definition 1.6. Let f : Nk+1 ↪→ N, then the function obtained from minimisation of f is
Mn[f ] = g : Nk ↪→ N, defined as

g(x) =

{
y if f(x, y) = 0 and ∀y′ < y f(x, y′) ↓ and f(x, y′) 6= 0

undefined if there is no such y
.

If f is computable, then so is g: we compute g by computing f(x, 0), f(x, 1), . . . until we find a y
with f(x, y) = 0. If one of the computations f(x, y′) does not terminate, then the computation
of g does not terminate. If all the computations of f(x, y′) terminate but none of them yields
0, then the computation of g does not terminate.

We will often use the following notation: for an f : Nk+1 ↪→ N we write µy f(x, y) for the
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function

x 7→
{

the smallest y s.t. f(x, y) = 1 and f(x, y′) = 0 for all y′ < y if such a y exists

undefined otherwise

In particular, this notation will be useful if f is the characteristic function of a relation R,
µy χR(x, y) is the smallest y s.t. R(x, y), if there exists one. Because of this notation, Mn is
often also referred to as µ-recursion.

Definition 1.7. A partial recursive function is a partial function f : Nn ↪→ N that can be
obtained from the basic functions by a finite number of applications of the operators of compo-
sition, primitive recursion, and minimisation.

A recursive function is a partial recursive function which is total.

At this point we can pause again to ask whether we have characterised the set of computable
functions (by the set of partial recursive functions). It is now important to observe that this
statement cannot be proven mathematically since the notion “computable (in the intuitive
sense)” is not mathematical. However, there exists a large number of formalisms for modelling
computation which are based on different paradigms for machines or programs which all turn
out to be equivalent in the sense that they can compute exactly the partial recursive functions.
This situation has led to the Church-Turing thesis: a partial function is computable (in the
intuitive sense) iff it is partial recursive. We can thus claim with reasonable confidence that we
have characterised the computable functions.

We turn back to more technical matters now. A syntactic expression involving 0, S, Pn
k , Cn, Pr,

and Mn that is formed according to the rules of Definitions 1.1, 1.2, 1.3, 1.6 is called operator
term. We write O for the set of all operator terms and, for k ∈ N, Ok for the set of all operator
terms defining a k-ary function. For example, Pr[P1

1,Cn[S,P3
3]] ∈ O2. The primitive recursive

(partial recursive) functions are closed under definition by cases:

Lemma 1.2. If g, f0, . . . , fn : Nk ↪→ N are primitive recursive (partial recursive), then so is
h : Nk ↪→ N defined by

h(x) =





f0(x) if g(x) = 0

f1(x) if g(x) = 1
...

fn−1(x) if g(x) = n− 1

fn(x) if g(x) ≥ n
undefined if g(x) ↑

Proof. We have h(x) = χ=(g(x), 0)·f0(x)+· · ·+χ=(g(x, n−1)·fn−1(x)+χ≥(g(x, n), fn(x)).

Example 1.3. min,max : N2 → N are primitive recursive, since

min(x, y) =

{
x1 if x1 ≤ x2

x2 otherwise
, and

max(x, y) =

{
x1 if x1 ≥ x2

x2 otherwise
.
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1.2 Undecidability

Definition 1.8. A relation R ⊆ Nk is called decidable if χR : Nk → {0, 1} is recursive.

Theorem 1.1. There are undecidable sets.

Proof. Every operator term is a finite string of symbols which are taken from a countable set.
Therefore, there are only countably many operator terms, hence there are only countably many
partial recursive functions, and thus, only countably many decidable relations. On the other
hand, there are uncountably many A ⊆ N.
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