UE Astrophysik 2 SS 2017

Daniel Steiner, Thomas Schobesberger (Tutor)

Blatt 11

31. Beweisen sie, dass in einem axialsymmetrischen Potential $\Phi(R, z)$ im Fall verschwindender lokaler Dichte $\rho(R, z)$ am Ort $(R_g, 0)$

$$\kappa^2 + \nu^2 = 2\Omega^2$$

gilt.

32. Rechnen sie nach, dass sich in einem logarithmischen Potential

$$\Phi_{\rm L}(r,z) = \frac{1}{2}v_0^2 \ln \left(R_c^2 + r^2 + \frac{z^2}{q_\Phi^2}\right) + const.$$

die Dichte $\rho_{\rm L}$ als

$$\rho_{\rm L}(r,z) = \left(\frac{v_0^2}{4\pi G q_\Phi^2}\right) \frac{(2q_\Phi^2 + 1)R_c^2 + r^2 + 2(1 - \frac{1}{2}q_\Phi^{-2})z^2}{(R_c^2 + r^2 + z^2q_\Phi^{-2})^2}$$

schreiben lässt. Wie sehen Potential und Dichteverteilung für $r \ll R_c$ aus?

33. Die sog. Fehlerfunktion ist durch

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

definiert. Zeigen sie, dass $\operatorname{erf}(\infty) = 1$ gilt.

Hinweis: Berechnen sie in der Ebene das Produkt zweier Fehlerfunktionen und führen sie zur Bestimmung des Integrals eine Koordinatentransformation auf Polarkoordinaten durch.