UE Astrophysik 2 SS 2017

Daniel Steiner, Thomas Schobesberger (Tutor)

Blatt 9

25. Die Massenverteilung sei in einem sphärischen System durch

$$\rho(r) = \frac{M_J}{2\pi} \frac{r_J}{r^2 (r + r_J)^2}$$

gegeben. Bestimmen sie die Masse M(r) des Systems sowie das Potential und zeigen sie, dass die Kreisgeschwindigkeit für $r \ll r_J$ ungefähr konstant ist und für $r \gg r_J$ wie $v_c \propto r^{-1/2}$ geht. M_J bezeichnet die Masse innerhalb von r_J , also $M_J = M(r = r_J)$.

26. Für ein isochrones Potential gilt

$$\Phi_{\rm I}(r) = -\frac{GM}{b + \sqrt{r^2 + b^2}} \,.$$

Berechnen sie die Dichteverteilung, die zentrale Dichte sowie die Kreisgeschwindigkeit v_c . Für jede Kreisbewegung gilt (aufgrund der Bewegungsgleichung)

$$v_c^2 = \frac{Gm(r)}{r} .$$

27. Zeigen sie, dass sich die Energie E_c eines kreisförmigen Orbits mit Kreisgeschwindigkeit v_c in einem isochronen Potential als

$$E_c = -\frac{GM}{2a} \quad \text{mit} \quad a = \sqrt{b^2 + r^2}$$

ausdrücken lässt. Weiters gilt für den damit verbundenen Drehimpuls

$$L_c(E_c) = \sqrt{GMb} \left(x^{-1/2} - x^{1/2} \right) \text{ mit } x = -\frac{2E_c b}{GM}.$$