/ Home / math / integral / Cauchy /

  •  [Go Up]
  •  image/

Cauchy

The result of a complex integral over a closed path is always:

∮ f(z)⋅dz=2⋅π⋅i⋅∑_{1}^{s} Res f(z)

where:

f(z)=∑_{n=-∞}^{∞} a_n⋅(z-z_0)^n Laurent series.
a_n=÷{1}{2⋅π⋅i}⋅∮÷{f(z)⋅dz}{(z-z_0)^{n+1}}
Res f(z)=a_{-1}
Res f(z)=÷{1}{(n-1)!}⋅\lim\limits_{z\rightarrow b} ÷{∂^{n-1}}{∂z^{n-1}}[(z-b)^n⋅f(z)]

Author: Danny (remove the ".nospam" to send)

Last modification on: Sat, 04 May 2024 .