Streutheorie

4) Streutheorie

oder wie wir die Struktur von Materie entschlüsseln

Streutheorie

4) Streutheorie oder wie wir die Struktur von Materie entschlüsseln

Unsere Kenntniss der Struktur von Materie und Materialien basiert zum großen Teil auf Streuexperimenten

Streutheorie

4) Streutheorie oder wie wir die Struktur von Materie entschlüsseln

Unsere Kenntniss der Struktur von Materie und Materialien basiert zum großen Teil auf Streuexperimenten

Ziel

Allgemeine Beschreibung des Streuprozesses.

Streutheorie

4) Streutheorie oder wie wir die Struktur von Materie entschlüsseln

Unsere Kenntniss der Struktur von Materie und Materialien basiert zum großen Teil auf Streuexperimenten

Ziel

Allgemeine Beschreibung des Streuprozesses.

Asymptotik:

$$\psi(\vec{r}) \stackrel{r \to \infty}{\longrightarrow} \left[e^{i\vec{k}\vec{r}} + f(\theta,\phi) \frac{e^{ikr}}{r} \right]$$

(ebene Welle + gestreute Kugelwelle)

Streutheorie

4) Streutheorie oder wie wir die Struktur von Materie entschlüsseln

Unsere Kenntniss der Struktur von Materie und Materialien basiert zum großen Teil auf Streuexperimenten

Ziel

Allgemeine Beschreibung des Streuprozesses.

Asymptotik:

$$\psi(\vec{r}) \stackrel{r \to \infty}{\longrightarrow} \left[e^{i\vec{k}\vec{r}} + f(\theta,\phi) \frac{e^{ikr}}{r} \right]$$

(ebene Welle + gestreute Kugelwelle)

Mathematische Beschreibung: differentieller Wirkungsquerschnitt, Streuphase

Streutheorie

4) Streutheorie oder wie wir die Struktur von Materie entschlüsseln

Unsere Kenntniss der Struktur von Materie und Materialien basiert zum großen Teil auf Streuexperimenten

Ziel

Allgemeine Beschreibung des Streuprozesses.

Asymptotik:

$$\psi(\vec{r}) \stackrel{r \to \infty}{\longrightarrow} \left[e^{i\vec{k}\vec{r}} + f(\theta,\phi) \frac{e^{ikr}}{r} \right]$$

(ebene Welle + gestreute Kugelwelle)

Mathematische Beschreibung: differentieller Wirkungsquerschnitt, Streuphase

Berechnung: Bornsche Approximation

4.1) Asymptotik, differentieller Wirkungsquerschnitt

Voraussetzungen:

- kurzreichweitiges Potential $|V(\vec{r})| \le r^{-\alpha}$ für $r \to \infty$ mit $\alpha > 1$ (Coulomb Potential $V(\vec{r}) = -\frac{Ze^2}{r}$ nicht enthalten!)
- Zweikörperpotential $V(\vec{r})$
- elastische Streuung (Energieerhaltung)
- kein Spin

4.1) Asymptotik, differentieller Wirkungsquerschnitt

Voraussetzungen:

• kurzreichweitiges Potential $|V(\vec{r})| \le r^{-\alpha}$ für $r \to \infty$ mit $\alpha > 1$ (Coulomb Potential $V(\vec{r}) = -\frac{Ze^2}{r}$ nicht enthalten!)

- Zweikörperpotential $V(\vec{r})$
- elastische Streuung (Energieerhaltung)
- kein Spin

Zusammenfassung

Dann ist

$$\psi(\vec{r}) \stackrel{r \to \infty}{\longrightarrow} \left[e^{i\vec{k}\vec{r}} + f(\theta, \phi) \frac{e^{ikr}}{r} \right]$$
(1)

asymptisches Verhalten für $r \to \infty$ (Beweis s. Tafel)

Definition Wirkungsquerschnitt

Einfallender Teilchenstrom:

Stromdichte (-fluss) $J_0 = -$

Zahl einfallender Teilchen Flächeneinheit Zeiteinheit

(2)

Zusammenfassung

Messung im Detektor mit Öffnungswinkel $d\Omega$:

 $d\mathcal{N} = \underbrace{\frac{d\sigma}{d\Omega}}_{differentieller Wirkungsquerschnitt} J_0 d\Omega \qquad (3)$

(pro Zeiteinheit in Richtung θ , ϕ und in Raumwinkel $d\Omega$ gestreute Teilchen)

Asymptotik, differentieller Wirkungsquerschnitt

Definition Wirkungsquerschnitt

Einfallender Teilchenstrom:

Stromdichte (-fluss) $J_0 = \frac{1}{2}$

Zahl einfallender Teilchen Flächeneinheit Zeiteinheit

(2)

(3)

Zusammenfassung

Messung im Detektor mit Öffnungswinkel $d\Omega$:

 $d\mathcal{N} = \underbrace{\frac{d\sigma}{d\Omega}}_{differentieller Wirkungsquerschnitt} J_0 d\Omega$

(pro Zeiteinheit in Richtung θ, ϕ und in Raumwinkel $d\Omega$ gestreute Teilchen) $\frac{d\sigma}{d\Omega}$: Dimension Fläche (Streuquerschnitt) (eff. Fläche die Target f. Streuung in Richtung θ, ϕ bietet)

Asymptotik, differentieller Wirkungsquerschnitt

Definition Wirkungsquerschnitt

Einfallender Teilchenstrom:

Stromdichte (-fluss) $J_0 = \frac{2}{3}$

Zahl einfallender Teilchen Flächeneinheit Zeiteinheit

(2)

(3)

(4)

Zusammenfassung

Messung im Detektor mit Öffnungswinkel $d\Omega$:

 $d\mathcal{N} = \underbrace{\frac{d\sigma}{d\Omega}}_{differentieller Wirkungsquerschnitt} J_0 d\Omega$

(pro Zeiteinheit in Richtung θ, ϕ und in Raumwinkel $d\Omega$ gestreute Teilchen) $\frac{d\sigma}{d\Omega}$: Dimension Fläche (Streuquerschnitt) (eff. Fläche die Target f. Streuung in Richtung θ, ϕ bietet)

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f(heta,\phi)|^2 \ , \ \ \sigma_{\mathrm{tot}} = \int \mathrm{d}\Omega rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

Lippmann-Schwinger-Glg.

4.2) Lippmann-Schwinger-Gleichung

Gesucht: stationäre Lösungen $\psi_{\vec{k}}(\vec{r})$ der S-Glg.

$$\left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r})\right]\psi_{\vec{k}}(\vec{r}) = \underbrace{E_k}_{\frac{\hbar^2k^2}{2m}}\psi_{\vec{k}}(\vec{r})$$
(5)

Lippmann-Schwinger-Glg.

4.2) Lippmann-Schwinger-Gleichung

Gesucht: stationäre Lösungen $\psi_{\vec{k}}(\vec{r})$ der S-Glg.

$$\left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r})\right]\psi_{\vec{k}}(\vec{r}) = \underbrace{E_k}_{\frac{\hbar^2k^2}{2m}}\psi_{\vec{k}}(\vec{r})$$
(5)

Umformen:

$$\left[\vec{\nabla}^2 + k^2\right]\psi_{\vec{k}}(\vec{r}) = \underbrace{U(\vec{r})}_{2mV(\vec{r})/\hbar^2}\psi_{\vec{k}}(\vec{r})$$
(6)

(6)

Lippmann-Schwinger-Glg.

4.2) Lippmann-Schwinger-Gleichung

Gesucht: stationäre Lösungen $\psi_{\vec{k}}(\vec{r})$ der S-Glg.

$$\left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r})\right]\psi_{\vec{k}}(\vec{r}) = \underbrace{E_k}_{\frac{\hbar^2k^2}{2m}}\psi_{\vec{k}}(\vec{r})$$
(5)

Umformen:

$$\left[\vec{\nabla}^2 + k^2\right]\psi_{\vec{k}}(\vec{r}) = \underbrace{U(\vec{r})}_{2mV(\vec{r})/\hbar^2}\psi_{\vec{k}}(\vec{r})$$

Lösung der DGL mittels Greenscher-Funktion:

$$\left[\vec{\nabla}^2 + k^2 \right] G^{\pm}(\vec{k}; \vec{r}, \vec{r}') = \delta(\vec{r} - \vec{r}')$$
 (7)

$$G^{\pm}(\vec{k};\vec{r},\vec{r}') = -\frac{1}{4\pi} \frac{e^{\pm ik|\vec{r}-\vec{r}'|}}{|\vec{r}-\vec{r}'|}$$
(8)

Lippmann-Schwinger-Glg.

Ebene Welle
$$\Phi_{\vec{k}}(\vec{r}) = \frac{1}{\sqrt{2\pi^3}} e^{i\vec{k}\vec{r}}$$
 ist Lösung der homogenen Glg.
 $\left[\vec{\nabla}^2 + k^2\right] \Phi_{\vec{k}}(\vec{r}) = 0$ (9)

Zusammenfassung

Zusammen erhalten wir die Lippmann-Schwinger-Glg.

$$\psi_{\vec{k}}^{\pm}(\vec{r}) = \Phi_{\vec{k}}(\vec{r}) + \int d^3r' \ G^{\pm}(\vec{k};\vec{r},\vec{r}')U(\vec{r}')\psi_{\vec{k}}^{\pm}(\vec{r'})$$
(10)

(11)

Lippmann-Schwinger-Glg.

Ebene Welle
$$\Phi_{\vec{k}}(\vec{r}) = \frac{1}{\sqrt{2\pi^3}} e^{i\vec{k}\vec{r}}$$
 ist Lösung der homogenen Glg.
 $\left[\vec{\nabla}^2 + k^2\right] \Phi_{\vec{k}}(\vec{r}) = 0$ (9)

Zusammenfassung

Zusammen erhalten wir die Lippmann-Schwinger-Glg.

$$\psi_{\vec{k}}^{\pm}(\vec{r}) = \Phi_{\vec{k}}(\vec{r}) + \int d^3r' \ G^{\pm}(\vec{k};\vec{r},\vec{r}') U(\vec{r}') \psi_{\vec{k}}^{\pm}(\vec{r'})$$
(10)

$$f(heta,\phi) = -rac{4\pi^2 m}{\hbar^2} \langle ec{\kappa}' | V | \psi^+_{ec{\kappa}}
angle \quad s.$$

mit $\vec{k}' = (k, \theta, \phi)$; Winkel gegnüber \vec{k} : $\angle (\vec{k'}, \vec{k})$ noch zu berechnen: $|\psi_{\vec{k}}^+\rangle$

Bornsche Näherung

4.3) Bornsche Näherung

Zusammenfassung

Umformen der Lippmann-Schwinger-Glg. liefert

$$\psi_{\vec{k}}^{\pm}\rangle = \underbrace{\left(1 - G_0^{\pm}(\vec{k})U\right)^{-1}}_{\sum_{n=0}^{\infty}(G_0^{\pm}(\vec{k})U)^n} |\vec{k}\rangle$$
(12)

und die Projektion auf $\langle \vec{k'} |$

$$f(\theta,\phi) = -2\pi^2 \sum_{n=0}^{\infty} \langle \vec{k'} | U(G_0^{\pm}(\vec{k})U)^n | \vec{k} \rangle$$
(13)

Das Mitnehmen von Termen bis zur Ordnung n wird als Bornsche Näherung in (n + 1)ter Ordung bezeichnet (n : Potenz von U bzw. V)

4.4) Partialwellenentwicklung und Streuphase

Idee

Betrachten sphärisch-symmetrisches Potential $V(\vec{r}) = V(r)$

4.4) Partialwellenentwicklung und Streuphase

Idee

Betrachten sphärisch-symmetrisches Potential $V(\vec{r}) = V(r)$ einfallenden Strahl in *z* – Richtung $\vec{k} \parallel \vec{e}_z$.

4.4) Partialwellenentwicklung und Streuphase

Idee

Betrachten sphärisch-symmetrisches Potential $V(\vec{r}) = V(r)$ einfallenden Strahl in *z* – Richtung $\vec{k} \parallel \vec{e}_z$.

 \Rightarrow Entwicklung nach Besselfunktionen $P_l(\cos \theta)$:

Bornsche Näherung

4.4) Partialwellenentwicklung und Streuphase

Idee

U

Betrachten sphärisch-symmetrisches Potential $V(\vec{r}) = V(r)$ einfallenden Strahl in *z* – Richtung $\vec{k} \parallel \vec{e}_z$.

 \Rightarrow Entwicklung nach Besselfunktionen $P_l(\cos \theta)$:

$$\vec{k}(\vec{r}_{r,\theta}) = \sum_{l=0}^{\infty} i^{l}(2l+1)R_{lk}(r)P_{l}(\cos\theta) \qquad (14)$$
$$f(\theta) = \sum_{l=0}^{\infty} (2l+1)f_{l}(k)P_{l}(\cos\theta) \qquad (15)$$

keine Abhängigkeit von φ , da symmetrisch bzgl. φ -Rotationen!

Bornsche Näherung

Zusammenfassung

Asymptotik $r \rightarrow \infty$ der exakten Lösung der S-Glg.

$$\frac{R_{lk}(r)}{kr} = \frac{e^{i\delta_l}}{kr}\sin(kr - l\pi/2 + \delta_l)$$
(16)

Bornsche Näherung

Zusammenfassung

Asymptotik $r \rightarrow \infty$ der exakten Lösung der S-Glg.

$$\frac{R_{lk}(r)}{kr} = \frac{e^{i\delta_l}}{kr}\sin(kr - l\pi/2 + \delta_l)$$
(16)

"Nur" (I-abhängige) Phasenverschiebung δ_I

$$f(\theta) = \sum_{l} (2l+1) \underbrace{\frac{1}{k} e^{i\delta_{l}} \sin(\delta_{l})}_{\equiv f_{l}} P_{l}(\cos\theta) \quad (17)$$

Bornsche Näherung

Zusammenfassung

Asymptotik $r \to \infty$ der exakten Lösung der S-Glg.

$$\frac{R_{lk}(r)}{kr} = \frac{e^{i\delta_l}}{kr}\sin(kr - l\pi/2 + \delta_l)$$
(16)

"Nur" (I-abhängige) Phasenverschiebung δ_I

$$f(\theta) = \sum_{l} (2l+1) \underbrace{\frac{1}{k} e^{i\delta_{l}} \sin(\delta_{l})}_{\equiv f_{l}} P_{l}(\cos\theta) \quad (17)$$

Totaler Wirkungsquerschnitt:

$$\sigma = \sum_{l} \frac{4\pi}{k^2} (2l+1) \sin^2(\delta_l) \tag{18}$$

Bornsche Näherung

Zusammenfassung

Asymptotik $r \rightarrow \infty$ der exakten Lösung der S-Glg.

$$\boldsymbol{R_{lk}(r)} = \frac{e^{i\delta_l}}{kr}\sin(kr - l\pi/2 + \delta_l)$$
(16)

"Nur" (I-abhängige) Phasenverschiebung δ_I

$$f(\theta) = \sum_{l} (2l+1) \underbrace{\frac{1}{k} e^{i\delta_{l}} \sin(\delta_{l})}_{\equiv f_{l}} P_{l}(\cos\theta) \quad (17)$$

Totaler Wirkungsquerschnitt:

$$\sigma = \sum_{l} \frac{4\pi}{k^2} (2l+1) \sin^2(\delta_l) \tag{18}$$

1. Bornsche Näherung:

$$f_{l} = \frac{-2m}{\hbar^{2}} \int_{0}^{\infty} \mathrm{d}r \; r^{2} \, V(r) j_{l}(kr)^{2} \approx \frac{\delta_{l}}{k} \tag{19}$$