
4

Foundations of geometric
algebra

In chapter 2 we introduced geometric algebra in two and three dimensions. We
now turn to a discussion of the full, axiomatic framework for geometric algebra
in arbitrary dimensions, with arbitrary signature. This will involve some dupli-
cation of material from chapter 2, but we hope that this will help reinforce some
of the key concepts. Much of the material in this chapter is of primary relevance
to those interested in the full range of applications of geometric algebra. Those
interested solely in applications to space and spacetime may want to skip some
of the material below, as both of these algebras are treated in a self-contained
manner in chapters 2 and 5 respectively. The material on frames and linear al-
gebra is important, however, and a knowledge of this is assumed for applications
in gravitation.

The fact that geometric algebra can be applied in spaces of arbitrary dimen-
sions is crucial to the claim that it is a mathematical tool of universal applica-
bility. The framework developed here will enable us to extend geometric algebra
to the study of relativistic dynamics, phase space, single and multiparticle quan-
tum theory, Lie groups and manifolds. This chapter also highlights some of the
new algebraic techniques we now have at our disposal. Many derivations can be
simplified through judicious use of the geometric product at various intermediate
steps. This is true even if the initial and final expressions contain only inner and
outer products.

Many key relations in physics involve linear mappings between one space and
another. In this chapter we also explore how geometric algebra simplifies the
rich subject of linear transformations. We start with simple mappings between
vectors in the same space and study their properties in a very general, basis-free
framework. In later chapters this framework is extended to encompass functions
between different spaces, and multilinear functions where the argument of the
function can consist of one or more multivectors.
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4.1 AXIOMATIC DEVELOPMENT

4.1 Axiomatic development

We should now have an intuitive feel for the elements of a geometric algebra
— the multivectors — and some of their multiplicative properties. The next
step is to define a set of axioms and conventions which enable us to efficiently
manipulate them. Geometric algebra can be defined using a number of axiomatic
frameworks, all of which give rise to the same final algebra. In the main we
will follow the approach first developed by Hestenes and Sobczyk and raise the
geometric product to primary status in the algebra. The properties of the inner
and outer products are then inherited from the full geometric product, and this
simplifies proofs of a number of important results.

Our starting point is the vector space from which the entire algebra will be
generated. Vectors (i.e. grade-1 multivectors) have a special status in the algebra,
as the grading of the algebra is determined by them. Three main axioms govern
the properties of the geometric product for vectors.

(i) The geometric product is associative:

a(bc) = (ab)c = abc. (4.1)

(ii) The geometric product is distributive over addition:

a(b + c) = ab + ac. (4.2)

(iii) The square of any vector is a real scalar: a2 ∈ �.

The final axiom is the key one which distinguishes a geometric algebra from a
general associative algebra. We do not force the scalar to be positive, so we can
incorporate Minkowski spacetime without modification of our axioms. Nothing
is assumed about the commutation properties of the geometric product — matrix
multiplication is one picture to keep in mind. Indeed, one can always represent
the geometric product in terms of products of suitably chosen matrices, but this
does not bring any new insights into the properties of the geometric product.

By successively multiplying together vectors we generate the complete algebra.
Elements of this algebra are called multivectors and are usually written in upper-
case italic font. The space of multivectors is linear over the real numbers, so if λ

and µ are scalars and A and B are multivectors λA + µB is also a multivector.
We only consider the algebra over the reals as most occurrences of complex
numbers in physics turn out to have a geometric origin. This geometric meaning
can be lost if we admit a scalar unit imaginary. Any multivector can be written
as a sum of geometric products of vectors. They too can be multiplied using the
geometric product and this product inherits properties (i) and (ii) above. So,
for multivectors A, B and C, we have

(AB)C = A(BC) = ABC (4.3)
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and

A(B + C) = AB + AC. (4.4)

If we now form the square of the vector a + b we find that

(a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2. (4.5)

It follows that the symmetrised product of two vectors can be written

ab + ba = (a + b)2 − a2 − b2, (4.6)

and so must also be a scalar, by axiom (iii). We therefore define the inner
product for vectors by

a·b =
1
2
(ab + ba). (4.7)

The remaining, antisymmetric part of the geometric product is defined as the
exterior product and returns a bivector,

a∧b =
1
2
(ab − ba). (4.8)

These definitions combine to give the familiar result

ab = a·b + a∧b. (4.9)

In forming this decomposition we have defined both the inner and outer products
of vectors in terms of the geometric product. This contrasts with the common
alternative of defining the geometric product in terms of separate inner and
outer products. Some authors prefer this alternative because the (less famil-
iar) geometric product is defined in terms of more familiar objects. The main
drawback, however, is that work still remains to establish the main properties of
the geometric product. In particular, it is far from obvious that the product is
associative, which is invaluable for its use.

4.1.1 The outer product, grading and bases

In the preceding we defined the outer product of two vectors and asserted that
this returns a bivector (a grade-2 multivector). This is the key to defining the
grade operation for the entire algebra. To do this we first extend the definition of
the outer product to arbitrary numbers of vectors. The outer (exterior) product
of the vectors a1, . . . , ar is denoted by a1 ∧ a2 ∧ · · · ∧ ar and is defined as the
totally antisymmetrised sum of all geometric products:

a1∧a2∧· · ·∧ar =
1
r!

∑
(−1)εak1ak2 · · · akr

. (4.10)
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The sum runs over every permutation k1, . . . , kr of 1, . . . , r, and (−1)ε is
+1 or −1 as the permutation k1, . . . , kr is even or odd respectively. So, for
example,

a1∧a2 =
1
2!

(a1a2 − a2a1) (4.11)

as required.
The antisymmetry of the outer product ensures that it vanishes if any two

vectors are the same. It follows that the outer product vanishes if the vectors
are linearly dependent, since in this case one vector can be written as a linear
combination of the remaining vectors. The outer product therefore records the
dimensionality of the object formed from a set of vectors. This is precisely what
we mean by grade, so we define the outer product of r vectors as having grade r.
Any multivector which can be written purely as the outer product of a set of
vectors is called a blade. Any multivector can be expressed as a sum of blades,
as can be verified by introducing an explicit basis. These blades all have definite
grade and in turn define the grade or grades of the multivector.

We rarely need the full antisymmetrised expression when studying blades. In-
stead we can employ the result that every blade can be written as a geometric
product of orthogonal, anticommuting vectors. The anticommutation of orthog-
onal vectors then takes care of the antisymmetry of the product. In Euclidean
space this result is simple to prove using a form of Gram–Schmidt orthogonali-
sation. Given two vectors a and b we form

b′ = b − λa. (4.12)

We then see that

a∧(b − λa) = a∧b − λa∧a = a∧b. (4.13)

So the same bivector is obtained, whatever the value of λ (figure 4.1). The
bivector encodes an oriented plane with magnitude determined by the area.
Interchanging b and b′ changes neither the orientation nor the magnitude, so
returns the same bivector. We now form

a·b′ = a·(b − λa) = a·b − λa2. (4.14)

So if we set λ = a·b/a2 we have a·b′ = 0 and can write

a∧b = a∧b′ = ab′. (4.15)

One can continue in this manner and construct a complete set of orthogonal
vectors generating the same outer product.

87

https://doi.org/10.1017/CBO9780511807497.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.006


FOUNDATIONS OF GEOMETRIC ALGEBRA

a

b′a∧b
b

Figure 4.1 The Gram–Schmidt process. The outer product a ∧ b is in-
dependent of shape of the parallelogram formed by a and b. The only
information contained in a∧ b is the oriented plane and a magnitude. The
vectors b and b′ generate the same bivector, so we can choose b′ orthogonal
to a and write a ∧ b = ab′.

An alternative form for b′ is quite revealing. We write

b′ = b − a−1a·b
= a−1(ab − a·b)
= a−1(a∧b). (4.16)

This shows that b′ is formed by rotating a through 90◦ in the a ∧ b plane, and
dilating by the appropriate amount. The algebraic form also makes it clear why
ab′ = a ∧ b, and gives a formula that extends simply to higher grades.

The above argument is fine for Euclidean space, but breaks down for spaces of
mixed signature. The inverse a−1 = a/a2 is not defined when a is null (a2 = 0),
so an alternative procedure is required. Fortunately this is a relatively straight-
forward exercise. We start with the set of r independent vectors a1, . . . , ar and
form the r × r symmetric matrix

Mij = ai ·aj . (4.17)

The symmetry of this matrix ensures that it can always be diagonalised with an
orthogonal matrix Rij ,

RikMklR
t
lj = RikRjlMkl = Λij . (4.18)

Here Λij is diagonal and, unless stated otherwise, the summation convention is
employed. The matrix Rij defines a new set of vectors via

ei = Rijaj . (4.19)

These satisfy

ei ·ej = (Rikak)·(Rjlal)

= RikRjlMkl

= Λij . (4.20)
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The vectors e1, . . . , er are therefore orthogonal and hence all anticommute. Their
geometric product is therefore totally antisymmetric, and we have

e1e2 · · · er = e1∧· · ·∧er

= (R1iai)∧· · · (Rrkak)

= det (Rij) a1∧a2∧· · ·∧ar. (4.21)

The determinant appears here because of the total antisymmetry of the expres-
sion (see section 4.5.2). But since Rij is an orthogonal matrix it has determinant
±1, and by choosing the order of the {ei} vectors appropriately we can set the
determinant of Rij to 1. This ensures that we can always find a set of vectors
such that

a1∧a2∧· · ·∧ar = e1e2 · · · er. (4.22)

This result will simplify the proofs of a number of results in this chapter.
For a given vector space, an orthonormal frame {ei}, i = 1, . . . , n provides a

natural way to view the entire geometric algebra. We denote this algebra Gn.
Most of the results derived in this chapter are independent of signature, so in the
following we let Gn denote the geometric algebra of a space of dimension n with
arbitrary (non-degenerate) signature. One can also consider the degenerate case
where some of the basis vectors are null, though we will not need such algebras
in this book. The basis vectors build up to form a basis for the entire algebra as

1, ei, eiej (i < j), eiejek (i < j < k), . . . . (4.23)

The fact that the basis vectors anticommute ensures that each product in the
basis set is totally antisymmetric. The product of r distinct basis vectors is
then, by definition, a grade-r multivector. The basis (4.23) therefore naturally
defines a basis for each of the grade-r subspaces of Gn. We denote each of these
subspaces by Gr

n. The size of each subspace is given by the number of distinct
combinations of r objects from a set of n. (The order is irrelevant, because of
the total antisymmetry.) These are given by the binomial coefficients, so

dim
(
Gr

n

)
=
(

n

r

)
. (4.24)

For example, we have already seen that in two dimensions the algebra contains
terms of grade 0, 1, 2 with each space having dimension 1, 2, 1 respectively. Simi-
larly in three dimensions the separate graded subspaces have dimension 1, 3, 3, 1.
The binomial coefficients always exhibit a mirror symmetry between the r and
n − r terms. This gives rise to the notion of duality, which is explained in sec-
tion 4.1.4 where we explore the properties of the highest grade element of the
algebra — the pseudoscalar.
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The total dimension of the algebra is

dim
(
Gn

)
=

n∑
r=0

dim
(
Gr

n

)
=

n∑
r=0

(
n

r

)
= (1 + 1)n = 2n. (4.25)

One can see that the total size of the algebra quickly becomes very large. If
one wanted to find a matrix representation of the algebra, the matrices would
have to be of the order of 2n/2 × 2n/2. For all but the lowest values of n these
matrices become totally impractical for computations. This is one reason why
matrix representations do not help much with understanding and using geometric
algebra.

We have now defined the grade operation for our linear space Gn. An arbitrary
multivector A can be decomposed into a sum of pure grade terms

A = 〈A〉0 + 〈A〉1 + · · · =
∑

r

〈A〉r. (4.26)

The operator 〈 〉r projects onto the grade-r terms in the argument, so 〈A〉r
returns the grade-r components in A. Multivectors containing terms of only one
grade are called homogeneous. They are often written as Ar, so

〈Ar〉r = Ar. (4.27)

Take care not to confuse the grading subscript in Ar with frame indices in expres-
sions like {ek}. The context should always make clear which is intended. The
grade-0 terms in Gn are the real scalars and commute with all other elements.
We continue to employ the useful abbreviation

〈A〉 = 〈A〉0 (4.28)

for the operation of taking the scalar part.
An important feature of a geometric algebra is that not all homogeneous mul-

tivectors are pure blades. This is confusing at first, because we have to go to four
dimensions before we reach our first counterexample. Suppose that {e1, . . . , e4}
form an orthonormal basis for the Euclidean algebra G4. There are six inde-
pendent basis bivectors in this algebra, and from these we can construct terms
like

B = αe1∧e2 + βe3∧e4, (4.29)

where α and β are scalars. B is a pure bivector, so is homogeneous, but it cannot
be reduced to a blade. That is, we cannot find two vectors a and b such that
B = a∧ b. The reason is that e1 ∧ e2 and e3 ∧ e4 do not share a common vector.
This is not possible in three dimensions, because any two planes with a common
origin share a common line. A four-dimensional bivector like B is therefore hard
for us to visualise. There is a way to visualise B in three dimensions, however,
and it is provided by projective geometry. This is described in chapter 10.
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4.1.2 Further properties of the geometric product

The decomposition of the geometric product of two vectors into a scalar term
and a bivector term has a natural extension to general multivectors. To establish
the results of this section we make repeated use of the formula

ab = 2a·b − ba (4.30)

which we use to reorder expressions. As a first example, consider the case of a
geometric product of vectors. We find that

aa1a2 · · · ar = 2a·a1 a2 · · · ar − a1aa2 · · · ar

= 2a·a1 a2 · · · ar − 2a·a2 a1a3 · · · ar + a1a2aa3 · · · ar

= 2
r∑

k=1

(−1)k+1a·ak a1a2 · · · ǎk · · · ar + (−1)ra1a2 · · · ara, (4.31)

where the check on ǎk denotes that this term is missing from the series. We
continue to follow the conventions introduced in chapter 2 so, in the absence
of brackets, inner products are performed before outer products, and both are
performed before geometric products.

Suppose now that the vectors a1, . . . , ar are replaced by a set of anticommuting
vectors e1, . . . , er. We find that

1
2

(
ae1e2 · · · er − (−1)re1e2 · · · era

)
=

r∑
k=1

(−1)k+1a·ek e1e2 · · · ěk · · · er. (4.32)

The right-hand side contains a sum of terms formed from the product of r − 1
anticommuting vectors, so has grade r−1. Since any grade-r multivector can be
written as a sum of terms formed from anticommuting vectors, the combination
on the left-hand side will always return a multivector of grade r−1. We therefore
define the inner product between a vector a and a grade-r multivector Ar by

a·Ar =
1
2

(
aAr − (−1)rAra

)
. (4.33)

The inner product of a vector and a grade-r multivector results in a multivector
with grade reduced by one.

The main work of this section is in establishing the properties of the remaining
part of the product aAr. For the case where Ar is a vector, the remaining term
is the antisymmetric product, and so is a bivector. This turns out to be true
in general — the remaining part of the geometric product returns the exterior
product,

1
2

(
a(a1∧a2∧· · ·∧ar) + (−1)r(a1∧a2∧· · ·∧ar)a

)
= a∧a1∧a2∧· · ·∧ar. (4.34)

We will prove this important result by induction. First, we write the blade as a
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geometric product of anticommuting vectors, so that the result we will establish
becomes

1
2

(
ae1e2 · · · er + (−1)re1e2 · · · era

)
= a∧e1∧e2∧· · ·∧er. (4.35)

For r = 1 the result is true as the right-hand side defines the bivector a∧e1. For
r > 1 we proceed by writing

a∧e1∧e2∧· · ·∧er =
1

r + 1
ae1e2 · · · er

+
1

r + 1

r∑
k=1

(−1)kek(a∧e1∧· · ·∧ěk∧· · ·∧er). (4.36)

This result is easily established by writing out all terms in the full antisymmetric
product and gathering together the terms which start with the same vector. Next
we assume that equation (4.35) holds for the case of an r − 1 blade, and expand
the term inside the sum as follows:

r∑
k=1

(−1)kek(a∧e1∧· · ·∧ěk∧· · ·∧er)

=
1
2

r∑
k=1

(−1)kek

(
ae1 · · · ěk · · · er + (−1)r−1e1 · · · ěk · · · era

)

=
1
2

r∑
k=1

(−1)kekae1 · · · ěk · · · er +
r

2
(−1)re1 · · · era

=
r∑

k=1

(−1)k(ek ·a)e1 · · · ěk · · · er +
r

2

(
ae1 · · · er + (−1)re1 · · · era

)

=
r − 1

2
ae1 · · · er +

r + 1
2

(−1)re1 · · · era, (4.37)

where we have used equation (4.32). Substituting this result into equation (4.36)
then proves equation (4.35) for a grade-r blade, assuming it is true for a blade
of grade r − 1. Since the result is already established for r = 1, equation (4.34)
holds for all blades and hence all multivectors.

We extend the definition of the wedge symbol by writing

a∧Ar =
1
2

(
aAr + (−1)rAra

)
. (4.38)

With this definition we now have

aAr = a·Ar + a∧Ar, (4.39)

which extends the decomposition of the geometric product in precisely the de-
sired way. In equation (4.38) one can see how the geometric product can simplify
many calculations. The left-hand side would, in general, require totally antisym-
metrising all possible products. But the right-hand side only requires evaluating
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two products — an enormous saving! As we have established the grades of the
separate inner and outer products, we also have

aAr = 〈aAr〉r−1 + 〈aAr〉r+1, (4.40)

where

a·Ar = 〈aAr〉r−1, a∧Ar = 〈aAr〉r+1. (4.41)

So, as expected, multiplication by a vector raises and lowers the grade of a
multivector by 1.

A homogeneous multivector can be written as a sum of blades, and each blade
can be written as a geometric product of anticommuting vectors. Applying the
preceding decomposition, we establish that the product of two homogeneous
multivectors decomposes as

ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + · · · + 〈ArBs〉r+s. (4.42)

We retain the · and ∧ symbols for the lowest and highest grade terms in this
series:

Ar ·Bs = 〈ArBs〉|r−s|,

Ar∧Bs = 〈ArBs〉r+s.
(4.43)

This is the most general use of the wedge symbol, and is consistent with the
earlier definition as the antisymmetrised product of a set of vectors. We can
check that the outer product is associative by forming

(Ar∧Bs)∧Ct = 〈ArBs〉r+s∧Ct = 〈(ArBs)Ct〉r+s+t. (4.44)

Associativity of the outer product then follows from the fact that the geometric
product is associative:

〈(ArBs)Ct〉r+s+t = 〈ArBsCt〉r+s+t = Ar∧Bs∧Ct. (4.45)

In equation (4.32) we established a formula for the result for the inner product
of a vector and a blade formed from orthogonal vectors. We now extend this to
a more general result that is extremely useful in practice. We start by writing

a·(a1∧a2∧· · ·∧ar) = a·〈a1a2 · · · ar〉r, (4.46)

where a1, . . . , ar are a general set of vectors. The geometric product a1a2 · · · ar

can only contain terms of grade r, r − 2, . . . , so

1
2

(
aa1a2 · · · ar − (−1)ra1a2 · · · ara

)
= a·〈a1a2 · · · ar〉r + a·〈a1a2 · · · ar〉r−2 + · · · . (4.47)

The term we are after is the r − 1 grade part, so we have

a·(a1∧a2∧· · ·∧ar) =
1
2
〈aa1a2 · · · ar − (−1)ra1a2 · · · ara〉r−1. (4.48)
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We can now apply equation (4.31) inside the grade projection operator to form

a·(a1∧a2∧· · ·∧ar) =
r∑

k=1

(−1)k+1a·ak〈a1 · · · ǎk · · · ar〉r−1

=
r∑

k=1

(−1)k+1a·ak a1∧· · ·∧ǎk∧· · ·∧ar. (4.49)

The first two cases illustrate how the general formula behaves:

a·(a1∧a2) = a·a1 a2 − a·a2 a1,

a·(a1∧a2∧a3) = a·a1 a2∧a3 − a·a2 a1∧a3 + a·a3 a1∧a2.
(4.50)

The first case was established in chapter 2, where it was used to replace the
formula for the double cross product of vectors in three dimensions.

4.1.3 The reverse, the scalar and the commutator product

Now that the grading is established, we can establish some general properties of
the reversion operator, which was first introduced in chapter 2. The reverse of a
product of vectors is defined by

(ab · · · c)† = c · · · ba. (4.51)

For a blade the reverse can be formed by a series of swaps of anticommuting
vectors, each resulting in a minus sign. The first vector has to swap past r − 1
vectors, the second past r − 2, and so on. This demonstrates that

A†
r = (−1)r(r−1)/2Ar. (4.52)

If we now consider the scalar part of a geometric product of two grade-r multi-
vectors we find that

〈ArBr〉 = 〈ArBr〉† = 〈B†
rA

†
r〉 = (−1)r(r−1)〈BrAr〉 = 〈BrAr〉, (4.53)

so, for general A and B,

〈AB〉 = 〈BA〉. (4.54)

It follows that

〈A · · ·BC〉 = 〈CA · · ·B〉. (4.55)

This cyclic reordering property is frequently useful for manipulating expressions.
The product in equation (4.54) is sometimes given the symbol ∗, so we write

A∗B = 〈AB〉. (4.56)
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A further product of considerable importance in geometric algebra is the com-
mutator product of two multivectors. This is denoted with a cross, ×, and is
defined by

A×B =
1
2
(AB − BA). (4.57)

Care must be taken to include the factor of one-half, which is different to the
standard commutator of two operators in quantum mechanics. The commutator
product satisfies the Jacobi identity

A×(B×C) + B×(C×A) + C×(A×B) = 0, (4.58)

which is easily seen by expanding out the products.
The commutator arises most frequently in equations involving bivectors. Given

a bivector B and a vector a we have

B×a =
1
2
(Ba − aB) = B ·a, (4.59)

which therefore results in a second vector. Now consider the product of a bivector
and a blade formed from anticommuting vectors. We have

B(e1e2 · · · er) = 2(B×e1)e2 · · · er + e1Be2 · · · er

= 2(B×e1)e2 · · · er + · · · + 2e1 · · · (B×er) + e1e2 · · · erB. (4.60)

It follows that

B×(e1e2 · · · er) =
r∑

i=1

e1 · · · (B ·ei) · · · er. (4.61)

The sum involves a series of terms which can only contain grades r and r − 2.
But if we form the reverse of the commutator product between a bivector and a
homogeneous multivector, we find that

(B×Ar)† =
1
2
(BAr − ArB)†

=
1
2
(−A†

rB + BA†
r)

= (−1)r(r−1)/2B×Ar. (4.62)

It follows that B × Ar has the same properties under reversion as Ar. But
multivectors of grade r and r − 2 always behave differently under reversion.
The commutator product in equation (4.61) must therefore result in a grade-r
multivector. Since this is true of any grade-r basis element, it must be true of
any homogeneous multivector. That is,

B×Ar = 〈B×Ar〉r. (4.63)

The commutator of a multivector with a bivector therefore preserves the grade
of the multivector. Furthermore, the commutator of two bivectors must result
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in a third bivector. This is the basis for incorporating the theory of Lie groups
into geometric algebra.

A similar argument to the preceding one shows that the symmetric product
with a bivector must raise or lower the grade by 2. We can summarise this by
writing

BAr = 〈BAr〉r−2 + 〈BAr〉r + 〈BAr〉r+2

= B ·Ar + B×Ar + B∧Ar, (4.64)

where
1
2
(BAr − ArB) = B×Ar (4.65)

and
1
2
(BAr + ArB) = B ·Ar + B∧Ar. (4.66)

It is assumed in these formulae that Ar has grade r > 1.

4.1.4 Pseudoscalars and duality

The exterior product of n vectors defines a grade-n blade. For a given vector
space the highest grade element is unique, up to a magnitude. The outer product
of n vectors is therefore a multiple of the unique pseudoscalar for Gn. This is
denoted I, and has two important properties. The first is that I is normalised
to

|I2| = 1. (4.67)

The sign of I2 depends on the size of space and the signature. It turns out that
the pseudoscalar squares to −1 for the three algebras of most use in this book
— those of the Euclidean plane and space, and of spacetime. But this is in no
way a general property.

The second property of the pseudoscalar I is that it defines an orientation.
For any ordered set of n vectors, their outer product will either have the same
sign as I, or the opposite sign. Those with the same sign are assigned a positive
orientation, and those with opposite sign have a negative orientation. The ori-
entation is swapped by interchanging any pair of vectors. In three dimensions
we always choose the pseudoscalar I such that it has the orientation specified by
a right-handed set of vectors. In other spaces one just asserts a choice of I and
then sticks to that choice consistently.

The product of the grade-n pseudoscalar I with a grade-r multivector Ar is
a grade n − r multivector. This operation is called a duality transformation. If
Ar is a blade, IAr returns the orthogonal complement of Ar. That is, the blade
formed from the space of vectors not contained in Ar. It is clear why this has
grade n − r. Every blade acts as a pseudoscalar for the space spanned by its
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generating vectors. So, even if we are working in three dimensions, we can treat
the bivector e1e2 as a pseudoscalar for any manipulation taking place entirely in
the e1e2 plane. This is often a very helpful idea.

In spaces of odd dimension, I commutes with all vectors and so commutes with
all multivectors. In spaces of even dimension, I anticommutes with vectors and
so anticommutes with all odd-grade multivectors. In all cases the pseudoscalar
commutes with all even-grade multivectors in its algebra. We summarise this by

IAr = (−1)r(n−1)ArI. (4.68)

An important use of the pseudoscalar is for interchanging inner and outer prod-
ucts. For example, we have

a·(ArI) =
1
2

(
aArI − (−1)n−rArIa

)
=

1
2

(
aArI − (−1)n−r(−1)n−1AraI

)
=

1
2

(
aAr + (−1)rAra

)
I

= a∧Ar I. (4.69)

More generally, we can take two multivectors Ar and Bs, with r + s ≤ n, and
form

Ar ·(BsI) = 〈ArBsI〉|r−(n−s)|

= 〈ArBsI〉n−(r+s)

= 〈ArBs〉r+sI

= Ar∧Bs I. (4.70)

This type of interchange is very common in applications. Note how simple this
proof is made by the application of the geometric product in the intermediate
steps.

4.2 Rotations and reflections

In chapter 2 we showed that in three dimensions a reflection in the plane per-
pendicular to the unit vector n is performed by

a 
→ a′ = −nan. (4.71)

This formula holds in arbitrary numbers of dimensions. Provided n2 = 1, we see
that n is transformed to

n 
→ −nnn = −n, (4.72)

whereas any vector a⊥ perpendicular to n is mapped to

a⊥ 
→ −na⊥n = a⊥nn = a⊥. (4.73)
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So, for a vector a, the component parallel to n has its sign reversed, whereas
the component perpendicular to n is unchanged. This is what we mean by a
reflection in the hyperplane perpendicular to n.

Two successive reflections in the hyperplanes perpendicular to m and n result
in a rotation in the m ∧ n plane. This is encoded in the rotor

R = nm = exp(−B̂θ/2) (4.74)

where

cos(θ/2) = n·m, B̂ =
m∧n

sin(θ/2)
. (4.75)

The rotor R generates a rotation through the by now familiar formula

a 
→ a′ = RaR†. (4.76)

Rotations form a group, as the result of combining two rotations is a third
rotation. The same must therefore be true of rotors. Suppose that R1 and R2

generate two distinct rotations. The combined rotations take a to

a 
→ R2(R1aR†
1)R

†
2 = R2R1aR†

1R
†
2. (4.77)

We therefore define the product rotor

R = R2R1, (4.78)

so that the result of the composite rotation is described by RaR†, as usual. The
product R is a new rotor, and in general it will consist of geometric products of
an even number of unit vectors,

R = lk · · ·nm. (4.79)

We will adopt this as our definition of a rotor. The reversed rotor is

R† = mn · · · kl. (4.80)

The result of the map a 
→ RaR† returns a vector for any vector a, since

RaR† = lk · · ·
(
n(mam)n

)
· · · kl (4.81)

and each successive sandwich between a vector returns a new vector.
We can immediately establish the normalisation condition

RR† = lk · · ·nmmn · · · kl = 1 = R†R. (4.82)

In Euclidean spaces, where every vector has a positive square, this normalisation
is automatic. In mixed signature spaces, like Minkowski spacetime, unit vectors
can have n2 = ±1. In this case the condition RR† = 1 is taken as a further
condition satisfied by a rotor. In the case where R is the product of two rotors
we can easily confirm that

RR† = R2R1(R2R1)† = R2R1R
†
1R

†
2 = 1. (4.83)
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The set of rotors therefore forms a group, called a rotor group. This is similar to
the group of rotation matrices, though not identical due to the two-to-one map
between rotors and rotation matrices. We will have more to say about the group
properties of rotors in chapter 11.

In Euclidean spaces every rotor can be written as the exponential of a bivector,

R = exp(−B/2). (4.84)

The bivector B defines the plane or planes in which the rotation takes place.
The sign ensures that the rotation has the orientation defined by B. In mixed
signature spaces one can always write a rotor as ± exp(B). In either case the
effect of the rotor R on the vector a is

a 
→ exp(−B/2)a exp(B/2). (4.85)

We can prove that the right-hand side always returns a vector by considering a
Taylor expansion of

a(λ) = exp(−λB/2)a exp(λB/2). (4.86)

Differentiating the expression on the right produces the power series expansion

a(λ) = a + λa·B +
λ2

2!
(a·B)·B + · · · . (4.87)

Since the inner product of a vector and a bivector always results in a new vector,
each term in this expansion is a vector. Setting λ = 1 then demonstrates that
equation (4.85) results in a new vector, defined by

exp(−B/2)a exp(B/2) = a + a·B +
1
2!

(a·B)·B + · · · . (4.88)

4.2.1 Multivector transformations

Suppose now that every vector in a blade undergoes the same rotation. This is
the sort of transformation implied if a plane or volume element is to be rotated.
The r-blade Ar can be written

Ar = a1 ∧ · · · ∧ ar =
1
r!

∑
(−1)εak1ak2 · · · akr

, (4.89)

with the sum running over all permutations. If each vector in a geometric product
is rotated, the result is the multivector

(Ra1R
†)(Ra2R

†) · · · (RarR
†) = Ra1R

†Ra2R
† · · ·RarR

†

= Ra1a2 · · · arR
†. (4.90)

This holds for each term in the antisymmetrised sum, so the transformation law
for the blade Ar is simply

Ar 
→ A′
r = RArR

†. (4.91)
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Blades transform with the same simple law as vectors! All multivectors share
the same transformation law regardless of grade when each component vector
is rotated. This is one reason why the rotor formulation is so powerful. The
alternative, tensor form would require an extra matrix for each additional vector.

4.3 Bases, frames and components

Any set of linearly independent vectors form a basis for the vectors in a geometric
algebra. Such a set is often referred to as a frame. Repeated use of the outer
product then builds up a basis for the entire algebra. In this section we use the
symbols e1, . . . , en or {ek} to denote a frame for n-dimensional space. We do not
restrict the frame to be orthonormal, so the {ek} do not necessarily anticommute.
The reason for the change of font for frame vectors, as opposed to general sets of
vectors, is that use of frames nearly always implies reference to coordinates. It
is natural write the coordinates of the vector a as ai or ai so, to avoid confusion
with a set of vectors, we write the frame vectors in a different font.

The volume element for the {ek} frame is defined by

En ≡ e1∧e2∧· · ·∧en. (4.92)

The grade-n multivector En is a multiple of the pseudoscalar for the space
spanned by the {ek}. The fact that the vectors are independent guarantees
that En 	= 0. Associated with any arbitrary frame is a reciprocal frame {ek}
defined by the property

ei ·ej = δi
j , ∀i, j = 1 . . . n. (4.93)

The ‘Kronecker δ’, δi
j , has value +1 if i = j and is zero otherwise. The reciprocal

frame is constructed as follows:

ej = (−1)j−1e1∧e2∧· · ·∧ěj∧· · ·∧en E−1
n , (4.94)

where as usual the check on ěj denotes that this term is missing from the ex-
pression. The formula for ej has a simple interpretation. The vector ej must
be perpendicular to all the vectors {ei, i 	= j }. To find this we form the exte-
rior product of the n − 1 vectors {ei, i 	= j}. The dual of this returns a vector
perpendicular to all vectors in the subspace, and this duality is achieved by the
factor of En. All that remains is to fix up the normalisation. For this we recall
the duality results of section 4.1.4 and form

e1 ·e1 = e1 ·(e2∧· · ·∧en E−1
n ) = (e1∧e2∧· · ·∧en)E−1

n = 1. (4.95)

This confirms that the formula for the reciprocal frame is correct.
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e1

e2

e3

e3

e1∧e2

Figure 4.2 The reciprocal frame. The vectors e1, e2 and e3 form a non-
orthonormal frame for three-dimensional space. The vector e3 is formed
by constructing the e1 ∧ e2 plane, and forming the vector perpendicular to
this plane. The length is fixed by demanding e3 ·e3 = 1.

4.3.1 Application — crystallography

An important application of the formula for a reciprocal frame is in crystal-
lography. If a crystal contains some repeated structure defined by the vectors
e1, e2, e3, then constructive interference occurs for wavevectors whose difference
satisfies

∆k = 2π(n1e
1 + n2e

2 + n3e
3), (4.96)

where n1, n2, n3 are integers. The reciprocal frame is defined by

e1 =
e2∧e3

e1∧e2∧e3
, e2 =

e3∧e1

e1∧e2∧e3
, e3 =

e1∧e2

e1∧e2∧e3
. (4.97)

If we write

e1∧e2∧e3 = [e1, e2, e3]I, (4.98)

where I is the three-dimensional pseudoscalar and [e1, e2, e3] denotes the scalar
triple product, we arrive at the standard formula

e1 =
(e2∧e3)I−1

[e1, e2, e3]
=

e2×e3

[e1, e2, e3]
, (4.99)

with similar results holding for e2 and e3. Here the bold cross × denotes the vec-
tor cross product, not to be confused with the commutator product. Figure 4.2
illustrates the geometry involved in defining the reciprocal frame.

4.3.2 Components

The basis vectors {ek} are linearly independent, so any vector a can be written
uniquely in terms of this set as

a = aiei = aie
i. (4.100)

101

https://doi.org/10.1017/CBO9780511807497.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.006


FOUNDATIONS OF GEOMETRIC ALGEBRA

We continue to employ the summation convention and summed indices appear
once as a superscript and once as a subscript. The set of scalars (a1, . . . , an) are
the components of the vector a in the {ek} frame. To find the components we
form

a·ei = ajej ·ei = ajδi
j = ai (4.101)

and

a·ei = aje
j ·ei = ajδ

j
i = ai. (4.102)

These formulae explain the labelling scheme for the components. In many ap-
plications we are only interested in orthonormal frames in Euclidean space. In
this case the frame and its reciprocal are equivalent, and there is no need for
the distinct subscript and superscript indices. The notation is unavoidable in
mixed signature spaces, however, and is very useful in differential geometry, so
it is best to adopt it at the outset.

Combining the equations (4.100), (4.101) and (4.102) we see that

a·ei ei = a·ei ei = a. (4.103)

This holds for any vector a in the space spanned by the {ek}. This result
generalises simply to arbitrary multivectors. First, for the bivector a∧b we have

ei ei ·(a∧b) = ei ei ·a b − ei ei ·b a = ab − ba = 2a∧b. (4.104)

This extends for an arbitrary grade-r multivector Ar to give

ei ei ·Ar = rAr. (4.105)

Since eie
i = n, we also see that

ei ei∧Ar = ei(eiAr − ei ·Ar) = (n − r)Ar. (4.106)

Subtracting the two preceding results we obtain,

eiAre
i = (−1)r(n − 2r)Ar. (4.107)

The {ek} basis extends easily to provide a basis for the entire algebra generated
by the basis vectors. We can then decompose any multivector A into a set of
components through

Ai···jk = 〈(ek∧ej · · ·∧ei)A〉. (4.108)

and

A =
∑

i<j···<k

Aij···kei∧· · ·∧ej∧ek. (4.109)

The components Aij···k are totally antisymmetric on all indices and are usually
referred to as the components of an antisymmetric tensor. We shall have more
to say about tensors in following sections.
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4.3.3 Application — recovering a rotor

As an application of the preceding results, suppose that we have two sets of
vectors in three dimensions {ek} and {fk}, k = 1, 2, 3. The vectors need not
be orthonormal, but we know that the two sets are related by a rotation. The
rotation is governed by the formula

fk = RekR† (4.110)

and we seek a simple expression for the rotor R. In three dimensions the rotor
R can be written as

R = exp(−B/2) = α − βB, (4.111)

where

α = cos(|B|/2), β =
sin(|B|/2)

|B| . (4.112)

The reverse is

R† = exp(B/2) = α + βB. (4.113)

We therefore find that

ekR†ek = ek(α + βB)ek

= 3α − βB

= 4α − R†. (4.114)

We now form

fkek = RekR†ek = 4αR − 1. (4.115)

It follows that R is a scalar multiple of 1 + fkek. We therefore establish the
simple formula

R =
1 + fkek

|1 + fkek| =
ψ

√
(ψψ̃)

, (4.116)

where ψ = 1 + fkek. This compact formula recovers the rotor directly from
the frame vectors. A problem arises if the rotation is through precisely 180◦, in
which case ψ vanishes. This case can be dealt with simply enough by considering
the image of two of the three vectors.

4.4 Linear algebra

Many key relations in physics involve linear mappings between two, sometimes
different, spaces. These are the subject of tensor analysis in the standard litera-
ture. Examples include the stress and strain tensors of elasticity, the conductivity
tensor of electromagnetism and the inertia tensor of dynamics. If one has only
met the study of linear transformations through tensor analysis, one could be
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forgiven for thinking that the subject cannot be discussed without a large dose
of index notation. The indices refer to components of tensors in some frame,
though the essence of tensor analysis is to establish a set of results which are
independent of the choice of frame. In our opinion, this subject is much more
simply dealt with if one can avoid specifying a frame until it is absolutely neces-
sary. Perhaps unsurprisingly, it is geometric algebra that provides precisely the
tools necessary to achieve such a development.

In this section we use capital, sans-serif symbols for linear functions. This helps
to distinguish functions from their multivector argument. The dimension and
signature of the vector space is arbitrary unless otherwise specified. We assume
that readers are familiar with the basic properties of linear transformations in
the guise of matrices. Suppose, then, that we are interested in a quantity F

which maps vectors to vectors linearly in the same space. That is, if a is a vector
in the space acted on by F, then F(a) lies in the same space. The linearity of F

is expressed by

F(λa + µb) = λF(a) + µF(b), (4.117)

for scalars λ and µ and vectors a and b. Geometrically, we can think of F as an
instruction to take a vector and rotate/dilate it to a new vector. No frame or
components are required for such a picture. A simple example is provided by a
rotation, which can be written as

R(a) = RaR†, (4.118)

where R is a rotor. It is a simple matter to confirm that this map is linear.

4.4.1 Extension to multivectors

Once one has formulated the action of a linear function on a vector, the obvious
next step is to let the function act on a multivector. In this way we extend the
action of a linear function to the full geometric algebra defined by the underlying
vector space. Suppose that two vectors a and b are acted on by the linear
function F. The bivector a ∧ b then transforms to F(a) ∧ F(b). We take this as
the definition for the action of F on a bivector blade:

F(a∧b) = F(a)∧F(b). (4.119)

Since the right-hand side is the outer product of two vectors, it is also a bivector
blade (see figure 4.3). The action on sums of blades is defined by the linearity
of F:

F(a∧b + c∧d) = F(a∧b) + F(c∧d). (4.120)

Continuing in this manner, we define the action of F on an arbitrary blade by

F(a∧b∧· · ·∧c) = F(a)∧F(b)∧· · ·∧F(c). (4.121)
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a

b
a∧b

F(a)

F(b)

F(a∧b)

Figure 4.3 The extended linear function. The action of F on the bivector
a∧ b results in the new plane F(a)∧ F(b). This is the definition of F(a∧ b).

Extension by linearity then defines the action of F on arbitrary multivectors. By
construction, F is both linear over multivectors,

F(λA + µB) = λF(A) + µF(B), (4.122)

and grade-preserving,

F(Ar) = 〈F(Ar)〉r, (4.123)

where Ar is a grade-r multivector. A simple example is provided by rotations.
We have already established a formula for the result of rotating all of the vectors
in a blade. For the extension of a rotation we therefore have

R(a∧b∧· · ·∧c) = (RaR†)∧(RbR†)∧· · ·∧(RcR†)

= R a∧b∧· · ·∧cR†. (4.124)

It follows that acting on an arbitrary multivector A we have

R(A) = RAR†. (4.125)

Again, it is simple to confirm that this has the expected properties.

4.4.2 The product

The product of two linear functions is formed by letting a second function act
on the result of the first function. Thus the action of the product of F and G is
defined by

(FG)(a) = F
(
G(a)

)
= FG(a). (4.126)

The final expression enables us to remove some brackets without any ambiguity.
A price to pay for removing indices is that brackets are often required to show
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how calculations are ordered. Any convention that enables brackets to be sys-
tematically dropped is then well worth adopting. It is straightforward to show
that FG is a linear function if F and G are both linear:

FG(λa + µb) = F(λG(a) + µG(b)) = λFG(a) + µFG(b). (4.127)

Next we form the extension of a product function. Suppose that H is given by
the product of F and G:

H(a) = F
(
G(a)

)
= FG(a). (4.128)

It follows that

H(a∧b∧· · ·∧c) = F
(
G(a)

)
∧F
(
G(b)

)
∧· · ·∧F

(
G(c)

)
= F

(
G(a)∧G(b)∧· · ·∧G(c)

)
= F

(
G(a∧b∧· · ·∧c)

)
, (4.129)

so the multilinear action of the product of two linear functions is the product of
their exterior actions. In dealing with combinations of linear functions we can
therefore write

H(A) = FG(A), (4.130)

since the meaning of the right-hand side is unambiguous.

4.4.3 The adjoint

Given a linear function F, the adjoint, or transpose, F̄ is defined so that

a·F̄(b) = F(a)·b, (4.131)

for all vectors a and b. If F is a mapping from one vector space to another, then
the adjoint function maps from the second space back to the first. In terms of
an arbitrary frame {ek} we have

ei ·F̄(a) = a·F(ei), (4.132)

so we can construct the adjoint using

ad(F)(a) = F̄(a) = ei a·F(ei). (4.133)

The notation of a bar for the adjoint, rather than a superscript T or †, is slightly
unconventional, though it does agree with that of Hestenes & Sobczyk (1984).
The notation is very useful in handwritten work, where it is also convenient to
denote the linear function with an underline. Some formulae relating functions
and their adjoints have a neat symmetry when this overbar/underbar convention
is followed.
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The operation of taking the adjoint of the adjoint of a function returns the
original function. This is verified by forming

ad(F̄)(a) = eia·F̄(ei) = ei ei ·F(a) = F(a). (4.134)

The adjoint of a product of two functions is found as follows:

ad(FG)(a) = ei a·FG(ei) = F̄(a)·G(ei) ei

= ḠF̄(a)·ei ei = ḠF̄(a). (4.135)

The operation of taking the adjoint of a product therefore reverses the order
in which the linear functions act. A symmetric function is one which is equal
to its own adjoint, F̄ = F. Two particularly significant examples of symmetric
functions are the functions FF̄ and F̄F. To verify that these are symmetric we
form

ad(FF̄) = ad(F̄)ad(F) = FF̄, (4.136)

with a similar derivation holding for F̄F. These functions will be met again later
in this chapter.

The adjoint is still a linear function, so its extension to arbitrary multivectors
is precisely as expected:

F̄(a∧b∧· · ·∧c) = F̄(a)∧F̄(b)∧· · ·∧F̄(c). (4.137)

If we now consider two bivectors a1 ∧ a2 and b1 ∧ b2, we find that

(a1∧a2)·F(b1∧b2) = a1 ·F(b2) a2 ·F(b1) − a1 ·F(b1) a2 ·F(b2)

= F̄(a1)·b2 F̄(a2)·b1 − F̄(a1)·b1 F̄(a2)·b2

= F̄(a1∧a2)·(b1∧b2). (4.138)

It follows that for two bivectors B1 and B2

B1 ·F̄(B2) = F(B1)·B2. (4.139)

This result extends for arbitrary multivectors to give

〈AF̄(B)〉 = 〈F(A)B〉. (4.140)

This is a special case of an even more general and powerful result. Consider the
expression

F(a∧b)·c = F(a)F(b)·c − F(b)F(a)·c
= F

(
a b·F̄(c) − b a·F̄(c)

)
= F

(
(a∧b)·F̄(c)

)
. (4.141)

Building up in this way we establish the useful results:

Ar ·F̄(Bs) = F̄
(
F(Ar)·Bs

)
r ≤ s,

F(Ar)·Bs = F
(
Ar ·F̄(Bs)

)
r ≥ s.

(4.142)
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e1

e2

e3

F(e1)

F(e2)F(e3)

F

Figure 4.4 The determinant. The unit cube is transformed to a par-
allelepiped with sides F(e1), F(e2) and F(e3). The determinant is the
volume scale factor, so is given by the volume of the parallelepiped,
F(e1)∧F(e2)∧F(e3) = F(I).

These reduce to equation (4.140) in the case when r = s. One way to think
of these formulae is as follows. In the expression F(Ar) · Bs, with r ≥ s, there
are r separate applications of the function F on vectors. When the result is
contracted with Bs, s of these applications are converted to adjoint functions F̄.
The remaining r − s applications act on the multivector Ar · F̄(Bs), which has
grade r − s.

4.4.4 The determinant

Now that we have seen how a linear function defines an action on the entire
geometric algebra, we can give a very compact definition of the determinant.
The pseudoscalar for any space is unique up to scaling, and linear functions are
grade-preserving, so we define

F(I) = det (F) I. (4.143)

It should be immediately apparent that this definition of the determinant is
much more compact and intuitive than the matrix definition (discussed later).
The definition (4.143) shows clearly that the determinant is the volume scale
factor for the operation F. In particular, acting on the unit hypercube, the
result F(I) returns the directed volume of the resultant object (see figure 4.4).

As an example of the power of the geometric algebra definition, consider the
product of two functions, F and G. From equation (4.130) it follows that

det (FG)I = FG(I) = det (G)F(I) = det (F) det (G) I, (4.144)
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which establishes that the determinant of the product of two functions is the
product of their determinants. This is one of the key properties of the deter-
minant, yet in conventional developments it is hard to prove. By contrast, the
geometric algebra approach establishes the result in a few lines. Similarly, one
can easily establish that the determinant of the adjoint is the same as that of
the original function,

det (F) = 〈F(I)I−1〉 = 〈IF̄(I−1)〉 = det (F̄). (4.145)

Example 4.1
Consider the linear function

F(a) = a + αa·f1 f2, (4.146)

where α is a scalar and f1 and f2 are a pair of arbitrary vectors. Construct the
action of F on a general multivector and find its determinant.

We start by forming

F(a∧b) = (a + αa·f1f2)∧(b + αb·f1f2)

= a∧b + α(b·f1a − a·f1b)∧f2

= a∧b + α
(
(a∧b)·f1

)
∧f2. (4.147)

It follows that

F(A) = A + α(A·f1)∧f2. (4.148)

The determinant is now calculated as follows:

F(I) = I + α(I ·f1)∧f2

= I + αf1 ·f2 I, (4.149)

hence det (F) = 1 + αf1 ·f2.

4.4.5 The inverse

We now construct a simple, explicit formula for the inverse of a linear function.
We start by considering a multivector B, lying entirely in the algebra defined by
the pseudoscalar I. For these we have

det (F)IB = F(I)B = F
(
IF̄(B)

)
, (4.150)

where we have used the adjoint formulae of equation (4.142). The inner product
with a pseudoscalar is replaced with a geometric product, since no other grades
are present in the full product. Replacing IB by A we find that

det (F)A = F
(
IF̄(I−1A)

)
(4.151)
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with a similar result holding for the adjoint. It follows that

F−1(A) = IF̄(I−1A) det (F)−1,

F̄−1(A) = IF(I−1A) det (F)−1.
(4.152)

These relations provide simple, explicit formulae for the inverse of a function.
The derivation of these formulae is considerably quicker than anything available
in traditional matrix/tensor analysis.

Example 4.2
Find the inverse of the function defined in equation (4.146).
With

F(A) = A + α(A·f1)∧f2 (4.153)

we have

〈ArF(Br)〉 = 〈ArBr〉 + α〈Ar(Br ·f1)∧f2〉
= 〈ArBr〉 + α〈f2 ·ArBrf1〉, (4.154)

hence

F̄(A) = A + αf1∧(f2 ·A). (4.155)

It follows that

F−1(A) =
(
I−1A + αf1∧(f2 ·(I−1A))

)
(1 + αf1 ·f2)−1

= (A + αf1 ·(f2∧A))(1 + αf1 ·f2)−1

= A − α

1 + αf1 ·f2
f2∧(f1 ·A). (4.156)

Example 4.3
Find the inverse of the rotation

R(a) = RaR†, (4.157)

where R is a rotor.
We have already seen that the action of R on a general multivector is

R(A) = RAR† and R̄(A) = R†AR (4.158)

Hence

det (R)I = RIR† = IRR† = I, (4.159)

so det (R) = 1. It follows that

R−1(A) = IR†I−1AR = R†AR = R̄(a), (4.160)

so, as expected, the inverse of a rotation is the same as the adjoint. This is the
definition of an orthogonal transformation.
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4.4.6 Eigenvectors and eigenblades

We assume that readers are familiar with the concept of an eigenvalue and eigen-
vector of a matrix. All of the standard results for these have obvious counterparts
in the geometric algebra framework. This subject will be explored more thor-
oughly in chapter 11. Here we give a simple outline, concentrating on the new
concepts that geometric algebra offers. A linear function F has an eigenvector e

if

F(e) = λe. (4.161)

The scalar λ is the associated eigenvalue. It follows that

det (F − λI) = 0, (4.162)

which defines a polynomial equation for λ. Techniques for finding eigenvalues
and eigenvectors are discussed widely in the literature.

In general, the polynomial equation for λ will have complex roots. Traditional
developments of the subject usually allow these and consider linear superposi-
tions over the complex field. But if one starts with a real mapping between real
vectors it is not clear that this formal complexification is useful. What one would
like would be a more geometric classification of a general linear transformation.
This is provided by the notion of an eigenblade. We extend the notion of an
eigenvector to that of an eigenblade Ar satisfying

F(Ar) = λAr, (4.163)

where Ar is a grade-r blade and λ is real. One immediate example is the
pseudoscalar, for which λ = det (F). More generally, each eigenblade determines
an invariant subspace of the transformation.

As an example of the geometric clarity of the eigenblade concept, consider a
function satisfying

F(e1) = λe2, F(e2) = −λe1. (4.164)

Traditionally, one might write that e1 ± ie2 are eigenvectors with eigenvalues
∓iλ, where i is the unit imaginary. But the identity

F(e1∧e2) = λ2e1∧e2 (4.165)

identifies the plane e1∧e2 as an eigenbivector of F. The role of the complex
structure inherent in F is played by the unit bivector e1∧e2. A linear function
can have many distinct eigenbivectors, each acting as a distinct imaginary for
its own plane. Replacing all of these by a single scalar imaginary throws away a
considerable amount of useful information.
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4.4.7 Symmetric and antisymmetric functions

An important aspect of the theory of linear functions is finding natural, canon-
ical† expressions for a function. For symmetric functions in Euclidean space
this form is via its spectral decomposition. If ei and ej are eigenvectors of a
function, with eigenvalues λi and λj , we have (no sums implied)

ei ·F(ej) = ei ·(λjej) = λjei ·ej . (4.166)

But if F is symmetric, this also equals

F̄(ei)·ej = F(ei)·ej = (λiei)·ej = λiei ·ej . (4.167)

It follows that

(λi − λj)ei ·ej = 0, (4.168)

so eigenvectors of a symmetric function with distinct eigenvalues must be or-
thogonal.

If we admit the existence of complex eigenvectors and eigenvalues we also find
that (no sums)

e∗ ·F(e) = λe∗ ·e = F(e∗)·e = λ∗e∗ ·e. (4.169)

So for any symmetric function we also have

(λ − λ∗)e∗ ·e = 0. (4.170)

Provided e∗ · e 	= 0 we can conclude that the eigenvalue, and hence the eigen-
vector, is real. In Euclidean space this inequality is always satisfied, and every
symmetric function on an n-dimensional space has a spectral decomposition of
the form

F(a) = λ1P1(a) + λ2P2(a) + · · · + λmPm(a). (4.171)

Here λ1 < λ2 < · · · < λm are the m distinct eigenvalues (m ≤ n) and the Pi are
projections onto each of the invariant subspaces defined by the eigenvectors. For
the case of a projection onto a one-dimensional space we have simply

Pi(a) = a·ei ei. (4.172)

The eigenvectors form an orthonormal frame, which is the natural frame in which
to study the linear function. If two eigenvalues are the same, it is always possible
to choose the eigenvectors so that they remain orthogonal. In non-Euclidean
spaces, such as spacetime, one has to be careful due to the possibility of complex
null vectors. These can have e∗ · e = 0, so the above reasoning breaks down and

† The origin of the use of the word canonical is obscure — see for example the comments in
Goldstein (1950). In mathematical physics, a canonical form usually refers to a standard
way of simplifying an expression without altering its meaning.
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one cannot guarantee the existence of an orthonormal frame of eigenvectors. We
will encounter examples of this when we study gravitation.

Antisymmetric functions have F̄(a) = −F(a). It follows that

a·F(a) = F̄(a)·a = −F(a)·a = 0. (4.173)

The natural way to study antisymmetric functions is through the bivector

F =
1
2
ei∧F(ei), (4.174)

where the {ek} are an arbitrary frame for the space acted on by F. The bivector
F is independent of the choice of frame, so is an invariant quantity. One can
easily confirm that the bivector F has the same number of degrees of freedom
as F. If we now form 2a·F we find that

2a·F = a·
(
ei∧F(ei)

)
= a·ei F(ei) − eia·F(ei)

= F(a·ei ei) + ei ei ·F(a)

= 2F(a). (4.175)

The action of an antisymmetric function therefore reduces to contracting with
the characteristic bivector F :

F(a) = a·F. (4.176)

The problem of reducing an antisymmetric function to its simplest form reduces
to that of splitting F into a set of commuting blades:

F = λ1F̂1 + · · · + λkF̂k, (4.177)

where k ≤ n/2 and each of the F̂i is a unit blade. This decomposition is always
possible in Euclidean space, though the answer is only unique if the blades all
have different magnitudes. Each component blade of F is an eigenblade of F

and determines an invariant subspace. Within this subspace the effect of F is
simply to rotate all vectors by ±90◦, and to scale the result by the magnitude
of the eigenblade. In non-Euclidean spaces such a decomposition is not always
possible.

4.4.8 The singular value decomposition

For linear functions of no symmetry a number of alternative canonical forms can
be found. Among these, perhaps the most useful is the singular value decompo-
sition. We start with an arbitrary function F and restrict the discussion to the
case where F acts on an n-dimensional Euclidean space. We also suppose that
det (F) 	= 0; the case of det (F) = 0 is easily dealt with by separating out the space

113

https://doi.org/10.1017/CBO9780511807497.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.006


FOUNDATIONS OF GEOMETRIC ALGEBRA

which is mapped onto the origin, and working with a reduced function acting in
the subspace over which F is non-singular. We next form the function D by

D(a) = F̄F(a). (4.178)

This function is symmetric and has n orthogonal eigenvectors with real, positive
eigenvalues. The fact that the eigenvalues are positive follows from

F̄F(e) = λe ⇒ F(e)·F(e) = λe2. (4.179)

Since (in Euclidean space) the square of any vector is a positive scalar we see that
λ must be positive. The assumption that det (F) 	= 0 rules out the possibility of
any eigenvalues being zero. It follows that we can write

D(a) =
n∑

i=1

λia·ei ei, (4.180)

where the {ei} are the orthonormal frame of eigenvectors. Degenerate eigen-
values are dealt with by picking a set of arbitrary orthonormal vectors in the
invariant subspace.

The linear function D has a simple (positive) square root,

D1/2 =
n∑

i=1

λ
1/2
i a·ei ei (4.181)

and this is also invertible,

D−1/2 =
n∑

i=1

λ
−1/2
i a·ei ei. (4.182)

We now set

S = FD−1/2. (4.183)

This satisfies

S̄S = D−1/2F̄FD−1/2 = D−1/2DD−1/2 = I, (4.184)

where I is the identity function. It follows that S is an orthogonal function. The
function F can now be written

F = SD1/2. (4.185)

This represents a series of dilations along the eigendirections of D, followed by a
rotation.

If the linear function F is presented as an n×n matrix of components in some
frame, then one usually includes a further rotation R to align this arbitrary frame
with the frame of eigenvectors. In this case one writes

F = SΛ1/2R̄, (4.186)
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where Λ is a diagonal matrix in the arbitrary coordinate frame. This writes a
matrix as a dilation sandwiched between two rotations, and is called the singular
value decomposition of the matrix. An arbitrary linear function in n dimensions
has n2 degrees of freedom. The singular value decomposition assigns 2 × n(n −
1)/2 of these to the two orthogonal transformations R and S, with the remaining n

degrees of freedom contained in the dilation Λ. The singular value decomposition
appears frequently in subjects such as data analysis, where it is often used in
connection with analysing non-square matrices.

4.5 Tensors and components

Many modern physics textbooks are written in the language of tensor analysis.
In this approach one often works directly with the components of a vector, or
linear function, in a chosen coordinate frame. The invariance of the laws under
a change of frame can then be used to advantage to simplify the component
equations. Since this approach is so ubiquitous it is important to establish the
relationship between tensor analysis and the largely frame-free approach of the
present chapter. We start by analysing Cartesian tensors, and then move onto
the more general case of an arbitrary coordinate frame.

4.5.1 Cartesian tensors

The subject of Cartesian tensors arises when we restrict our frames to consist
only of orthonormal vectors in Euclidean space. For these we have

ei ·ej = δij , (4.187)

so there is no distinction between frames and their reciprocals. In this case we
can drop all distinction between raised and lowered indices, and just work with
all indices lowered. Provided both frames have the same orientation, a new frame
is obtained from the {ek} frame by a rotation,

e′i = ReiR
† = Λijej . (4.188)

Here R is a rotor and Λij are the components of the rotation defined by R:

Λij = (ReiR
†)·ej . (4.189)

It follows that

ΛijΛik = (ReiR
†)·ej(ReiR

†)·ek

= (R†ejR)·(R†ekR) = δjk, (4.190)

and similarly

ΛikΛjk = δij . (4.191)
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A vector a has components ai = ei ·a and these transform under a change of
frame in the obvious manner,

a′
i = e′i ·a = Λijaj . (4.192)

It is important to realise here that it is only the components of a that change, not
the underlying vector itself. The change in components is exactly cancelled by
the change in the frame. Many equations in physics are invariant if the vector
itself is transformed, but this is the result of an underlying symmetry in the
equations, and not of the freedom to choose the coordinate system. These two
concepts should not be confused!

Extending this idea, we define the components of the linear function F by

Fij = ei ·F(ej). (4.193)

The result of this decomposition is an n× n array of components, which can be
stored and manipulated as a matrix. This definition ensures that the components
of the vector F(a) are given by

ei ·F(a) = ei ·F(ajej) = Fijaj , (4.194)

which is the usual expression for a matrix acting on a column vector. Similarly,
if F and G are a pair of linear functions, the components of the product function
FG are given by

(FG)ij = FG(ej)·ei = G(ej)·F̄(ei)

= G(ej)·ek ek ·F̄(ei) = FikGkj . (4.195)

This recovers the familiar rule for multiplying matrices. If the frame is changed
to a new rotated frame, the components of the tensor transform in the obvious
way:

F′
ij = ΛikΛjlFkl, (4.196)

where the prime denotes the components in the new (primed) frame. Objects
with two indices are referred to as rank-2 tensors. Rank-1 tensors are vectors,
rank-3 tensors have three indices, and so on. Since rank-2 tensors appear regu-
larly in physics they are often referred to simply as tensors. Also, it is usual to
let the term tensor refer to either the component form Fij or the abstract entity
F.

For Cartesian tensors there are two important tensors which arise regularly
in computations. These are the two invariant tensors. The first of these is the
Kronecker δ, which transforms as

δ′ij = ΛikΛjlδkl = ΛikΛjk = δij . (4.197)

The components of the identity function are therefore the same in all orthonormal
frames (and are those of the identity matrix in all cases). The second invariant is
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the alternating tensor εij···k, where the number of indices matches the dimension
of the space. This is totally antisymmetric and is defined as follows:

εij···k =




1 i, j, . . ., k = even permutation of 1, 2, . . . , n

−1 i, j, . . ., k = odd permutation of 1, 2, . . . , n

0 otherwise

. (4.198)

The order of a permutation is the number of pairwise swaps required to re-
turn to the original order 1, 2, . . . , n. If an even number of swaps is required
the permutation is even, and similarly for the odd case. In three dimensions
even permutations of 1, 2, 3 coincide with cyclic orderings of the indices. The
determinant of a matrix can be expressed in terms of the alternating tensor via

FαiFβj · · ·Fγkεαβ···γ = det (F) εij···k. (4.199)

Given this result, it is straightforward to prove the frame invariance of the al-
ternating tensor under rotations:

ε′ij···k = ΛiαΛjβ · · ·Λkγεαβ···γ = det (Λ) εij···k. (4.200)

But since Λij is a rotation matrix it has determinant +1, so the tensor is indeed
invariant.

4.5.2 The determinant revisited

We should now establish that the definition of the determinant (4.199) agrees
with our earlier definition (4.143). To prove this we first need the result that

εij···k = ei∧ej · · ·∧ek I†, (4.201)

where I = e1e2 · · · en and the {ek} form an orthonormal frame. The right-
hand side of (4.201) is zero if any of the indices are the same, because of the
antisymmetry of the outer product. If the indices form an even permutation of
1, 2, . . . , n we can reorder the vectors into the order e1e2 · · · en = I, in which case
the right-hand side of (4.201) returns +1. Similarly, any anticyclic combination
of 1, 2, . . . , n returns −1. Together these agree with the definition (4.198) of the
alternating tensor εij···k. We can now rearrange the left-hand side of (4.199) as
follows:

FαiFβj · · ·Fγkεαβ···γ = FαiFβj · · ·Fγk eα∧eβ · · ·∧eγ I†

= F(ei)∧F(ej) · · ·F(ek) I†

= det (F) ei∧ej · · ·∧ek I†

= det (F) εij···k, (4.202)

which recovers the expected result.
We assume that most readers are familiar with the various techniques employed
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when computing the determinant of an n × n matrix. These can be found
in most elementary textbooks on linear algebra. It is instructive to see how
the same results arise in the geometric algebra treatment. We have already
established that the determinant of the product of two functions is the product of
the determinants, and that taking the adjoint does not change the determinant.
To establish a further set of results we first introduce the (non-orthonormal)
vectors {fi},

fi ≡ F(ei), (4.203)

so that

Fij = ei ·fj . (4.204)

From equation (4.143) the determinant of F can be written

det (F) = (f1∧f2∧· · ·∧fn)·(en∧· · ·∧e2∧e1). (4.205)

Expanding this product out in full recovers the standard expression for the de-
terminant of a matrix. The first result we see is that swapping any two of the
{fi} changes the sign of the determinant. This is the same as swapping two
columns in the matrix Fij . Since matrix transposition does not affect the result,
the same is true for interchanging rows.

Next we single out one of the {ek} vectors and write

det (F) = (−1)j+1(en∧· · · ěj · · ·∧e1)·
(
ej ·(f1∧· · ·∧fn)

)
=

n∑
k=1

(−1)j+k ej ·fk (en∧· · · ěj · · ·∧e1)·(f1∧· · · f̌k · · ·∧fn). (4.206)

The final part of each term in the sum corresponds to an (n − 1) × (n − 1)
determinant, as can be seen by comparing with (4.205). This is equivalent to
the familiar expression for the expansion of the determinant by the jth row. A
further useful result is obtained from the identity

f1∧· · ·∧(fj + λfk)∧· · ·∧fn = f1∧· · ·∧fj∧· · ·∧fn j 	= k. (4.207)

This result means that any multiple of the kth row can be added to the jth row
without changing the result. The same is true for columns. This is the key to
the method of Gaussian elimination for finding a determinant. In this method
the matrix is first transformed to upper (or lower) triangular form, so that the
determinant is then simply the product of the entries down the leading diagonal.
This is numerically a highly efficient method for calculating determinants. We
can continue in this manner to give concise proofs of many of the key results for
determinants. For a useful summary of these, see Turnbull (1960).

To see how these formulae also lead to the familiar expression for the inverse
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of a matrix, consider the decomposition:

F−1
ij = ei ·F−1(ej)

= 〈ei e1∧· · ·∧en F̄(en∧· · ·∧e1 ej)〉det (F)−1

= (−1)i+j〈F(e1∧· · · ěi · · ·∧en) en∧· · · ěj · · ·∧e1〉det (F)−1. (4.208)

The term enclosed in angular brackets is the determinant of the (n−1)× (n−1)
matrix obtained from Fij by deleting the ith column and jth row. This is the
definition of the i, j cofactor of Fij . Equation (4.208) shows that the components
of F−1

ij are formed from the transposed matrix of cofactors, divided by the deter-
minant det (F) — the familiar result. Similarly, all other matrix formulae have
simple and often elegant counterparts in geometric algebra. Further examples of
these are discussed in chapter 11.

4.5.3 General tensors

We now generalise the preceding treatment to the case of arbitrary basis sets
in spaces of arbitrary (non-degenerate) signature. One reason for wanting to
deal with non-orthonormal frames is that these regularly arise when working in
curvilinear coordinate systems. In addition, in mixed signature spaces one has no
option since it is impossible to identify a frame with its reciprocal. Suppose, then,
that the vectors {ek} constitute an arbitrary frame for n-dimensional space (of
unspecified signature). The reciprocal frame is denoted {ek} and the two frames
are related by

ei ·ej = δi
j . (4.209)

Equation (4.94) for the reciprocal frame is general and still holds in mixed sig-
nature spaces.

As described in section 4.3.2, the vector a has components (a1, a2, . . . , an)
in the {ek} frame, and (a1, a2, . . . , an) in the {ek} frame. When working with
general coordinate frames we always ensure that upper and lower indices match
separately on either side of an expression. Suppose we now form the inner
product of two vectors a and b. We can write this as

a·b = (aiei)·(bje
j) = aibj ei ·ej = aibjδ

j
i = aibi. (4.210)

The general rule is that sums are only taken over pairs of indices where one is a
superscript and the other a subscript. Another way to write an inner product is
to introduce the metric tensor gij :

gij = ei ·ej . (4.211)

In terms of its components gij is a symmetric n× n matrix. The inverse matrix
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is written as gij and is given by

gij = ei ·ej . (4.212)

It is easily verified that this is the inverse of gij :

gikgkj = ei ·ek ek ·ej = ei ·ej = δi
j . (4.213)

Employing the metric tensor we can write the inner product of two vectors in a
number of equivalent forms:

a·b = aibi = aib
i = aibjgij = aibjg

ij . (4.214)

Of course, all of these expressions encode the same thing and, unless there is a
particular reason to introduce a frame, the index-free expression a ·b is usually
the simplest to use.

The same ideas extend to expressing the linear function F in a general non-
orthonormal frame. We let F act on the frame vector ej and find the components
of the result in the reciprocal frame. The components are then given by

Fij = ei ·F(ej). (4.215)

Again, the set of numbers Fij are referred to as the components of a rank-2
tensor and form an n × n matrix, the entries of which depend on the choice of
frame. Similar expressions exist for combinations of frame vectors and reciprocal
vectors, for example,

Fij = F(ej)·ei. (4.216)

One use of the metric tensor is to interchange between these expressions:

Fij = ei ·F(ej) = ei ·ek ek ·F(ele
l ·ej) = gikgjlFkl. (4.217)

Again, we have at our disposal a variety of different ways of encoding the infor-
mation in F. In terms of the abstract concept of a linear operator, the metric
tensor gij is simply the identity operator expressed in a non-orthonormal frame.

If Fij are the components of F in some frame then the components of F̄ are
given by

F̄ij = F̄(ej)·ei = ej ·F(ei) = Fji. (4.218)

That is, viewed as a matrix, the components of F̄ are found from the components
of F by matrix transposition. For mixed index tensors we have to be slightly more
careful, as we now have

Fi
j = F(ej)·ei = ej ·F̄(ei) = F̄j

i. (4.219)

If F is a symmetric function we have F̄ = F. In this case the component matrices
satisfy

Fij = F(ej)·ei = F(ei)·ej = Fji, (4.220)
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so the components Fij form a symmetric matrix. The same is true of Fij = Fji,
but for the mixed tensor Fi

j we have Fi
j = Fj

i.
The components of the product function FG are found from the following

rearrangement:

(FG)ij = FG(ej)·ei = G(ej)·F̄(ei)

= G(ej)·ek ek ·F̄(ei) = Fi
kGkj . (4.221)

Provided the correct combination of subscript and superscript indices is used,
this can be viewed as a matrix product. Alternatively, one can work entirely
with subscripted indices, and include suitable factors of the metric tensor,

(FG)ij = FikGljg
kl. (4.222)

Higher rank linear functions give rise to higher rank tensors. Suppose, for
example, that φ(a1, a2, a3) is a scalar function of three vectors, and is linear on
each argument,

φ(λa1 + µb, a2, a3) = λφ(a1, a2, a3) + µφ(b, a2, a3), etc. (4.223)

The components of this define a rank-3 tensor via

φijk = φ(ei, ej , ek). (4.224)

Using similar schemes it is a straightforward matter to set up a map between
tensor equations and frame-free expressions in geometric algebra.

4.5.4 Coordinate transformations

If a second non-orthonormal frame {fα} is introduced we can relate the two
frames via a transformation matrix fαi:

fαi = fα ·ei, fαi = fα ·ei, (4.225)

where Latin and Greek indices distinguish the components in one frame from
the other. These matrices satisfy

fαif
αj = fα ·ei fα ·ej = ei ·ej = δj

i (4.226)

and

fαif
βi = fα ·ei fβ ·ei = fα ·fβ = δβ

α. (4.227)

The decomposition of the vector a in terms of these frames gives

a = aiei = aifαei ·fα = aifαif
α. (4.228)

If follows that the transformation law for the components is

aα = fαia
i, (4.229)
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with similar expressions holding for the superscripted components.
These formulae extend simply to include linear functions. For example, we see

that

Fαβ = fαifβjF
ij . (4.230)

Again, similar expressions hold for superscripts and for mixtures of indices. In
particular we have

Fα
β = fα

ifβ
jFi

j . (4.231)

Expressed in terms of matrix multiplication, this would be an equivalence trans-
formation. Of course, the abstract frame-free function F is unaffected by any
change of basis. All that changes is the particular representation of the function
in the chosen coordinate system. Any set of n2 numbers with this transformation
property are called the components of a rank 2 tensor, the implication being that
the underlying function is frame-independent.

In conventional accounts, the subject of tensors is often built up by taking
the transformation law as fundamental. That is, a vector (rank-1 tensor) is
defined as a set of components which transform according to equation (4.229)
under a change of basis. Once one has the tools available to treat vectors and
linear operations in a frame-free manner, such an approach becomes entirely
unnecessary. The defining property of a tensor is that it represents a genuine
geometric object (or operation) and does not depend on a choice of frame. Given
this, the transformation laws (4.229) and (4.231) follow automatically. In this
book the name tensor is applied to any frame-independent linear function, such
as F. We will encounter a variety of such objects in later chapters.

4.6 Notes

The realisation that geometric algebra is a universal tool for physics was a key
point in the modern development of the subject, and was first strongly promoted
by David Hestenes (figure 4.5). Before his work, physicists’ sole interaction
with geometric algebra was through the quantum theory of spin. The Pauli
and Dirac matrices form representations of Clifford algebras, a fact that was
realised as soon as they were introduced. But in the 50 years since Clifford’s
original idea, the geometry behind his algebra had been lost as mathematicians
concentrated on its algebraic properties. This discovery of the Pauli and Dirac
matrices thus gave rise to two mistaken beliefs. The first was that there was
something intrinsically quantum-mechanical in the non-commutative properties
of the matrices. This is clearly not the case. Clifford died long before quantum
theory was first formulated and was motivated entirely by classical geometry,
and his algebra is today routinely employed in a range of subjects far removed
from quantum theory.
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Figure 4.5 David Hestenes. Inventor of geometric calculus and first to
draw attention to the universal nature of geometric algebra. He wrote
the influential Space-Time Algebra in 1966, and followed this with a fully
developed formalism in Clifford Algebra to Geometric Calculus (Hestenes
& Sobczyk, 1984). This was followed by the (simpler) New Foundations
for Classical Mechanics, first published in 1986 (second edition 1999). In
a series of papers Hestenes and coworkers showed how geometric algebra
could be applied in the study of classical and quantum mechanics, electro-
dynamics, projective and conformal geometry and Lie group theory. More
recently, he has advocated the use of geometric algebra in the field of com-
puter graphics.

The second widespread belief was that matrices were crucial to understanding
the properties of Clifford algebras. This too is erroneous. The geometric algebra
of a finite-dimensional vector space is an associative algebra, so always has a ma-
trix representation. But these matrices add little, if anything, to understanding
the properties of the algebra. Furthermore, an insistence on working with ma-
trices deters one from applying geometric algebra to anything beyond the lowest
dimensional spaces, because the size of the matrices increases exponentially with
the dimension of the space. Working directly with the elements of the algebra
imposes no such constraints, and one can easily apply the ideas to spaces of any
dimension, including infinite-dimensional spaces.

Mathematicians had few such misconceptions, and Atiyah and others devel-
oped Clifford algebra as a powerful tool for geometry. Even in these develop-
ments, however, the emphasis was usually on Clifford algebra as an extra tool
on top of the standard techniques for solving geometric problems. The algebra
was seldom used as complete language for geometry. The picture first started
to change when Hestenes recovered Clifford’s original interpretation of the Pauli
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matrices. This led Hestenes to question whether the appearance of a Clifford
algebra was telling us something about the underlying structure of quantum
theory. Hestenes then went on to promote the universal nature of the algebra,
which he publicised in a series of books and papers. Acceptance of this view
is growing and, while not everyone is in full agreement, it is now hard to find
an area of physics to which geometric algebra cannot or has not been applied
without some degree of success.

4.7 Exercises

4.1 Prove that the outer product of a set of linearly dependent vectors van-
ishes.

4.2 In a Euclidean space, Gram–Schmidt orthogonalisation proceeds by suc-
cessively replacing each vector in a set {ai} by one perpendicular to the
preceding vectors. Prove that such a vector is given by

ei = ai −
i−1∑
j=1

ai ·ej

e2
j

ej .

Prove that we can also write this as

ei = ai∧ai−1∧· · ·∧a1(ai−1∧· · ·∧a1)−1.

4.3 Prove that

(a∧b)×(c∧d) = b·c a∧d − a·c b∧d + a·d b∧c − b·d a∧c.

4.4 The length of a vector in Euclidean space is defined by |a| =
√

(a2), and
the angle θ between two vectors is defined by

cos(θ) = a·b/(|a||b|).

Show that a linear transformation F which leaves lengths and angles
unchanged must satisfy

F̄ = F−1.

What does this imply for the determinant of F? A reflection in the
(hyper)plane perpendicular to n is defined by

R(a) = −nan,

where n2 = 1. Show that R̄ = R−1, and that R has determinant −1.
4.5 For the reflection in the preceding question introduce a suitable basis

frame and express F in terms of a matrix Fij . Verify the results for the
determinant and inverse of this matrix. (Hint — align one of the basis
vectors with n.)
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4.6 A rotor R is defined by

R = exp(−λB/2).

By Taylor expanding in λ, prove that the operation

R(A) = RAR†

preserves the grade(s) of the multivector A.
4.7 Show that the plane B is unchanged by the rotation defined by the rotor

R = exp(B/2).
4.8 Analyse the properties of the matrix(

1 2 sinh(u)
0 1

)
.

To what geometric operation does this matrix correspond? Can this
matrix be diagonalised, and does it have a sensible singular value de-
composition?

4.9 Suppose that the linear transformation F has a complex eigenvector e+if

with associated eigenvector α + iβ. What is the effect of F on the e∧f

plane? How should one interpret the action of F in this plane?
4.10 Suppose that the vectors {ek} form an orthonormal basis frame for n-

dimensional Euclidean space. What is the effect of the transformation

T(a) = a + λa·e1 e2

on the rows of the matrix Fij formed by decomposing F in the {ek}
frame? Use this result to prove that the determinant of a matrix is
unchanged by adding a multiple of one row to another.
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