
10

Geometry

In the preceding chapters of this book we have dealt entirely with a single geomet-
ric interpretation of the elements of a geometric algebra. But the relationship
between algebra and geometry is seldom unique. Geometric problems can be
studied using a variety of algebraic techniques, and the same algebraic result
can typically be pictured in a variety of different ways. In this chapter, we
explore a range of alternative geometric systems, and discover how geometric
algebra can be applied to each of them. We will find that there is no unique
interpretation forced on the multivectors of a given grade. For example, to date
we have viewed bivectors solely as directed plane segments. But in projective
geometry a bivector represents a line, and in conformal geometry a bivector can
represent a pair of points.

Ideas from geometry have always been a prime motivating factor in the de-
velopment of mathematics. By the nineteenth century mathematicians were
familiar with affine, Euclidean, spherical, hyperbolic, projective and inversive
geometries. The unifying framework for studying these geometries was provided
by the Kleinian viewpoint. Under this view a geometry consists of a space of
points, together with a group of transformations mapping the points onto them-
selves. Any property of a particular geometry must be invariant under the action
of the associated symmetry group. Klein was thus able to unite various geome-
tries by describing how some symmetry groups are subgroups of larger groups.
For example, Euclidean geometry is a subgeometry of affine geometry, because
the group of Euclidean transformations is a subgroup of the group of affine trans-
formations.

In this chapter we will see how the various classical geometries, and their
associated groups, are handled in geometric algebra. But we will also go further
by addressing the question of how to represent various geometric primitives in
the most compact and efficient way. The Kleinian viewpoint achieves a united
approach to classical geometry, but it does not help much when it comes to
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addressing problems of how to perform calculations efficiently. For example,
circles are as much geometric primitives in Euclidean geometry as points, lines
a planes. But how should circles be represented as algebraic entities? Storing
a point and a radius is unsatisfactory, as this representation involves objects of
different grades. In this chapter we answer this question by showing that both
lines and circles are represented as trivectors in the conformal model of Euclidean
geometry.

We begin with the study of projective geometry. The addition of an extra
dimension allows us to create an algebra of incidence relations between points,
lines and planes in space. We then return to Euclidean geometry, but rather
than viewing this as a subgeometry of projective geometry (the Kleinian view-
point), we will instead increase the dimension once more to establish a conformal
representation of Euclidean geometry. The beauty of this construction is that
the group of Euclidean transformations can now be formulated as a rotor group.
Euclidean invariants are then constructed as inner products between multivec-
tors. This framework allows us to extend the projective treatment of incidence
relations to include circles and spheres.

A further attractive feature of the conformal model is that Euclidean, spherical
and hyperbolic geometries are all handled in the same framework. This allows
the Poincaré disc model of non-Euclidean geometry in the plane to be extended
seamlessly to higher dimensions. Of particular importance is the clarification
of the role of complex coordinates in planar non-Euclidean geometry. Much
of their utility rests on features of the conformal group of the plane that do
not extend naturally. Instead, we work within the framework of real geometric
algebra to obtain results which are independent of dimension. Finally in this
chapter we turn to spacetime geometry. The conformal model for spacetime is of
considerable importance in formulations of supersymmetric theories of gravity,
and also lies at the heart of the twistor program. We display some surprising
links between these ideas and the multiparticle spacetime algebra described in
chapter 9. Throughout this chapter we denote the vector space with signature
p, q by V(p, q), and the geometric algebra of this space by G(p, q).

10.1 Projective geometry

There was a time when projective geometry formed a large part of undergraduate
mathematics courses. For various reasons the subject fell out of fashion in the
twentieth century, making way for the more relevant subject of differential geom-
etry. But in recent years projective geometry has enjoyed a resurgence due to its
importance in the computer graphics industry. For example, the routines at the
core of the OpenGL graphics language are built on a projective representation
of three-dimensional space.

The key idea in projective geometry is that points in space are represented as
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Figure 10.1 Projective geometry. Points in the projective plane are repre-
sented by vectors in a space one dimension higher. The plane Π does not
intersect the origin 0.

vectors in a space of one dimension higher. For example, points in the projective
plane are represented as vectors in three-dimensional space (see figure 10.1). The
magnitude of the vector is unimportant, as both a and λa represent the same
point. This representation of points is said to be homogeneous. The two key
operations in projective geometry are the join and meet. The join of two points,
for example, is the line between them. Forming the join raises the grade, and
the join can usually be encoded algebraically via the exterior product (this was
Grassmann’s original motivation for introducing his exterior algebra). The meet
is used for forming intersections, such as two lines in a plane meeting at a point.
The meet is traditionally encoded via the notion of duality, and in geometric
algebra the role of the meet is played by the inner product. Operations such
as the meet and join do not depend on the metric, so in projective geometry
we have a non-metric interpretation of the inner product. This is an important
point. Some authors have argued that, because geometric algebra is built on a
quadratic form, it is intimately tied to metric geometry. This view is incorrect,
as we demonstrate below.

10.1.1 The projective line

The simplest place to start is with a one-dimensional line. The ‘Euclidean’
model of the line consists of labelling each point with a real number. But there
are drawbacks with this representation of a line. Geometrically, all points on the
line are equal. But algebraically there are two exceptional points on the line.
The first is the origin, which is represented by the algebraically special number
zero. The second is the point at infinity, which becomes important when we start
to consider projective transformations. The resolution of both of these problems
is to represent points in the line as vectors in two-dimensional space. In this way
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the point x is replaced by a pair of homogeneous coordinates (x1, x2), with

x =
x1

x2
. (10.1)

One can immediately see that the origin is represented by the non-zero vector
(0, 1), and that the point at infinity is (1, 0).

If the vectors {e1, e2} denote an orthonormal frame for two-dimensional space,
we can set

x = x1e1 + x2e2. (10.2)

The set of all non-zero vectors x constitute the projective line, RP 1. The fact
that the origin is excluded implies that in projective spaces one loses linear-
ity. This is obvious from the fact that x and λx represent the same point, so
linear combinations do not make geometric sense. Indeed, no geometric signifi-
cance can be attached to the addition of two points in projective geometry. One
cannot form midpoints, for example, as distances and angles are not projective
invariants.

The projective group consists of the group of general linear transformations
applied to vectors in projective space. For the case of the projective line this
group is defined by transformations of the form(

x1

x2

)

→
(

a b

c d

)(
x1

x2

)
=
(

ax1 + bx2

cx1 + dx2

)
, ab − bc 	= 0. (10.3)

In terms of points on the line, this transformation corresponds to

x 
→ x′ =
ax + b

cx + d
. (10.4)

The group action includes dilations, inversions and translations. The last are
obtained for the case c = 0, a/d = 1. The fact that translations become lin-
ear transformations in projective geometry is of considerable importance. In
three-dimensional geometry, for example, both rotations and translations can be
encoded as 4 × 4 matrices. While this may appear to be an overly-complicated
representation, it makes stringing together a series of translations and rotations
a straightforward exercise. This is important in computer graphics, and is the
representation employed in all OpenGL routines.

In geometric algebra notation we write a general linear transformation as the
map x 
→ f(x), where det (f) 	= 0. Valid geometric statements in projective
geometry must be invariant under such transformations, which is a strong re-
striction. Inner products between projective vectors (points) are clearly not
invariant under projective transformations. The outer product does transform
sensibly, however, due to the properties of the outermorphism. For example,
suppose that the points α and β are represented projectively by

a = αe1 + e2, b = βe1 + e2. (10.5)

343

https://doi.org/10.1017/CBO9780511807497.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.012


GEOMETRY

a
b c d

A
B

C
D

A′
B′

C′
D′

L

L′

O

Figure 10.2 The cross ratio. Points on the lines L and L′ represent two
different projective views of the same vectors in space. The cross ratio of
the four points is the same on both lines.

The outer product of these is

a∧b = (α − β)e1∧e2, (10.6)

which is controlled by the distance between the points on the line. Under a
projective transformation in two dimensions

e1∧e2 
→ f(e1∧e2) = det (f) e1∧e2, (10.7)

which is just an overall scaling.
The fact that distances between points are scaled under a projective transfor-

mation provides us with an important projective invariant for four points on a
line. This is formed from ratios of lengths along a line. We must further ensure
that the ratio is invariant under individual rescaling of individual vectors to be
a true projective invariant. We therefore define the cross ratio of four points, A,
B, C, D, by

(ABCD) =
AC

BC

BD

AD
=

a∧c

b∧c

b∧d

a∧d
, (10.8)

where AB denotes the distance between A and B. Given any four points on
a line, their cross ratio is a projective invariant (see figure 10.2). The figure
illustrates one possible geometric interpretation of a projective transformation,
which is that the line onto which points are projected is transformed to a new line.
Invariants such as the cross ratio are important in computer vision where, for
example, we seek to extract three-dimensional information from a series of two-
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dimensional scenes. Knowledge of invariants can help establish point matches
between the scenes.

10.1.2 The projective plane

Rather more interesting than the case of a line is that of the projective plane.
Points in the plane are now represented by vectors in the three-dimensional
algebra G(3, 0). Figure 10.1 shows that the line between the points a and b is
the result of projecting the plane defined by a and b onto the projective plane.
We therefore define the join of the points a and b by

join(a, b) = a∧b. (10.9)

Bivectors thus define lines in projective geometry. The line itself is recovered
by solving the equation

a∧b∧x = 0. (10.10)

This equation is solved by

x = λa + µb, (10.11)

which defines the set of projective points on the line joining A and B.
By taking exterior products of vectors we define (projectively) higher dimen-

sional objects. For example, the join of a point a and a line b∧c is the plane
defined by the trivector a∧b∧c. Three points on a line cannot define a projected
area, so for these we must have

a∧b∧c = 0 ⇒ a, b, c collinear. (10.12)

This was the condition used to recover the points x on the line a∧b. The join
itself can be slightly more problematic. Given three points one cannot just write
that their join is a∧b∧c, as the result may be zero. Instead the join is defined as
the smallest subspace containing a, b and c. If they are collinear, then the join
is the common line. This is well defined mathematically, but is hard to encode
computationally. The problem is that the finite precision used on computers
means that testing for zero is unreliable. Wherever possible it is safer to avoid
defining the join and instead work with the exterior product.

Projective geometry deals with relationships that are invariant under projec-
tive transformations. The join is one such concept — as two points are trans-
formed the line joining them transforms in the obvious way:

a∧b 
→ f(a)∧f(b) = f(a∧b). (10.13)

So, for example, the statement that three points lie on a line (a∧b∧c = 0) is
unchanged by a projective transformation. Similarly, the statement that three
lines intersect at a point must also be a projective invariant. We therefore seek
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an algebraic encoding of the intersection of two lines. This is the called the meet,
usually denoted with the ∨ symbol. Before we can encode this, however, we need
to define the dual. In the projective plane, points and lines are represented as
vectors and bivectors in G(3, 0). We know that these can be interchanged via
a duality transformation, which amounts to multiplying by the pseudoscalar I.
In this way every point has a dual line, and vice versa. The geometric picture
associated with duality depends on the embedding plane.

If we denote the dual of A by A∗, the meet A∨B is defined by the ‘de Morgan’
rule

(A ∨ B)∗ = A∗∧B∗. (10.14)

For a pair of lines in a plane, this amounts to

A ∨ B = −I(IA)∧(IB) = I A×B = A·(IB) = (IA)·B. (10.15)

These formulae show how the inner product can be used to encode the meet,
without imposing a metric on projective space. The expression

A ∨ B = I A×B (10.16)

shows how the construction works. In three dimensions, A×B is the plane per-
pendicular to A and B, and I A×B is the line perpendicular to this plane, through
the origin. This is therefore the line common to both planes, so projectively gives
the point of intersection of two lines.

The meet of two distinct lines in a plane always results in a non-zero point.
If the lines are parallel then their meet returns the point at infinity. Parallelism
is not a projective invariant, however, so under a projective transformation two
parallel lines can transform to lines intersecting at a finite point. This illustrates
the fact that the point at infinity does not necessarily stay at infinity under
projective transformations. It is instructive to see how the meet itself transforms
under a projective transformation. Using the results of section 4.4, we find that

A ∨ B 
→ f(A) ∨ f(B) = I
(
If(A)

)
∧
(
If(B)

)
= det (f)2 I f̄−1(IA)∧ f̄−1(IB)

= det (f)2 I f̄−1
(
(IA)∧(IB)

)
= det (f) f

(
I (IA)∧(IB)

)
. (10.17)

We can summarise this result as

f(A) ∨ f(B) = det (f) f(A ∨ B). (10.18)

But in projective geometry, a and λa represent the same point, so the factor of
det (f) does not affect the resulting point. This confirms that under a projective
transformation the meet transforms as required.
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Figure 10.3 Desargues’ theorem. The lines P, Q, R meet at a point if and
only if the points p, q, r lie on a line. The two triangles are then projectively
related.

The condition that three lines meet at a common point requires that the meet
of two lines lies on a third line, which goes as

(A ∨ B)∧C = (I A×B)∧C = 0. (10.19)

Dualising this result we obtain the condition

〈(A×B)C〉 = 〈ABC〉 = 0, ⇒ A, B, C coincident. (10.20)

This is an extremely simple algebraic encoding of the statement that three lines
(represented by bivectors) all meet at a common point. Equations like this
demonstrate how powerful geometric algebra can be when applied in a projective
setting.

As an application consider Desargues’ theorem, which is illustrated in fig-
ure 10.3. The points a, b, c and a′, b′, c′ define two triangles. The associated
lines are defined by

A = b∧c, B = c∧a, C = a∧b, (10.21)

with the same definitions holding for A′, B′, C ′ in terms of a′, b′, c′. The two sets
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of vertices determine the lines

P = a∧a′, Q = b∧b′, R = c∧c′, (10.22)

and the two sets of lines determine the points

p = A×A′ I, q = B×B′ I, r = C×C ′ I. (10.23)

Desargues’ theorem states that, if p, q, r lie on a common line, then P , Q and
R all meet at a common point. The latter condition requires

〈PQR〉 = 〈a∧a′ b∧b′ c∧c′〉 = 0. (10.24)

Similarly, for p, q, r to fall on a line we form

p∧q∧r = 〈A×A′ I B×B′ I C×C ′ I〉3
= −I〈A×A′ B×B′ C×C ′〉. (10.25)

Desargues’ theorem is then proved by the algebraic identity

〈a∧b∧c a′∧b′∧c′〉〈a∧a′ b∧b′ c∧c′〉 = 〈A×A′ B×B′ C×C ′〉, (10.26)

the proof of which is left as an exercise. The left-hand side vanishes if and only
if the lines P , Q, R meet at a point. The right-hand side vanishes if and only if
the points p, q, r lie on a line. This proves the theorem. The complex geometry
illustrated in figure 10.3 has therefore been reduced to a straightforward algebraic
identity.

We can find a simple generalisation of the cross ratio for the case of the projec-
tive plane. From the derivation of the cross ratio, it is clear that any analogous
object for the plane must involve ratios of trivectors. These represent areas in
the projective plane. For example, suppose we have six points in space with
position vectors a1, . . . , a6. These produce the six projected points A1, . . . , A6.
An invariant is formed by

a5∧a4∧a3

a5∧a1∧a3

a6∧a2∧a1

a6∧a2∧a4
=

A543

A513

A621

A624
, (10.27)

where Aijk is the projected area of the triangle with vertices Ai, Aj , Ak. Again,
elementary algebraic reasoning quickly yields a geometrically significant result.

10.1.3 Homogeneous coordinates and projective splits

In typical applications of projective geometry we are interested in the relationship
between coordinates in an image plane (for example in terms of pixels relative to
some origin) and the three-dimensional position vector. Suppose that the origin
in the image plane is defined by the vector n, which is perpendicular to the plane.
The line on the image plane from the origin to the image point is represented by
the bivector a∧n (see figure 10.4) . The vector OA belongs to a two-dimensional
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Figure 10.4 The image plane. Vectors in the image plane, OA, are de-
scribed by bivectors in G(3, 0). The point A can be expressed in terms of
homogeneous coordinates in the image plane.

geometric algebra. We can relate this directly to the three-dimensional algebra
by first writing

n + OA = λa. (10.28)

Contracting with n, we find that λ = n2(a·n)−1. It follows that

OA =
an2 − a·nn

a·n =
a∧n

a·n n. (10.29)

If we now drop the final factor of n, we obtain a bivector that is homogeneous
in both a and n. In this way we can directly represent the line OA in two
dimensions with the bivector

A =
a∧n

a·n . (10.30)

This is the projective split, first introduced in chapter 5 as a means of relating
physics as seen by observers with different velocities.

The map of equation (10.30) relates bivectors in a higher dimensional space
to vectors in a space of dimension one lower. If we introduce a coordinate frame
{ei}, with e3 in the n direction, we see that the coordinates of the image of
a = aiei are

A =
a1

a3
e1e3 +

a2

a3
e2e3 = A1E1 + A2E2. (10.31)

This equation defines the homogeneous coordinates Ai:

Ai =
ai

a3
. (10.32)
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Homogeneous coordinates are independent of scale and it is these that are usu-
ally measured in a camera projection of a scene. The bivectors (E1,E2) act as
generators for a two-dimensional geometric algebra. If the vectors in the pro-
jective space are all Euclidean, the Ei bivectors will have negative square. If
necessary, this can be avoided by letting e3 be an anti-Euclidean vector. The
projective split is an elegant scheme for relating results in projective space to
Euclidean space one dimension lower. Algebraically, the projective split rests on
the isomorphism

G+(p + 1, q) � G(q, p). (10.33)

This states that the even subalgebra of the geometric algebra with signature
(p + 1, q) is isomorphic to the algebra with signature (q, p). The projective split
is not always the best way to map from projective space back to Euclidean space,
however, as constructing a set of bivectors can be an unnecessary complication.
Often it is simpler to choose an orthonormal frame, with n one of the frame
vectors, and then scale all vectors x such that n · x = 1.

10.1.4 Projective geometry in three dimensions

To handle complicated three-dimensional problems in a projective framework
we require a four-dimensional geometric algebra. The basic elements of four-
dimensional geometric algebra will be familiar from relativity and the spacetime
algebra, though now the elements are given a projective interpretation. The
algebra of a four-dimensional space contains six bivectors, which represent lines
in three dimensions. As in the planar case, the important feature of the projective
framework is that we are free from the restriction that all lines pass through the
origin. The line through the points a and b is again represented by the bivector
a∧b. This is a blade, as must be the case for any bivector representing a line.
Any bivector blade B = a∧b must satisfy the algebraic condition

B∧B = a∧b∧a∧b = 0, (10.34)

which removes one degree of freedom from the six components needed to specify
an arbitrary bivector. This is known at the Plücker condition. If the vector e4

defines the projection into Euclidean space, the line a∧b has coordinates

a∧b = (a + e4)∧(b + e4) = a∧b + (a − b)∧e4, (10.35)

where a and b denote vectors in the three-dimensional space. The bivector B

therefore encodes a line as a combination of a tangent (b − a) and a moment
a∧b. These are the Plücker coordinates for a line.

Given two lines as bivectors B and B′, the test that they intersect in three
dimensions is that their join does not span all of projective space, which implies
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that

B∧B′ = 0. (10.36)

This provides a projective interpretation for commuting bivectors in four dimen-
sions. Commuting (orthogonal) bivectors have BB′ equalling a multiple of the
pseudoscalar. Projectively, these can be interpreted as two lines in three dimen-
sions that do not share a common point. As mentioned earlier, the problem with
a test such as equation (10.36) is that one can never guarantee to obtain zero
when working to finite numerical precision. In practice, then, one tends to avoid
trying to find the intersection of two lines in the three dimensions, unless there
is good reason to believe that they intersect at a point.

The exterior product of three vectors in projective space results in the trivector
encoding the plane containing the three points. One of the most frequently
encountered problems is finding the point of intersection of a line L and a plane
P . This is given by

x = P ·(IL), (10.37)

where I is the four-dimensional pseudoscalar. This will always return a point,
provided the line does not lie entirely in the plane. Similarly, the intersection of
two planes in three dimensions must result in a line. Algebraically, this line is
encoded by the bivector

L = (IP1)·P2 = I P1×P2, (10.38)

where P1 and P2 are the two planes. Such projective formulae are important in
computer vision and graphics applications.

10.2 Conformal geometry

Projective geometry does provide an efficient framework for handling Euclidean
geometry. Euclidean geometry is a subgeometry of projective geometry, so any
valid result in the latter must hold in the former. But there are some limitations
to the projective viewpoint. Euclidean concepts, like lengths and angles, are
not straightforwardly encoded, and the related concepts of circles and spheres
are equally awkward. Conformal geometry provides an elegant solution to this
problem. The key is to introduce a further dimension of opposite signature,
so that points in a space of signature (p, q) are modelled as null vectors in a
space of signature (p + 1, q + 1). That is, points in V(p, q) are represented by
null vectors in V(p + 1, q + 1). Projective geometry is retained as a subset of
conformal geometry, but the range of geometric primitives is extended to include
circles and spheres.

We denote a point in V(p, q) by x, and its conformal representation by X. We
continue to employ the spacetime notation of using the tilde symbol to denote
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x1 x2

r̂1

r̂2

Figure 10.5 A stereographic projection. The line is mapped into the unit
circle, so the points on the line x1 and x2 are mapped to the unit vectors
r̂1 and r̂2. The origin and infinity are mapped to opposite points on the
circle.

the reverse operation for a general multivector in any geometric algebra. A basis
set of vectors for G(p, q) is denoted by {ei}, and the two additional vectors {e, ē}
complete this to an orthonormal basis for G(p + 1, q + 1).

10.2.1 Stereographic projection of a line

We illustrate the general construction by starting with the simple case of a line.
In projective geometry points on a line are modeled as two-dimensional vectors.
The conformal model is established from a slightly different starting point, using
the stereographic projection. Under a stereographic projection, points on a line
are mapped to the unit circle in a plane (see figure 10.5). Points on the unit
circle in two dimensions are represented by

r̂ = cos(θ) e1 + sin(θ) e2. (10.39)

The corresponding point on the line is given by

x =
cos(θ)

1 + sin(θ)
. (10.40)

This relation inverts simply to give

cos(θ) =
2x

1 + x2
, sin(θ) =

1 − x2

1 + x2
. (10.41)

So far we have achieved a representation of the line in terms of a circle in two
dimensions. But the constraint that the vector has unit magnitude means that
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we have lost homogeneity. To get round this we introduce a third vector, ē,
which has negative signature,

ē2 = −1, (10.42)

and we assume that ē is orthogonal to e1 and e2. We can now replace the unit
vector r̂ with the null vector X, where

X = cos(θ) e1 + sin(θ) e2 + ē =
2x

1 + x2
e1 +

1 − x2

1 + x2
e2 + ē. (10.43)

The vector X satisfies X2 = 0, so is null.
The equation X2 = 0 is homogeneous. If it is satisfied for X, it is satisfied

for λX. We can therefore move to a homogeneous representation and let both
X and λX represent the same point. Multiplying by (1 + x2) we establish the
conformal representation

X = 2xe1 + (1 − x2)e2 + (1 + x2)ē. (10.44)

This is the basic representation we use throughout. To establish a more general
notation we first replace the vector e2 by −e. We therefore have

e2 = 1, ē2 = −1, e·ē = 0. (10.45)

The vectors e and ē are then the two extra vectors that extend the space V(p, q)
to V(p + 1, q + 1). Frequently, it is more convenient to work with a null basis for
the extra dimensions. We define

n = e + ē, n̄ = e − ē. (10.46)

These vectors satisfy

n2 = n̄2 = 0, n·n̄ = 2. (10.47)

The vector X is now

X = 2xe1 + x2n − n̄. (10.48)

It is straightforward to confirm that this is a null vector. The set of all null
vectors in this space form a cone, and the real number line is modelled by the
intersection of this cone and a plane. The construction is illustrated in figure 10.6.

10.2.2 Conformal model of Euclidean space

The form of equation (10.48) generalises easily. If x is an element of V(p, q), we
set

F (x) = X = x2n + 2x − n̄, (10.49)
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e1

ē

n

e
n̄

Figure 10.6 The conformal model of a line. Points on the line are repre-
sented by null vectors in three dimensions. These lie on a cone, and the
intersection of the cone with a plane recovers the point.

which is a null vector in V(p + 1, q + 1). This vector can be obtained simply via
the map,

F (x) = −(x − e)n(x − e), (10.50)

which is a reflection of the null vector n in the plane perpendicular to (x − e).
The result must therefore be a new null vector. The presence of the vector e

removes any ambiguity in handling the origin x = 0. The map F (x) is non-linear
so, as with projective geometry, we move to a non-linear representation of points
in conformal geometry.

More generally, any null vector in V(p + 1, q + 1) can be written as

X = λ(x2n + 2x − n̄), (10.51)

with λ a scalar. This provides a projective map between V(p + 1, q + 1) and
V(p, q). The family of null vectors, λ(x2n+2x− n̄), in V(p+1, q +1) correspond
to the single point x ∈ V(p, q). Given an arbitrary null vector X, it is frequently
useful to convert it to the standard form of equation (10.49). This is achieved
by setting

X 
→ −2
X

X ·n. (10.52)

This map is similar to that employed in constructing a standard embedding in
projective geometry. The status of the vector n is clear here — it represents the
point at infinity.
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Given two null vectors X and Y , in standard form, their inner product is

X ·Y =
(
x2n + 2x − n̄

)
·
(
y2n + 2y − n̄

)
= −2x2 − 2y2 + 4x·y
= −2(x − y)2. (10.53)

This result is of fundamental importance to the conformal model of Euclidean
geometry. The inner product in conformal space encodes the distance between
points in Euclidean space. It follows that any transformation of null vectors
in V(p + 1, q + 1) which leaves inner products invariant can correspond to a
transformation in V(p, q) which leaves angles and distances invariant. In the
next section we discuss these transformations in detail.

10.3 Conformal transformations

The study of the main geometric primitives in conformal geometry is simpli-
fied by first understanding the nature of the conformal group. For points x, y in
V(p, q) the definition of a conformal transformation is that it leaves angles invari-
ant. So, if f is a map from V(p, q) to itself, then f is a conformal transformation
if

f(a)·f(b) = λa·b, ∀a, b ∈ V(p, q), (10.54)

where

f(a) = a·∇f(x). (10.55)

While f(a) is a linear map at each point x, the conformal transformation f(x)
is not restricted to being linear. Conformal transformations form a group, the
conformal group, the main elements of which are translations, rotations, dilations
and inversions. We now study each of these in turn.

10.3.1 Translations

To begin, consider the fundamental operation of translation in the space V(p, q).
This is not a linear operation in V(p, q), but does become linear in the pro-
jective framework. In the conformal model we achieve a further refinement, as
translations can now be handled by rotors. Consider the rotor

R = Ta = ena/2, (10.56)

where a ∈ V(p, q), so that a·n = 0. The generator for the rotor is a null bivector,
so the Taylor series for Ta terminates after two terms:

Ta = 1 +
na

2
. (10.57)
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The rotor Ta transforms the null vectors n and n̄ into

TanT̃a = n + 1
2nan + 1

2nan + 1
4nanan = n (10.58)

and

Tan̄T̃a = n̄ − 2a − a2n. (10.59)

Acting on a vector x ∈ V(p, q) we similarly obtain

TaxT̃a = x + n(a·x). (10.60)

Combining these we find that

TaF (x)T̃a = x2n + 2(x + a·x n) − (n̄ − 2a − a2n)

= (x + a)2n + 2(x + a) − n̄

= F (x + a), (10.61)

which performs the conformal version of the translation x 
→ x+a. Translations
are handled as rotations in conformal space, and the rotor group provides a
double-cover representation of a translation. The identity

T̃a = T−a (10.62)

ensures that the inverse transformation in conformal space corresponds to a
translation in the opposite direction, as required.

10.3.2 Rotations

Next, suppose that we rotate the vector x about the origin in V(p, q). This is
achieved with the rotor R ∈ G(p, q) via the familiar transformation x 
→ x′ =
RxR̃. The image of the transformed point is

F (x′) = x′2n + 2RxR̃ − n̄

= R(x2n + 2x − n̄)R̃ = RF (x)R̃. (10.63)

This holds because R is an even element in G(p, q), so must commute with both
n and n̄. Rotations about the origin therefore take the same form in either space.

Suppose instead that we wish to rotate about the point a ∈ V(p, q). This can
be achieved by translating a to the origin, rotating and then translating forward
again. In terms of X = F (x) the result is

X 
→ TaRT−aXT̃−aR̃T̃a = R′XR̃. (10.64)

The rotation is now controlled by the rotor

R′ = TaRT̃a =
(
1 +

na

2

)
R
(
1 +

an

2

)
. (10.65)

So, as expected, the conformal model has freed us from treating the origin as a
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special point. Rotations about any point are handled in the same manner, and
are still generated by a bivector blade. Similar observations hold for reflections,
but we delay a full treatment of these until we have described how lines and
surfaces are handled in the conformal model. The preceding formulae for trans-
lations and rotations form the basis of the subject of screw theory, which has its
origins in the nineteenth century.

10.3.3 Inversions

Rotations and translations are elements of the Euclidean group, as they leave
distances between points invariant. This is a subgroup of the larger conformal
group, which only leaves angles invariant. The conformal group essentially con-
tains two further transformations: inversions and dilations. An inversion in the
origin consists of the map

x 
→ x

x2
. (10.66)

The conformal vector corresponding to the inverted point is

F (x−1) = x−2n + 2x−1 − n̄ =
1
x2

(n + 2x − x2n̄). (10.67)

But in conformal space points are represented homogeneously, so the pre-factor
of x−2 can be ignored. In conformal space an inversion in the origin consists
solely of the map

n 
→ −n̄, n̄ 
→ −n. (10.68)

This is generated by a reflection in e, since

−ene = −een̄ = −n̄. (10.69)

We can therefore write

−eF (x)e = x2F (x−1), (10.70)

which shows that inversions in V(p, q) are represented as reflections in the confor-
mal space V(p + 1, q + 1). As both X and −X are homogeneous representations
of the same point, it is irrelevant whether we take −e(. . .)e or e(. . .)e as the
reflection. In the following we will use e(...)e for convenience.

A reflection in e corresponds to an inversion in the origin in Euclidean space.
To find the generator of an inversion in an arbitrary point a, we translate to the
origin, invert and translate forward again. The resulting generator is then

TaeT−a =
(
1 +

na

2

)
e
(
1 +

an

2

)
= e − a − a2

2
n. (10.71)

Now, recalling that e = (n + n̄)/2, the generating vector can also be written as

TaeT−a = 1
2

(
n − F (a)

)
= 1

2 (n − A). (10.72)
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A reflection in (n − F (a)) therefore achieves an inversion about the point a in
Euclidean space. As with translations, a nonlinear transformation in Euclidean
space has been linearised by moving to a conformal representation of points. The
generator of an inversion is a vector with positive square. In section 10.5.1 we
see how these vectors are related to circles and spheres.

10.3.4 Dilations

A dilation in the origin is given by

x 
→ x′ = e−αx, (10.73)

where α is a scalar. Clearly, this transformation does not alter angles, so is
a conformal transformation. The null vector corresponding to the transformed
point is

F (x′) = e−α(x2e−αn + 2x + eαn̄). (10.74)

Clearly the map we need to achieve is

n 
→ e−αn, n̄ 
→ eαn̄. (10.75)

This transformation does not alter the inner product of n and n̄, so can be
represented with a rotor. As the vector x is unchanged, the rotor can only be
generated by the timelike bivector eē. If we set

N = eē = 1
2 n̄∧n (10.76)

then N satisfies

Nn = −n = −nN, Nn̄ = n̄ = −n̄N, N2 = 1. (10.77)

We now introduce the rotor

Dα = eαN/2 = cosh(α/2) + sinh(α/2)N. (10.78)

This rotor satisfies
DαnD̃α = e−αn,

Dαn̄D̃α = eαn̄
(10.79)

and so carries out the required transformation. We can therefore write

F (e−αx) = e−αDαF (x)D̃α, (10.80)

which confirms that a dilation in the origin is represented by a simple rotor in
conformal space. To achieve a dilation about an arbitrary point a we form

D′
α = TaDαT̃a = eαN ′/2, (10.81)
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where the generator is now

N ′ = TaNT̃a = 1
2Tan̄∧nT̃a = − 1

2A∧n, (10.82)

with A = F (a). A dilation about a is therefore generated by

D′
α = exp(−αA∧n/4) = exp

(
α

2
A∧n

A·n

)
. (10.83)

The generator is governed by two null vectors, one for the point about which the
dilation is performed and one for the point at infinity.

10.3.5 Special conformal transformations

A special conformal transformation consists of an inversion in the origin, a trans-
lation and a further inversion in the origin. We can therefore handle these in
terms of the representations we have already established. In Euclidean space the
effect of a conformal transformation can be written as

x 
→ x + ax2

1 + 2a·x + a2x2
= x

1
1 + ax

=
1

1 + xa
x. (10.84)

The final expressions confirm that a special conformal transformation corre-
sponds to a position-dependent rotation and dilation in Euclidean space, so does
leave angles unchanged. To construct the equivalent rotor in G(p + 1, q + 1) we
form

Ka = eTae = 1 − n̄a

2
, (10.85)

which ensures that KaF (x)K̃a is a special conformal transformation. Explicitly,
we have

F

(
x

1
1 + ax

)
= (1 + 2a·x + a2x2)−1KaF (x)K̃a (10.86)

and again we can ignore the pre-factor and use KaF (x)K̃a as the homogeneous
representation of the result of a special conformal transformation.

10.3.6 Euclidean transformations

The group of Euclidean transformations is a subgroup of the full conformal
group. The additional restriction is that lengths as well as angles are invariant.
Equation (10.53) showed that the inner product of two null vectors is related
to the Euclidean distance between the corresponding points. To establish a
homogeneous formula, we must write

|a − b|2 = −2
A·B

A·nB ·n, (10.87)
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which is homogeneous on A and B. The Euclidean group can now be seen to be
the subgroup of the conformal group which leaves n invariant. This is sensible,
as the point at infinity should stay there under a Euclidean transformation.
The Euclidean group is thus the stability group of a null vector in conformal
space. The group of generators of reflections and rotations in conformal space
which leave n invariant then provide a double cover of the Euclidean group.
Equation (10.87) returns the Euclidean distance between points. If the vector
n is replaced by e or ē we can transform to distance measures in hyperbolic or
spherical geometry. This makes it a simple exercise to attach different geometric
pictures to algebraic results in conformal space.

10.4 Geometric primitives in conformal space

Now that we have seen how points are encoded in conformal space, we can
begin to build up more complex geometric objects. As in projective geometry,
we expect that a multivector blade L will encode a geometric object via the
equation

L∧X = 0, X2 = 0. (10.88)

The question, then, is what type of object does each grade of multivector return.
One important result we can exploit is that X2 = 0 is unchanged if X 
→ RXR̃.
So, if a geometric object is specified by L via equation (10.88), it follows that

R(L∧X)R̃ = (RLR̃)∧(RXR̃) = 0. (10.89)

We can therefore transform the object L with a general element of the conformal
group to obtain a new object. Similar considerations hold for incidence relations.
Since conformal transformations only preserve angles, and do not necessarily map
straight lines to straight lines, the range of objects we can describe by simple
blades is clearly going to be larger than in projective geometry.

10.4.1 Bivectors and points

A pair of points in Euclidean space are represented by two null vectors in a space
of two dimensions higher. We know that the inner product in this space returns
information about distances. The next question to ask is what is the significance
of the outer product of two vectors. If A and B are null vectors, we form the
bivector

G = A∧B. (10.90)

The bivector G has magnitude

G2 = (AB − A·B)(−BA + A·B) = (A·B)2, (10.91)

360

https://doi.org/10.1017/CBO9780511807497.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.012


10.4 GEOMETRIC PRIMITIVES IN CONFORMAL SPACE

which shows that G is timelike, borrowing the terminology of special relativity.
It follows that G contains a pair of null vectors. If we look for solutions to the
equation

G∧X = 0, X2 = 0, (10.92)

the only solutions are the two null vectors contained in G. These are precisely
A and B, so the bivector encodes the two points directly. In the conformal
model, no information is lost in forming the exterior product of two null vectors.
Spacelike bivectors, with B2 < 0, do not contain any null vectors, so in this case
there are no solutions to B∧X = 0 with X2 = 0. The critical case of B2 = 0
implies that B contains a single null vector.

Given a timelike bivector, B2 > 0, we require an efficient means of finding the
two null vectors in the plane. This can be achieved without solving any quadratic
equations as follows. Pick an arbitrary vector a, with a partial projection in the
plane, a·B 	= 0. If the underlying space is Euclidean, one can use the vector ē,
since all timelike bivectors contain a factor of this. Now remove the component
of a outside the plane by defining

a′ = a − a∧B̂ B̂, (10.93)

where B̂ = B/|B| is normalised so that B̂2 = 1. If a′ is already null then it
defines one of the required vectors. If not, then one can form two null vectors in
the B plane by writing

A± = a′ ± a′B̂. (10.94)

One can easily confirm that A± are both null vectors, and so return the desired
points.

10.4.2 Trivectors, lines and circles

If a bivector now only represents a pair of points, the obvious question is how
do we describe a line? Suppose we construct the line through the points a and
b in V(p, q). A point on the line is given by

x = λa + (1 − λ)b. (10.95)

The conformal version of this line is

F (x) =
(
λ2a2 + 2λ(1 − λ)a·b + (1 − λ)2b

)
n + 2λa + 2(1 − λ)b − n̄

= λA + (1 − λ)B + 1
2λ(1 − λ)A·B n, (10.96)

and any multiple of this encodes the same point on the line. It is clear, then,
that a conformal point X is a linear combination of A, B and n, subject to the
constraint that X2 = 0. This is summarised by

(A∧B∧n)∧X = 0, X2 = 0. (10.97)
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So it is trivectors that represent lines in conformal geometry. This illustrates a
general feature of the conformal model — geometric objects are represented by
multivectors of one grade higher than their projective counterpart. The extra
degree of freedom is absorbed by the constraint that X2 = 0.

As stated above, if we apply a conformal transformation to a trivector repre-
senting a line, we must obtain a new line. But there is no reason to expect this to
be straight. To see what else can result, consider a simple inversion in the origin.
Suppose that (x1, x2) denote a pair of Cartesian coordinates for the Euclidean
plane, and consider the line x1 = 1. Points on the line have components (1, x2),
with −∞ ≤ x2 ≤ +∞. The image of this line under an inversion in the origin
has coordinates (x′

1, x
′
2), where

x′
1 =

1
1 + x2

2

, x′
2 =

x2

1 + x2
2

. (10.98)

It is now straightforward to show that

(x′
1 − 1

2 )2 + (x′
2)

2 =
(

1
2

)2
. (10.99)

Hence inversion of a line produces a circle, centred on (1/2, 0) and with radius
1/2.

It follows that a general trivector in conformal space can encode a circle, with
a line representing the special case of infinite radius. This is entirely sensible, as
three distinct points are required to specify a circle. The points define a plane,
and any three non-collinear points in a plane specify a unique circle. So, given
three points A1, A2, A3, the circle through all three is defined by

A1∧A2∧A3∧X = 0, (10.100)

together with the restriction (often unstated) that X2 = 0. The trivector

L = A1∧A2∧A3 (10.101)

therefore encodes a unique circle in conformal geometry. The test that the points
lie on a straight line is that the circle passes through the point at infinity,

L∧n = 0 ⇒ straight line. (10.102)

This explains why our earlier derivation of the line through A1 and A2 led to
the trivector A1∧A2∧n, which explicitly includes the point at infinity. Unlike
tests for linear dependence, testing for zero in equation (10.102) is numerically
acceptable. The reason is that the magnitude of L∧n controls the deviation from
straightness. If precision is limited, one can then define how close L∧n should
be to zero in order for the line to be treated as straight. This is quite different to
linear independence, where the concept of ‘nearly independent’ makes no sense.

Given that a trivector L encodes a circle, we should expect to be able to extract
the key geometric properties of the circle directly from L. In particular, we seek
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e1

e2

−e1

Figure 10.7 The unit circle. Three reference points are marked on the
circle.

expressions for the centre and radius of the circle. (The plane containing the
circle is specified by the 4-vector L∧n, as we explain in the following section.)
Any circle in a plane can be mapped onto any other by a translation and a
dilation. Under that latter we find that

L∧n 
→ (DαLD̃α)∧n = eαDα(L∧n)D̃α. (10.103)

It follows that (L∧n)2 scales as the inverse square of the radius. Next, consider
the unit circle in the circle in the xy plane, and take as three points on the circle
those shown in figure 10.7. The trivector for this circle is

L0 = F (e1)∧F (e2)∧F (−e1) = 16e1e2ē. (10.104)

It follows that
L2

0

(L0∧n)2
= −1, (10.105)

which is (minus) the square of the radius of the unit circle. We can translate
and dilate this into any circle we choose, so the radius ρ of the circle encoded by
the trivector L is given by

ρ2 = − L2

(L∧n)2
. (10.106)

This is a further illustration of how metric information is carried around in the
homogeneous framework of the conformal model. If L represents a straight line
we know that L∧n = 0, so the radius we obtain is infinite.

Similar reasoning produces a formula for the centre of a circle. Essentially the
only objects we have to work with are L and n. If we form LnL for the case of
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the unit circle we obtain

L0nL0 ∝ e1e2ēnēe1e2 = −n̄. (10.107)

But n̄ is the null vector for the origin, so this expression has returned the desired
point. Again, we can translate and dilate this result to obtain an arbitrary circle,
and we find in general that the centre C of the circle L is obtained by

C = LnL. (10.108)

We will see in section 10.5.5 that the operation L . . . L generates a reflection in
a circle. Equation (10.108) then says that the centre of a circle is the image of
the point at infinity under a reflection in the circle.

10.4.3 4-vectors, spheres and planes

We can apply the same reasoning for lines and circles to the case of planes and
spheres and, for mixed signature spaces, hyperboloids. Suppose initially that the
points a, b, c define a plane in V(p, q), so that an arbitrary point in the plane is
given by

x = αa + βb + γc, α + β + γ = 1. (10.109)

The conformal representation of x is

X = αA + βB + γC + δn, (10.110)

where A = f(a) etc., and

δ = 1
2 (αβA·B + αγA·C + βγB ·C). (10.111)

Varying α and β, together with the freedom to scale F (x), now produces general
null combinations of the vectors A, B, C and n. The equation for the plane can
then be written

A∧B∧C∧n∧X = 0. (10.112)

The plane passes through the points defined by A, B, C and the point at infinity
n. We can therefore see that a general plane in conformal space is defined by
four points.

If the four points in question do not lie on a (flat) plane, then the 4-vector
formed from their outer product defines a sphere. To see this we again consider
inversion in the origin, this time applied to the x1 = 1 plane. A point on the
plane has coordinates (1, x2, x3), and under an inversion this maps to the point
with coordinates

x′
1 =

1
1 + x2

2 + x2
3

, x′
2 =

y

1 + x2
2 + x2

3

, x′
3 =

z

1 + x2
2 + x2

3

. (10.113)
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The new coordinates satisfy(
x′

1 − 1
2

)2 + (x′
2)

2 + (x′
3)

2 =
(

1
2

)2
, (10.114)

which is the equation of a sphere. Inversion thus interchanges planes and spheres.
In particular, the point at infinity n is transformed to the origin n̄ under inver-
sion, which is now one of the points on the sphere.

Given any four distinct points A1, . . . , A4, not all on a line or circle, the equa-
tion of the unique sphere through all four points is

A1∧A2∧A3∧A4∧X = P∧X = 0, (10.115)

so the sphere is defined by the 4-vector P = A1∧A2∧A3∧A4. The sphere is flat
(a plane) if it passes through the point at infinity, the test for which is

A1∧A2∧A3∧A4∧n = P∧n = 0. (10.116)

The 4-vector P contains all of the relevant geometric information for a sphere.
The radius of the sphere ρ is given by

ρ2 =
P 2

(P∧n)2
, (10.117)

as is easily confirmed for the case of the unit sphere, P = e1e2e3ē. Similarly, the
centre of the sphere C = F (c) is given by

C = PnP. (10.118)

These formulae are the obvious generalisations of the results derived for circles.

10.5 Intersection and reflection in conformal space

One of the most significant advantages of the conformal approach to Euclidean
geometry is the ease with which it solves complicated intersection problems. So,
for example, finding the circle of intersection of two spheres is now no more
complicated than finding the line of intersection of two planes. In addition, the
concept of reflection is generalised in conformal space to include reflection in a
sphere. This provides a very compact means of encoding the key concepts of
inversive geometry.

10.5.1 Duality in conformal space

The concept of duality is key to intersecting objects in projective space, and the
same is true in conformal space. Suppose that we start with the Euclidean plane,
modelled in G(3, 1). Duality in this algebra interchanges spacelike and timelike
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bivectors. It also maps trivectors to vectors, and vice versa. A trivector encodes
a line, or circle, so the dual of the circle C is a vector c, where

c = C∗ = IC (10.119)

and I is the pseudoscalar for G(3, 1). The equation for the circle, X∧C = 0, can
now be written in dual form and reduces to

X ·c = −I(X∧C) = 0. (10.120)

The radius of the circle is now given by

ρ2 =
c2

(c·n)2
, (10.121)

as the vector dual to a circle has positive signature. This picture provides us
with an alternative view of the concept of a point as being a circle of zero radius.

Similar considerations hold for spheres in three-dimensional space. These are
represented as 4-vectors in G(4, 1), so their dual is a vector. We write

s = S∗ = IS, (10.122)

where I is the pseudoscalar, so that the equation of a sphere becomes

X ·s = I(X∧S) = 0. (10.123)

The radius of the sphere is again given by

ρ2 =
s2

(s·n)2
, (10.124)

so that points are spheres of zero radius. One can see that this is sensible by
considering an alternative equation for a sphere. Suppose we are interested in
the sphere with centre C and radius ρ2. The equation for this can be written

−2
X ·C

X ·nC ·n = ρ2. (10.125)

Rearranging, this equation becomes

X ·(2C + ρ2C ·nn) = 0, (10.126)

and if C is in standard form, C = F (c), we obtain

X ·(F (c) − ρ2n) = 0. (10.127)

We can therefore identify s = S∗ with the vector F (c)−ρ2n, which neatly encodes
the centre and radius of the sphere in a single vector. Whether the 4-vector S

or its dual vector s is most useful depends on whether the sphere is specified by
four points lying on it, or by its centre and radius. For a given sphere s we can
now write

s = λ(2C + ρ2C ·nn). (10.128)
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It is then straightforward to confirm that the radius is given by equation (10.124).
The centre of the circle can be recovered from

C

C ·n =
s

s·n − ρ2

2
n =

sns

2(s·n)2
. (10.129)

The sns form for the centre of a sphere is dual to the SnS expression found in
equation (10.118).

10.5.2 Intersection of two lines in a plane

As a simple example of intersection in the conformal model, consider the inter-
section of two lines in a Euclidean plane. The lines are described by trivectors
L1 and L2 in G(3, 1). The intersection is described by the bivector

B = (L∗
1∧L∗

2)
∗ = I(L1×L2), (10.130)

where I is the conformal pseudoscalar. The bivector B can contain zero, one or
two points, depending on the sign of its square, as described in section 10.4.1.
This is to be expected, as distinct circles can intersect at a maximum of two
points. If the lines are both straight, then one of the points of intersection will
be at infinity, and B∧n = 0.

To verify this result, consider the case of two straight lines, both passing
through the origin, and with the first line in the a direction and the second in
the b direction. With suitable normalisation we can write

L1 = aN, L2 = bN, (10.131)

where N = eē. The intersection of L1 and L2 is controlled by

B = I a∧b ∝ N (10.132)

and the bivector N contains the null vectors n and n̄. This confirms that the
lines intersect at the origin and infinity. Applying conformal transformations
to this result ensures that it holds for all lines in a plane, whether the lines
are straight or circular. The formulae for L1 and L2 also show that their inner
product is related to the angle between the lines,

〈L1L2〉 = a·b. (10.133)

We can therefore write

cos(θ) =
〈L1L2〉
|L1| |L2|

, (10.134)

where |L| =
√

(L2). This equation returns the angle between two lines. The
quantity is invariant under the full conformal group, and not just the Euclidean
group, because angles are conformal invariants. It follows that the same formula
must hold even if L1 and L2 describe circles. The angle between two circles is
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the angle made by their tangent vectors at the point of intersection. Two circles
intersect at a right angle, therefore, if

〈L1L2〉 = 0. (10.135)

This result can equally be expressed in terms of the dual vectors l1 and l2.

10.5.3 Intersection of a line and a surface

Now suppose that the 4-vector P defines a plane or sphere in three-dimensional
Euclidean space, and we wish to find the point of intersection with a line de-
scribed by the trivector L. The algebra proceeds entirely as expected and we
arrive at the bivector

B = (P ∗∧L∗)∗ = (IP )·L = I〈PL〉3. (10.136)

This bivector can again describe zero, one or two points, depending on the sign of
its square. This setup describes all possible intersections between lines or circles,
and planes or spheres — an extremely wide range of applications. Precisely the
same algebra enables us to answer whether a ring in space intersects a given
plane, or whether a straight line passes through a sphere.

10.5.4 Surface intersections

Next, suppose we wish to intersect two surfaces in three dimensions. Suppose
that these are spheres defined by the 4-vectors S1 and S2. Their intersection is
described by the trivector

L = I(S1×S2). (10.137)

This trivector directly encodes the circle formed from the intersection of two
spheres. As with the bivector case, the sign of L2 defines whether or not two
surfaces intersect. If L2 > 0 then the surfaces do intersect. If L2 = 0 then the
surfaces intersect at a point. Tests such as this are extremely helpful in graphics
applications.

We can similarly express the intersection in terms of the dual vectors s1 and
s2 as

L = I s1∧s2. (10.138)

As a check, the point X lies on both spheres if

X ·s1 = X ·s2 = 0. (10.139)

It follows that

X ·(s1∧s2) = X ·s1 s2 − X ·s2 s1 = 0. (10.140)
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The dual result is that X∧(I s1∧s2) = 0, which confirms that X lies in the space
defined by the trivector L.

10.5.5 Reflections in conformal space

At various points in previous sections we have obtained formulae which generate
reflections. We now discuss these more systematically. In section 2.6 we estab-
lished that the vector obtained by reflecting a in the hyperplane perpendicular
to l, l2 = 1, is −lal. But this formula assumes that the line and plane intersect
at the origin. We seek a more general expression, valid for an arbitrary line and
plane. Let P denote the plane and L the line we wish to reflect in the plane,
then the obvious candidate for the reflected line L′ is

L′ = PLP. (10.141)

(The sign of this is irrelevant in conformal space.) To verify that this is correct,
suppose that L passes through the origin in the a direction,

L = aN3 (10.142)

and the plane P is defined by the origin and the directions b and c,

P = b∧cN. (10.143)

In this case

L′ = b∧c a b∧cN =
(
−(I3 b∧c)a(I3 b∧c)

)
N, (10.144)

where I3 is the three-dimensional pseudoscalar. This result achieves the required
result. The vector a is reflected in the b∧c plane to obtain the desired direction.
The outer product with N then defines the line through the origin with the
required direction. Equation (10.141) is correct at the origin, so therefore holds
for all lines and planes, by conformal invariance.

There are a number of significant consequences of equation (10.141). The
first is that it recovers the correct line in three dimensions without having to
to find the point of reflection. The second is that it is straightforward to chain
together multiple reflections by forming successive products with planes. In this
way complicated reflections can be easily composed, all the time keeping track
of the direction and position of the resultant line. A further consequence is that
the same reflection formula must hold for higher dimensional objects. Suppose,
for example, we wish to reflect the sphere S in the plane P . The result is

S′ = PSP. (10.145)

This type of equation is extremely useful in dealing with wave propagation, where
a wavefront is modelled as a series of expanding spheres.

Conformal invariance of the reflection formula (10.141) ensures that the same
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formula holds for reflection in a circle, or in a sphere. For example, suppose
we wish to carry out a reflection in the unit circle in two-dimensional Euclidean
space. The circle is defined by L0 = e1e2ē, and the dual vector is

IL0 = e. (10.146)

Reflection in the unit circle is therefore performed by the operation

M 
→ eMe. (10.147)

This is an inversion, as discussed in section 10.3.3. In this manner, the main
results of inversive geometry are easily formulated in terms of reflections in con-
formal space.

10.6 Non-Euclidean geometry

The sudden growth in the subject of geometry in the nineteenth century was
stimulated in part by the discovery of geometries with very different properties
to Euclidean space. These were obtained by a simple modification of Euclid’s
parallel postulate. For Euclidean geometry this states that, given any line l

and a point P not on the line, there exists a unique line through P in the
plane of l and P which does not meet l. This is then a line parallel to l. For
many centuries this postulate was viewed as problematic, as it cannot be easily
experimentally verified. As a result, mathematicians attempted to remove the
parallel postulate by proving it from the remaining, uncontroversial, postulates
of Euclidean geometry. This enterprise proved fruitless, and the reason why
was discovered by Lobachevskii and Bolyai in the 1820s. One can replace the
parallel postulate with a different postulate, and obtain a new, mathematically
acceptable geometry.

There are in fact two alternative geometries one can obtain, by replacing
the statement that there is a single line through P which does not intersect
l with either an infinite number or zero. The case of an infinite number pro-
duces hyperbolic geometry, which is the non-Euclidean geometry constructed by
Lobachevskii and Bolyai. (In this section ‘non-Euclidean’ usually refers to the
hyperbolic case.) The case of zero lines produces spherical geometry. Intuitively,
the spherical case corresponds to space curling up, so that all (straight) lines
meet somewhere, and the hyperbolic case corresponds to space curving outwards,
so that lines do not meet. From the more modern perspective of Riemannian
geometry, we are talking about homogeneous, isotropic spaces, which have no
preferred points or directions. These can have positive, zero or negative curva-
ture, corresponding to spherical, Euclidean and hyperbolic geometries. Today,
the question of which of these correctly describes the universe on the largest
scales remains an outstanding problem in cosmology.

An extremely attractive feature of the conformal model of Euclidean geometry
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Figure 10.8 Circle limit III by Maurits Escher. c©2002 Cordon Art B.V.,
Baarn, Holland.

is that, with little modification, it can be applied to both hyperbolic and spherical
geometries as well. In essence, the geometry reduces to a choice of the point
at infinity, which in turn fixes the distance measure. This idea replaces the
concept of the absolute conic, adopted in classical projective geometry as a means
of imposing a distance measure. In this section we illustrate these ideas with
a discussion of the conformal approach to planar hyperbolic geometry. As a
concrete model of this we concentrate on the Poincaré disc. This version of
hyperbolic geometry is mathematically very appealing, and also gives rise to
some beautiful graphic designs, as popularised in the prints of Maurits Escher
(see figure 10.8).

10.6.1 The Poincaré disc

The Poincaré disc D consists of the set of points in the plane a distance r < 1
from the origin. At first sight this may not appear to be homogeneous, but in

371

https://doi.org/10.1017/CBO9780511807497.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.012


GEOMETRY

A

Figure 10.9 The Poincaré disc. Points inside the disc represent points in
a hyperbolic space. A set of d-lines are also shown. These are (Euclidean)
circles that intersect the unit circle at right angles. The d-lines through A
illustrate the parallel postulate for hyperbolic geometry.

fact the nature of the geometry will ensure that there is nothing special about
the origin. Note that points on the unit circle r = 1 are not included in this
model of hyperbolic geometry. The key to this geometry is the concept of a
non-Euclidean straight line. These are called d-lines, and represent geodesics in
hyperbolic geometry. A d-line consists of a section of a Euclidean circle which
intersects the unit circle at a right angle. Examples of d-lines are illustrated in
figure 10.9. Given any two points in the Poincaré disc there is a unique d-line
through them, which represents the ‘straight’ line between the points. It is now
clear that for any point not on a given d-line l, there are an infinite number of
d-lines through the point which do not intersect l.

We can now begin to encode these concepts in the conformal setting. We
continue to denote points in the plane with homogeneous null vectors in precisely
the same manner as the Euclidean case. Suppose, then, that X and Y are the
conformal vectors representing two points in the disc. The set of all circles
through these two points consists of trivectors of the form X∧Y ∧A, where A

is an additional point. But we require that the d-line intersects the unit circle
at right angles. The unit circle is described by the trivector Ie, where I is the
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pseudoscalar in G(3, 1). If a line L is perpendicular to the unit circle it satisfies

(Ie)·L = I(e∧L) = 0. (10.148)

It follows that all d-lines contain a factor of e. The d-line through X and Y must
therefore be described by the trivector

L = X∧Y ∧e. (10.149)

One can see now that a general scheme is beginning to emerge. Everywhere in
the Euclidean treatment that the vector n appears it is replaced in hyperbolic
geometry by the vector e. This vector represents the circle at infinity.

Given a pair of d-lines, they can either miss each other, or intersect at a point
in the disc D. If they intersect, the angle between the lines is given by the
Euclidean formula

cos(θ) =
L1 ·L2

|L1| |L2|
. (10.150)

It follows that angles are preserved by a general conformal transformation in
hyperbolic geometry. A non-Euclidean transformation takes d-lines to d-lines.
The transformation must therefore map (Euclidean) circles to circles, while pre-
serving orthogonality with e. The group of non-Euclidean transformations must
therefore be the subgroup of the conformal group which leaves e invariant. This
is confirmed in the following section, where we find the appropriate distance
measure for non-Euclidean geometry.

The fact that the point at infinity is represented by e, as opposed to n in
the Euclidean counterpart, provides an additional operation in non-Euclidean
geometry. This is inversion in e:

X 
→ eXe. (10.151)

As all non-Euclidean transformations leave e invariant, all geometric relations
remain unchanged under this inversion. Geometrically, the interpretation of the
inversion is quite clear. It maps everything inside the Poincaré disc to a ‘dual’
version outside the disc. In this dual space incidence relations and distances are
unchanged from their counterparts inside the disc.

10.6.2 Non-Euclidean translations and distance

The key to finding the correct distance measure in non-Euclidean geometry is
to first generalise the concept of a translation. Given points X and Y we know
that the d-line connecting them is defined by X∧Y∧e. This is the non-Euclidean
concept of a straight line. A non-Euclidean translation must therefore move
points along this line. Such a transformation must take X to Y , but must also
leave e invariant. The generator for such a transformation is the bivector

B = (X∧Y ∧e)e = Le, (10.152)

373

https://doi.org/10.1017/CBO9780511807497.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.012


GEOMETRY

–1

1

–1 1

Figure 10.10 A non-Euclidean translation. The figure near the origin is
translated via a boost to give the distorted figure on the right. This dis-
tortion in the Poincaré disc is one way of visualising the effect of a Lorentz
boost in spacetime.

where L = X∧Y ∧e. We find immediately that

B2 = L2 > 0, (10.153)

so non-Euclidean translations are hyperbolic transformations, as one might ex-
pect. An example of such a translation is shown in figure 10.10.

We next define

B̂ =
B

|B| , B̂2 = 1, (10.154)

so that we can write

Y = eαB̂/2Xe−αB̂/2. (10.155)

By varying α we obtain the set of points along the d-line through X and Y . To
obtain a distance measure, we first require a formula for α. If we decompose X

into

X = XB̂2 = X ·B̂ B̂ + X∧B̂ B̂ (10.156)

we obtain

Y = X∧B̂ B̂ + cosh(α)X ·B̂ B̂ − sinh(α)X ·B̂. (10.157)

The right-hand side must give zero when contracted with Y , so

〈X∧B̂ B̂∧Y 〉 + cosh(α)〈X ·B̂ B̂ ·Y 〉 + sinh(α) (X∧Y )·B̂ = 0. (10.158)
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To simplify this equation we first find

X∧B̂ =
X∧(X∧Y ∧e e)

|B| =
e·X L

|L| (10.159)

and

(X∧Y )·B̂ =
L2

|B| = |L|. (10.160)

It follows that

e·X e·Y + cosh(α)(X ·Y − e·X e·Y ) + sinh(α) |L| = 0, (10.161)

the solution to which is

cosh(α) = 1 − X ·Y
X ·e Y ·e . (10.162)

The half-angle formula is more relevant for the distance measure, and we find
that

sinh2(α/2) = − X ·Y
2X ·e Y ·e . (10.163)

This closely mirrors the Euclidean expression, with n replaced by e.
There are a number of obvious properties that a distance measure must satisfy.

Among these is the additive property that

d(X1,X2) + d(X2,X3) = d(X1,X3) (10.164)

for any three points X1, X2, X3 in this order along a d-line. Returning to the
translation formula of equation (10.155), suppose that Z is a third point along
the line, beyond Y . We can write

Z = eβB̂/2Y e−βB̂/2 = e(α + β)B̂Xe−(α + β)B̂/2. (10.165)

Clearly it is hyperbolic angles that must form the appropriate distance measure.
No other function satisfies the additive property. We therefore define the non-
Euclidean distance by

d(x, y) = 2 sinh−1

(
− X ·Y

2X ·e Y ·e

)1/2

. (10.166)

In terms of the position vectors x and y in the Poincaré disc we can write

d(x, y) = 2 sinh−1

(
|x − y|2

(1 − x2)(1 − y2)

)1/2

, (10.167)

where the modulus refers to the Euclidean distance. The presence of the arcsinh
function in the definition of distance reflects the fact that, in hyperbolic geome-
try, generators of translations have positive square and the appropriate distance
measure is the hyperbolic angle. Similarly, in spherical geometry translations
correspond to rotations, and it is the trigonometric angle which plays the role
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of distance. Euclidean geometry is therefore unique in that the generators of
translations are null bivectors. For these, combining translations reduces to the
addition of bivectors, and hence we recover the standard definition of Euclidean
distance.

10.6.3 Metrics and physical units

The derivation of the non-Euclidean distance formula of equation (10.166) forces
us to face an issue that has been ignored to date. Physical distances are di-
mensional quantities, whereas our formulae for distances in both Euclidean and
non-Euclidean geometries are manifestly dimensionless, as they are homogeneous
in X. To resolve this we cannot just demand that the vector x has dimensions,
as this would imply that the conformal vector X contained terms of mixed di-
mensions. Neither can this problem be circumvented by assigning dimensions of
distance to n̄ and (distance)−1 to n, as then e has mixed dimensions, and the
non-Euclidean formula of (10.166) is non-sensical.

The resolution is to introduce a fundamental length scale, λ, which is a positive
scalar with the dimensions of length. If the vector x has dimensions of length,
the conformal representation is then given by

X =
1

2λ2

(
x2n + 2λx − λ2n̄

)
. (10.168)

This representation ensures that X remains dimensionless, and is nothing more
than the conformal representation of x/λ. Physical distances can then be con-
verted into a dimensionally meaningful form by including appropriate factors
of λ. Curiously, the introduction of λ into the spacetime conformal model has
many similarities to the introduction of a cosmological constant Λ = λ2.

We can make contact with the metric encoding of distance by finding the
infinitesimal distance between the points x and x + dx. This defines the line
element

ds2 = 4λ4 dx2

(λ2 − x2)2
, (10.169)

where the factors of λ have been included and x is assumed to have dimensions
of distance. This line element is more often seen in polar coordinates, where it
takes the form

ds2 =
4λ4

(λ2 − r2)2
(dr2 + r2dθ2). (10.170)

This is the line element for a space of constant negative curvature, expressed in
terms of conformal coordinates. The coordinates are conformal because the line
element is that of a flat space multiplied by a scaling function. The geodesics
in this geometry are precisely the d-lines in the Poincaré disc. The Riemann
curvature for this metric shows that the space has uniform negative curvature,
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so the space is indeed homogeneous and isotropic — there are no preferred points
or directions. The centre of the disc is not a special point, and indeed it can be
translated to any other point by ‘boosting’ along a d-line.

10.6.4 Midpoints and circles in non-Euclidean geometry

Now that we have a conformal encoding of a straight line and of distance in non-
Euclidean geometry, we can proceed to discuss concepts such as the midpoint of
two points, and of the set of points a constant distance from a given point (a
non-Euclidean circle). Suppose that A and B are the conformal vectors of two
points in the Poincaré disc. Their midpoint C lies on the line L = A∧B∧e and
is equidistant from both A and B. The latter condition implies that

C ·A
C ·eA·e =

C ·B
C ·eB ·e . (10.171)

Both of the conditions for C are easily satisfied by setting

C =
A

2A·e +
B

2B ·e + αe, (10.172)

where α must be chosen such that C2 = 0. Normalising to C ·e = −1 we find
that the midpoint is

C = − 1√
1 + δ

(
A

2A·e +
B

2B ·e +
(√

1 + δ − 1
)
e

)
, (10.173)

where

δ = − A·B
2A·eB ·e . (10.174)

An equation such as this is rather harder to achieve without access to the con-
formal model.

Next suppose we wish to find the set of points a constant (non-Euclidean)
distance from the point C. This defines a non-Euclidean circle with centre C.
From equation (10.166), any point X on the circle must satisfy

− X ·C
2X ·eC ·e = constant = α2, (10.175)

so that the radius is sinh−1(α). It follows that

X ·(C + 2α2C ·e e) = 0. (10.176)

If we define s by

s = C + 2α2C ·e e (10.177)

we see that s2 > 0, and the circle is defined by X·s = 0. But this is precisely the
formula for a circle in Euclidean geometry, so non-Euclidean circles still appear
as ordinary circles when plotted in the Poincaré disc. The only difference is the
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A

Figure 10.11 Non-Euclidean circles. A series of non-Euclidean circles with
differing radii are shown, all about the common centre A. A d-line through
A is also shown. This intersects each circle at a right angle.

interpretation of their centre. The Euclidean centre of the circle s, defined by
sns, does not coincide with the non-Euclidean centre C. This is illustrated in
figure 10.11.

Suppose that A, B and C are three points in the Poincaré disc. We can still
define the line L through these points by

L = A∧B∧C, (10.178)

and this defines the circle through the three points regardless of the geometry we
are working in. All that is different in the two geometries is the position of the
midpoint and the size of the radius. The test that the three points lie on a d-line
is simply that L∧e = 0. Again, the Euclidean formula holds, but with n replaced
by e. Similar comments apply to other operations in conformal space, such as
reflection. Given a line L, points are reflected in this line by the map X 
→ LXL.
This formula is appropriate in both Euclidean and non-Euclidean geometry. In
the non-Euclidean case it is not hard to verify that LXL corresponds to first
finding the d-line through X intersecting L at right angles, and then finding the
point on this line an equal non-Euclidean distance on the other side. This is as
one would expect for the definition of reflection in a line.
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10.6.5 A unified framework for geometry

We have so far seen how Euclidean and hyperbolic geometries can both be han-
dled in terms of null vectors in conformal space. The key concept is the vector
representing the point at infinity, which remains invariant under the appropriate
symmetry group. The full conformal group of a space with signature (p, q) is
the orthogonal group O(p + 1, q + 1). The group of Euclidean transformations
is the subgroup of O(p + 1, q + 1) that leaves the vector n invariant. The hyper-
bolic group is the subgroup of O(p + 1, q + 1) which leaves e invariant. For the
case of planar geometry, with signature (2, 0), the hyperbolic group is O(2, 1).
The Killing form for this group is non-degenerate (see chapter 11), which makes
hyperbolic geometry a useful way of compactifying a flat space.

The remaining planar geometry to consider is spherical geometry. By now, it
should come as little surprise that spherical geometry is handled in the conformal
framework in terms of transformations which leave the vector ē invariant. For
the case of the plane, the conformal algebra has signature (3, 1), with ē the basis
vector with negative signature. The subgroup of the conformal group which
leaves ē invariant is therefore the orthogonal group O(3, 0), which is the group
one expects for a 2-sphere. The distance measure for spherical geometry is

d(x, y) = 2λ sin−1

(
− X ·Y

2X ·ē Y ·ē

)1/2

, (10.179)

with ē replacing n in the obvious manner. To see that this expression is correct,
suppose that we write

X

X ·ē = x̂ − ē, (10.180)

where x̂ is a unit vector built in the three-dimensional space spanned by the
vectors e1, e2 and e. With Y/Y ·ē written in the same way we find that

− X ·Y
2X ·ē Y ·ē =

1 − x̂·ŷ
2

= sin2(θ/2), (10.181)

where θ is the angle between the unit vectors on the 2-sphere. The distance
measure is then precisely the angle θ multiplied by the dimensional quantity λ,
which represents the radius of the sphere.

Conformal geometry provides a unified framework for the three types of planar
geometry because in all cases the conformal groups are the same. That is, the
group of transformations of sphere that leave angles in the sphere unchanged is
the same as for the plane and the hyperboloid. In all cases the group is O(3, 1).
The geometries are then recovered by a choice of distance measure. In classical
projective geometry the distance measure is defined by the introduction of the
absolute conic. All lines intersect this conic in a pair of points. The distance
between two points A and B is then found from the four-point ratio between A,
B, and the two points of intersection of the line through A and B and the absolute
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conic. In this way all geometries are united in the framework of projective
geometry. But there is a price to pay for this scheme — all coordinates have to
be complex, to ensure that all lines intersect the conic in two points. Recovering
a real geometry is then rather clumsy. In addition, the conformal group is not a
subgroup of the projective group, so much of the elegant unity exhibited by the
three geometries is lost. Conformal geometry is a more powerful framework for
a unified treatment of these geometries. Furthermore, the conformal approach
can be applied to spaces of any dimension with little modification. Trivectors
represent lines and circles, 4-vectors represent planes and spheres, and so on.

So far we have restricted ourselves to a single view of the various geometries,
but the discussion of the sphere illustrates that there are many different ways of
representing the underlying geometry. To begin with, we have plotted points on
the Euclidean plane according the the formula

x = −X∧N

X ·n N, (10.182)

where N = eē. This is the natural scheme for plotting on a Euclidean piece of
paper, as it ensures that the angle between lines on the paper is the correct angle
in each of the three geometries. Euclidean geometry plotted in this way recovers
the obvious standard picture of Euclidean geometry. Hyperbolic geometry led
to the Poincaré disc model, in which hyperbolic lines appear as circles. For
spherical geometry the ‘straight lines’ are great circles on a sphere. On the plane
these also plot as circles. This time the condition is that all circles intersect the
unit circle at antipodal points. This then defines the spherical line between
two points (see figure 10.12). This view of spherical geometry is precisely that
obtained from a stereographic projection of the sphere onto the plane. This
is not a surprise, as the conformal model was initially constructed in terms of
a stereographic projection, with the ē vector then enabling us to move to a
homogeneous framework. In this representation of spherical geometry the map

X 
→ ēXē (10.183)

is a symmetry operation. This maps points to their antipodal opposites on the
sphere. In the planar view this transformation is an inversion in the unit circle,
followed by a reflection in the origin.

We now have three separate geometries, all with conformal representations in
the plane such that the true angle between lines is the same as that measured on
the plane. The price for such a representation is that straight lines in spherical
and hyperbolic geometries do not appear straight in the plane. But we could
equally choose to replace the map of equation (10.182) with an alternative rule of
how to plot the null vector X on a planar piece of paper. The natural alternatives
to consider are replacing the vector n with e and ē. In total we then have three
different planar realisations of each of the two-dimensional geometries. First,
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Figure 10.12 Stereographic view of spherical geometry. All great circles on
the 2-sphere project onto circles in the plane which intersect the unit circle
(shown in bold) at antipodal points. A series of such lines are shown.

suppose we define

y =
X∧N

X ·e N. (10.184)

In terms of the vector x we have

y =
2x

1 − x2
, (10.185)

which represents a radial rescaling. Euclidean straight lines now appear as hy-
perbolae or ellipses, depending on whether or not the original line intersected
the disc. If the line intersected the disc then the map of equation (10.185) has
two branches and defines a hyperbola. If the line misses the disc then an ellipse
is obtained. In all cases the image lines pass through the origin, as this is the
image of the point at infinity.

The fact that the map of equation (10.185) is two-to-one means it has little
use as a version of Euclidean geometry. It is better suited to hyperbolic geom-
etry, as one might expect, as the Poincaré disc is now mapped onto the entire
plane. Hyperbolic straight lines now appear as (single-branch) hyperbolae on
the Euclidean page, all with their asymptotes crossing at the origin. If the dual
space outside the disc is included in the map, then this generates the second
branch of each hyperbola. Points then occur in pairs, with each point paired
with its image under reflection in the origin. Finally, we can consider spheri-
cal geometry as viewed on a plane through the map of equation (10.185). This
defines a standard projective map between a sphere and the plane. Antipodal
points on the sphere define the same point on the plane and spherical straight
lines appear as straight lines.

Similarly, we can consider plotting vectors in the plane according to
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y = −X∧N

X ·ē N = −F (x)∧N

F (x)·ē N (10.186)

or in terms of the vector x

y =
2x

1 + x2
. (10.187)

This defines a one-to-one map of the unit disc onto itself, and a two-to-one map
of the entire plane onto the disc. Euclidean straight lines now appear plotted as
ellipses inside the unit disc. This construction involves forming a stereographic
projection of the plane onto the 2-sphere, so that lines map to circles on the
sphere. The sphere is then mapped onto the plane by viewing from above, so
that circles on the sphere map to ellipses. All ellipses pass through the origin,
as this is the image of the point at infinity.

Similar comments apply to spherical geometry. Spherical lines are great circles
on the sphere, and viewed in the plane according to equation (10.187) great circles
appear as ellipses centred on the origin and touching the unit circle at their
endpoints. The two-to-one form of the projection means that circle intersections
are not faithfully represented in the disc as some of the apparent intersections
are actually caused by points on opposite sides of the plane. Finally, we consider
plotting hyperbolic geometry in the view of equation (10.187). The disc maps
onto itself, so we do have a faithful representation of hyperbolic geometry. This
is a representation in which hyperbolic lines appear straight on the page, though
angles are not rendered correctly, and non-Euclidean circles appear as ellipses.

As well as viewing each geometry on the Euclidean plane, we can also picture
the geometries on a sphere or a hyperboloid. The spherical picture is obtained
in equation (10.180), and the hyperboloid view is similarly obtained by setting

X

X ·e = x̂ + e, (10.188)

where x̂2 = −1. The set of x̂ defines a pair of hyperbolic sheets in the space
defined by the vectors {e1, e2, ē}. The fact that two sheets are obtained explains
why some views of hyperbolic geometry end up with points represented twice.
So, as well as three geometries (defined by a transformation group) and a variety
of plotting schemes, we also have a choice of space to draw on, providing a large
number of alternative schemes for studying the three geometries. At the back of
all of this is a single algebraic scheme, based on the geometric algebra of confor-
mal space. Any algebraic result involving products of null vectors immediately
produces a geometric theorem in each geometry, which can be viewed in a variety
of different ways.

382

https://doi.org/10.1017/CBO9780511807497.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511807497.012


10.7 SPACETIME CONFORMAL GEOMETRY

10.7 Spacetime conformal geometry

As a final application of the conformal approach to geometry we turn to space-
time. The conformal geometric algebra for a spacetime with signature (1, 3) is
the six-dimensional algebra with signature (2, 4). The algebra G(2, 4) contains
64 terms, which decompose into graded subspaces of dimensions 1, 6, 15, 20, 15,
6 and 1. As a basis for this space we use the standard spacetime algebra basis
{γµ}, together with the additional vectors {e, ē}. The pseudoscalar I is defined
by

I = γ0γ1γ2γ3eē. (10.189)

This has negative norm, I2 = −1. The conformal algebra allows us to simply
encode ideas such as closed circles in spacetime, or light-spheres centred on an
arbitrary point.

The conformal algebra of spacetime also arises classically in a slightly differ-
ent setting. In conformal geometry, circles and spheres are represented homoge-
neously as trivectors and 4-vectors. These are unoriented because L and −L are
used to encode the same object. A method of dealing with oriented spheres was
developed by Sophus Lie and is called Lie sphere geometry. A sphere in three
dimensions can be represented by a vector s in the conformal algebra G(4, 1),
with s2 > 0. Lie sphere geometry is obtained by introducing a further basis
vector of negative signature, f , and replacing s by the null vector

s̄ = s + |s|f, s̄2 = 0. (10.190)

Now the spheres encoded by s and −s have different representations as null
vectors in a space of signature (4, 2). This algebra is ideally suited to handling the
contact geometry of spheres. The signature shows that this space is isomorphic
to the conformal algebra of spacetime, so in a sense the introduction of the vector
f can be thought of as introducing a time direction. A sphere can then be viewed
as a light-sphere allowed to grow for a certain time. Orientation for spheres is
then handled by distinguishing between incoming and outgoing light-spheres.

The conformal geometry of spacetime is a rich and important subject. The
Poincaré group of spacetime translations and rotations is a subgroup of the full
conformal group, but in a number of subjects in theoretical physics, including
supersymmetry and supergravity, it is the full conformal group that is relevant.
One reason is that conformal symmetry is present in most massless theories. This
symmetry then has consequences that can carry over to the massive regime. We
will not develop the classical approach to spacetime conformal geometry further
here. Instead, we concentrate on an alternative route through to conformal
geometry, which unites the multiparticle spacetime algebra of chapter 9 with the
concept of a twistor.
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10.7.1 The spacetime conformal group

For most of this chapter we have avoided detailed descriptions of the relationships
between the groups involved in the geometric algebra formulation of conformal
geometry. For the following, however, it is helpful to have a clearer picture of
precisely how the various groups fit together. The subject of Lie groups in gen-
eral is discussed in chapter 11. The spacetime conformal group C(1, 3) consists
of spacetime maps x 
→ f(x) that preserve angles. This is the definition first
encountered in section 10.3. The group of orthogonal transformations O(2, 4)
is a double-cover representation of the conformal group, because in conformal
space both X and −X represent the same spacetime point. As with Lorentz
transformations, we are typically interested in the restricted conformal group.
This consists of transformations that preserve orientation and time sense, and
contains translations, proper orthochronous rotations, dilations and special con-
formal transformations. The restricted orthogonal group, SO+(2, 4), is a double-
cover representation of the restricted conformal group.

We can form a double-cover representation of SO+(2, 4) by writing all re-
stricted orthogonal transformations as rotor transformations a 
→ RaR̃. The
group of conformal rotors, denoted spin+(2, 4), is therefore a four-fold covering
of the restricted conformal group. The rotor group in G(2, 4) is isomorphic to
the Lie group SU(2, 2). It follows that the action of the restricted conformal
group can be represented in terms of complex linear transformations of four-
dimensional vectors, in a complex space of signature (2, 2). This is the basis
of the twistor program, initiated by Roger Penrose. Twistors were introduced
as objects describing the geometry of spacetime at a ‘pre-metric’ level, one of
the aims being to provide a route to a quantum theory of gravity. Instead of
points and a metric, twistors represent incidence relations between null rays.
Spacetime points and their metric relations then emerge as a secondary concept,
corresponding to the points of intersection of null lines.

As a first step in understanding the twistor program, we establish a concrete
representation of the conformal group within the spacetime algebra. The key to
this is the observation that the spinor inner product

〈ψ̃φ〉q = 〈ψ̃φ〉 − 〈ψ̃φIσ3〉Iσ3 (10.191)

defines a complex space with precisely the required metric. The complex struc-
ture is represented by right-multiplication by combinations of 1 and Iσ3, as
discussed in chapter 8. We continue to refer to ψ and φ as spinors, as they are
acted on by a spin representation of the restricted conformal group. To establish
a representation in terms of operators on ψ, we first form a representation of the
bivectors in G(2, 4) as

eγµ ↔ γµψγ0Iσ3 = γµψIγ3,

ēγµ ↔ Iγµψγ0.
(10.192)
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A representation of the even subalgebra of G(2, 4), and hence an arbitrary rotor,
can be constructed from these bivectors. The representation of each of the oper-
ations in the restricted conformal group can now be constructed from the rotors
found in section 10.3. We use the same symbol for the spinor representation of
the transformations as the vector case. A translation by the vector a has the
spin representation

Ta(ψ) = ψ + aψIγ3
1
2 (1 + σ3) . (10.193)

The spinor inner product of equation (10.191) is invariant under this transfor-
mation. To confirm this, suppose that we set

ψ′ = Ta(ψ) and φ′ = Ta(φ). (10.194)

The quantum inner product contains the terms

〈ψ̃′φ′〉 = 〈
(
φ + aφIγ3

1
2 (1 + σ3)

)(
ψ̃ − 1

2 (1 − σ3) Iγ3ψ̃a
)
〉

= 〈ψ̃φ〉 (10.195)

and

〈ψ̃′φ′Iσ3〉 = 〈
(
φ + aφIγ3

1
2 (1 + σ3)

)
Iσ3

(
ψ̃ − 1

2 (1 − σ3) Iγ3ψ̃a
)
〉

= 〈ψ̃φIσ3〉. (10.196)

It follows that

〈ψ̃′φ′〉q = 〈ψ̃φ〉q, (10.197)

as expected.
The spinor representation of a rotation about the origin is precisely the space-

time algebra rotor, so we can write

R0(ψ) = Rψ, (10.198)

where R0 denotes a rotation in the origin, and R is a spacetime rotor. Rotations
about arbitrary points are constructed from combinations of translations and
rotations. The dilation x 
→ exp(α)x has the spinor representation

Dα(ψ) = ψeασ3/2. (10.199)

This represents a dilation in the origin. Dilations about a general point are
also obtained from a combination of translations and a dilation in the origin.
The representation of the restricted conformal group is completed by the special
conformal transformations, which are represented by

Ka(ψ) = ψ − aψIγ3
1
2 (1 − σ3) . (10.200)

It is a routine exercise to confirm that the preceding operations do form a spin
representation of the restricted conformal group.
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The full conformal group includes inversions. These can be represented as
antiunitary operators. An inversion in the origin is represented by

ψ 
→ ψ′ = ψIσ2. (10.201)

The effect of this on the inner product of equation (10.191) is that we form

〈ψ̃′φ′〉q = 〈φ̃ψ〉q =
(
〈ψ̃φ〉q

)∼
. (10.202)

This representation of an inversion in the origin satisfies

Dα(ψIσ2) = D−α(ψ)Iσ2, (10.203)

as required.

10.7.2 Multiparticle representation of conformal vectors

We have defined a carrier space for a spin-1/2 representation of the spacetime
conformal group. A vector representation of the conformal groups can therefore
be constructed from quadratic combinations of spinors. Spinors can be thought
of as belonging to a complex four-dimensional space. The tensor product space
therefor contains 16 complex degrees of freedom. This decomposes into a ten-
dimensional symmetric space and six-dimensional antisymmetric space. The six
complex degrees of freedom in the antisymmetric representation are precisely
the dimensions required to construct a conformal vector. The ten-dimensional
symmetric space has 20 real degrees of freedom, and forms a representation of
trivectors in conformal spacetime.

In principle, then, we will form complex vectors in conformal spacetime. But
for a special class of spinor the conformal vector is real. If we translate a constant
spinor by the position vector r = xµγµ we form the object

Tr(ψ) = ψ + rψIγ3
1
2 (1 + σ3) , (10.204)

which is the spacetime algebra version of a twistor. A twistor is essentially a
spacetime algebra spinor with a particular position dependence. The key to
constructing a real conformal vector from an antisymmetric pair of twistors is
to impose the conditions that they are both null, and orthogonal. Suppose that
we set

X = Tr(ψ), Z = Tr(φ). (10.205)

The conditions that these generate a real conformal vector are then

〈X̃X〉q = 〈Z̃Z〉q = 〈X̃Z〉q = 0. (10.206)

The position dependence in X and Z does not affect the inner product, so the
same conditions must also be satisfied by ψ and φ. Choosing appropriate spinors
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satisfying these relationships essentially amounts to a choice of origin. The most
straightforward way to satisfy the requirements is to set

X = ω 1
2 (1 − σ3) + rωIγ3

1
2 (1 + σ3) (10.207)

and

Z = κ 1
2 (1 − σ3) + rκIγ3

1
2 (1 + σ3) , (10.208)

where ω and κ are Pauli spinors (spinors in the spacetime algebra that commute
with γ0).

To construct a vector from the two twistors X and Z we form their antisym-
metrised tensor product in the multiparticle spacetime algebra. We therefore
construct the multivector

ψr = (X1Z2 − Z1X2)E, (10.209)

where the notation follows section 9.2. If we now make use of the results in
table 9.2 we find that

ψr = (r·r ε − r1ηγ1
0J − ε̄)〈Iσ2κ̃ω〉q, (10.210)

where η is the Lorentz singlet state defined in equation (9.93), and ε and ε̄ are
defined by

ε = η 1
2 (1 + σ1

3), ε̄ = η 1
2 (1 − σ1

3). (10.211)

The two-particle state ψ closely resembles our standard encoding of a point as a
null vector in conformal space. The singlet state ε represents the point at infinity,
and is the spacetime algebra version of the infinity twistor. The opposite ideal,
ε̄, represents the origin (r = 0).

More generally, given arbitrary single-particle spinors, we arrive at a complex
six-dimensional vector. Restricting to the real subspace, a general point in this
space can be written as the state

ψP = (V − W )ε + P 1ηγ1
0 + (V + W )ε̄, (10.212)

where

P = Tγ0 + Xγ1 + Y γ2 + Zγ3. (10.213)

To form the inner product of such states we require the results that

〈ε̃ε〉q = 〈˜̄εε̄〉q = 0, 4〈ε̃ε̄〉q = 1. (10.214)

Now forming the quantum norm for the state ψP we find that

2〈ψ̃P ψP 〉q = T 2 + V 2 − W 2 − X2 − Y 2 − Z2. (10.215)

So (V,W, T,X, Y, Z) are the coordinates of a six-dimensional vector in a space
with signature (2, 4). This establishes the map between a two-particle antisym-
metrised spinor and a conformal vector.
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Our ‘real’ state ψr can be cast into standard form by removing the complex
factor on the right-hand side and setting

ψr 
→ ψr

4〈ψ̃rε〉q
. (10.216)

Once this is done, all reference to the original ω and κ spinors is removed. The
inner product between two two-particle states ψr and φs, where φs represents
the point s, returns

− 〈ψ̃rφs〉q
4〈ψ̃rε〉q〈φ̃sε〉q

= (r − s)·(r − s). (10.217)

The multiparticle inner product therefore recovers the square of the spacetime
distance between points. This result is one reason why points are encoded
through pairs of null twistors.

We have now established a complete representation of conformal vectors for
spacetime in terms of antisymmetrised products of a class of spinors, each eval-
uated in a single copy of the spacetime algebra. We should now check that
our representation of the conformal group through its action on spinors induces
the correct vector representation in the two-particle algebra. We start with our
standard multiparticle representation of a conformal vector as

ψr = r·r ε − r1ηγ1
0J − ε̄. (10.218)

The first operation to consider is a translation. The spinor representation of a
translation by a induces the map

ψr 
→ ψ′
r = Ta1Ta2ψr. (10.219)

After some algebra we establish that

ψ′
r = (r + a)·(r + a) ε − (r + a)1ηγ1

0J − ε̄, (10.220)

as required.
Next consider a Lorentz rotation centred on the origin. These are easily ac-

complished as they correspond to multiplying the single-particle spinor by the
appropriate rotor. This induces the map

ψr 
→ R1R2ψr = r·r R1R2ε − R1r1R2ηγ1
0J − R1R2ε̄

= r·r ε − (RrR̃)1ηγ1
0J − ε̄, (10.221)

which achieves the desired rotation. Reflections in planes through the origin are
equally easily achieved through the single-particle antiunitary operation

ψ 
→ Iaψγ2, (10.222)
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where a is the normal vector to the plane of reflection. Applied to the two-particle
state we obtain

ψr 
→ a·a
(
r·r ε + (ara−1)1ηγ1

0J − ε̄
)
, (10.223)

which is the conformal representation of the reflected vector −ara−1. As we
also have a representation of translations, we can rotate and reflect about an
arbitrary point.

Inversions in the origin are handled in conformal space by an operation that
swaps the vectors representing the origin and infinity. In the multiparticle setting
we must therefore interchange ε and ε̄, which is achieved by right-multiplication
by Iσ1

2Iσ
2
2,

ψr 
→ ψrIσ
1
2 Iσ2

2 = −r·r ε̄ + r1ηγ1
0J + ε

= −r·r(r′ ·r′ ε − (r′)1ηγ1
0J − ε̄), (10.224)

where r′ = r/(r·r). Dilations in the origin are performed in a similar manner, this
time by scaling ε and ε̄ through opposite amounts. This is successfully achieved
by the two-particle map induced by equation (10.199),

ψr 
→ ψ′
r = ψreα/2(σ1

3 + σ2
3). (10.225)

Special conformal transformations are also handled in the obvious way as the
two-particle extension of the Ka operator of equation (10.200). This completes
the description of the conformal group in the two-particle spacetime algebra
setting.

Conformal spacetime geometry can be formulated in an entirely ‘quantum’
language in terms of multiparticle states built from spinor representations of the
conformal group. This link between multiparticle quantum theory and confor-
mal geometry is quite remarkable, and is the basis for the twistor programme.
But one obvious question remains — is this abstract quantum-mechanical for-
mulation necessary, if all one is interested is the conformal geometric algebra
of spacetime? If the twistor programme is simply a highly convoluted way of
discussing conformal geometric algebra, then the answer is no. The question is
whether there is anything more fundamental about the quantum framework of
the twistor approach.

Advocates of the twistor program would argue that the route we have followed
here, which embeds a twistor within the spacetime algebra, reverses the logic
which initially motivates twistors. The idea is that they exist at a pre-metric
level, so that the spacetime interval between points emerges from a particular
two-particle quantum inner product. This hints at a route to a quantum theory of
gravity, where distance becomes a quantum observable. But much of the initial
promise of this work remains unfulfilled, and twistors are no longer the most
popular candidate for a quantum theory of gravity. For classical applications
to real spacetime geometry it does appear that all twistor methods have direct
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counterparts in the geometric algebra G(2, 4), and the latter approach avoids
much of the additional formal baggage required when employing twistors.

10.8 Notes

The authors would like to thank Joan Lasenby for her help in writing this chapter.
The subjects discussed in this chapter range from the foundations of algebraic
geometry, dating back to the nineteenth century and before, through to some
very modern applications. An excellent introduction to geometry is the book
Geometry by Brannan, Esplen & Gray (1999). Projective geometry is described
in the classic text by Semple & Kneebone (1998), and Lie sphere geometry is de-
scribed by Cecil (1992). A valuable tool for studying two-dimensional geometry
is the software package Cinderella, written by Richter-Gebert and Kortenkamp.
This package was used to produce a number of the illustrations in this chapter.

The geometric algebra formulation of projective geometry is described in the
pair of important papers ‘The design of linear algebra and geometry’ by Hestenes
and ‘Projective geometry with Clifford algebra’ by Hestenes & Ziegler (both
1991). These papers also include preliminary discussions of conformal geometry,
though the approach is different to that taken here. Projective geometry is
particularly relevant to the field of computer graphics, and some applications
of geometric algebra in this area are discussed in the papers by Stevenson &
Lasenby (1998) and Perwass & Lasenby (1998).

The systematic study of conformal geometry with geometric algebra was only
initiated in the 1990s and is one of the fastest developing areas of current re-
search. Some of the earliest developments are contained in Clifford Algebra to
Geometric Calculus by Hestenes & Sobczyk (1984), and in the paper ‘Distance
geometry and geometric algebra’ by Dress & Havel (1993), which emphasises
the role of the conformal metric. Uncovering the roles of the various geometric
primitives in conformal space was initiated by Hestenes (2001) in the paper ‘Old
wine in new bottles: a new algebraic framework for computational geometry’
and is described in detail in the papers by Hestenes, Li & Rockwood (1999a,b).
Applications to the study of surfaces are described in the paper ‘Surface evolu-
tion and representation using geometric algebra’ by Lasenby & Lasenby (2000b),
and a range of further applications are discussed in the proceedings of the 2001
conference Applications of Geometric Algebra in Computer Science and Engi-
neering (Dorst, Doran & Lasenby, 2002). The rapid development of the subject
has meant that a consistent notation is yet to be established by all authors.

The unification of Euclidean and non-Euclidean geometry in the conformal
framework is also described in the series of papers by Hestenes, Li & Rockwood
(1999a,b) and in a separate paper by Li (2001). The development in this chap-
ter goes further than these papers in giving a concrete realisation of traditional
methods within the geometric algebra framework. Twistor techniques are de-
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scribed in volume II of Spinors and Space-time by Penrose & Rindler (1986). A
preliminary discussion of how twistors are incorporated into spacetime algebra is
contained in the paper ‘2-spinors, twistors and supersymmetry in the spacetime
algebra’ by Lasenby, Doran & Gull (1993b). The multiparticle description of
conformal vectors is discussed in the paper ‘Applications of geometric algebra
in physics and links with engineering’ by Lasenby & Lasenby (2000a). Due to a
printing error all dot products in this paper appear as deltas, though once one
knows this the paper is readable!

10.9 Exercises

10.1 Let A, B, C, D denote four points on a line, and write their cross ratio
as (ABCD). Given that (ABCD) = k, prove that

(BACD) = (ABDC) = 1/k

and

(ACBD) = (DBCA) = 1 − k.

10.2 Prove that the cross ratio of four collinear points is a projective invariant,
regardless of the size of the space containing the line.

10.3 Given four points in a plane, no three of which are collinear, prove that
there exists a projective transformation that maps these to any second
set of four points, where again no three are collinear.

10.4 The vectors a, b, c, a′, b′, c′ all belong to G(3, 0). From these we define
the bivectors

A = b∧c, B = c∧a, C = a∧b,

with the same definitions holding for A′, B′, C ′. Prove that

〈A×A′ B×B′ C×C ′〉 = 〈a∧b∧c a′∧b′∧c′〉〈a∧a′ b∧b′ c∧c′〉.

This proves Desargues’ theorem for two triangles in a common plane.
Does the theorem still hold in three dimensions when the triangles lie
on different planes?

10.5 Given six vectors a1, . . . , a6 representing points in the projective plane,
prove that

a5∧a4∧a3

a5∧a1∧a3

a6∧a2∧a1

a6∧a2∧a4
=

A543

A513

A621

A624
,

where Aijk is the area of the triangle whose vertices are described pro-
jectively by the vectors ai, aj , ak. How does this ratio of areas transform
under a projective transformation?
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10.6 A Möbius transformation in the complex plane is defined by

z 
→ z′ =
az + b

cz + d
,

where a, b, c, d are complex numbers. Prove that, viewed as a map of
the complex plane onto itself, a Möbius transformation is a conformal
transformation. Can all conformal transformations in the plane be rep-
resented as Möbius transformations? If not, which operation is missing?

10.7 Find the general form of the rotor, in conformal space, for a rotation
through θ in the a∧b plane, about the point with position vector a.

10.8 A special conformal transformation in Euclidean space corresponds to a
combination of an inversion in the origin, a translation by b and a further
inversion in the origin. Prove that the result of this can be written

x 
→= x
1

1 + bx
.

Hence show that the linear function f(a) = a·∇x is given by

f(a) =
(1 + bx)a(1 + xb)
(1 + 2b·x + b2x2)2

.

Why does this transformation leave angles unchanged?
10.9 Given a conformal bivector B, with B2 > 0, why does this encode a

pair of Euclidean points? Prove that the midpoint of these two points
is described by

C = BnB.

10.10 Two circles in a Euclidean plane are described by conformal trivectors L1

and L2. By expressing the dual vectors l1 and l2 in terms of the centre
and radius of the circles, confirm directly that the circles intersect at
right angles if

l1 ·l2 = 0.

10.11 The conformal vector X denotes a point lying on the circle L, L∧X = 0,
where L is a trivector. Prove that the tangent vector T to the circle at
X can be written

T = (X ·L)∧n.

10.12 A non-Euclidean translation along the line through X and Y is generated
by the bivector B = Le, where

L = X∧Y ∧e.

Prove that the hyperbolic angle α which takes us from X to Y is given
by

cosh(α) = 1 − X ·Y
X ·e Y ·e .
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10.13 The line element over the Poincaré disc is defined by

ds2 =
1

1 − r2
(dr2 + r2dθ2),

where r and θ are polar coordinates and r < 1. Prove that geodesics in
this geometry all intersect the circle r = 1 at right angles.

10.14 Suppose that ψ is an even element of the spacetime algebra. This is
acted on by the following linear transformations:

R0(ψ) = Rψ,

Ta(ψ) = ψ + aψIγ3
1
2 (1 + σ3) ,

Dα(ψ) = ψeασ3/2,

Ka(ψ) = ψ − aψIγ3
1
2 (1 − σ3) ,

where R is a spacetime rotor. Prove that this set of linear transfor-
mations generate a representation of the restricted conformal group of
spacetime.
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