
Prologue: Lebesgue’s 1901 paper that changed the

integral . . . forever

Sur une généralisation de l’intégrale définie

On a generalization of the definite integral1

Note by Mr. H. Lebesgue. Presented by M. Picard.

In the case of continuous functions, the notions of the integral and antideriva-
tives are identical. Riemann defined the integral of certain discontinuous functions,
but all derivatives are not integrable in the sense of Riemann. Research into the
problem of antiderivatives is thus not solved by integration, and one can desire a
definition of the integral including as a particular case that of Riemann and al-
lowing one to solve the problem of antiderivatives.(1) To define the integral of an
increasing continuous function

y(x) (a ≤ x ≤ b)

we divide the interval (a, b) into subintervals and sums the quantities obtained by
multiplying the length of each subinterval by one of the values of y when x is in
the subinterval. If x is in the interval (ai, ai+1), y varies between certain limits mi,
mi+1, and conversely if y is between mi and mi+1, x is between ai and ai+1. So
that instead of giving the division of the variation of x, that is to say, to give the
numbers ai, we could have given to ourselves the division of the variation of y, that
is to say, the numbers mi. From here there are two manners of generalizing the
concept of the integral. We know that the first (to be given the numbers ai) leads
to the definition given by Riemann and the definitions of the integral by upper and
lower sums given by Mr. Darboux. Let us see the second. Let the function y range
between m and M . Consider the situation

m = m0 < m1 < m2 < · · · < mp−1 < M = mp

y = m when x belongs to the set E0; mi−1 < y ≤ mi when x belongs to the set
Ei.

2 We will define the measures λ0, λi of these sets. Let us consider one or the
other of the two sums

m0λ0 +
∑

miλi ; m0λ0 +
∑

mi−1λi ;

1This is a translation of Lebesgue’s paper where he first reveals his integration theory. This
paper appeared in Comptes Rendus de l’Academie des Sciences (1901), pp. 1025–1028, and is
translated by Paul Loya and Emanuele Delucchi.

2Translator’s footnote: That is, Lebesgue defines E0 = y−1(m) = {x ∈ [a, b] ; y(x) = m} and
Ei = y−1(mi−1, mi] = {x ∈ [a, b] ; mi−1 < y(x) ≤ mi}.
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if, when the maximum difference between two consecutive mi tends to zero, these

sums tend to the same limit independent of the chosen mi, this limit will be, by

definition, the integral of y, which will be called integrable.

Let us consider a set of points of (a, b); one can enclose in an infinite number
of ways these points in an enumerably infinite number of intervals; the infimum of
the sum of the lengths of the intervals is the measure of the set.3 A set E is said
to be measurable if4 its measure together with that of the set of points not forming
E gives the measure of (a, b).(2) Here are two properties of these sets: Given an
infinite number of measurable sets Ei, the set of points which belong to at least
one of them is measurable; if the Ei are such that no two have a common point,
the measure of the set thus obtained is the sum of measures of the Ei. The set of
points in common with all the Ei is measurable.5

It is natural to consider first of all functions whose sets which appear in the
definition of the integral are measurable. One finds that: if a function bounded in

absolute value is such that for any A and B, the values of x for which A < y ≤ B
is measurable, then it is integrable by the process indicated. Such a function will
be called summable. The integral of a summable function lies between the lower
integral and the upper integral.6 It follows that if an integrable function is summable

in the sense of Riemann, the integral is the same with the two definitions. Now,
any integrable function in the sense of Riemann is summable, because the set of all
its points of discontinuity has measure zero, and one can show that if, by omitting
the set of values of x of measure zero, what remains is a set at each point of which
the function is continuous, then this function is summable. This property makes
it immediately possible to form nonintegrable functions in the sense of Riemann
that are nevertheless summable. Let f(x) and ϕ(x) be two continuous functions,
ϕ(x) not always zero; a function which does not differ from f(x) at the points of
a set of measure zero that is everywhere dense and which at these points is equal
to f(x) + ϕ(x) is summable without being integrable in the sense of Riemann.
Example: The function equal to 0 if x is irrational, equal to 1 if x is rational.
The above process of construction shows that the set of all summable functions has
cardinality greater than the continuum. Here are two properties of functions in this
set.

(1) If f and ϕ are summable, f + ϕ is and the integral of f + ϕ is the sum of the

integrals of f and of ϕ.
(2) If a sequence of summable functions has a limit, it is a summable function.

3Translator’s footnote: Denoting by m
∗(E) the measure of a set E ⊆ (a, b), Lebesgue is

defining m
∗(E) to be the infimum of the set of all sums of the form

∑
i
ℓ(Ii) such that E ⊆

⋃
i
Ii

where Ii = (ai, bi] and ℓ(Ii) = bi−ai. It’s true that Lebesgue doesn’t specify the types of intervals,
but it doesn’t matter what types of intervals you choose to cover E with (I chose left-half open
ones because of my upbringing).

4Translator’s footnote: Lebesgue is defining E to be measurable if m∗(E)+m
∗((a, b)∩Ec) =

b− a.
5Translator’s footnote: Lebesgue is saying that if the Ei are measurable, then

⋃
i
Ei is

measurable, if the Ei are pairwise disjoint, then m
∗(
⋃

i
Ei) =

∑
i
m

∗(Ei), and finally, that
⋂

i
Ei

is measurable. The complement of a measurable set is, almost by definition, measurable; moreover,
it’s not difficult to see that the empty set is measurable. Thus, the collection of measurable sets
contains the empty set and is closed under complements and countable unions; later when we
define σ-algebras, think about Lebesgue.

6Translator’s footnote: Lower and upper integrals in the sense of Darboux.
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The collection of summable functions obviously contains y = k and y = x;
therefore, according to (1), it contains all the polynomials and, according to (2), it
contains all its limits, therefore it contains all the continuous functions, that is to
say, the functions of first class (see Baire, Annali di Matematica, 1899), it contains
all those of second class, etc. In particular, any derivative bounded in absolute
value, being of first class, is summable, and one can show that its integral, con-
sidered as function of its upper limit, is an antiderivative. Here is a geometrical
application: if |f ′|, |ϕ′|, |ψ′| are bounded, the curve x = f(t), y = ϕ(t), z = ψ(t),

has a length given by the integral of
√

(f ′2 + ϕ′2 + ψ′2). If ϕ = ψ = 0, one obtains
the total variation of the function f of bounded variation. If f ′, ϕ′, ψ′ do not exist,
one can obtain an almost identical theorem by replacing the derivatives by the Dini
derivatives.

Footnotes:

(1) These two conditions imposed a priori on any generalization of the integral are obviously
compatible, because any integrable derivative, in the sense of Riemann, has as an integral one of
its antiderivatives.

(2) If one adds to this collection suitably selected sets of measure zero, one obtains the

measurable sets in the sense of Mr. Borel (Leçons sur la théorie des fonctions).

Some remarks on Lebesgue’s paper

In Section 1.1 of Chapter 1 we shall take a closer look at Lebesgue’s theory of
integration as he explained in his paper. Right now we shall discuss some aspects
he brings up in his paper involving certain defects in the Riemann theory of the
integral and how his theory fixes these defects.

The antiderivative problem. One of the fundamental theorems of calculus
(FTC) learned in elementary calculus says that for a bounded7 function f : [a, b] →
R, we have

(0.1)

∫ b

a

f(x) dx = F (b)− F (a),

where F is an antiderivative of f , which means F ′(x) = f(x) for all x ∈ [a, b]. It
may be hard to accept at first, because it’s not stated in a first course in calculus,
but the FTC may fail if the integral in (0.1) is the Riemann integral! In fact, there
are bounded functions f that are not Riemann integrable, but have antiderivatives,
thus for such functions the left-hand side of (0.1) does not make sense. In Section ?
we shall define such a function due to Vito Volterra (1860–1940) that he published
in 1881. With this background, we can understand Lebesgue’s inaugural words of
his paper:

In the case of continuous functions, the notions of the integral
and antiderivatives are identical. Riemann defined the integral
of certain discontinuous functions, but all derivatives are not in-
tegrable in the sense of Riemann. Research into the problem

7The Riemann integral is only defined for bounded functions, which is why we make this
assumption. We would deal with unbounded functions, but then we’ll have to discuss improper
integrals, which we don’t want to get into.
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of antiderivatives is thus not solved by integration, and one can
desire a definition of the integral including as a particular case
that of Riemann and allowing one to solve the problem of an-
tiderivatives.

In Lebesgue’s theory of integral, we shall see that the Fundamental Theorem
of Calculus always holds for any bounded function with an antiderivative. In this
sense, Lebesgue’s theory of integral solves the “problem of antiderivatives”.

The limit problem. Suppose that for each n = 1, 2, 3, . . . we are given a
function fn : [a, b] → R, all bounded by some fixed constant.8 Also suppose that
for each x ∈ [a, b], limn→∞ fn(x) exists; since this limit depends on x, the value of
the limit defines a function f : [a, b] → R such that for each x ∈ [a, b],

f(x) = lim
n→∞

fn(x).

The function f is bounded since we assumed all the fn’s were bounded by some
fixed constant. A question that you’ve probably seen before in Elementary Real
Analysis is the following: Given that the fn’s are Riemann integrable, is it true
that

(0.2)

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx?

We shall call this question the “limit problem”, which by using the definition of
f(x), we can rephrase as follows: Is it true that

∫ b

a

lim
n→∞

fn(x) dx = lim
n→∞

∫ b

a

fn(x) dx,

which is to say, can we switch limits with integrals? In the Riemann integration
world, the answer to this question is “No” for the following reason: Even though
each fn is Riemann integrable, it’s not necessarily the case that the limit function

f is Riemann integrable. Thus, even though the numbers
∫ b

a
fn(x) dx on the right-

hand side of (0.2) may be perfectly well-defined, the symbol
∫ b

a
f(x) dx on the

left-hand side of (0.2) may not be defined!
For an example of such a case, we go back to the example Lebesgue brought

up in the second-to-last paragraph of his paper where he wrote

Example: The function equal to 0 if x is irrational, equal to 1 if
x is rational.

Denoting this function by f : R → R, we have

f(x) =

{

1 if x is rational,

0 if x is irrational.

This function is called Dirichlet’s function after Johann Peter Gustav Lejeune
Dirichlet (1805–1859) who introduced it in 1829; here’s a rough picture of Dirichlet’s
function:

0

1

8That is, there is a constant C such that |fn(x)| ≤ C for all x ∈ [a, b] and for all n.
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It’s easy to show that f : R → R is not Riemann integrable on any interval [a, b] with
a < b (See Exercise 1). Now, in 1898, René-Louis Baire (1874–1932) introduced
the following sequence of functions fn : R → R, n = 1, 2, 3, . . ., defined by

fn(x) =

{

1 if x = p/q is rational in lowest terms with q ≤ n,

0 otherwise.

Here is a picture of f3 focusing on x ∈ [0, 1]:

1

0
1

2

1

3

2

3
1

f3

Notice that f3(x) = 1 when x = 0, 1/3, 1/2, 2/3/1, the rationals with denominators
not greater than 3 when written in lowest terms, otherwise f3(x) = 0. More
generally, fn is equal to the zero function except at finitely many points, namely
at 0/1, 1/1, 1/2, 1/3, 2/3, . . ., (n − 1)/n and 1/1. In particular, fn is Riemann
integrable and for any a < b,

∫ b

a

fn(x) dx = 0;

here we recall that the Riemann integral is immune to changes in functions at
finitely many points, so as the fn’s differ from the zero function at only finitely

many points,
∫ b

a
fn(x) dx =

∫ b

a
0 dx = 0. Also notice that

lim
n→∞

fn = the Dirichlet function,

which as we mentioned earlier is not Riemann integrable. Hence, for this simple ex-
ample, the limit equality (0.2) is nonsense because the left-hand side of the equality
is not defined.

In Lebesgue’s theory of integration, we shall see that the limit function f will
always be Lebesgue integrable (which Lebesgue mentions in point (2) at the end of
the second-to-last paragraph of his paper) and moreover, the equality (0.2) always
holds when the sequence fn is bounded. In this sense, Lebesgue’s theory of integral
gives a positive answer to the “limit problem”. Finally, let’s discuss

The arc length problem. In the last paragraph of Lebesgue’s paper he men-
tions the following geometric application:

Here is a geometrical application: if |f ′|, |ϕ′|, |ψ′| are bounded,
the curve x = f(t), y = ϕ(t), z = ψ(t), has a length given by the

integral of
√

(f ′2 + ϕ′2 + ψ′2).

To elaborate more on this, suppose we are given a curve C in 3-space defined by
parametric equations

C : x = f(t) , y = ϕ(t) , z = ψ(t) , a ≤ t ≤ b,

such as shown on the left-hand picture here:
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To define L, the length of C, we approximate the curve by a piecewise linear curve,
an example of which is shown on the right, and find the length of the approximating
curve. Taking closer and closer approximations to the curve by piecewise linear
curves, we define the length of the curve L by

(0.3) L := the limit of the lengths of the piecewise linear approximations,

provided that the lengths of the piecewise linear approximation approach a specific
value. In elementary calculus we learned another formula for the length of the
curve:

(0.4) L =

∫ b

a

√

(f ′(t))2 + (ϕ′(t))2 + (ψ′(t))2 dt,

assuming that the derivatives are bounded. A natural question is: Are the two
notions of length, defined by (0.3) and (0.4), equivalent? The answer is “No”
if the Riemann integral is used in (0.4)! More precisely, there are curves which

have length in the sense of (0.3) but such that
√

(f ′(t))2 + (ϕ′(t))2 + (ψ′(t))2 is
not Riemann integrable; thus, (0.4) is nonsense if the integral is understood in the
Riemann sense.

In Lebesgue’s theory of integral, we shall see that the two notions of arc length
are equivalent. Thus, Lebesgue’s theory of integral solves the “arc length problem”.
There are many other defects in Riemann’s integral that Lebesgue’s integral fixes,
and we’ll review and discuss new defects as we progress through the book (for
example, see the discussion on multi-dimensional integrals in Chapter ?).

Summary. If we insist on using the Riemann integral, we have to worry about
important formulas that are true some of the time; however, using the Lebesgue
integral, these “defective formulas” become, for all intents and purposes, correct all
of the time. Thus, we can say that

Lebesgue’s integral simplifies life!

◮ Exercises 0.1.

1. Using your favorite definition of the Riemann integral you learned in an elementary
course on Real Analysis (for instance, via Riemann sums or Darboux sums), prove that
Dirichlet’s function is not Riemann integrable on any interval [a, b] where a < b.


