/ Home / math / ellipse /

  •  [Go Up]
  •  image/
  •  index

ellipse

Parameter Form

x:=a⋅\cos t
y:=b⋅\sin t

where:

\sin x:=÷{exp(i⋅x)-\exp(-i⋅x)}{2⋅i}
\cos x:=÷{exp(i⋅x)+\exp(-i⋅x)}{2}

where: i²=-1

\tan x:=÷{\sin x}{\cos x}

Properties

  • \sin(x+y)=\sin(x)⋅\cos(y)+\cos(x)⋅\sin(y)
  • \cos(x+y)=\cos(x)⋅\cos(y)-\sin(x)⋅\sin(y)
  • \sin(-x)=-\sin(x)
  • (\cos(x))²+(\sin(x))²=1
  • ÷{d}{dx}(\sin x)=\cos x
  • ÷{d}{dx}(\cos x)=-\sin x
  • \exp(i⋅x)=\cos(x)+i⋅\sin(x), see Exponentiation for "exp".
  • (\sin a)⋅(\sin b)=÷{1}{2}⋅\cos(a-b)-÷{1}{2}⋅\cos(a+b)
  • (\cos a)⋅(\cos b)=÷{1}{2}⋅\cos(a-b)+÷{1}{2}⋅\cos(a+b)

Circumference

The Circumference s is:

s:=∫\limits_{∂} ds

where ds :: short_arc.

Since:

(÷{ds}{dt})²=(÷{dx}{dt})²+(÷{dy}{dt})²

... it follows that:

s:=∫\limits_{0}^{2⋅π} √{ẋ²+ẏ²}⋅dt
s=a⋅∫ \limits_{0}^{2⋅π} √{1-k²⋅(\sin s)²}⋅ds

Numeric Eccentricity

ε:=√{÷{a²-b²}{a²}} Excentricity.

And thus:

b=a⋅√{1-ε²}

Parameter Form in Polar Coordinates, center of the ellipse as center of coordinate system

r(φ)=a⋅√{1-ε²⋅(\sin φ)²}

Because:

x=a⋅\cos φ
y=a⋅√{1-ε²}⋅\sin φ
r²=x²+y²
r²=a²⋅((\cos φ)²+(1-ε²)⋅(\sin φ)²)
r²=a²⋅((\cos φ)²+(\sin φ)²-ε²⋅(\sin φ)²)
r²=a²⋅(1-ε²⋅(\sin φ)²)

... after choosing the positive root:

r=a⋅√{1-ε²⋅(\sin φ)²}

Author: Danny (remove the ".nospam" to send)

Last modification on: Thu, 09 May 2013 .