
6

Geometric calculus

Geometric algebra provides us with an invertible product for vectors. In this
chapter we investigate the new insights this provides for the subject of vector
calculus. The familiar gradient, divergence and curl operations all result from
the action of the vector operator, ∇. Since this operator is vector-valued, we
can now form its geometric product with other multivectors. We call this the
vector derivative. Unlike the separate divergence and curl operations, the vec-
tor derivative has the important property of being invertible. That is to say,
Green’s functions exist for ∇ which enable initial conditions to be propagated
off a surface.

The synthesis of vector differentiation and geometric algebra described in this
chapter is called ‘geometric calculus’. We will see that geometric calculus pro-
vides new insights into the subject of complex analysis and enables the concept of
an analytic function to be extended to arbitrary dimensions. In three dimensions
this generalisation gives rise to the angular eigenstates of the Pauli theory, and
the spacetime generalisation of an analytic function defines the wavefunction for
a massless spin-1/2 particle. Clearly there are many insights to be gained from
a unified treatment of calculus based around the geometric product.

The early sections of this chapter discuss the vector derivative, and its asso-
ciated Green’s functions, in flat spaces. This way we can quickly assemble a
number of results of central importance in later chapters. The generalisations
to embedded surfaces and manifolds are discussed in the final section. This is
a large and important subject, which has been widely discussed elsewhere. Our
presentation here is kept brief, focusing on the key results which are required
later in this book.
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6.1 The vector derivative

The vector derivative is denoted with the symbol ∇ (or ∇ in two and three
dimensions). Algebraically, this has all of the properties of a vector (grade-1)
object in a geometric algebra. The operator properties of ∇ are contained in the
definition that the inner product of ∇ with any vector a results in the directional
derivative in the a direction. That is,

a·∇F (x) = lim
ε	→0

F (x + εa) − F (x)
ε

, (6.1)

where we assume that this limit exists and is well defined. Suppose that we
now define a constant coordinate frame {ek} with reciprocal frame {ek}. Spatial
coordinates are defined by xk = ek·x, and the summation convention is assumed
except where stated otherwise. The vector derivative can be written

∇ =
∑

k

ek ∂

∂xk
= ek∂k, (6.2)

where we introduce the useful abbreviation

∂i =
∂

∂xi
. (6.3)

The frame decomposition ∇ = ek∂k shows clearly how the the vector derivative
combines the algebraic properties of a vector with the operator properties of the
partial derivatives. It is a straightforward exercise to confirm that the definition
of ∇ is independent of the choice of frame.

6.1.1 Scalar fields

As a first example, consider the case of a scalar field φ(x). Acting on φ, the vector
derivative ∇ returns the gradient, ∇φ. This is the familiar grad operation. The
result is a vector whose components in the {ek} frame are the partial derivatives
with respect to the xk coordinates. The simplest example of a scalar field is the
quantity a ·x, where a is a constant vector. We write a ·x = xjaj , so that the
gradient becomes

∇(x·a) = ei ∂xj

∂xi
aj = eiajδ

j
i . (6.4)

But the right-hand side simply expresses the vector a in the {ek} frame, so we
are left with the frame-free result

∇(x·a) = a. (6.5)

This result is independent of both the dimensions and signature of the vector
space. Many formulae for the vector derivative can be built up by combining this
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primitive result with the chain and product rules for differentiation. A particular
application of this result is to the coordinates themselves,

∇xk = ∇(x·ek) = ek, (6.6)

a formula which generalises to curvilinear coordinate systems.
As a second example, consider the derivative of the scalar x2. We first derive

the result in coordinates before discussing a more elegant, frame-free derivation.
We form

∇(x2) = ei∂i(xjxk)ej ·ek

= ei

(
∂xj

∂xi
xk +

∂xk

∂xi
xj

)
ej ·ek

= xkek + xjej

= 2x, (6.7)

which recovers the expected result. It is extremely useful to be able to perform
such manipulations without reference to any coordinate frame. This requires a
notation to keep track of which terms are being differentiated in a given expres-
sion. A suitable convention is to use overdots to define the scope of the vector
derivative. With this notation we can write

∇(x2) = ∇̇(ẋ·x) + ∇̇(x·ẋ) = 2∇̇(ẋ·x). (6.8)

In the final term it is only the first factor of x which is differentiated, while the
second is held constant. We can therefore apply the result of equation (6.5),
which immediately gives ∇(x2) = 2x. More complex results can be built up in
a similar manner.

In Euclidean spaces ∇φ points in the direction of steepest increase of φ. This
is illustrated in equation (6.5). To get the biggest increase in a ·x for a given
step size you must clearly move in the positive a direction, since moving in any
orthogonal direction does not change the value. More generally, suppose ∇φ = J

and consider the contraction of this equation with the unit vector n,

n·∇φ = n·J. (6.9)

We seek the direction of n which maximises this value. Clearly in a Euclidean
space this must be the J direction, so J points in the direction of greatest increase
of φ. Also, setting n in the J direction shows that the magnitude of J is simply
the derivative in the direction of steepest increase.

In mixed signature spaces, such as spacetime, this simple geometric picture
can break down. As a simple example, consider a timelike plane defined by
orthogonal basis vectors {γ0, γ1}, with γ2

0 = 1 and γ2
1 = −1. We introduce the

scalar field

φ = 〈xγ0xγ0〉 = (x0)2 + (x1)2. (6.10)
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Figure 6.1 Spacetime gradients. The contours of the scalar field φ =
〈xγ0xγ0〉 define circles in spacetime. But the direction of the vector deriv-
ative is only in the outward normal direction along the 0 axis. Along the
1 axis the gradient points inwards, which reflects the opposite signature.
Around the circle the gradient interpolates between these two extremes.
At points where x is null the gradient vector is tangential to the circle.

Contours of constant φ are circles in the spacetime plane, so the direction of
steepest increase points radially outwards. But if we form the gradient of φ we
obtain

∇φ = 2∇̇〈ẋγ0xγ0〉 = 2γ0xγ0. (6.11)

Figure 6.1 shows the direction of this vector for various points on the unit circle.
Clearly the vector does not point in the direction of steepest increase of φ.
Instead, ∇φ points in a direction ‘normal’ to tangent vectors in the circle. In
mixed signature spaces, the ‘normal’ does not point in the direction our Euclidean
intuition is used to. This example should be borne in mind when we consider
directed integration in spaces of mixed signature. (This example may appear
esoteric, but closed spacetime curves of this type are of considerable importance
in some modern attempts to construct a quantum theory of gravity.)

6.1.2 Vector fields

Suppose now that we have a vector field J(x). The full vector derivative ∇J

contains two terms, a scalar and a bivector. The scalar term is the divergence of
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J(x). In terms of the constant frame vectors {ek} we can write

∇·J =
∂

∂xk
ek ·J =

∂Jk

∂xk
= ∂kJk. (6.12)

The divergence can also be defined in terms of the geometric product as

∇·J = 1
2 (∇J + J̇∇̇). (6.13)

The simplest example of the divergence is for the vector x itself, for which we
find

∇·x =
∂xk

∂xk
= n, (6.14)

where n is the dimension of the space.
The remaining, antisymmetric, term defines the exterior derivative of the vec-

tor field. In terms of coordinates this can be written

∇∧J = ei∧(∂iJ) = ei∧ej ∂iJj . (6.15)

The components are the antisymmetrised terms in ∂iJj . In three dimensions
these are the components of the curl, though ∇∧J is a bivector, rather than an
(axial) vector. (In this chapter we write vectors in two and three dimensions in
bold face.) The three-dimensional curl requires a duality operation to return a
vector,

curl(J) = −I ∇∧J . (6.16)

The exterior derivative generalises the curl to arbitrary dimensions.
As an example, consider the exterior derivative of the position vector x. We

find that

∇∧x = ei∧ei = ei∧ej (ei ·ej) = 0, (6.17)

which follows because ei∧ej is antisymmetric on i and j, whereas ei ·ej is sym-
metric. Again, we can give an algebraic definition of the exterior derivative in
terms of the geometric product as

∇∧J = 1
2 (∇J − J̇∇̇). (6.18)

Equations (6.13) and (6.18) combine to give the familiar decomposition of a
geometric product:

∇J = ∇·J + ∇∧J. (6.19)

So, for example, we have ∇x = n.
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6.1.3 Multivector fields

The preceding definitions extend simply to the case of the vector derivative acting
on a multivector field. We have

∇A = ek∂kA, (6.20)

and for an r-grade multivector field Ar we write

∇·Ar = 〈∇Ar〉r−1, (6.21)

∇∧Ar = 〈∇Ar〉r+1. (6.22)

These define the interior and exterior derivatives respectively. The interior deriv-
ative is often referred to as the divergence, and the exterior derivative is some-
times called the curl. This latter name conflicts with the more familiar meaning
of ‘curl’ in three dimensions, however, and we will avoid this name where possi-
ble.

An important result for the vector derivative is that the exterior derivative of
an exterior derivative always vanishes,

∇∧(∇∧A) = ei∧∂i(ej∧∂jA)

= ei∧ej∧(∂i∂jA) = 0. (6.23)

This follows because ei∧ej is antisymmetric on i, j, whereas ∂i∂jA is symmetric,
due to the fact that partial derivatives commute. Similarly, the divergence of a
divergence vanishes,

∇·(∇·A) = 0, (6.24)

which is proved in the same way, or by using duality. (By convention, the inner
product of a vector and a scalar is zero.)

Because ∇ is a vector, it does not necessarily commute with other multivectors.
We therefore need to be careful in describing the scope of the operator. We use
the following series of conventions to clarify the scope:

(i) In the absence of brackets, ∇ acts on the object to its immediate right.
(ii) When the ∇ is followed by brackets, the derivative acts on all of the terms

in the brackets.
(iii) When the ∇ acts on a multivector to which it is not adjacent, we use

overdots to describe the scope.

The ‘overdot’ notation was introduced in the previous section, and is invaluable
when differentiating products of multivectors. For example, with this notation
we can write

∇(AB) = ∇AB + ∇̇AḂ, (6.25)
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which encodes a version of the product rule. If necessary, the overdots can be
replaced with partial derivatives by writing

∇̇AḂ = ekA∂kB. (6.26)

Later in this chapter we also employ the overdot notation for linear functions.
Suppose that f(a) is a position-dependent linear function. We write

∇̇ḟ(a) = ∇f(a) − ekf(∂ka), (6.27)

so that ∇̇ḟ(a) only differentiates the position dependence in the linear function,
and not in its argument.

We can continue to build up a series of useful basic results by differentiating
various multivectors that depend linearly on x. For example, consider

∇x·Ar = ek ek ·Ar, (6.28)

where Ar is a grade-r multivector. Using the results of section 4.3.2 we find that

∇x·Ar = rAr,

∇x∧Ar = (n − r)Ar, (6.29)

∇̇Arẋ = (−1)r(n − 2r)Ar,

where n is the dimension of the space.

6.2 Curvilinear coordinates

So far we have only expressed the vector derivative in terms of a fixed coordinate
frame (which is usually chosen to be orthonormal). In many applications, how-
ever, it is more convenient to work in a curvilinear coordinate system, where the
frame vectors vary from point to point. A general set of coordinates consist of a
set of scalar functions {xi(x)}, i = 1, . . . , n, defined over some region. In this re-
gion we can equally write x(xi), expressing the position vector x parametrically
in terms of the coordinates. If one of the coordinates is varied and all of the
others are held fixed we specify an associated coordinate curve. The derivatives
along these curves specify a set of frame vectors by

ei(x) =
∂x

∂xi
= lim

ε	→0

x(x1, . . . , xi + ε, . . . , xn) − x

ε
, (6.30)

where the ith coordinate is varied and all others are held fixed. The derivative
in the ei direction, ei ·∇, is found by moving a small amount along ei. But this
is precisely the same as varying the xi coordinate with all others held fixed. We
therefore have

ei ·∇ =
∂

∂xi
= ∂i. (6.31)
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In order that the coordinate system be valid over a given region we require that
throughout this region

e1∧e2∧· · ·∧en 	= 0. (6.32)

As this quantity can never pass through zero it follows that the frame has the
same orientation throughout the valid region.

We can construct a second frame directly from the coordinate functions by
defining

ei = ∇xi. (6.33)

From their construction we see that the {ei} vectors have vanishing exterior
derivative:

∇∧ei = ∇∧(∇xi) = 0. (6.34)

As the notation suggests, the two frames defined above are reciprocal to one
another. This is straightforward to check:

ei ·ej = ei ·∇xj =
∂xj

∂xi
= δj

i . (6.35)

This result is very useful because, when working with curvilinear coordinates,
one usually has simple expressions for either xi(x) or x(xi), but rarely both.
Fortunately, only one is needed to construct a set of frame vectors, and the
reciprocal frame can then be constructed algebraically (see section 4.3). This
construction provides a simple geometric picture for the gradient in a general
space. Suppose we view the coordinate x1(x) as a scalar field. The contours of
constant x1 are a set of (n−1)-dimensional surfaces. The remaining coordinates
x2, . . . , xn define a set of directions in this surface. At each point on the surface
of constant x1 the vector ∇x1 is orthogonal to all of the directions in the surface.
In Euclidean spaces this vector is necessarily orthogonal (normal) to the surface.
In other spaces this construct defines what we mean by normal.

Now suppose we have a function F (x) that is expressed in terms of the coor-
dinates as F (xi). A simple application of the chain rule gives

∇F = ∇xi ∂iF = ei∂iF. (6.36)

This is consistent with the decomposition

∇ = ei ∂

∂xi
= ei∂i = eiei ·∇, (6.37)

which holds as the {ei} and {ei} are reciprocal frames.

6.2.1 Tensor analysis

A consequence of curvilinear frame vectors is that one has to be careful when
working entirely in terms of coordinates, as is the case in tensor analysis. The
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problem is that for a vector, for example, we have J = J iei. If we just keep
the coordinates J i we lose the information about the position dependence in
the coordinate frame. When formulating the derivative of J in tensor analysis
we must introduce connection coefficients to keep track of the derivatives of the
frame vectors. This can often complicate derivations.

There are two cases of the vector derivative in curvilinear coordinates that do
not require connection coefficients. The first is the exterior derivative, for which
we can write

∇∧J = ∇∧(Jie
i) = (∇Ji)∧ei. (6.38)

It follows that the exterior derivative has coordinates ∂iJj − ∂jJi regardless of
chosen coordinate system. The second exception is provided by the divergence
of a vector. We have

∇·J = ∇·(J iei). (6.39)

If we define the volume factor V by

e1∧e2∧· · ·∧en = IV, (6.40)

where I is the unit pseudoscalar, we can write (following section 4.3)

ei = (−1)i−1en∧en−1∧· · ·∧ěi∧· · ·∧e1 IV. (6.41)

Recalling that each of the ei vectors has vanishing exterior derivative, one can
quickly establish that

∇·J =
1
V

∂

∂xi

(
V J i

)
. (6.42)

Similarly, the Laplacian ∇2 can be written as

∇2φ =
1
V

∂

∂xi

(
V gij ∂φ

∂xj

)
, (6.43)

where gij = ei ·ej .

6.2.2 Orthogonal coordinates in three dimensions

A number of the most useful coordinate systems are orthogonal systems of coor-
dinates in three dimensions. For these systems a number of special results hold.
We define a set of orthonormal vectors by first introducing the magnitudes

hi = |ei| = (ei ·ei)1/2. (6.44)

In terms of these we can write (no sums implied)

ei = hiêi, ei =
1
hi

êi. (6.45)
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We now use the {êi} as our coordinate frame and, since this frame is orthonormal,
we can work entirely with lowered indices. For a vector J we have

J = Jiêi =
3∑

i=1

Ji

hi
ei. (6.46)

It follows that we can write

∇·J =
1

h1h2h3

(
∂

∂x1
(h2h3J1) +

∂

∂x2
(h3h1J2) +

∂

∂x3
(h1h2J3)

)
. (6.47)

A compact formula for the Laplacian is obtained by replacing each Ji term with
1/hi ∂iφ,

∇2φ =
1

h1h2h3

(
∂

∂x1

(
h2h3

h1

∂φ

∂x1

)
+

∂

∂x2

(
h3h1

h2

∂φ

∂x2

)

+
∂

∂x3

(
h1h2

h3

∂φ

∂x3

))
. (6.48)

The components of the curl can be found in a similar manner. A number of
useful curvilinear coordinate systems are summarised below.

Cartesian coordinates

These are the basic starting point for all other coordinate systems. We introduce
a constant, right-handed orthonormal frame {σi}, σ1σ2σ3 = I. This notation
for a Cartesian frame is borrowed from quantum theory and is very useful in
practice. The coordinates in the {σi} frame are written, following standard
notation, as (x, y, z). To avoid confusion between the scalar coordinate x and
the three-dimensional position vector we write the latter as r. That is,

r = xσ1 + yσ2 + zσ3. (6.49)

Since the frame vectors are orthonormal we have h1 = h2 = h3 = 1, so the
divergence and Laplacian take on their simplest forms.

Cylindrical polar coordinates

These are denoted (ρ, φ, z) with ρ and φ the standard two-dimensional polar
coordinates

ρ =
(
x2 + y2

)1/2
, tanφ =

y

x
. (6.50)

The coordinates lie in the ranges 0 ≤ r < ∞ and 0 ≤ φ < 2π. The coordinate
vectors are

êρ = cos(φ)σ1 + sin(φ)σ2,

êφ = − sin(φ)σ1 + cos(φ)σ2, (6.51)

êz = σ3.
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We have adopted the common convention of labelling the frame vectors with the
associated coordinate. The magnitudes are hρ = 1, hφ = ρ and hz = 1, and the
frame vectors satisfy

êρêφêz = σ1σ2σ3 = I (6.52)

and so form a right-handed set in the order (ρ, φ, z).

Spherical polar coordinates

Spherical polar coordinates arise in many problems in physics, particularly quan-
tum mechanics and field theory. They are typically labelled (r, θ, φ) and are
defined by

r = |r| = (r ·r)1/2, r cos(θ) = z, tan(φ) =
y

x
. (6.53)

The coordinate ranges are 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The
φ coordinate is ill defined along the z axis — a reflection of the fact that it is
impossible to construct a global coordinate system over the surface of a sphere.
The inverse relation giving r(r, θ, φ) is often useful,

r = r sin(θ)(cos(φ)σ1 + sin(φ)σ2) + r cos(θ)σ3. (6.54)

This expression makes it a straightforward exercise to compute the orthonormal
frame vectors, which are

êr = sin(θ)(cos(φ) σ1 + sin(φ)σ2) + cos(θ)σ3 = r−1r,

êθ = cos(θ)(cos(φ) σ1 + sin(φ)σ2) − sin(θ)σ3, (6.55)

êφ = − sin(φ)σ1 + cos(φ)σ2.

The associated normalisation factors are

hr = 1, hθ = r, hφ = r sin(θ). (6.56)

The orthonormal vectors satisfy êr êθ êφ = I so that {êr, êθ, êφ} form a right-
handed orthonormal frame. This frame can be obtained from the {ei} frame
through the application of a position-dependent rotor, so that êr = Rσ3R̃,
êθ = Rσ1R̃ and êφ = Rσ2R̃. The rotor is then given by

R = exp(−Iσ3φ/2) exp(−Iσ2θ/2). (6.57)

Spheroidal coordinates

These coordinates turn out to be useful in a number of problems in gravitation
and electromagnetism involving rotating sources. We introduce a vector a, so
that ±a denote the foci of a family of ellipses. The distances from the foci are
given by

r1 = |r + a|, r2 = |r − a|. (6.58)
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From these we define the orthogonal coordinates

u = 1
2 (r1 + r2), v = 1

2 (r1 − r2). (6.59)

The coordinate system is completed by rotating the ellipses around the a axis.
This defines an oblate spheroidal coordinate system. Prolate spheroidal coordi-
nates are formed by starting in a plane, defining (u1, u2) as above, and rotating
this system around the minor axis.

If we define

r̂1 =
r + a

r1
, r̂2 =

r − a

r2
, (6.60)

we see that

eu = 1
2 (r̂1 + r̂2), ev = 1

2 (r̂1 − r̂2), (6.61)

which are clearly orthogonal. The normalisation factors are found from

h2
u =

u2 − v2

u2 − a2
, h2

v =
u2 − v2

a2 − v2
. (6.62)

If we align a with the 3 axis and let φ take its spherical-polar meaning, the
coordinate frame is completed with the vector êφ, and

h2
φ = (u2 − a2)(a2 − v2). (6.63)

The frame vectors satisfy êuêφêv = I. The hyperbolic nature of the coordinate
system is often best expressed by redefining the u and v coordinates as a cosh(w)
and a cos(ϑ) respectively.

6.3 Analytic functions

The vector derivative combines the algebraic properties of geometric algebra with
vector calculus in a simple and natural way. In this section we show how the
vector derivative can be used to extend the definition of an analytic function
to arbitrary dimensions. We start by considering the vector derivative in two
dimensions to establish the link with complex analysis.

6.3.1 Analytic functions in two dimensions

Suppose that {e1, e2} define an orthonormal frame in two dimensions. This is
identified with the Argand plane by singling out e1 as the real axis. We denote
coordinates by (x, y) and write the position vector as r:

r = xe1 + ye2. (6.64)

With this notation the vector derivative is

∇ = e1
∂

∂x
+ e2

∂

∂y
. (6.65)
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In section 2.3.3 we showed that complex numbers sit naturally within the geo-
metric algebra of the plane. The pseudoscalar is the bivector I = e1e2, which
satisfies I2 = −1. Complex numbers therefore map directly onto even-grade
elements in the algebra by identifying the unit imaginary i with I. The position
vector r is mapped onto a complex number by pre-multiplying by the vector
representing the real axis:

z = x + Iy = e1r. (6.66)

Now suppose we introduce the complex field ψ = u + Iv. The vector derivative
applied to ψ yields

∇ψ =
(

∂u

∂x
− ∂v

∂y

)
e1 +

(
∂v

∂x
+

∂u

∂y

)
e2. (6.67)

The terms in brackets are precisely the ones that vanish in the Cauchy–Riemann
equations. The statement that ψ is an analytic function (a function that satisfies
the Cauchy–Riemann equations) reduces to the equation

∇ψ = 0. (6.68)

This is the fundamental equation which can be generalised immediately to higher
dimensions. These generalisations invariably turn out to be of mathematical and
physical importance, and it is is no exaggeration to say that equations of the
type of equation (6.68) are amongst the most studied in physics.

To complete the link with complex analysis we recall that the complex partial
derivative ∂z is defined by the properties

∂z

∂z
= 1,

∂z†

∂z
= 0 (6.69)

with the complex conjugate satisfying

∂z

∂z†
= 0,

∂z†

∂z†
= 1. (6.70)

From these we see that
∂

∂z
=

1
2

(
∂

∂x
− I

∂

∂y

)
,

∂

∂z†
=

1
2

(
∂

∂x
+ I

∂

∂y

)
. (6.71)

An analytic function is one that depends on z alone. That is, we can write
ψ(x + Iy) = ψ(z). The function is therefore independent of z†, and we have

∂ψ(z)
∂z†

= 0. (6.72)

This summarises the content of the Cauchy–Riemann equations, though this fact
is often obscured by the complex limiting argument favoured in many textbooks.
Comparing the preceding forms, we see that this equation is equivalent to

1
2

(
∂

∂x
+ I

∂

∂y

)
ψ = 1

2e1∇ψ = 0, (6.73)
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recovering our earlier equation.
It is instructive to see why solutions to ∇ψ = 0 can be constructed as power

series in z. We first see that

∇z = ∇(e1r) = 2e1 ·∇r − e1∇r = 2e1 − 2e1 = 0. (6.74)

This little manipulation drives most of analytic function theory! It follows im-
mediately, for example, that

∇(z − z0)n = n∇(e1r − z0)(z − z0)n−1 = 0, (6.75)

so a Taylor series expansion in z about z0 automatically returns an analytic
function. We will delay looking at poles until we have introduced the subject of
directed integration.

6.3.2 Generalized analytic functions

There are two problems with the standard presentation of complex analytic
function theory that prevent a natural generalisation to higher dimensions:

(i) Both the vector operator ∇ and the functions it operates on are mapped
into the same algebra by picking out a preferred direction for the real
axis. This only works in two dimensions.

(ii) The ‘complex limit’ argument does not generalise to higher dimensions.
Indeed, one can argue that it is not wholly satisfactory in two dimensions,
as it confuses the concept of a directional derivative with the concept of
being independent of z†.

These problems are solved by keeping the derivative operator ∇ as a vector,
while letting it act on general multivectors. The analytic requirement is then
replaced with the equation ∇ψ = 0. Functions satisfying this equation are said
to be monogenic. If ψ contains all grades it is clear that both the even-grade
and odd-grade components must satisfy this equation independently. Without
loss of generality, we can therefore assume that ψ has even grade.

We can construct monogenic functions by following the route which led to the
conclusion that z is analytic in two dimensions. We recall that ∇r = 3 and

∇(ar) = −a. (6.76)

It follows that

ψ = ra + 3ar (6.77)

is a monogenic for any constant vector a. The main difference with complex
analysis is that we cannot derive new monogenics simply from power series in
this solution, due to the lack of commutativity. One can construct monogenic
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functions from series of geometric products, but a more instructive route is to
classify monogenics via their angular properties.

First we assume that Ψ is a monogenic containing terms which scale uniformly
with r. If we introduce polar coordinates we can then write

Ψ(r) = rlψ(θ, φ). (6.78)

The function ψ(θ, φ) then satisfies

lrl−1erψ + rl∇ψ(θ, φ) = 0. (6.79)

It follows that ψ satisfies the angular eigenvalue equation

−r∧∇ψ = lψ. (6.80)

These angular eigenstates play a key role in the Pauli and Dirac theories of the
electron. Since Ψ satisfies ∇Ψ = 0, it follows that

∇2Ψ = 0. (6.81)

So each component of Ψ (in a constant basis) satisfies Laplace’s equation. It
follows that each component of ψ is a spherical harmonic, and hence that l is an
integer. We can construct a monogenic by starting with the function (x+yIσ3)l,
which is the three-dimensional extension of the complex analytic function zl. In
terms of polar coordinates

(x + yIσ3)l = rl sinl(θ) elφIσ3 , (6.82)

which gives us our first angular monogenic function

ψl
l = sinl(θ) elφIσ3 . (6.83)

The remaining monogenic functions are constructed from this by acting with an
operator which, in quantum terms, lowers the eigenvalue of the angular momen-
tum around the z axis. These are discussed in more detail in section 8.4.1.

6.3.3 The spacetime vector derivative

To construct the vector derivative in spacetime suppose that we introduce the
orthonormal frame {γµ} with associated coordinates xµ. We can then write

∇ = γµ ∂

∂xµ
= γ0

∂

∂t
+ γi ∂

∂xi
. (6.84)

This derivative is the key operator in all relativistic field theories, including
electromagnetism and Dirac theory. If we post-multiply by γ0 we see that

∇γ0 = ∂t + γiγ0∂i = ∂t − ∇, (6.85)
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where ∇ = σi∂i is the vector derivative in the relative space defined by the γ0

vector. Similarly,

γ0∇ = ∂t + ∇. (6.86)

These equations are consistent with

∇x = ∇(γ0γ0x) = (∂t − ∇)(t − r) = 4, (6.87)

where x is the spacetime position vector. The spacetime vector derivative satis-
fies

∇2 =
∂2

∂t2
− ∇2, (6.88)

which is the fundamental operator describing waves travelling at the speed of
light. The spacetime monogenic equation ∇ψ = 0 is discussed in detail in chap-
ters 7 and 8. We only note here that, if ψ is an even-grade element of the
spacetime algebra, the monogenic equation is precisely the wave equation for a
massless spin-1/2 particle.

6.3.4 Characteristic surfaces and propagation

The fact that ∇2 can give rise to either elliptic or hyperbolic operators, depending
on signature, suggests that the propagator theory for ∇ will depend strongly on
the signature. This is confirmed by a simple argument which can be modified
to apply to most first-order differential equations. Suppose we have a generic
equation of the type

∇ψ = f(ψ, x), (6.89)

where ψ is some multivector field, f(ψ, x) is a known function and x is the
position vector in an n-dimensional space. We are presented with data on some
(n− 1)-dimensional surface, and wish to propagate these initial conditions away
from the surface. If surfaces exist for which this is not possible they are known as
characteristic surfaces. Suppose that we construct a set of independent tangent
vectors in the surface, {e1, . . . , en−1}. Knowledge of ψ on the surface enables us
to calculate each of the directional derivatives ei ·∇ψ, i = 1, . . . , n − 1. We now
form the normal vector

n = I e1∧e2∧· · ·∧en−1, (6.90)

where I is the pseudoscalar for the space. Pre-multiplying equation (6.89) with
n we obtain

n·∇ψ = −n∧∇ψ + nf(ψ, x). (6.91)
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But we have

n∧∇ψ = I(e1∧e2∧· · ·∧en−1)·∇ψ

= I

n−1∑
i=1

(−1)i+1−n(e1∧· · ·∧ěi∧· · ·∧en−1) ei ·∇ψ, (6.92)

which is constructed entirely from known derivatives of ψ. Equation (6.91) then
tells us how to propagate ψ in the n direction. The only situation in which we
can fail to propagate ψ is when n still lies in the surface. This happens if n is
linearly dependent on the surface tangent vectors. If this is the case we have

n∧(e1∧e2∧· · ·∧en−1) = 0. (6.93)

But this implies that

(I−1n)∧n = I−1n·n = 0. (6.94)

We therefore only fail to propagate when n2 = 0, so characteristic surfaces are al-
ways null surfaces. This possibility can only arise in mixed signature spaces, and
unsurprisingly the propagators in these spaces can have quite different properties
to their Euclidean counterparts.

6.4 Directed integration theory

The true power of geometric calculus begins to emerge when we study directed
integration theory. This provides a very general and powerful integral theorem
which enables us to construct Green’s functions for the vector derivative in var-
ious spaces. These in turn can be used to generalise the many powerful results
from complex function theory to arbitrary spaces.

6.4.1 Line integrals

The simplest integrals to start with are line integrals. The line integral of a
multivector field F (x) along a line x(λ) is defined by∫

F (x)
dx

dλ
dλ =

∫
F dx = lim

n	→∞

n∑
i=1

F̄ i∆xi. (6.95)

In the final expression a set of successive points along the curve {xi} are intro-
duced, with x0 and xn the endpoints, and

∆xi = xi − xi−1, F̄ i = 1
2

(
F (xi−1) + F (xi)

)
. (6.96)

If the curve is closed then x0 = xn. The result of the integral is independent
of the way we choose to parameterise the curve, provided the parameterisation
respects the required ordering of points along the curve. Curves that double back
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on themselves are handled by referring to the parameterised form x(λ), which
tells us how the curve is traversed.

The definition of the integral (6.95) looks so standard that it is easy to overlook
the key new feature, which is that dx is a vector-valued measure, and the product
F dx is a geometric product between multivectors. This small extension to scalar
integration is sufficient to bring a wealth of new features. We refer to dx, and
its multivector-valued extensions, as a directed measure. The fact that dx is no
longer a scalar means that equation (6.95) is not the most general line integral
we can form. We can also consider integrals of the form∫

F (x)
dx

dλ
G(x) dλ =

∫
F (x) dx G(x), (6.97)

and more generally we can consider sums of terms like these. The most general
form of line integral can be written∫

L(∂λx;x) dλ =
∫

L(dx), (6.98)

where L(a) = L(a;x) is a multivector-valued linear function of a. The position
dependence in L can often be suppressed to streamline the notation.

Suppose now that the field F is replaced by the vector-valued function v(x).
We have ∫

v dx =
∫

v ·dx +
∫

v∧dx, (6.99)

which separates the directed integral into scalar and bivector-valued terms. If
v is the unit tangent vector along the curve then the scalar integral returns the
arc length. In many applications the scalar and bivector integrals are considered
separately. But to take advantage of the most powerful integral theorems in
geometric calculus we need to use the combined form, containing a geometric
product with the directed measure.

6.4.2 Surface integrals

The natural extension of a line integral is to a directed surface integral. Suppose
now that the the multivector-valued field F is defined over a two-dimensional
surface embedded in some larger space. If the surface is parameterised by two
coordinates x(x1, x2) we define the directed measure by the bivector

dX =
∂x

∂x1
∧ ∂x

∂x2
dx1 dx2 = e1∧e2 dx1 dx2, (6.100)

where ei = ∂ix. This measure is independent of how the surface is parameterised,
provided we orient the coordinate vectors in the desired order. Sometimes more
than one coordinate patch will be needed to parameterise the entire surface, but
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Figure 6.2 A triangulated surface. The surface is represented by a series of
points, and each set of three adjacent points defines a triangle, or simplex.
As more points are added the simplices become a closer fit to the true
surface. Each simplex is given the same orientation by ensuring that for
adjacent simplices, the common edge in traversed in opposite directions.

the directed measure dX is still defined everywhere. A directed surface integral
then takes the form ∫

F dX =
∫

Fe1∧e2 dx1 dx2, (6.101)

or a sum of such terms if more than one coordinate patch is required. Again, we
form the geometric product between the integrand and the measure. As in the
case of a line integral, this is not the most general surface integral that can be
considered, as the integrand can multiply the measure from the left or the right,
giving rise to different integrals.

As an example of a surface integral, consider a closed surface in three dimen-
sions, with unit outward normal n. We let F be given by the bivector-valued
function φnI−1, where φ is a scalar field. The surface integral is then∮

φnI−1 dX =
∮

φ|dS|. (6.102)

Here |dS| = I−1n dX is the scalar-valued measure over the surface. The directed
measure is usually chosen so that n dX has the same orientation as I. As a second
example, suppose that F = 1. In this case we can show that∮

dX = 0, (6.103)

which holds for any closed surface (see later). If the surface is open, the result
of the directed surface integral depends entirely on the boundary, since all the
internal simplices cancel out. This result is sometimes called the vector area,
though in geometric algebra the result is a bivector.

In order to construct proofs of some of the more important results it is nec-
essary to express the surface integral (6.101) in terms of a limit of a sum. This
involves the idea of a triangulated surface (figure 6.2). A set of points are chosen
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x0 x1

x2

e1

e2

Figure 6.3 A planar simplex. The points x0, x1, x2 define a triangle. The
order specifies how the boundary is traversed, which defines an orientation
for the simplex.

on the surface, and adjacent sets of three points define a series of planar trian-
gles, or simplices. As more points are added these triangles become smaller and
are an ever better model for the surface. (In computer graphics programs this
is precisely how ‘smooth’ surfaces are represented internally.) Each simplex has
an orientation attached such that, for a pair of adjacent simplices, the common
edge is traversed in opposite directions. In this way an initial simplex builds
up to define an orientation for the entire surface. For some surfaces, such as
the Mobius strip, it is not possible to define a consistent orientation over the
entire surface. For these it is not possible to define a directed integral, so our
presentation is restricted to orientable surfaces.

Suppose now that the three points x0, x1, x2 define the corners of a simplex,
with orientation specified by traversing the edges in the order x0 
→ x1 
→ x2

(see figure 6.3). We define the vectors

e1 = x1 − x0, e2 = x2 − x0. (6.104)

The surface measure is then defined by

∆X = 1
2e1∧e2 = 1

2 (x1∧x2 + x2∧x0 + x0∧x1). (6.105)

∆X has the orientation defined by the boundary, and an area equal to that of
the simplex. The final expression makes it clear that ∆X is invariant under even
permutations of the vertices. With this definition of ∆X we can express the
surface integral (6.101) as the limit:∫

F dX = lim
n	→∞

n∑
k=1

F̄ k∆Xk. (6.106)

The sum here runs over all simplices making up the surface, and for each simplex
F̄ is the average value of F over the simplex. For well-behaved integrals the value
in the limit is independent of the precise nature of the limiting process.
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6.4.3 n-dimensional surfaces

The simplex structure introduced in the previous section provides a means of
defining a directed integral for any dimension of surface. We discretise the surface
by considering a series of points, and adjacent sets of points are combined to
define a simplex. Suppose that we have an n-dimensional surface, and that
one simplex for the discretised surface has vertices x0, . . . , xn, with the order
specifying the desired orientation. For this simplex we define vectors

ei = xi − x0, i = 1, . . . , n, (6.107)

and the directed volume element is

∆X =
1
n!

e1∧· · ·∧en. (6.108)

A point in the simplex can be described in terms of coordinates λ1, . . . , λn by
writing

x = x0 +
n∑

i=1

λiei. (6.109)

Each coordinate lies in the range 0 ≤ λi ≤ 1, and the coordinates also satisfy

n∑
i=1

λi ≤ 1. (6.110)

Now suppose we have a multivector field F (x) defined over the surface. We
denote the value at each vertex by Fi = F (xi). A new function f(x) is then
introduced which linearly interpolates the Fi over the simplex. This can be
written

f(x) = F0 +
n∑

i=1

λi(Fi − F0). (6.111)

As the number of points increases and the simplices grow smaller, f(x) becomes
an ever better approximation to F (x), and the triangulated surface approaches
the true surface.

The directed integral of F over the surface is now approximated by the integral
of f over each simplex in the surface. To evaluate the integral over each simplex
we use the λi as coordinates, so that

dX = e1∧· · ·∧en dλ1 · · · dλn. (6.112)

It is then a straightforward exercise in integration to establish that∫
dX = ∆X (6.113)
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and ∫
λi dX =

1
n + 1

∆X, ∀λi. (6.114)

Combining these two results we find that the integral of f(x) over a single simplex
evaluates to ∫

f dX =
1

n + 1

(
n∑

i=0

Fi

)
∆X. (6.115)

The function is therefore replaced by its average value over the simplex. We
write this as F̄ . Summing over all the simplices making up the surface we can
now define ∫

F dX = lim
n	→∞

n∑
k=1

F̄ k ∆Xk, (6.116)

where k runs over all of the simplices in the surface. More generally, suppose
that L(An) is a position-dependent linear function of a grade-n multivector An.
We can then write ∫

L(dX) = lim
n	→∞

n∑
k=1

L̄k(∆Xk), (6.117)

with L̄k(∆Xk) the average value of L(∆Xk) over the vertices of each simplex.

6.4.4 The fundamental theorem of geometric calculus

Most physicists are familiar with a number of integral theorems, including the
divergence and Stokes’ theorems, and the Cauchy integral formula of complex
analysis. We will now show that these are all special cases of a more general
theorem in geometric calculus. In this section we will sketch of proof of this
important theorem. Readers who are not interested in the details of the proof
may want to jump straight to the following section, where some applications
are discussed. The proof given here uses simplices and triangulated surfaces,
which means that it is relevant to methods of discretising integrals for numerical
computation.

We start by introducing a notation for simplices which helps clarify the nature
of the boundary operator. We let (x0, x1, . . . , xk) denote the k-simplex defined
by the k + 1 points x0, . . . , xk. This is abbreviated to

(x)(k) = (x0, x1, . . . , xk). (6.118)

The order of points is important, as it specifies the orientation of the simplex.
If any two adjacent points are swapped then the simplex changes sign. The
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boundary operator for a simplex is denoted by ∂ and is defined by

∂(x)(k) =
k∑

i=0

(−1)i(x0, . . . , x̌i, . . . , xk)(k−1), (6.119)

where the check denotes that the term is missing from the product. So, for
example,

∂(x0, x1) = (x1) − (x0), (6.120)

which returns the two points at the end of a line segment. The boundary of a
boundary vanishes,

∂∂(x)(k) = 0. (6.121)

Proofs of this can be found in most differential geometry textbooks.
So far we have dealt only with ordered lists of points, not geometric sums or

products. To add some geometry we introduce the operator ∆ which returns the
directed content of a simplex,

∆(x)(k) =
1
k!

(x1 − x0)∧(x2 − x0)∧· · ·∧(xk − x0). (6.122)

This is the result of integrating the directed measure over a simplex∫
(x)(k)

dX = ∆(x)(k) = ∆X. (6.123)

The directed content of a boundary vanishes,

∆(∂(x)(k)) = 0. (6.124)

As an example, consider a planar simplex consisting of three points. We have

∂(x0, x1, x2) = (x1, x2) − (x0, x2) + (x0, x1). (6.125)

So the directed content of the boundary is

∆(∂(x0, x1, x2)) = (x2 − x1) − (x2 − x0) + (x1 − x0) = 0. (6.126)

The general result of equation (6.124) can be established by induction from the
case of a triangle. These results are sufficient to establish that the directed
integral over the surface of a simplex is zero:∮

∂(x)(k)

dS =
k∑

i=0

(−1)i

∫
(x̌i)(k−1)

dX = ∆(∂(x)(k)) = 0. (6.127)

A general volume is built up from a chain of simplices. Simplices in the
chain are defined such that, at any common boundary, the directed areas of
the bounding faces of two simplices are equal and opposite. It follows that the
surface integrals over two simplices cancel out over their common face. The

189

https://doi.org/10.1017/CBO9780511807497.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.008


GEOMETRIC CALCULUS

surface integral over the boundary of the volume can therefore be replaced by
the sum of the surface integrals over each simplex in the chain. If the boundary
is closed we establish that∮

dS = lim
n	→∞

n∑
a=1

∮
dSa = 0. (6.128)

The sum runs over each simplex in the surface, with a labeling the simplex. It
is implicit in this proof that the surface bounds a volume which can be filled by
a connected set of simplices. So, as well as being oriented, the surface must be
closed and simply connected.

Next, we return to equation (6.114) and introduce a constant vector b. If we
define bi = b·ei we see that

k∑
i=1

biλ
i = b·(x − x0), (6.129)

which is valid for all vectors x in the simplex of interest. Multiplying equa-
tion (6.114) by bi and summing over i we obtain

∫
(x)(k)

b·(x − x0) dX =
1

k + 1

k∑
i=1

b·ei ∆X, (6.130)

where the integral runs over a simplex defined by k + 1 vertices. A simple re-
ordering yields∫

b·x dX =
1

k + 1

(
k∑

i=1

b·(xi − x0) + (k + 1)b·x0

)
∆X

= b·x̄ ∆X, (6.131)

where x̄ is the vector representing the (geometric) centre of the simplex,

x̄ =
1

k + 1

k∑
i=0

xi. (6.132)

Now suppose we have a k-simplex specified by the k + 1 points (x0, . . . , xk)
and we form the directed surface integral of b·x. We obtain∮

∂(x)(k)

b·x dS =
1

k + 1

k∑
i=0

(−1)ib·(x0 + · · · x̌i · · · + xn)∆(x̌i)(k−1). (6.133)

To evaluate the final sum we need the result that
k∑

i=0

(−1)ib·(x0 + · · · x̌i · · · + xn)∆(x̌i)(k−1) =
1
k!

b·(e1∧· · ·∧en). (6.134)
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The proof of this result is purely algebraic and is left as an exercise. We have
now established the simple result that∮

∂(x)(k)

b·x dS = b·(∆X), (6.135)

where ∆X = ∆((x)(k)). The order and orientations in this result are important.
The simplex (x)(k) is oriented, and the order of points specifies how the boundary
is traversed. With dS the oriented element over each boundary, and ∆X the
volume element for the simplex, we find that the correct expression for the surface
integral is b·(∆X).

We are now in a position to apply these results to the interpolated function
f(x) of equation (6.111). Suppose that we are working in a (flat) n-dimensional
space and consider a simplex with points (x0, . . . , xn). The simplex is chosen
such that its volume is non-zero, so the n vectors ei = xi − x0 define a (non-
orthonormal) frame. We therefore write

ei = xi − x0, (6.136)

and introduce the reciprocal frame {ei}. These vectors satisfy

ei ·(x − x0) = λi. (6.137)

It follows that the surface integral of f(x) over the simplex is given by∮
∂(x)(k)

f(x)dS =
n∑

i=1

(Fi − F0)
∮

ei ·(x − x0)dS

=
n∑

i=1

(Fi − F0)ei ·(∆X). (6.138)

But if we consider the directional derivatives of f(x) we find that

∂f(x)
∂λi

= Fi − F0. (6.139)

The result of the surface integral can therefore be written∮
∂(x)(k)

f(x)dS =
n∑

i=1

(Fi − F0)ei ·(∆X)

=
n∑

i=1

∂f

∂λi
ei ·(∆X) = ḟ∇̇·(∆X). (6.140)

Here we have used the result that ∇ = ei∂i, which follows from using the λi as
a set of coordinates.

We now consider a chain of simplices, and add the result of equation (6.140)
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over each simplex in the chain. The interpolated function f(x) takes on the same
value over the common boundary of two adjacent simplices, since f(x) is only
defined by the values at the common vertices. In forming a sum over a chain,
all of the internal faces cancel and only the surface integral over the boundary
remains. We therefore arrive at∮

f(x) dS =
∑

a

ḟ∇̇·(∆Xa), (6.141)

with the sum running over all of the simplices in the chain. Taking the limit as
more points are added and each simplex is shrunk in size we arrive at our first
statement of the fundamental theorem,∮

∂V

F dS =
∫

V

Ḟ ∇̇ dX. (6.142)

We have replaced the interpolated function f with F , which is obtained in the
limit as more points are added. We have also used the fact that ∇ lies en-
tirely within the space defined by the pseudoscalar measure dX to remove the
contraction on the right-hand side and write a geometric product.

The above proof is easily adapted for the case where the function sits to the
right of the measure, giving ∮

∂V

dS G =
∫

V

∇̇ dX Ġ. (6.143)

Since ∇ is a vector, the commutation properties with dX will depend on the
dimension of the space. A yet more general statement of the fundamental theo-
rem can be constructed by introducing a linear function L(An−1) = L(An−1;x).
This function takes a multivector An−1 of grade n − 1 as its linear argument,
and returns a general multivector. L is also position-dependent, and its linear
interpolation over a simplex is defined by

L(A) = L(A;x0) +
n∑

i=1

λi
(
L(A;xi) − L(A, x0)

)
. (6.144)

The linearity of L(A) means that sums and integrals can be moved inside the
argument, and we establish that∮

L(dS) = L

(∮
dS;x0

)
+

n∑
i=1

L

(∮
λidS;xi

)
−

n∑
i=1

L

(∮
λidS;x0

)

=
n∑

i=1

L(ei∆X;xi) − L(ei∆X;x0)

= L̇(∇̇∆X). (6.145)

There is no position dependence in the final term as the derivative is constant
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over the simplex. Building up a chain of simplices and taking the limit we prove
the general result ∮

∂V

L(dS) =
∫

V

L̇(∇̇dX). (6.146)

This holds for any linear function L(An−1) integrated over a closed region of
an n-dimensional flat space. This is still not the most general statement of the
fundamental theorem, as we will later prove a version valid for surfaces embedded
in a curved space, but equation (6.146) is sufficient to make contact with the
main integral theorems of vector calculus.

6.4.5 The divergence and Green’s theorems

To see the fundamental theorem of geometric calculus in practice, first consider
the scalar-valued function

L(A) = 〈JAI−1〉. (6.147)

Here J is a vector, and I is the (constant) unit pseudoscalar for the n-dimensional
space. The argument A is a multivector of grade n − 1. Equation (6.146) gives∫

V

〈J̇∇̇dXI−1〉 =
∫

V

∇·J |dX| =
∮

∂V

〈JdSI−1〉, (6.148)

where |dX| = I−1dX is the scalar measure over the volume of interest. The
normal to the surface, n is defined by

n|dS| = dS I−1, (6.149)

where |dS| is the scalar-valued measure over the surface. This definition ensures
that, in Euclidean spaces, ndS has the orientation defined by I, and in turn that
n points outwards. With this definition we arrive at∫

V

∇·J |dX| =
∮

∂V

n·J |dS|, (6.150)

which is the familiar divergence theorem. This way of writing the theorem hides
the fact that n|dS| should be viewed as a single entity, which can be important
in spaces of mixed signature.

Now return to the fundamental theorem in the form of equation (6.143), and
let G equal the vector J in two-dimensional Euclidean space. We find that∮

∂V

dS J =
∫

V

∇̇ dX J̇ = −
∫

V

∇J dX, (6.151)

where we have used the fact that dX is a pseudoscalar, so it anticommutes with

193

https://doi.org/10.1017/CBO9780511807497.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.008


GEOMETRIC CALCULUS

vectors in two dimensions. Introducing Cartesian coordinates we have dX =
Idx dy, so ∮

∂V

dS J = −
∫

V

∇JI dx dy. (6.152)

If we let J = P e1 +Qe2 and take the scalar part of both sides, we prove Green’s
theorem in the plane∮

Pdx + Qdy =
∫ (

∂Q

∂x
− ∂P

∂y

)
dx dy. (6.153)

The line integral is taken around the perimeter of the area in a positive sense,
as specified by I = e1e2.

6.4.6 Cauchy’s integral formula

The fundamental theorem of geometric calculus enables us to view the Cauchy
integral theorem of complex variable theory in a new light. We let ψ denote an
even-grade multivector, which therefore commutes with dX, so we can write∫

∇ψ dX =
∮

ds ψ =
∮

∂r

∂λ
ψ dλ. (6.154)

In the final expression λ is a parameter along the (closed) curve. Now recall
from section 6.3.1 that we form the complex number z by z = e1r. We therefore
have ∮

ψdz =
∫

e1∇ψ dX, (6.155)

where the term on the left is now a complex line integral. The condition that ψ

is analytic can be written ∇ψ = 0 so we have immediately proved that the line
integral of an analytic function around a closed curve always vanishes.

Cauchy’s integral formula states that, for an analytic function,

f(a) =
1

2πi

∮
C

f(z)
z − a

dz, (6.156)

where the contour C encloses the point a and is traversed in a positive sense.
The precise form of the contour is irrelevant, because the difference between two
contour integrals enclosing a is a contour integral around a region not enclosing
a (see figure 6.4). In such a region f(z)/(z − a) is analytic so the difference has
zero contribution.

To understand Cauchy’s theorem in terms of geometric calculus we need to
focus on the properties of the Cauchy kernel 1/(z − a). We first write

1
z − a

=
(z − a)†

|(z − a)|2 =
r − a

(r − a)2
e1, (6.157)
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C1

C2

Figure 6.4 Contour integrals in the complex plane. The two contours C1

and C2 can be deformed into one another, provided the function to be
integrated has no singularities in the intervening region. In this case the
difference vanishes, by Cauchy’s theorem.

where a = e1a is the vector corresponding to the complex number a. The
essential quantity here is the vector (r − a)/(r − a)2, which we can write as

r − a

(r − a)2
= ∇ ln |r − a|. (6.158)

But ln |r−a| is the Green’s function for the Laplacian operator in two dimensions,

∇2 ln |r − a| = 2πδ(r − a). (6.159)

It follows that the vector part of the Cauchy kernel satisfies

∇ r − a

(r − a)2
= 2πδ(r − a). (6.160)

The Cauchy kernel is the Green’s function for the two-dimensional vector deriv-
ative! The existence of this Green’s function proves that the vector derivative is
invertible, which is not true of its separate divergence and curl components.

The Cauchy integral formula now follows from the fundamental theorem of
geometric calculus in the form of equation (6.155),∮

f(z)
z − a

dz = e1

∫
∇
(

r − a

(r − a)2
e1f(x)

)
dX

= e1

∫ (
2πδ(x − a)e1f(z) + ∇f(z)

r − a

(r − a)2
e1

)
I|dX|

= 2πIf(a), (6.161)

where we have assumed that f is analytic, ∇f(z) = 0. We can now understand
precisely the roles of each term in the theorem:
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(i) The dz encodes the tangent vector and forms a geometric product in the
integrand.

(ii) The (z − a)−1 is the Green’s function for the vector derivative ∇ and
ensures that the area integral only picks up the value at a.

(iii) The I (which replaces i) comes from the directed volume element dX =
I dx dy.

Much of this is hidden in conventional accounts, but all of these insights are
crucial to generalising the theorem. Indeed, we have already proved a more
general theorem in two dimensions applying to non-analytic functions. For these
we can now write, following section 6.3.1,

2πIf(a) =
∮

f

z − a
dz − 2

∫
∂f

∂z†
1

z − a
I|dX|. (6.162)

A second key ingredient in complex analysis is the series expansion of a func-
tion. In particular, if f(z) is analytic apart from a pole of order n at z = a, the
function has a Laurent series of the form

f(z) =
a−n

(z − a)n
· · · a−1

z − a
+

∞∑
i=0

ai(z − a)i. (6.163)

The powerful residue theorem states that for such a function∮
C

f(z) dz = 2πia−1. (6.164)

We now have a new interpretation for the residue term in a Laurent expansion —
it is a weighted Green’s function. The residue theorem just recovers the weight!
Geometric calculus unifies the theory of poles and residues, supposedly unique
to complex analysis, with that of Green’s functions and δ-functions.

We now have an alternative picture of complex variable theory in terms of
Green’s functions and surface data. Suppose, for example, that we start with a
function f(x) on the real axis. We seek to propagate this function into the upper
half-plane, subject to the boundary conditions that f falls to zero as |z| 
→ ∞.
The Cauchy formula tells us that we should propagate according to the formula

f(a) =
1

2πi

∫ ∞

−∞

f(x)
x − a

dx. (6.165)

But suppose now that we form the Fourier transform of the initial function f(x),

f(x) =
∫ ∞

−∞

dk

2π
f̄(k)eikx. (6.166)

We now have

f(a) =
1

2πi

∫ ∞

−∞

dk

2π
f̄(k)

∫ ∞

−∞

eikx

x − a
dx. (6.167)
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Now we only close the x integral in the upper half-plane for positive k. For
negative k there is no residue term, since a lies in the the upper half-plane. The
Cauchy integral formula now returns

f(a) =
∫ ∞

0

dk

2π
f̄(k)eika. (6.168)

This shows that only the part of the function consistent with the desired bound-
ary conditions is propagated in the positive y direction. The remaining part of
the function propagates in the −y direction, if similar boundary conditions are
imposed in the lower half plane. In this way the boundary conditions and the
Green’s function between them specify precisely which parts of a function are
propagated in the desired direction. No restrictions are placed on the boundary
values f(x), which need not be part of an analytic function.

A second example, which generalises nicely, is the unit circle. Suppose we have
initial data f(θ) defined over the unit circle. We write f(θ) as

f(θ) =
∞∑
−∞

fneinθ. (6.169)

The terms in exp(inθ) are replaced by zn over the unit circle, and we then choose
whether to evaluate in interior or exterior closure of the Cauchy integral. The
result is that only the negative powers are propagated outwards from the circle,
resulting in the function

f(z) =
∞∑

n=1

f−nz−n, |z| > 1. (6.170)

(The constant component f0 is technically propagated as well, but this can be
removed trivially.) These observations are simple from the point of view of
complex variable theory, but are considerably less obvious in propagator theory.

6.4.7 Green’s functions in Euclidean spaces

The extension of complex variable theory to arbitrary Euclidean spaces is now
straightforward. The analogue of an analytic function is a multivector ψ sat-
isfying ∇ψ = 0. We choose to work with even-grade multivectors to simplify
matters. The fundamental theorem states that∮

∂V

dS ψ =
∫

∇ψ dX = 0. (6.171)

where we have used the fact that ψ commutes with the pseudoscalar measure
dX. For any monogenic function ψ, the directed integral of ψ over a closed
surface must vanish.
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The Green’s function for the vector derivative in n dimensions is simply

G(x; y) =
1
Sn

x − y

|x − y|n , (6.172)

where x and y are vectors and Sn is the surface area of the unit ball in n-
dimensional space. The Green’s function satisfies

∇G(x; y) = ∇·G(x; y) = δ(x − y). (6.173)

In order to allow for the lack of commutativity between G and ψ we use the
fundamental theorem in the form∮

∂V

GdS ψ =
∫

V

(Ġ∇̇ψ + G∇ψ) dX

=
∫

V

Ġ∇̇ψ dX, (6.174)

where we have used the fact that ψ is a monogenic function. Setting G equal
to the Green’s function of equation (6.172) we find that Cauchy’s theorem in
n dimensions can be written in the form

ψ(y) =
1

ISn

∮
∂V

x − y

|x − y|n dS ψ(x). (6.175)

This relates the value of a monogenic function at a point to the value of a surface
integral over a region surrounding the point.

One consequence of equation (6.175) is that a generalisation of Liouville’s
theorem applies to monogenic functions in Euclidean spaces. We define the
modulus function

|M | = 〈MM†〉1/2, (6.176)

which is a well-defined positive-definite function for all multivectors M in a
Euclidean algebra. The modulus function is easily shown to satisfy Schwarz
inequality in the form

|A + B| ≤ |A| + |B|. (6.177)

If we let a denote a unit vector and let ∇y denote the derivative with respect to
the vector y we find that

a·∇yψ(y) = − 1
ISn

∮
∂V

a(x − y)2 + na·(x − y) (x − y)
|x − y|n+2

dS ψ(x). (6.178)

It follows that

|a·∇yψ(y)| ≤ 1
Sn

∮
∂V

n + 1
|x − y|n |dS| |ψ(x)|. (6.179)

But if ψ is bounded, |ψ(x)| never exceeds some given value. Taking the surface
of integration out to large radius r = |x|, we find that the right-hand side falls
off as 1/r. This is sufficient to prove that the directional derivative of ψ must
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vanish in all directions, and the only monogenic function that is bounded over
all space is constant ψ.

Equation (6.175) enables us to propagate a function off an initial surface in
Euclidean space, subject to suitable boundary conditions. Suppose, for example,
that we wish to propagate ψ off the surface of the unit ball, subject to the
condition that the function falls to zero at large distance. Much like the two-
dimensional case, we can write

ψ =
∞∑

l=−∞
αlψl, (6.180)

where the ψl are angular monogenics, satisfying

x∧∇ψ = −lψ. (6.181)

Each angular monogenic is multiplied by rl to yield a full monogenic function,
and only the negative powers have their integral closed over the exterior region.
The result is the function

ψ =
∞∑

l=1

α−lr
−lψ−l, r > 1. (6.182)

Similarly, the positive powers are picked up if we solve the interior problem.

6.4.8 Spacetime propagators

Propagation in mixed signature spaces is somewhat different to the Euclidean
case. There is no analogue of Liouville’s theorem to call on, so one can easily
construct bounded solutions to the monogenic equation which are non-singular
over all space. Plane wave solutions to the massless Dirac equation are an ex-
ample of such functions. Furthermore, the existence of characteristic surfaces
has implications for the how boundary values are specified. To see this, consider
a two-dimensional Lorentzian space with basis vectors {γ0, γ1}, γ2

0 = −γ2
1 = 1,

and pseudoscalar I = γ1γ0. The monogenic equation is ∇ψ = 0, where ψ is an
even-grade multivector built from a scalar and pseudoscalar terms. We define
the null vectors

n± = γ0 ± γ1. (6.183)

Pre-multiplying the monogenic equation by n+ we find that

n+ ·∇ψ = −n+∧∇ψ = I (n+I)·∇ψ = −In+ ·∇ψ. (6.184)

where we have used the result that In+ = n+. It follows that

(1 + I)n+ ·∇ψ = 0, (6.185)
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and similarly,

(1 − I)n− ·∇ψ = 0. (6.186)

If we take ψ and decompose it into ψ = ψ+ + ψ−,

ψ± = 1
2 (1 ± I)ψ, (6.187)

we see that the values of the separate ψ± components have vanishing derivatives
along the respective null vectors n±. Propagation of ψ from an initial surface
is therefore quite straightforward. The function is split into ψ±, and the values
of these are transported along the respective null vectors. That is, ψ+ has the
same value along each vector in the n+ direction, and the same for ψ−. There
is no need for a complicated contour integral.

The fact that the values of ψ are carried along the characteristics illustrates a
key point. Any surface on which initial values are specified can cut a character-
istic surface only once. Otherwise the initial values are unlikely to be consistent
with the differential equation. For the monogenic equation, ∇ψ = 0, suitable
initial conditions consist of specifying ψ along the γ1 axis, for example. But
the fundamental theorem involves integrals around closed loops. The theorem
is still valid in a Lorentzian space, so it is interesting to see what happens to
the boundary data if we attempt to construct an interior solution with arbitrary
surface data. The first step is to construct the Lorentzian Green’s function. This
can be found routinely via its Fourier transformation. With x = x0γ0 + x1γ1 we
find

G(x) = i

∫
dω

2π

dk

2π

ωγ0 + kγ1

ω2 − k2
ei(kx1 − ωx0)

=
i

2

∫
dω

2π

dk

2π

(
γ0 + γ1

ω − k
+

γ0 − γ1

ω + k

)
ei(kx1 − ωx0)

=
ε(x0)

4
(
δ(x1 − x0)(γ0 + γ1) + δ(x1 + x0)(γ0 − γ1)

)
. (6.188)

The function ε(x0) takes the value +1 or −1, depending on whether x0 is positive
or negative respectively.

To apply the fundamental theorem, suppose we take the contour of figure 6.5,
which runs along the γ1 axis for two different times ti < tf and is closed at
spatial infinity. We assume that the function we are propagating, ψ, falls off at
large spatial distance, and write ψ(x) as ψ(x0, x1). The fundamental theorem
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ti

tf

−∞ ∞

Figure 6.5 A spacetime contour. The contour is closed at spatial infinity.

then gives

ψ(y) =I

∫ ∞

−∞
dλ G(tiγ0 + λγ1 − y)γ1ψ(ti, λ)

− I

∫ ∞

−∞
dλ G(tfγ0 + λγ1 − y)γ1ψ(tf , λ)

=
1
4
(1 + I)

(
ψ(ti, y1 − y0 + ti) + ψ(tf , y1 − y0 + tf )

)
− 1

4
(1 − I)

(
ψ(ti,−y1 + y0 + ti) + ψ(tf ,−y1 + y0 + tf )

)
. (6.189)

The construction of ψ(y) in the interior region has a simple interpretation. For
the function ψ+(y), for example, we form the null vector n+ through y. The
value at y is then the average value at the two intersections with the boundary.
A similar construction holds for ψ−. Much like the Euclidean case, only the part
of the function on the boundary that is consistent with the monogenic equation
is propagated to the interior.

These insights hold in other Lorentzian spaces, such as four-dimensional space-
time. The Green’s functions become more complicated, and typically involve
derivatives of δ-functions. These are more usefully handled via their Fourier
transforms, and are discussed in more detail in section 8.5. In addition, the lack
of a Liouville’s theorem means that any monogenic function can be added to a
Green’s function to generate a new Green’s function. This has no consequences
if one rigorously applies surface integral formulae. In quantum theory, however,
this is not usually the case. Rather than a rigorous application of the generalised
Green’s theorem, it is common instead to talk about propagators which transfer
initial data from one timeslice to a later one. Used in this role, the Green’s func-
tions we have derived are referred to as propagators. As we are not specifying
data over a closed surface, adding further terms to our Green’s function can have
an effect. These effects are related to the desired boundary conditions and are
crucial to the formulation of a relativistic quantum field theory. There one is led
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to employ the complex-valued Feynman propagator, which ensures that positive
frequency modes are propagated forwards in time, and negative frequency modes
are propagated backwards in time. We will meet this object in greater detail in
section 8.5.

6.5 Embedded surfaces and vector manifolds

We now seek a generalisation of the preceding results where the volume integral is
taken over a curved surface. We will do this in the setting of the vector manifold
theory developed by Hestenes and Sobczyk (1984). The essential concept is to
treat a manifold as a surface embedded in a larger, flat space. Points in the
manifold are then treated as vectors, which simplifies a number of derivations.
Furthermore, we can exploit the coordinate freedom of geometric algebra to
derive a set of general results without ever needing to specify the dimension
of the background space. The price we pay for this approach is that we are
working with a more restrictive concept of a manifold than is usually the case
in mathematics. For a start, the surface naturally inherits a metric from the
embedding space, so we are already restricting to Riemannian manifolds. We will
also insist that a pseudoscalar can be uniquely defined throughout the surface,
making it orientable.

While this may all appear quite restrictive, in fact these criteria rule out hardly
any structures of interest in physics. This approach enables us to quickly prove
a number of key results in Riemannian geometry, and to unite these with results
for the exterior geometry of the manifold, achieving a richer general theory. We
are not prevented from discussing topological features of surfaces either. Rather
than build up a theory of topology which makes no reference to the metric,
we instead build up results that are unaffected if the embedding is (smoothly)
transformed.

We define a vector manifold as a set of points labelled by vectors lying in a
geometric algebra of arbitrary dimension and signature. If we consider a path in
the surface x(λ), the tangent vector is defined in the obvious way by

x′ =
∂x(λ)

∂λ

∣∣∣∣
λ0

= lim
ε	→0

x(λ0 + ε) − x(λ0)
ε

. (6.190)

An advantage of the embedding picture is that the meaning of the limit is well
defined, since the numerator exists for all ε. This is true even if, for finite epsilon,
the difference vector does not lie entirely in the tangent space and only becomes a
tangent vector in the limit. Standard formulations of differential geometry avoid
any mention of an embedding, however, so have to resort to a more abstract
definition of a tangent vector.

An immediate consequence of this approach is that we can define the path
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length as

s =
∫ λ2

λ1

|x′ ·x′|1/2 dλ. (6.191)

The embedded surface therefore inherits a metric from the ‘ambient’ background
space. All finite-dimensional Riemannian manifolds can be studied in this way
since, given a manifold, a natural embedding in a larger flat space can always be
found. In applications such as general relativity one is usually not interested in
the properties of the embedding, since they are physically unmeasurable. But in
many other applications, particularly those involving constrained systems, the
embedding arises naturally and useful information is contained in the extrinsic
geometry of a manifold.

6.5.1 The pseudoscalar and projection

Suppose that we next introduce a set of paths in the surface all passing through
the same point x. The paths define a set of tangent vectors {e1, . . . , en}. We as-
sume that these are independent, so that they form a basis for the n-dimensional
tangent space at the point x. The exterior product of the tangent vectors defines
the pseudoscalar for the tangent space I(x):

I(x) ≡ e1∧e2∧· · ·∧en/|e1∧e2∧· · ·∧en|. (6.192)

The modulus in the denominator is taken as a positive number, so that I has
the orientation specified by the tangent vectors. The pseudoscalar will satisfy

I2 = ±1, (6.193)

with the sign depending on dimension and signature. Clearly, to define I in
this manner requires that the denominator in (6.192) is non-zero. This provides
a restriction on the vector manifolds we consider here, and rules out certain
structures in mixed signature spaces. The unit circle in the Lorentzian plane
(figure 6.1), for example, falls outside the class of surfaces of studied here, as
the tangent space has vanishing norm where the tangent vectors become null.
Of course, there is no problem in referring to a closed spacetime curve as a
vector manifold. The problem arises when attempting to generalise the integral
theorems of the previous sections to such spaces.

The pseudoscalar I(x) contains all of the geometric information about the
surface and unites both its intrinsic and extrinsic properties. As well as assuming
that I(x) can be defined globally, we will also assume that I(x) is continuous
and differentiable over the entire surface, that it has the same grade everywhere,
and that it is single-valued. The final assumption implies that the manifold is
orientable, and rules out objects such as the Mobius strip, where the pseudoscalar
is double-valued. Many of the restrictions on the pseudoscalar mentioned above
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can be relaxed to construct a more general theory, but this is only achieved at
some cost to the ease of presentation. We will follow the simpler route, as the
results developed here are sufficiently general for our purposes in later chapters.

The pseudoscalar I(x) defines an operator which projects from an arbitrary
multivector onto the component that is intrinsic to the manifold. This operator
is

P(Ar(x), x) =

{
Ar(x)·I(x) I−1(x) = Ar ·I I−1, r ≤ n

0 r > n
. (6.194)

which defines an operator at every point x on the manifold. It is straightforward
to prove that P satisfies the essential requirement of a projection operator, that
is,

P2(A) = P
(
P(A)

)
= P(A). (6.195)

The effect of P on a vector a is to project onto the component of a that lies
entirely in the tangent space at the point x. Such vectors are said to be intrinsic
to the manifold. The complement,

P⊥(a) = a − P(a), (6.196)

lies entirely outside the tangent space, and is said to be extrinsic to the manifold.
Suppose now that A(x) is a multivector field defined over some region of the

manifold. We do not assume that A is intrinsic to the manifold. Given a vector
a in the tangent space, the directional derivative along a is defined in the obvious
manner:

a·∇A(x) = lim
ε	→0

A(x + εa) − A(x)
ε

. (6.197)

Again, the presence of the embedding enables us to write this limit without
ambiguity. The derivative operator a·∇ is therefore simply the vector derivative
in the ambient space contracted with a vector in the tangent space. Given a set of
linearly independent tangent vectors {ei}, we can now define a vector derivative
∂ intrinsic to the manifold by

∂ = ei ei ·∇ = P(∇). (6.198)

This is simply the ambient space vector derivative projected onto the tangent
space. The use of the ∂ symbol should not cause confusion with the boundary
operator introduced in section 6.4.4. The definition of ∂ requires the existence
of the reciprocal frame {ei}, which is why we restricted to manifolds over which
I is globally defined. The projection of the vector operator ∂ satisfies

P(∂) = ∂. (6.199)

The contraction of ∂ with a tangent vector a satisfies a·∂ = a·∇, which is simply
the directional derivative in the a direction.
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6.5.2 Directed integration for embedded surfaces

Now that we have defined the ∂ operator it is a straightforward task to write
down a generalized version of the fundamental theorem of calculus appropri-
ate for embedded surfaces. We can essentially follow through the derivation
of section 6.4.4 with little modification. The volume to be integrated over is
again triangulated into a chain of simplices. The only difference now is that the
pseudoscalar for each simplex varies from one simplex to another. This changes
very little. For example we still have∮

dS = 0, (6.200)

which holds for the directed integral over the closed boundary of any simply-
connected vector manifold.

The linear interpolation results used in deriving equation (6.138) are all valid,
because we can again fall back on the embedding picture. In addition, the
assumption that the pseudoscalar I(x) is globally defined means that the recip-
rocal frame required in equation (6.138) is well defined. The only change that
has to be made is that the ambient derivative ∇ is replaced by its projection
into the manifold, because we naturally assemble the inner product of ∇ with
the pseudoscalar. The most general statement of the fundamental theorem can
now be written as ∮

∂V

L(dS) =
∫

V

L̇(∂̇dX) =
∫

V

L̇(∇̇·dX). (6.201)

The form of the volume integral involving ∂ is generally more useful as it forms
a geometric product with the volume element. The function L can be any
multivector-valued function in this equation — it is not restricted to lie in the
tangent space. An important feature of this more general theorem is that if we
write dX = I|dX| we see that the directed element dX is position-dependent.
But this position dependence is not differentiated in equation (6.201). It is only
the integrand that is differentiated.

There are two main applications of the general theorem derived here. The first
is a generalisation of the divergence theorem to curved spaces. We again write

L(A) = 〈JAI−1〉, (6.202)

where J is a vector field in the tangent space, and I is the unit pseudoscalar for
the n-dimensional curved space. Equation (6.201) now gives∮

∂V

n·J |dS| =
∫

V

(∂ ·J + 〈J∂̇İ−1I〉)|dX|, (6.203)

where |dX| = I−1dX and n|dS| = dS I−1. The final term in the integral van-
ishes, as can be shown by first writing I−1 = ±I and using

〈J∂̇İI〉 = 1
2 〈J∂̇(İI + Iİ)〉 = 1

2 〈J∂(I2)〉 = 0. (6.204)
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It follows that the divergence theorem in curved space is essentially unchanged
from the flat-space version, so∫

V

∂ ·J |dX| =
∮

∂V

n·J |dS|. (6.205)

As a second application we derive Stokes’ theorem in three dimensions. Sup-
pose that σ denotes an open, connected surface in three dimensions, with bound-
ary ∂σ. The linear function L takes a vector as its linear argument and we define

L(a) = J ·a. (6.206)

Equation (6.201) now gives∮
∂σ

J ·dl =
∫

σ

〈J̇ ∇̇·dX〉 = −
∫

σ

(∇∧J)·dX, (6.207)

where the line integral is taken around the boundary of the surface, and since the
embedding is specified we have chosen a form of the integral theorem involving
the three-dimensional derivative ∇. We now define the normal vector to the
surface by

dX = In|dX|, (6.208)

where I is the three-dimensional (right-handed) pseudoscalar. This equation
defines the vector n normal to the surface. The direction in which this points
depends on the orientation of dX. Around the boundary, for example, we can
denote the tangent vector at the boundary by l, and the vector pointing into
the surface as m. Then dX has the orientation specified by l∧m, and from
equation (6.208) we see that l,m,n must form a right-handed set. This extends
inwards to define the normal vector n over the surface (see figure 6.6). We now
have ∮

∂σ

J ·dl =
∫

σ

−(I∇∧J)·n |dX| =
∫

σ

(curlJ)·n |dX|, (6.209)

which is the familiar Stokes’ theorem in three dimensions. This is only the
scalar part of a more general (and less familiar) theorem which holds in three
dimensions. To form this result we remove the projection onto the scalar part,
to obtain ∮

∂σ

dl J = −I

∫
σ

n∧∇ J |dX|. (6.210)

A version of this result holds for any open n-dimensional surface embedded in a
flat space of dimension n + 1.

6.5.3 Intrinsic and extrinsic geometry

Suppose now that the directional derivative a ·∂ acts on a tangent vector field
b(x) = P(b(x)). There is no guarantee that the resulting vector also lies entirely
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σ

∂σ

l

m

n

n

Figure 6.6 Orientations for Stokes’ theorem. The bivector measure dX
defines an orientation over the surface and at the boundary. With l and m
the tangent and inward directions at the boundary, the normal n is defined
so that l, m, n form a right-handed set.

in the tangent space, even if a does. For example, consider the simple case of a
circle in the plane. The derivative of the tangent vector around the circle is a
radial vector, which is entirely extrinsic to the manifold. In order to restrict to
quantities intrinsic to the manifold we define a new derivative — the covariant
derivative D — as follows:

a·DA(x) = P(a·∂A(x)). (6.211)

The operator a ·D acts on multivectors in the tangent space, returning a new
multivector field in the tangent space. Since the a·∂ operator satisfies Leibniz’s
rule, the covariant derivative a·D must as well,

a·D(AB) = P
(
a·∂(AB)

)
= (a·DA)B + Aa·DB. (6.212)

The vector operator D is then defined in the obvious way from the covariant
directional derivatives,

D = ei ei ·D. (6.213)

So, for example, we can write

DAr = ei(ei ·DAr) = P(∂Ar). (6.214)

The result decomposes into grade-raising and grade-lowering terms, so we write

D·Ar = 〈DAr〉r−1,

D∧Ar = 〈DAr〉r+1.
(6.215)

So, like ∂, D has the algebraic properties of a vector in the tangent space. Acting
on a scalar function α(x) defined over the manifold the two derivatives coincide,
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so

∂α(x) = Dα(x). (6.216)

Suppose now that a is a tangent vector to the manifold, and we look at how
the pseudoscalar changes along the a direction. It should be obvious, from
considering a 2-sphere for example, that the resulting quantity must lie at least
partly outside the manifold. We let {ei} denote an orthonormal frame, so

I = e1e2 · · · en. (6.217)

It follows that

a·∂ I I−1 =
n∑

i=1

e1 · · ·
(
a·Dei + P⊥(a·∂ ei)

)
· · · en I−1

= a·D I I−1 + P⊥(a·∂ ei)∧ei. (6.218)

The final term is easily shown to be independent of the choice of frame. But
a ·DI must remain in the tangent space, so it can only be a multiple of the
pseudoscalar I. It follows that

(a·D I)I = 〈(a·D I)I〉 = 1
2 〈a·D(I2)〉 = 0, (6.219)

so

a·D I = 0. (6.220)

That is, the (unit) pseudoscalar is a covariant constant over the manifold. Equa-
tion (6.218) now simplifies to give

a·∂ I = P⊥(a·∂ ei)∧ei I = −S(a)I, (6.221)

which defines the shape tensor S(a). This is a bivector-valued, linear function
of its vector argument a, where a is a tangent vector. Since the result of a·∂ I

has the same grade as I, we can write

a·∂I = I×S(a) (6.222)

with

S(a)·I = S(a)∧I = 0. (6.223)

The fact that S(a)·I = 0 confirms that S(a) lies partly outside the manifold, so
that P(S(a)) = 0.

The shape tensor S(a) unites the intrinsic and extrinsic geometry of the man-
ifold in a single quantity. It can be thought of as the ‘angular momentum’ of
I(x) as it slides over the manifold. The shape tensor provides a compact relation
between directional and covariant derivatives. We first form

b·S(a) = biP⊥(a·∂ ei) = P⊥(a·∂ b), (6.224)
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where a and b are tangent vectors. It follows that

a·∂ b = P(a·∂ b) + P⊥(a·∂ b) = a·D b + b·S(a), (6.225)

which we can rearrange to give the neat result

a·D b = a·∂ b + S(a)·b. (6.226)

Applying this result to the geometric product bc we find that

a·D(bc) = (a·∂ b)c + S(a)·b c + b(a·∂ c) + b S(a)·c
= a·∂(bc) + S(a)×(bc), (6.227)

where × is the commutator product, A×B = (AB − BA)/2. It follows that for
any multivector field A taking its values in the tangent space we have

a·DA = a·∂A + S(a)×A. (6.228)

The fact that S(a) is bivector-valued ensures that S(a)×A does not alter the
grade of A. As a check, setting A = I recovers equation (6.222). If we now write

a·∂ b = a·∂ P(b) = a·∂̇ Ṗ(b) + P(a·∂b) = a·∂̇ Ṗ(b) + a·Db (6.229)

we establish the further relation

a·∂̇ Ṗ(b) = b·S(a). (6.230)

This holds for any pair of tangent vectors a and b.

6.5.4 Coordinates and derivatives

A number of important results can be derived most simply by introducing a
coordinate frame. In a region of the manifold we introduce local coordinates xi

and define the frame vectors

ei =
∂x

∂xi
. (6.231)

From the definition of ∂ it follows that ei = ∂xi. The {ei} are usually referred
to as tangent vectors and the reciprocal frame {ei} as cotangent vectors (or 1-
forms). The fact that the space is curved implies that it may not be possible to
construct a global coordinate system. The 2-sphere is the simplest example of
this. In this case we simply patch together a series of local coordinate systems.
The covariant derivative along a coordinate vector, ei · D, satisfies

ei ·DA = DiA = ei ·∂A + S(ei)×A = ∂iA + Si×A, (6.232)

which defines the Di and Si symbols.
The tangent frame vectors satisfy

∂iej − ∂jei = (∂i∂j − ∂j∂i)x = 0. (6.233)
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Projecting this result into the manifold establishes that

Diej − Djei = 0. (6.234)

Projecting out of the manifold we similarly establish the result

ei ·Sj = ej ·Si. (6.235)

In terms of arbitrary tangent vectors a and b this can be written as

a·S(b) = b·S(a). (6.236)

The shape tensor can be written in terms of the coordinate vectors as

S(a) = ek∧P⊥(a·∂ek). (6.237)

It follows that

Si = ek∧P⊥(∂iek) = ek∧P⊥(∂kei). (6.238)

The tangent vectors therefore satisfy

∂∧ei = ek∧
(
P(∂kei) + P⊥(∂kei)

)
= D∧ei + Si. (6.239)

If we decompose a vector in the tangent space as a = aiei we establish the general
result that

∂∧a = D∧a + S(a). (6.240)

This gives a further interpretation to the shape tensor. It is the object which
picks up the component of the curl of a tangent vector which lies outside the
tangent space. As we can write

∂∧a = ∂∧
(
P(a)

)
= ∂̇∧Ṗ(a) + P(∂∧a) = D∧a + ∂̇∧Ṗ(a), (6.241)

we establish the further result

∂̇∧Ṗ(a) = S(a). (6.242)

This is easily seen to be consistent with the definition of the shape tensor in
terms of the derivative of pseudoscalar.

If we now apply the preceding to the case of the curl of a gradient of a scalar,
we find that

∂∧∂φ = P(∇)∧P(∇φ) = P(∇∧∇φ) + ∂̇∧Ṗ(∇φ). (6.243)

But the ambient derivative satisfies the integrability condition ∇∧∇ = 0. It
follows that we have

∂∧∂φ = S(∇φ), (6.244)

which lies outside the manifold. The covariant derivative therefore satisfies

D∧(Dφ) = 0. (6.245)
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An important application of this result is to the coordinate scalars themselves.
We find that

D∧(Dxi) = D∧ei = 0, (6.246)

which can also be proved directly from equation (6.234). Applying this result to
an arbitrary vector a = aie

i we find that

D∧a = D∧(aje
j) = ei∧ej(∂iaj) = 1

2ei∧ej(∂iaj − ∂jai). (6.247)

This demonstrates that the D∧ operator is precisely the exterior derivative of
differential geometry.

6.5.5 Riemannian geometry

To understand further how the shape tensor can specify the intrinsic geometry
of a surface, we now make contact with Riemannian geometry. In Riemannian
geometry one focuses entirely on the intrinsic properties of a manifold. It is
customary to formulate the subject using the metric tensor as the starting point.
In terms of the {ei} coordinate frame the metric tensor is defined in the expected
manner:

gij = ei ·ej . (6.248)

In what follows we will not place any restriction on the signature of the tangent
space. Some texts prefer to use the adjective ‘Riemannian’ to refer to extensions
of Euclidean geometry to curved spaces (as Riemann originally intended). But
in the physics literature it is quite standard now to refer to general relativity as
a theory of Riemannian geometry, despite the Lorentzian signature.

After the metric, the next main object in Riemannian geometry is the Christof-
fel connection. The directional covariant derivative, Di, restricts the result of its
action to the tangent space. The result of its action on one of the {ei} vectors
can therefore be decomposed uniquely in the {ei} frame. The coefficients of this
define the Christoffel connection by

Γi
jk = (Djek)·ei. (6.249)

The components of the connection are clearly dependent on the choice of coordi-
nate system, as well as the underlying geometry. It follows that a connection is
necessary even when working in a curvilinear coordinate system in a flat space.
A connection on its own does not imply that a space is curved. A typical use
of the Christoffel connection is in finding the components in the {ei} frame of a
covariant derivative a·D b, for example. We form

(a·D b)·ei = aj
(
Dj(bkek)

)
·ei = aj(∂jb

i + Γi
jkbk), (6.250)

which shows how the connection accounts for the position dependence in the
coordinate frame.
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The components of the Christoffel connection can be found directly from the
metric without referring to the frame vectors themselves. To achieve this we first
establish a pair of results. The first is that the connection Γi

jk is symmetric on
the jk indices. This follows from

Γi
jk − Γi

kj = (Djek − Dkej)·ei = 0, (6.251)

where we have used equation (6.234). The second result is for the curl of a frame
vector,

D∧ei = D∧(gije
j) = (Dgij)∧ej . (6.252)

We can now write

Γi
jk = 1

2ei ·(Djek + Dkej)

= 1
2ei ·

(
ej ·(Dgkl∧el) + ek ·(Dgjl∧el) + Dgjk

)
= 1

2ei ·(∂jgkle
l + ∂kgjle

l − Dgjk)

= 1
2gil(∂jgkl + ∂kgjl − ∂lgjk), (6.253)

which recovers the familiar definition of the Christoffel connection.
We now seek a method of encoding the intrinsic curvature of a Riemannian

manifold. Suppose we form the commutator of two covariant derivatives

[Di,Dj ]A = ∂i(∂jA + Sj×A) + Si×(∂jA + Sj×A)

−∂j(∂iA + Si×A) − Sj×(∂iA + Si×A)

= (∂iSj − ∂jSi)×A + (Si×Sj)×A, (6.254)

where we have used the Jacobi identity of section 4.1.3. Remarkably, all deriva-
tives of the multivector A have cancelled out and what remains is a commutator
with a bivector. To simplify this we form

∂iSj − ∂jSi = −∂i(∂jI I−1) + ∂j(∂iI I−1)

= −SjISiI
−1 + SiISjI

−1

= −2Si×Sj , (6.255)

where we have used the fact that S(a) anticommutes with I. On substituting
this result in equation (6.254) we obtain the simple result

[Di,Dj ]A = −(Si×Sj)×A. (6.256)

The commutator of covariant derivatives defines the Riemann tensor. We denote
this by R(a∧b), where

R(ei∧ej)×A = [Di,Dj ]A. (6.257)

R(a∧b) is a bivector-valued linear function of its bivector argument. In terms of
the shape tensor we have

R(a∧b) = P
(
S(b)∧S(a)

)
. (6.258)
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The projection is required here because the Riemann tensor is defined to be
entirely intrinsic to the manifold. The Riemann tensor (and its derivatives) fully
encodes all of the local intrinsic geometry of a manifold. Since it can be derived
easily from the shape tensor, it follows that the shape tensor also captures all
of the intrinsic geometry. In addition to this, the shape tensor tells us about
the extrinsic geometry — how the manifold is embedded in the larger ambient
space.

The Riemann tensor can also be expressed entirely in terms of intrinsic quan-
tities. To achieve this we first write

R(ei∧ej)·ek = [Di,Dj ]ek = Di(Γa
jkea) − Dj(Γa

ikea). (6.259)

It follows that

Rijk
l = R(ei∧ej)·(ek∧el)

= ∂iΓl
jk − ∂jΓl

ik + Γa
jkΓl

ia − Γa
ikΓl

ja, (6.260)

recovering the standard definition of Riemannian geometry. An immediate ad-
vantage of the geometric algebra route is that many of the symmetry properties
of Rijk

l follow immediately from the fact that R(a∧b) is a bivector-valued lin-
ear function of a bivector. This immediately reduces the number of degrees of
freedom to n2(n − 1)2/4.

A further symmetry of the Riemann tensor can be found as follows:

R(ei∧ej)·ek = DiDjek − DjDiek

= DiDkej − DjDkei

= [Di,Dk]ej − [Dj ,Dk]ei + Dk(Diej − Djei)

= R(ei∧ek)·ej − R(ej∧ek)·ei. (6.261)

It follows that

a·R(b∧c) + c·R(a∧b) + b·R(c∧a) = 0, (6.262)

for any three vectors a, b, c in the tangent space. This equation tells us that
a vector quantity vanishes for all trivectors a∧ b∧ c, which provides a set of
n2(n − 1)(n − 2)/6 scalar equations. The number of independent degrees of
freedom in the Riemann tensor is therefore reduced to

1
4
n2(n − 1)2 − 1

6
n2(n − 1)(n − 2) =

1
12

n2(n2 − 1). (6.263)

This gives the values 1, 6 and 20 for two, three and four dimensions respectively.
Further properties of the Riemann tensor are covered in more detail in later
chapters, where in particular we are interested in its relevance to gravitation.

The fact that Riemannian geometry is founded on the covariant derivative
D, as opposed to the projected vector derivative ∂ limits the application of the
integral theorem of equation (6.201). If one attempts to add multivectors from
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different points in the surface, there is no guarantee that the result remains
intrinsic. The only quantities that can be combined from different points on the
surface are scalars, or functions taking their values in a different space (such as a
Lie group). The most significant integral theorem that remains is a generalization
of Stokes’ theorem, applicable to a grade-r multivector Ar and an open surface σ

of dimension r + 1. For this case we have∮
∂σ

Ar ·dS =
∫

σ

(Ȧr∧∂̇)·dX = (−1)r

∫
σ

(D∧Ar)·dX, (6.264)

which only features intrinsic quantities. A particular case of this is when r =
n−1, which recovers the divergence theorem. This is important for constructing
conservation theorems in curved spaces.

6.5.6 Transformations and maps

The study of maps between vector manifolds helps to clarify some of the re-
lationships between the structures defined in this chapter and more standard
formulations of differential geometry. Suppose that f(x) defines a map from one
vector manifold to another. We denote these M and M′, so that

x′ = f(x) (6.265)

associates a point in the manifold M′ with one in M. We will only consider
smooth, differentiable, invertible maps between manifolds. In the mathematics
literature these are known as diffeomorphisms. These are a subset of the more
general concept of a homeomorphism, which maps continuously between spaces
without the restriction of smoothness. Somewhat surprisingly, these two con-
cepts are not equivalent. It is possible for two manifolds to be homeomorphic,
but not admit a diffeomorphism between them. This implies that it is possible
for a single topological space to admit more than one differentiable structure.
The first example of this to be discovered was the sphere S7, which admits 28 dis-
tinct differentiable structures! In 1983 Donaldson proved the even more striking
result that four-dimensional space R4 admits an infinite number of differentiable
structures.

A path in M, x(λ), maps directly to a path in M′. The map accordingly
induces a map between tangent vectors, as seen by forming

∂x′(λ)
∂λ

=
∂f
(
x(λ)

)
∂λ

= f(v), (6.266)

where v is the tangent vector in M, v = ∂λx(λ) and the linear function f is
defined by

f(a) = a·∂f(x) = f(a;x). (6.267)

The function f(a) takes a tangent vector in M as its linear argument, and returns
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the image tangent vector in M′. If we denote the latter by a′, and write out the
position dependence explicitly, we have

a′(x′) = f(a(x);x). (6.268)

This map is appropriate for tangent vectors, so applies to the coordinate frame
vectors {ei}. These map to an equivalent frame for the tangent space to M′,

e′i = f(ei). (6.269)

The reciprocal frame in the transformed space is therefore given by

ei′ = f̄−1(ei). (6.270)

The fact that the map x 
→ f(x) is assumed to be invertible ensures that the
adjoint function f̄(a) is also invertible.

Under transformations, therefore, vectors in one space can transform in two
different ways. If they are tangent vectors they transform under the action
of f(a). If they are cotangent vectors they transform under action of f̄−1(a).
In differential geometry it is standard practice to maintain a clear distinction
between these types of vectors, so one usually thinks of tangent and cotangent
vectors as lying in separate linear spaces. The contraction relation ei ·ej = δi

j

identifies the spaces as dual to each other. This relation is metric-independent
and is preserved by arbitrary diffeomorphisms. These maps relate differentiable
manifolds, and two diffeomorphic spaces are usually viewed as the same manifold.

A metric is regarded as an additional construct on a differentiable manifold,
which maps between the tangent and cotangent spaces. In the vector manifold
picture this map is achieved by constructing the reciprocal frame using equa-
tion (4.94). In using this relation we are implicitly employing a metric in the
contraction with the pseudoscalar. For the theory of vector manifolds it is there-
fore useful to distinguish objects and operations that transform simply under
diffeomorphisms. These will define the metric-independent features of a vector
manifold. Metric-dependent quantities, like the Riemann tensor, invariably have
more complicated transformation laws.

The exterior product of a pair of tangent vectors transforms as

ei∧ej 
→ f(ei)∧f(ej) = f(ei∧ej). (6.271)

For example, if I ′ is the unit pseudoscalar for M′ we have

f(I) = det (f)I ′ (6.272)

and for invertible maps we must have det (f) 	= 0. Similarly, for cotangent vectors
we see that

ei∧ej 
→ f̄−1(ei)∧ f̄−1(ej) = f̄−1(ei∧ej). (6.273)

So exterior products of like vectors give rise to higher grade objects in a manner
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that is unchanged by diffeomorphisms. Metric invariants are constructed from
inner products between tangent and cotangent vectors. Since the derivative of a
scalar field is

∂φ = ei∂iφ, (6.274)

we see that ∂φ is a cotangent vector, and we can write

∂′ = f̄−1(∂). (6.275)

A similar result holds for the covariant derivative D. If a is a tangent vector the
directional derivative of a scalar field a·∂φ is therefore an invariant,

a′ ·∂′φ′ = f(a)· f̄−1(∂)φ = a·∂φ, (6.276)

where φ′(x′) = φ(x).
In constructing the covariant derivative in section 6.5.3, we made use of the

projection operation P(a). This is a metric operation, as it relies on a contraction
with I. Hence the covariant derivatives Diej do depend on the metric (via the
connection). To establish a metric-independent operation we let a and b represent
tangent vectors and form

a·∂b − b·∂a = a·Db − b·Da + a·S(b) − b·S(a)

= a·Db − b·Da. (6.277)

The shape terms cancel, so the result is intrinsic to the manifold. Under a
diffeomorphism the result transforms to

a·∂f(b) − b·∂f(a) = f(a·∂b − b·∂a) + a·∂̇ ḟ(b) − b·∂̇ ḟ(a). (6.278)

But f(a) is the differential of the map f(x), so we have

(∂i∂j − ∂j∂i)f(x) = ∂if(ej) − ∂jf(ei) = ∂̇i ḟ(ej) − ∂̇j ḟ(ei) = 0. (6.279)

It follows that, for tangent vectors a and b,

a·∂̇ ḟ(b) − b·∂̇ ḟ(a) = 0. (6.280)

We therefore define the Lie derivative Lab by

Lab = a·∂b − b·∂a. (6.281)

This results in a new tangent vector, and transforms under diffeomorphisms as

Lab 
→ L′
a′b′ = f(Lab). (6.282)

Relations between tangent vectors constructed from the Lie derivative will there-
fore be unchanged by diffeomorphisms.

A similar construction is possible for cotangent vectors. If we contract equa-
tion (6.279) with f̄−1(ek) we obtain

f(ej)·
(
∂j f̄

−1(ek)
)
− f(ei)·

(
∂i f̄

−1(ek)
)

= 0. (6.283)
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Now multiplying by f̄−1(ei∧ej) and summing we find that

P′(f̄−1(∂)∧ f̄−1(ek)
)

= 0. (6.284)

This result can be summarised simply as

D′∧ek′ = D′∧ f̄−1(ek) = 0. (6.285)

This is sufficient to establish that the exterior derivative of a cotangent vector
results in a cotangent bivector (equivalent to a 2-form). The result transforms
in the required manner:

D∧A 
→ D′∧A′ = f̄−1(D∧A). (6.286)

This is the result that makes the exterior algebra of cotangent vectors so powerful
for studying the topological features of manifolds. This algebra is essentially that
of differential forms, as is explained in section 6.5.7. For example, a form is said
to be closed if its exterior derivative is zero, and to be exact if it can be written
as the exterior derivative of a form of one degree lower. Both of these properties
are unchanged by diffeomorphisms, so the size of the space of functions that are
closed but not exact is a topological feature of a space. This is the basis of de
Rham cohomology.

It is somewhat less common to see diffeomorphisms discussed when studying
Riemannian geometry. More usually one focuses attention on the restricted class
of isometries, which are diffeomorphisms that preserve the metric. These define
symmetries of a Riemannian space. In the vector manifold setting, however, it is
natural to study the effect of maps on metric-dependent quantities. The reason
being that vector manifolds inherit their metric structure from the embedding,
and if the embedding is changed by a diffeomorphism, the natural metric is
changed as well. One does not have to inherit the metric from an embedding.
One can easily impose a metric on a vector manifold by defining a linear transfor-
mation over the manifold. This takes us into the subject of induced geometries,
which is closer to the spirit of the approach to gravity adopted in chapter 14.
Similarly, when transforming a vector manifold, one need not insist that the
transformed metric is that inherited by the new embedding. One can instead
simply define a new metric on the transformed space directly from the original
one.

The simplest example of a diffeomorphism inducing a new geometry is to
consider a flat plane in three dimensions. If the plane is distorted in the third
direction, and the new metric taken as that implied by the embedding, the surface
clearly becomes curved. Formulae for the effects of such transformations are
generally quite complex. Most can be derived from the transformation properties
of the projection operation,

P′ = fPf−1. (6.287)
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This identity ensures that the projection and transformation formulae can be
applied in either order. If we now form

e′i ·S′
j = P′

⊥
(
∂jf(ei)

)
= f(ei ·Sj) + P′

⊥
(
∂̇j ḟ(ei)

)
, (6.288)

we see that the shape tensor transforms according to

a′ ·S′(b′) = f(a·S(b)) + P′
⊥
(
b·∂̇ ḟ(a)

)
. (6.289)

Further results can be built up from this. For example, the new Riemann tensor
is constructed from the commutator of the transformed shape tensor.

6.5.7 Differential geometry and forms

So far we have been deliberately loose in relating objects in vector manifold the-
ory to those of modern differential geometry texts. In this section we clarify the
relations and distinctions between the viewpoints. In the subject of differential
geometry it is now common practice to identify directional derivatives as tangent
vectors, so that the tangent vector a is the scalar operator

a = ai ∂

∂xi
. (6.290)

Tangent vectors form a linear space, denoted TxM, where x labels a point in
the manifold M. This notion of a tangent vector is slightly different from that
adopted in the vector manifold theory, where we explicitly let the directional
derivative act on the vector x. As explained earlier, the limit implied in writing
∂x/∂xi is only well defined if an embedding picture is assumed. The reason
for the more abstract definition of a tangent vector in the differential geometry
literature is to remove the need for an embedding, so that a topological space
can be viewed as a single distinct entity. There are arguments in favour, and
against, both viewpoints. For all practical purposes, however, the philosophies
behind the two viewpoints are largely irrelevant, and calculations performed in
either scheme will return the same results.

The dual space to TxM is called the cotangent space and is denoted T ∗
xM.

Elements of T ∗
xM are called cotangent vectors, or 1-forms. The inner product

between a tangent and cotangent vector can be written as 〈ω, a〉. A basis for the
dual space is defined by the coordinate differentials dxi, so that

〈dxi, ∂/∂xj〉 = δi
j . (6.291)

A 1-form therefore implicitly contains a directed measure on a manifold. So, if
α is a 1-form we have

α = αidxi = A·(dx), (6.292)
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where A is a grade-1 multivector in the vector manifold sense. Similarly, if dX

is a directed measure over a two-dimensional surface, we have

dX = ei∧ej dxi dxj , (6.293)

so that

(ej∧ei)·dX = dxi dxj − dxj dxi. (6.294)

An arbitrary 2-form can be written as

α2 =
1
2!

αij(dxi dxj − dxj dxi) = A†
2 ·dX. (6.295)

Here A2 is the multivector

A2 =
1
2!

αij ei∧ej , (6.296)

which has the same components as the differential form. More generally, an
r-form αr can be written as

αr = A†
r ·dXr = Ar ·dX†

r . (6.297)

Clearly there is little difference in working with the r-form αr or the equivalent
multivector Ar. So, for example, the outer product of two 1-forms results in the
2-form

α1∧β1 = αiβi(ei∧ej)·dX†
2 = (A1∧B1)·dX†

2 , (6.298)

where dX2 is a two-dimensional surface measure and A1, B1 are the grade-1
multivectors with components αi and βi respectively. Similarly, the exterior
derivative of an r-form is given by

dαr = (D∧Ar)·dX†
r+1. (6.299)

The fact that forms come packaged with an implicit measure allows for a
highly compact statement of Stokes’ theorem, as given in equation (6.264). In
ultra-compact notation this says that∫

σr

dα =
∮

∂σr

α, (6.300)

where α is an (r − 1)-form integrated over an open r-surface σr. This is entirely
equivalent to equation (6.264), as can be seen by writing∫

σr

dα =
∫

σr

(Ȧ†
r−1∧Ḋ)·dXr =

∮
∂σr

(A†
r−1)·dSr−1 =

∮
∂σr

α. (6.301)

One can proceed in this manner to establish a direct translation scheme between
the languages of differential forms and vector manifolds. Many of the expressions
are so similar that there is frequently little point in maintaining a distinction.

If the language of differential forms is applied in a metric setting, an important
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additional concept is that of a duality transformation, also known as the Hodge
∗ (star) operation. To define this we first introduce the volume form

Ω =
√

|g|dx1∧dx2∧· · ·∧dxn =
√

|g|(en∧en−1∧· · ·∧e1)·dX. (6.302)

The pseudoscalar for a vector manifold, given a coordinate frame with the spec-
ified orientation, is given by

I =
1√
|g|

(e1∧e2∧· · ·∧en). (6.303)

This definition was chosen earlier to ensure that I2 = ±1 and that I keeps the
orientation specified by the frame. It follows that

Ω = I−1 ·dX, (6.304)

so that the equivalent multivector is I−1†. This will equal ±I, depending on
signature. The Hodge ∗ of an r-form αr is the (n − r)-form

∗αr =

√
|g|

r!(m − r)!
ωi1,...,ir

εi1,...,ir
jr+1,...,jn

dxjr+1∧· · ·∧dxjn , (6.305)

where εi1,...,in
denotes the alternating tensor. If Ar is the multivector equivalent

of αr, the Hodge ∗ takes on the rather simpler expression

∗Ar = (I−1Ar)† = (I−1 ·Ar)†. (6.306)

In effect, we are multiplying by the pseudoscalar, as one would expect for a
duality relation. Applied twice we find that

∗∗Ar =
(
I−1(I−1 ·Ar)†

)† = (−1)r(m−r)Ar(I†I). (6.307)

In spaces with Euclidean signature, I†I = +1. In spaces of mixed signature
the sign depends on whether there are an even or odd number of basis vectors
with negative norm. It is a straightforward exercise to prove the main results for
the Hodge ∗ operation, given equation (6.307) and the fact that I is covariantly
conserved.

6.6 Elasticity

As a more extended application of some of the ideas developed in this chapter,
we discuss the foundations of the subject of elasticity. The behaviour of a solid
object is modelled by treating the object as a continuum. Locally, the strains
in the object will tend to be small, but these can build up to give large global
displacements. As such, it is important to treat the full, non-linear theory of
elasticity. Only then can one be sure about the validity of various approximation
schemes, such as assuming small deflections.
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Our discussion is based on a generalisation of the ideas employed in the treat-
ment of a rigid body. We first introduce an undeformed, reference configuration,
with points in this labelled with the vector x. This is sometimes referred to as
the material configuration. Points in the spatial configuration, y, are obtained
by a non-linear displacement f of the reference configuration, so that

y = y(x, t) = f(x, t). (6.308)

We use non-bold vectors to label points in the body, and bold to label tangent
vectors in either the reference or spatial body. We assume that the background
space is flat, three-dimensional Euclidean space.

6.6.1 Body strains

To calculate the strains in the body, consider the image of the vector between
two nearby points in the reference configuration,

(x + εa) − x 
→ y(x + εa) − y(x) = εf(a) + O(ε2), (6.309)

where f is the deformation gradient,

f(a) = a·∇y = a·∇f(x, t). (6.310)

The function f maps a tangent vector in the reference configuration to the equiva-
lent vector in the spatial configuration. That is, if x(λ) is a curve in the reference
configuration with tangent vector

x′ =
∂x(λ)

∂λ
, (6.311)

then the spatial curve has tangent vector f(v). The length of the curve x(λ) in
the reference configuration is∫ ∣∣∣∣∂x

∂λ

∣∣∣∣ dλ =
∫
|x′| dλ. (6.312)

The length of the induced curve in the spatial configuration is therefore∫
dλ
(
f(x′)2

)1/2 =
∫

dλ
(
x′ · f̄ f(x′)

)1/2
. (6.313)

We define the (right) Cauchy–Green tensor C, by

C(a) = f̄ f(a). (6.314)

This tensor is a symmetric, positive-definite map between vectors in the reference
configuration. It describes a set of positive dilations along the principal directions
in the reference configuration. The eigenvalues of C can be written as (λ2

1, λ
2
2, λ

2
3),

where the λi define the principal stretches. The deviations of these from unity
measure the strains in the material.
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e1

e2

f(e1)
f(e2)

y = f(x, t)

Figure 6.7 An elastic body. The function f(x, t) maps points in the refer-
ence configuration to points in the spatial configuration. Coordinate curves
e1 and e2 map to f(e1) and f(e2). The normal vector in the spatial config-
uration therefore lies in the f̄−1(e3) direction.

6.6.2 Body stresses

If we take a cut through the body then the contact force between the surfaces will
be a function of the normal to the surface (and position in the body). Cauchy
showed that, under reasonable continuity conditions, this force must be a linear
function of the normal, which we write σ(n) = σ(n;x). The tensor σ(n) maps
a vector normal to a surface in the spatial configuration onto the force vector,
also in the spatial configuration. We will verify shortly that σ is symmetric.

The total force on a volume segment in the body involves integrating σ(n) over
the surface of the volume. But, as with the rigid body, it is simpler to perform
all calculations back in the reference copy. To this end we let xi denote a set of
coordinates for position in the reference body. The associated coordinate frame
is {ei}, with reciprocal frame {ei}. Suppose now that x1 and x2 are coordinates
for a surface in the reference configuration. The equivalent normal in the spatial
configuration is (see figure 6.7)

n = f(e1)∧f(e2) I−1 = det (f) f̄−1(e3). (6.315)

The force over this surface is found by integrating the quantity

σ
(
f(e1∧e2)I−1

)
dx1 dx2 = det (f)σ(̄f−1(e3))dx1 dx2. (6.316)

We therefore define the first Piola–Kirchoff stress tensor T by

T(a) = det (f)σf̄−1(a). (6.317)

The stress tensor T takes as its argument a vector normal to a surface in the
reference configuration, and returns the contact force in the spatial body. The
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force balance equation tells us that, for any sub-body, we have

d

dt

∫
d3x ρv =

∮
T(ds) +

∫
d3x ρb, (6.318)

where ρ is the density in the reference configuration, v = ẏ is the spatial velocity,
and b is the applied body force. The fundamental theorem immediately converts
this to the local equation

ρv̇ = Ť(∇̌) + ρb. (6.319)

The check symbol is used for the scope of the derivative, to avoid confusion with
time derivatives (denoted with an overdot). This equation is sensible as ∇ is
the vector derivative in the reference configuration, and Ť(∇̌) is a vector in the
spation configuration.

The total torque on a volume element, centred on y0, is (ignoring body forces)

M =
∮

(y − y0)∧T(ds). (6.320)

This integral runs over the reference body, and returns a torque in the spatial
configuration. This must be equated with the rate of change of angular momen-
tum, which is

d

dt

∫
d3x ρ(y − y0)∧ẏ =

∫
d3x (y − y0)∧Ť(∇̌)

=
∮

(y − y0)∧T(ds) −
∫

d3x y̌∧T(∇̌). (6.321)

Equating this with M we see that

y̌∧T(∇̌) = (∂if(x))∧T(ei) = f(ei)∧T(ei) = 0. (6.322)

It follows that

f(ei)∧T(ei) = det (f) f(ei)∧σf̄−1(ei) = 0, (6.323)

and we see that σ must be a symmetric tensor in order for angular momentum
to be conserved.

It is often convenient to work with a version of T that is symmetric and defined
entirely in the material frame. We therefore define the second Piola–Kirchoff
stress tensor T by

T (a) = f−1T(a). (6.324)

It is meaningless to talk about symmetries of T, since it maps between differ-
ent spaces, whereas T is defined entirely in the reference configuration and, by
construction, is symmetric.

The equations of motion for an elastic material are completed by defining a
constitutive relation. This relates the stresses to the strains in the body. These
relations are most easily expressed in the reference copy as a relationship between
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T and C. There is no universal definition of the strain tensor E , though for certain
applications a useful definition is

E(a) = C1/2(a) − a. (6.325)

This tensor is zero if the material is undeformed. Linear materials have the prop-
erty that T and E are linearly related by a rank-4 tensor. This can, in principle,
have 36 independent degrees of freedom, all of which may need to be determined
experimentally. If the material is homogeneous then the components of the rank-
4 tensor are constants. If the material is also isotropic then the 36 degrees of
freedom reduce to two. These are usually given in terms of the bulk modulus B

and shear modulus G, with T and E related by an expression of the form

T (a) = 2GE(a) + (B − 2
3G)tr(E)a. (6.326)

In many respects this is the simplest material one can consider, though even in
this case the non-linearity of the force law makes the full equations very hard to
analyse. The analysis can be aided by the fact that these materials are described
by an action principle, as discussed in section 12.4.1.

6.7 Notes

The treatment of vector manifolds presented here is a condensed version of the
theory developed by Hestenes & Sobczyk in the book Clifford Algebra to Geo-
metric Calculus (1984) and in a series of papers by Garret Sobczyk. There are
a number of differences in our presentation, however. Most significant is our
definition of the orientations in the fundamental theorem of integral calculus.
Our definition of the boundary operator ensures that a boundary inherits its
orientation from the directed volume measure. Hestenes & Sobczyk used the
opposite specification for their boundary operator, which gives rise to a number
of (fairly trivial) differences. A significant advantage of our conventions is that
in two dimensions the pseudoscalar has the correct orientation implied by the
imaginary in the Cauchy integral formula.

A further difference is that from the outset we have emphasised both the
implied embedding of a vector manifold, and the fact that this gives rise to a
metric. A vector manifold thus has greater structure than a differentiable man-
ifold in the sense of differential geometry. For applications to finite-dimensional
Riemannian geometry the different approaches are entirely equivalent, as any
finite-dimensional Riemannian manifold can be embedded in a larger dimen-
sional flat space in such a way that the metric is generated by the embedding.
This result was proved by John Nash in 1956. His remarkable story is the subject
of the book A Beautiful Mind by Sylvia Nasar (1998) and, more recently, a film
of the same name. In other applications of differential geometry the full range
of validity of the vector manifold approach has yet to be fully established. The
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approach certainly does give streamlined proofs of a number of key results. But
whether this comes with some loss of generality is an open question.

A final, small difference in our approach here to the original one of Hestenes &
Sobczyk is our definition of the shape tensor. We have only considered the shape
tensor S(a) taking intrinsic vectors as its linear argument. This concept can be
generalised to define a function that can act linearly on general vectors. One of
the most interesting properties of this generalized version of the shape tensor is
that it provides a natural square root of the Ricci tensor. This theory is developed
in detail in chapter 5 of Clifford Algebra to Geometric Calculus, to which readers
are referred for further information. There is no shortage of good textbooks on
modern differential geometry. The books by Nakahara (1990), Schutz (1980)
and Göckeler & Schucker (1987) are particularly strong on emphasising physical
applications. Elasticity is described in the books by Marsden & Hughes (1994)
and Antman (1995).

6.8 Exercises

6.1 Confirm that the vector derivative is independent of the choice of coor-
dinate system.

6.2 If we denote the curl of a vector field J in three dimensions by ∇×J ,
show that

∇×J = −I∇∧J.

Hence prove that

∇·(∇×J) = 0,

∇×(∇×J) = ∇(∇·J) − ∇2J .

6.3 An oblate spheroidal coordinate system can be defined by

a cosh(u) sin(v) =
√

(x2 + y2),

a sinh(u) cos(v) = z,

tan(φ) = y/x,

where (x, y, z) denote standard Cartesian coordinates and a is a scalar.
Prove that

e2
u = e2

v = a2
(
sinh2(u) + cos2(v)

)
= ρ2,

which defines the quantity ρ. Hence prove that the Laplacian becomes

∇2ψ =
1

ρ2 cosh(u)
∂

∂u

(
cosh(u)

∂ψ

∂u

)
+

1
ρ2 sin(v)

∂

∂v

(
sin(v)

∂ψ

∂v

)

+
1

a2 cosh2(u) sin2(v)
∂2ψ

∂φ2
,

225

https://doi.org/10.1017/CBO9780511807497.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.008


GEOMETRIC CALCULUS

and investigate the properties of separable solutions in oblate spheroidal
coordinates.

6.4 Prove that over the surface of a tetrahedron the directed surface integral
satisfies ∮

dS = 0.

By considering pairs of adjacent tetrahedra, prove that this integral
vanishes for all orientable, connected closed surfaces.

6.5 For a circle in a plane confirm that the line integral around the perimeter
satisfies ∮

b·x dl = b·A,

where A is the oriented area of the circle.
6.6 Prove that

k∑
i=0

(−1)ib·(x0 + · · · x̌i · · · + xn)∆(x̌i)(k−1) =
1
k!

b·(e1∧· · ·∧en),

where the notation follows section 6.4.4.
6.7 Suppose that σ is an n-dimensional surface embedded in a flat space of

dimensions n + 1 with (constant) unit pseudoscalar I. Prove that∮
∂σ

dSJ = −I

∫
σ

l∧∇J |dX|,

where the normal l is defined by dX = Il |dX|.
6.8 The shape tensor is defined by

a·∂I = IS(a) = I×S(a).

Prove that the shape tensor satisfies

a·S(b) = b·S(a)

and

∂̇∧Ṗ(a) = S(a),

where P projects into the tangent space, and a and b are tangent vectors.
6.9 An open two-dimensional surface in three-dimensional space is defined

by

r(x, y) = xe1 + ye2 + α(r)e3,

where r = (x2 + y2)1/2 and the {ei} are a standard Cartesian frame.
Prove that the Riemann tensor can be written

R(a∧b) =
α′α′′

r(1 + α′2)2
a∧b,
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6.8 EXERCISES

where the primes denote differentiation with respect to r. The scalar
factor κ in R(a∧b) = κa∧b is called the Gaussian curvature.

6.10 A linear, isotropic, homogeneous material is described by a bulk modulus
B and shear modulus G. By linearising the elasticity equations, show
that the longitudinal and transverse sound speeds vl and vt are given by

v2
l =

1
3ρ

(
3B + 4G

)
, v2

t =
G

ρ
.

6.11 Consider an infinite linear, isotropic, homogeneous material containing
a spherical hole into which air is pumped. Show that, in the linearised
theory, the radial stress τr is related to the radius of the hole r by
τr ∝ r−3. Discuss how the full non-linear theory might modify this
result.
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