Zweistoffsysteme

Generell gilt: G = H - TS = U + PV - TS =k

$$= \left| U = TS - PV + \sum_{i=1} \mu_i n_i \right| = \sum_{i=1} \mu_i n_i$$

Zweistoffsystem: k = 2

$$G = \sum_{i=1}^{2} \mu_{i} n_{i} = \mu_{1} \cdot n_{1} + \mu_{2} \cdot n_{2} = \left| x_{i} = \frac{n_{i}}{n} \right| = \frac{\mu_{1} \cdot x_{1} + \mu_{2} \cdot x_{2} \cdot n_{2} = |x_{1} = 1 - x_{2}| = \frac{\mu_{1} \cdot x_{1} + \mu_{2} \cdot x_{2} \cdot n_{2} + \mu_{2} \cdot (1 - x_{2}) + \mu_{2} \cdot (1 - x_{2}) \cdot x_{2} \cdot n_{2}$$

k

Technische Universität Wien

Zweistoffsysteme vor der Mischung

Fügt man bei konstanter Temperatur und konstantem Druck eine Komponente A mit den chemischen Potential μ_A^0 und eine Komponente B mit μ_B^0 in ein durch x_B gegebenes Verhältnis zusammen und es passiert sonst nichts, so ergibt sich die freie Enthalpie $\overline{G}(x_B)$ einfach summarisch zu

$$\overline{G}(\mathbf{x}_{B}) = \left[\mu_{A}^{0} \cdot (1 - \mathbf{x}_{B}) + \mu_{B}^{0} \cdot \mathbf{x}_{B} \right) \right] \cdot \mathbf{n}$$

sodass $\overline{G}(x_B)$ in einem Diagramm durch eine Gerade zwischen μ_A^0 und μ_A^0 dargestellt wird.

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Mischung

Schematisch:

Material A, Molenbruch x_A
 Material B, Molenbruch x_B

vor der Mischung

$$\overline{G}(\mathbf{x}_{\mathrm{B}}) = \left[\boldsymbol{\mu}_{\mathrm{A}}^{0} \cdot (1 - \mathbf{x}_{\mathrm{B}}) + \boldsymbol{\mu}_{\mathrm{B}}^{0} \cdot \mathbf{x}_{\mathrm{B}} \right] \cdot \mathbf{n}$$

 $x_A \cdot n \mod A$ n ... Molzahl $x_B \cdot n \mod B$ $x_A + x_B = 1$

nach der Mischung

Technische Universität Wien

Freie Mischungsenthalpie

Gedankliche Vorgangsweise: Mischung in 2 Schritten

- 1. Substanzen A, B ohne Reaktion zusammenbringen
- 2. Mischung der Komponenten → Mischungsterm

Die Mischung (Lösung) der beiden Komponenten führt zur Bildung einer neuen Phase aufgrund der Wechselwirkung der Atome miteinander.

In G = H - T·S muss ein zusätzlicher Term für die Mischung berücksichtigt werden!

$$G = \overline{G} + \Delta G_{M}$$
$$\Delta G_{M} = \Delta H_{M} - T \cdot \Delta S_{M}$$
$$G = \overline{G} + \Delta H_{M} - T \cdot \Delta S_{M}$$

.. freie Mischungsenthalpie

Technische Universität Wien

Ideale Mischung

Mischungen, bei denen die Wechselwirkungen zwischen den Komponenten denen der reinen Komponenten entsprechen bezeichnet man als Ideale Mischungen

- Die innere Energie U des Systems ändert sich nicht, d. h. ∆U = 0.
- Ideale Mischung impliziert nicht, dass es überhaupt keine Wechselwirkungen zwischen den Komponenten gibt !

$$\Delta H = \Delta U + p \cdot \Delta V_{\cong 0} = 0$$
$$G = \overline{G} + \Delta H_{M} - T \cdot \Delta S_{M} = \overline{G} - T \cdot \Delta S_{M}$$

Technische Universität Wien

Mischungsentropie

- Modell der idealen Mischung (idealen Lösung): • einfachster Fall der Mischung, da ΔU_M bzw. ΔH_M =0
- Innere Energie unabhängig von der Anordnung der B-Atome in der Matrix der A-Atome
- regellose Anordnung der Atome
- beim Mischen tritt keine Volumenänderung auf (AV_M = 0)
- Aber: Entropieanstieg, da durch das Vermischen die reinen Stoffe in einem Zustand geringer Ordnung gebracht werden \rightarrow Mischungsentropie ΔS_M

$$\mathbf{G} = \mathbf{G} - \mathbf{T} \cdot \Delta \mathbf{S}_{\mathbf{M}}$$

$$\Delta S_{M} = -n \cdot R \cdot (x_{A} \cdot \ln x_{A} + x_{B} \cdot \ln x_{B})$$

Stirling-Formel; statist. Thermodynamik

Technische Universität Wien

Freie Mischungsenthalpie: graphisch

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Freie Enthalpie der idealen Mischung

$$G(x_B) = \overline{G}(x_B) - T \cdot \Delta S_M$$

= $n \cdot \left[\mu_A^0 \cdot (1 - x_B) + \mu_B^0 \cdot x_B \right] - T \cdot \Delta S_M$

Technische Universität Wien

Chemische Potentiale in der idealen Mischung

Das chemische Potential beschreibt die Änderung von G beim Hinzufügen/Wegnehmen von Atomen.

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,p}$$

Binäres System A, B:

Zugabe von dn_A A- Teilchen und dn_B B-Teilchen:

$$dG = \mu_A \cdot dn_A + \mu_B \cdot dn_B$$

Nach erfolgter Zugabe:

$$\mathbf{G} = (\boldsymbol{\mu}_{\mathrm{A}} \cdot \mathbf{x}_{\mathrm{A}} + \boldsymbol{\mu}_{\mathrm{B}} \cdot \mathbf{x}_{\mathrm{B}}) \cdot \mathbf{n}$$

Technische Universität Wien

Chemische Potentiale und freie Enthalpie

Bei Kenntnis der G(x_B) - Kurve erhält man μ_A und μ_B durch Extrapolation der Tangente an der Stelle x_B .

Technische Universität Wien

Chemische Potentiale: numerisch

$$G(x_A, x_B) = n \cdot (x_A \cdot G_A + x_B \cdot G_B) + n \cdot R \cdot T \cdot (x_A \cdot \ln x_A + x_B \cdot \ln x_B) =$$

= $n \cdot [x_A \cdot (G_A + R \cdot T \cdot \ln x_A) + x_B \cdot (G_B + R \cdot T \cdot \ln x_B)] =$
= $n \cdot (\mu_A \cdot x_A + \mu_B \cdot x_B)$

Technische Universität Wien

Zusammenfassung ideale Mischung

- Die ideale Mischung beschreibt Systeme, bei denen die Wechselwirkungen zwischen den Komponenten gleichartig sind.
- Die Freie Enthalpie solcher Systeme wird im Wesentlichen durch die Mischungsentropie bestimmt.
- Die chemischen Potentiale der Einzelkomponenten variieren kontinuierlich über den gesamten Zusammensetzungsbereich.

Ideale Mischung: Vergleich zweier Phasen

Viele Grundzüge der Verhaltens von Zweistoffsystemen sind mittels der idealen Mischung darstellbar.

Beispiel: Gleichgewichtsbeziehungen von zwei Phasen α uns S (α - feste Phase; S - Schmelze)

Technische Universität Wien

T₁: Schmelze stabil

Bei T₁ (höchste Temperatur) gilt für alle x_B G_S<G_α.
→ Schmelze Stabil

hohe Temperatur: die flüssige Phase hat eine höhere Energie (Enthalpie), aber auch höhere Entropie als eine feste Phase,

 $H_s > H_α$; $S_s > S_α$. Der Entropieterm überwiegt in G → Schmelze stabil

Technische Universität Wien

T₅: Feste Phase α stabil

Bei T₅ (geringste Temperatur) gilt für alle $x_B G_{\alpha} < G_S$. \rightarrow Festkörper Stabil

geringe Temperatur: für G = H - T·S ist T·S klein, der H - Beitrag überwiegt. $H_{\alpha} < H_{S}; G_{\alpha} < G_{S}$ Der Enthalpieterm überwiegt in G \rightarrow Festkörper stabil

Technische Universität Wien

Materialwissenschaften, Kapitel 3

T₂: Erstarrungspunkt von A

Bei T₂ gilt für x_B=0 G_{α}=G_S, sonst immer noch G_S<G_{α}. → Reinmaterial A erstarrt

Bei T = T_2 erstarrt das Reinmaterial A. Mischungen aus A und B ($x_B \neq 0$) befinden sich immer noch im flüssigen Zustand.

Technische Universität Wien

Institut für Festkörperphysik

Materialwissenschaften, Kapitel 3

T₄: Erstarrungspunkt von B

Bei T₄ gilt auch für x_B=1 G_{α}=G_S, und sonst G_{α}>G_S. → Reinmaterial B erstarrt

Bei T = T₄ erstarrt das Reinmaterial B. Mischungen aus A und B ($x_B \neq 0$) befinden sich alle im festen Zustand.

Technische Universität Wien

T₃: Koexistenzgebiet fest/flüssig

Bei T₃ schneiden sich die Kurven von G_{α}und G_S. → Koexistenz von fester und flüssiger Phase.

Bei T = T₃ ist die thermodynamisch günstigste Variante die Koexistenz einer Mischung aus festem Material der Zusammensetzung x_{α} und Schmelze der Zusammensetzung x_{S} . Es gilt $x_{\alpha} \neq x_{B} \neq x_{S}$.

Technische Universität Wien

Doppeltangentenregel

Liegt x_B im Bereich zwischen x_{α} und x_S , so koexistieren die feste Phase α und die flüssige Phase S.

Die Zusammensetzung der festen Phase, x_{α} und der Schmelze, x_{s} ist durch die gemeinsame Tangente der feien Enthalpie-Kurven gegeben. Dann sind die chemischen Potentiale von A und B in den beiden Phasen α und S gleich. In der Gibbs'schen Phasenregel gilt hier p = 2.

Technische Universität Wien

Hebelbeziehung

Die Anteile der festen Phase α und der flüsigen Phase S, m_{α} und m_s ergeben sich aus der Forderung nach der Erhaltung der vorgegebenen Zusammensetzung x_B.

Technische Universität Wien

Phasendiagramm der idealen Mischung

Die Abhängigkeit der freien Enthalpien von α und S von der Temperatur T lässt sich in einem Phasendiagramm des Zweistoffsystems A und B zusammenfassen.

Technische Universität Wien

Phasendiagramm und Hebelbeziehung

Die Konzentration der Schmelze, x_s , kann größer oder kleiner sein als die der festen Phase α , x_{α} , je nachdem ob die Liquiduslinie und die Soliduslinie mit steigender Konzentration an- oder absteigen. Dementsprechend ändern sich auch die Mengenverhältnisse, m_s und m_{α} .

Konode: Linie konstanter Temperatur, deren Schnittpunkte mit Liquidusline und Soliduslinie x_s und x_α bestimmen.

Technische Universität Wien

Hebelbeziehung: generelle Aussagen

- Diese Beziehung gilt f
 ür alle Zweiphasengebiete, also auch f
 ür das Mengenverh
 ältnis von zwei festen Phasen.
- Je dichter eine Konzentration an der Liquiduslinie ist, desto größer ist der Anteil der flüssigen Phase im Gleichgewicht. Das Entsprechende gilt für eine Konzentration nahe der Soliduslinie.
- Die Bezeichnung "Hebelgesetz" ist aus der Mechanik entliehen:

Ein großer Anteil der Phase mit einem kurzen Hebel steht im Gleichgewicht (oder hält sich die Waage) mit einem kleinen Anteil der Phasean einem langen Hebel.

Technische Universität Wien

Verlauf der Kristallisation I

Abkühlung einer flüssigen Phase mit Zusammensetzung x_B:

Die Zusammensetzungen und Mengenverhältnisse von fester Phase α und Schmelze S vaiieren mit sinkender Temperatur. Beim Überschreiten der Soliduslinie hat der Festkörper wiederum die Zusammensetzung x_B.

Ein fixer Erstarrungspunkt (Schmelzpunkt) existiert nicht, nur ein Erstarrungsbereich (Schmelzbereich).

Technische Universität Wien

Verlauf der Kristallisation II

- Um das Gleichgewicht zu bewahren, muss sich die Zusammensetzung der zuvor entstandenen Kristallite kontinuierlich entlang der Soliduslinie ändern.
- Es muss ein ständiger Stoffaustausch zwischen den bereits ausgeschiedenen Kristalliten und der flüssigen Phase stattfinden.
- Problem: der zur Einstellung des Gleichgewichts erforderliche Stoffaustausch mit der bereits kristallisierten Phase findet aus kinetischen Gründen nicht, oder nur unvollständig, statt.
 - → Seigerung: Ausbildung von festen Phasen mit lokal unterschiedlichen Zusammensetzungen.

Zusammenfassung Phasendiagramme

- Phasendiagramme können aus der Temperaturabhängigkeit der freien Enthalpiekurven für verschiedene Aggregatzustände extrahiert werden.
- Für die ideale Mischung zweier Materialien gibt es immer einen Koexistenzbereich zwischen fester und flüssiger Phase. Ein exakter Schmelzpunkt existiert nicht, nur ein Schmelzbereich
- Im Koexistenzbereich liefert die Doppeltangentenregel die Zusammensetzungen von Schmelze und Festkörper, die Hebelbeziehung deren Mengenverhältnis.

Materialwissenschaften, Kapitel 3

Die reale Mischung: Allgemeines

? Von hier **Nach hier** 50 40 60 70 30 70 80 Hours. 3000 Cu-Ti 8 Т 1900 1800 S Liquiduslinie 1700 1500 均額 **α+S** Caulia. ŧ. Co.H 1400 i stalini und in the (B-ti) 1300 12108 2118 Soliduslinie 1200 α TRAFT viae. 1011 1125 10010 S (m-11) 0 1048 X_B B 100 Α 输

Technische Universität Wien

Institut für Festkörperphysik

50 - \$1 70

- 83

42

20 1.30

10

thin,

93 of % Ti

Die reale Mischung: Ausgangspunkte

- Es werden Wechselwirkungen zwischen den Komponenten zugelassen, d.h. $\Delta H_{M} \neq 0$.
 - → exotherme/endotherme Effekte durch Reaktionen beim Mischen gemäß:

$$\Delta G_{M} = \underbrace{\Delta H_{M}}_{\Delta U_{M}} - T \cdot \Delta S_{M}$$

- Prinzipiell ist auch ein zusätzlicher Beitrag zur Mischungsentropie ΔS_M möglich.
- Meist liegen Mischungen vor, bei denen die Komponenten ungeordnet und statisch verteilt sind. Bei diesen entspricht die Mischungsentropie jener der idealen Lösung.
 - → reguläre Mischung

Die reale Mischung: Mischungsenthalpie

Für die reale Mischung gilt:

 $\Delta H_{\rm M} \neq 0$

Die Mischungsenthalpie resultiert aus den Wechselwirkungen zwischen den Komponenten und ist damit proportional zu deren Konzentrationen:

$$\Delta H_{M} \propto x_{A} \cdot x_{B}$$

$$\Delta H_{M}(x_{B}) = \varepsilon(x_{B}) \cdot x_{B} \cdot (1 - x_{B})$$

 $\epsilon(\mathbf{x}_{B})$: Konstante, welche durch die Wechselwirkungsenergien zwischen den einzelnen Komponenten bestimmt ist; ϵ ist konzentrationsabhängig.

Technische Universität Wien

Die reale Mischung: freie Enthalpie

Mögliche Kurve der freien Enthalpie, G(x), in der festen Phase:

Technische Universität Wien

Die reale Mischung: Phasendiagramme

Die Konstruktion des Phasendiagrammes erfolgt völlig analog zur idealen Mischung:

Technische Universität Wien

Typisches eutektisches Phasendiagramm

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Diffusion

Der Festkörper als dynamisches System:

Kristallographisches Bild: Fixe Gitterpositionen Dynamisches Bild: Atome können um Ruhelage schwingen

Technische Universität Wien

Abschätzung der Schwingungsfrequenz I

Technische Universität Wien

Abschätzung der Schwingungsfrequenz II

$$E(x) = \frac{C \cdot (x - x_0)^2}{2}$$
$$\omega_0 = \sqrt{\frac{C}{m}} = \sqrt{\frac{2 \cdot E_B}{m \cdot (x - x_0)^2}}$$
$$\nu_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \cdot \sqrt{\frac{2 \cdot E_B}{m \cdot (x - x_0)^2}}$$

Numerische Werte: $m = 10^{-25}$ kg, d. i. ca. 60 AME $a = x - x_0 = 3$ Å $= 3 \cdot 10^{-10}$ m $E_B = 12$ eV $= 12 \cdot 1.602 \cdot 10^{-19}$ J

$$v_0 = \sqrt{\frac{2 \cdot 12 \cdot 1.602 \cdot 10^{-19} [J]}{10^{-25} [kg] \cdot (3 \cdot 10^{-10} [m])^2}} = \underline{3.28 \cdot 10^{12} Hz}$$

Technische Universität Wien

Bedeutung der Schwingungsfrequenz

$$v_0 = 10^{12} - 10^{13} \text{ Hz}$$

- Mit der Frequenz v_0 schwingen die Atome im Festkörper um ihre Ruhelage.
- v_0 wird auch als "Phononenfrequenz" bezeichnet.
- Sie ist die "Taktfrequenz" f
 ür alle dynamischen Vorg
 änge im Festk
 örper.
- Die Atombewegung ist eine resultiert aus der im Festkörper gespeicherten thermischen Energie.
Atomistische Diffusionsmechanismen

Wie kann ein Atom seine Gleichgewichtslage verlassen?

- Festkörperschwingungen ("Phononen") überlagern sich
- Zufällige konstruktive Überlagerung kann Atome sehr weit aus der Gleichgewichtsposition auslenken.
- Das ausgelenkte Atom kann eine neue Gleichgewichtsposition einnehmen

Wie geht das im Detail vor sich?

Technische Universität Wien

Austauschmechanismus

Dieser Selbstdiffusionsmechanismus ist extrem unwahrscheinlich, da er viele undefinierte Zwischenzustände ("transiente" Zustände) beinhaltet.

Technische Universität Wien

Fehlstellendiffusion

Wahrscheinlichster Diffusionsmechanismus für Reinmaterialien bzw. Mischsysteme mit ähnlichen Atomradien. Mit dem Fluss der Atome ist ein gleich grosser, entgegengesetzter Fehlstellenfluss verbunden.

Technische Universität Wien

Interstitielle Diffusion

Wahrscheinlichster Diffusionsmechanismus für Mischsysteme mit stark unterschiedlichen Atomradien (z. B. C in Fe). Es gibt keinen entgegengesetzten Fehlstellenfluss.

Technische Universität Wien

Zusammenfassung Diffusionsmechanismen

- Fehlstellenunterstützte und Interstitielle Platzwechselvorgänge sind die zwei wesentlichsten Diffusionsmechanismen in kristallinen Festkörpern.
- Diffusion in idealen, fehlstellenfreien Festkörpern ist sehr unwahrscheinlich.
- Gebiete mit hohem Materialtransport werden daher auch immer eine hohe Konzentration an Fehlstellen aufweisen. Das gilt insbesondere Für Phasengrenzflächen, Korngrenzen und Oberflächen.

Thermisch aktivierte Prozesse I

Energetische Situation eines Atoms beim Platzwechselvorgang am Beispiel der fehlstellenunterstützten Diffusion:

Technische Universität Wien

Thermisch aktivierte Prozesse II

- A: alte Gleichgewichtsposition
- B: energetisch ungünstiger
 - Zwischenzustand (transition state)
- C: neue Gleichgewichtsposition in der ehemaligen Fehlstelle

Über den Weg entlang der x-Richtung wird die Gesamtenergie der Festkörpers aufgetragen. Es werden energetisch günstigere und ungünstigere Konfigurationen eingenommen. Den energetisch ungünstigsten Zustand (Punkt B) bezeichnet man als die "Aktivierungsbarriere". Diese muss beim Platzwechselvorgang überwunden werden.

Thermisch aktivierte Prozesse III

Allgemeinste Situation:

Anfangszustand: E_A Übergangszustand: E_B Endzustand: E_C

Aktivierungsenergien: Übergang A→C: E_{AC} Übergang C→A: E_{CA}

$$E_{A} \neq E_{C}$$
$$E_{AC} \neq E_{CA}$$

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Diffusionsfrequenz

Einfache Aktivierungsbarriere E_A mit äquivalentem Anfangszustand A und Endzustand C:

Diffusionsfrequenz v_{Diff} :

$$v_{\text{Diff}} = v_0 \cdot e^{-\frac{E_A}{k_B T}}$$

k_B[J/K] ... BoltzmannkonstanteT [K] ... Absolute Temperatur

Technische Universität Wien

Grössenordnung der Diffusionsfrequenz

$$v_{\text{Diff}} = v_0 \cdot e^{-\frac{E_A}{k_B T}}$$

Numerische Werte:

T = 300 K (27°C) → v_{Diff} = 1.5 · 10⁻⁴ Hz T = 1000 K (727°C) → v_{Diff} = 9 · 10⁷ Hz

Eine Temperaturänderung von nicht einmal einer Grössenordnung kann die Diffusionsfrequenz um 11(!) Grössenordnungen verschieben!

Technische Universität Wien

Materialtransport durch Diffusion

Die Richtungen der einzelnen Platzwechselvorgänge sind in der Regel nicht miteinander korreliert. Aufeinanderfolgende Platzwechselvorgänge bilden einen sogenannten Random Walk:

Random Walk auf einem quadratischem Gitter

Totaler zurückgelegter Weg L:

 $L = N \cdot a$

N ... Zahl der Platzwechselvorgänge ("Sprungzahl") a ... Gitterkonstante

Allerdings können Sprünge in Drei Raumrichtungen vorwärts rückwärts erfolgen!

Technische Universität Wien

Random Walk I

N ... Sprungzahl a ... Gitterkonstante Die Länge eines Sprunges beträgt Immer ± a Realer zurückgelegter Weg, I

Pythagoras:

$$^{2} = \left(\sum_{i=1}^{N_{x}} \Delta x_{i}\right)^{2} + \left(\sum_{i=1}^{N_{y}} \Delta y_{i}\right)^{2} + \left(\sum_{i=1}^{N_{z}} \Delta z_{i}\right)^{2}$$

Bildung der Quadrate:

$$\mathbf{I}^{2} = \left(\sum_{i=1}^{N_{x}} \Delta \mathbf{x}_{i} \cdot \sum_{j=1}^{N_{x}} \Delta \mathbf{x}_{j}\right) + \left(\sum_{i=1}^{N_{y}} \Delta \mathbf{y}_{i} \cdot \sum_{j=1}^{N_{y}} \Delta \mathbf{y}_{j}\right) + \left(\sum_{i=1}^{N_{z}} \Delta \mathbf{z}_{i} \cdot \sum_{j=1}^{N_{z}} \Delta \mathbf{z}_{j}\right)$$

Bildung des Erwartungswertes:

$$\left< l^2 \right> = \left< \sum_{i=1}^{N_x} \Delta x_i^2 \right> + \left< \sum_{i=1}^{N_y} \Delta y_i^2 \right> + \left< \sum_{i=1}^{N_z} \Delta z_i^2 \right>$$

da sich gemischte Glieder aufgrund der Gleichverteilung der Sprungrichtungen aufheben.

Institut für Festkörperphysik

Technische Universität Wien

Random Walk II

Realer zurückgelegter Weg, I

$$\left\langle l^{2} \right\rangle = \left\langle \sum_{i=1}^{N_{x}} \Delta x_{i}^{2} \right\rangle + \left\langle \sum_{i=1}^{N_{y}} \Delta y_{i}^{2} \right\rangle + \left\langle \sum_{i=1}^{N_{z}} \Delta z_{i}^{2} \right\rangle = \left(N_{x} + N_{y} + N_{z} \right) \cdot a^{2} = N \cdot a^{2}$$

Nx, Ny, Nz...Springzahlen in x, y, z - Richtung
totale SprungzahlN...totale Sprungzahla...GitterkonstanteDie Länge eines Sprunges beträgt immer ± a

Wichtige Beziehungen für I

Technische Universität Wien

Diffusionskoeffizient I

Mittlerer quadratischer Weg: Sprungzahl in 1 Sekunde:

$$\langle 1^2 \rangle = \mathbf{N} \cdot \mathbf{a}^2$$
 $\mathbf{N}_{in1s} = \mathbf{v}_{Diff} = \mathbf{v}_0 \cdot \mathbf{e}^{-\overline{\mathbf{k}_B T}}$

Pro Sekunde zurückgelegter mittlerer quadratischer Weg :

$$\left< l^2 \right>_{in1s} = v_0 \cdot a^2 \cdot e^{-\frac{E_A}{k_B T}}$$

Das ist gleichzeitig der Einteilchendiffusionskoeffizient :

$$D = v_0 \cdot a^2 \cdot e^{\frac{E_A}{k_B T}} [m^2 s^{-1}]$$

Technische Universität Wien

Institut für Festkörperphysik

EA

Materialwissenschaften, Kapitel 3

Diffusionskoeffizient II

Mit

$$\langle l^2 \rangle_{in1s} = v_0 \cdot a^2 \cdot e^{-\frac{E_A}{k_B T}} = D$$

gilt die sogenannte "Einsteinbeziehung":

 τ ... Diffusionszeit

Technische Universität Wien

Zahlenbeispiele

$$1 \cong \sqrt{D \cdot \tau} \qquad \begin{array}{l} \tau &= 1 \text{ s} \\ E_A &= 1 \text{ eV} \\ a &= 3 \text{ Å} \\ D = v_0 \cdot a^2 \cdot e^{-\frac{E_A}{k_B T}} & v_0 &= 10^{13} \text{ Hz} \\ k_B &= 1.38 \cdot 10^{-23} \text{ J/K} \end{array}$$

T = 300 K (27°C) → I = 3.8 ·10⁻¹² m \cong ortsfest T = 1000 K (727°C) → I = 2.8 ·10⁻⁶ m \cong 3 µm

Technische Universität Wien

Zusammenfassung: atomistische Modelle

- Platzwechselvorgänge sind thermisch aktivierte Prozesse.
- Aufeinanderfolgende Platzwechselvorgänge bilden einen unkorrelierten Random Walk.
- Die effektiv durch den Random Walk zurückgelegte Wegstrecke eines Einzelteilchens kann mit dem Diffusionskoeffizienten und mittels der Einsteinbeziehung berechnet werden.
- Die effektiv zurückgelegte Wegstrecke ist aufgrund der thermischen Aktivierung extrem temperaturabhängig.

Technische Universität Wien

Diffusion in kontinuierlichen Systemen

Die Kontinuumstheorie der Diffusion beschreibt den Ausgleich von Konzentrationsgradienten in vollständig mischbaren Materialkombinationen.

1. Fick'sches Gesetz:

$$\vec{j}(\vec{r},t) = -D \cdot \vec{\nabla} c(\vec{r},t)$$

- j... Materialstrom
- D... Diffusionskoeffizient
- c... Konzentrationsprofil

Der Diffusionskoeffizient ist die zentrale Größe, welche mikroskopische (atomistische) Diffusionsmodelle mit der Kontinuumbeschreibung von Diffusionsvorgängen verbindet.

Technische Universität Wien

Kontinuitätsgleichung

Korreliert die Änderung der Konzentration in einem Volumen mit den Materialflüssen, welche durch die Grenzflächen des Volumens treten:

Eindimensionaler Fall (z. B. unendlich langer Stab mit Einheitsquerschnitt):

Akkumulationsfreier Fluss durch V

$$\frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x}$$

Kombinieren mit 1. Fick'schem Gesetz

$$\mathbf{j} = -\mathbf{D} \cdot \frac{\partial \mathbf{c}}{\partial \mathbf{x}}$$

Technische Universität Wien

Diffusionsgleichung

Kontinuitätsgleichung

$$\frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x}$$

Eindimensionale Diffusionsgleichung

+

Dreidimensionale Diffusionsgleichung

Technische Universität Wien

Einsteinbeziehung: Lösung der Diffusionsgleichung unter der Anfangsbedingung eines δ-förmigen Konzentrationsprofiles:

Eindimensionaler fall:

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

Anfangsbedingung: $c(x,t=0) = Q \cdot \delta(x)$

$$c(x,t) = \frac{Q}{2 \cdot \sqrt{\pi Dt}} \cdot \exp\left[-\frac{x^2}{4Dt}\right]$$
$$\int_{-\infty}^{\infty} c(x,t) \cdot dx = Q \text{ auch für } t \to 0$$

Lösung:

Technische Universität Wien

Einsteinbeziehung: graphische Darstellung der Lösungskurven:

Technische Universität Wien

Einsteinbeziehung: Übergang zur Einteilchendarstellung:

Interpretation des Konzentrationsprofiles c(x,t) als Wahrscheinlickeitsprofil p(x,t):

$$p(x,t) \cdot dx = \frac{\frac{Q}{2 \cdot \sqrt{\pi Dt}} \cdot \exp\left[-\frac{x^2}{4Dt}\right] \cdot dx}{\int_{-\infty}^{\infty} \frac{Q}{2 \cdot \sqrt{\pi Dt}} \cdot \exp\left[-\frac{x^2}{4Dt}\right] \cdot dx}$$

p(x,t) ·dx ist die Wahrscheinlichkeit, ein Teilchen zum Zeitpunkt t in einem Ortsintervall [x, x+dx] vorzufinden.

Technische Universität Wien

Einsteinbeziehung: Berechnung der mittleren quadratischen Wegstrecke:

$$\left\langle \Delta x^2 \right\rangle = \int_{-\infty}^{\infty} x^2 \cdot p(x,t) \cdot dx = 2Dt$$

Das entspricht im Wesentlichen (bis auf den Faktor 2) der Beziehung

$$\left< l^2 \right> = \mathbf{D} \cdot \boldsymbol{\tau}$$

Für die beim Random Walk von einem Einzelteilchen Zurückgelegte mittlere quadratische Wegstrecke.

Technische Universität Wien

Lösungen der Diffusionsgleichung I Einsteinbeziehung: Zusammenfassung:

- Die Diffusionsgleichung kann f
 ür ein δ-f
 örmiges anf
 ängliches Konzentrationsprofil gel
 öst werden.
- Auffassen dieser Lösung als Wahrscheinlichkeitsverteilung erlaubt die Berechnung eines mittleren quadrates der zurückgelegten Wegstrecke.
- Dieses stimmt mit der Lösung für das diffundierende Einzelteilchen überein.
- Damit kann die kontinuierliche Diffusionsgleichung über den Diffusionskoeffizienten an atomistische Modelle gekoppelt werden.

Diffusionspaar: Anfangsbedingungen:

Material A $x < 0:c_A(x,t=0) = 1$ $x = 0:c_A(x,t=0) = 0.5$ $x > 0:c_A(x,t=0) = 0$ Material B $x < 0:c_B(x,t=0) = 0$ $x = 0:c_B(x,t=0) = 0.5$ $x > 0:c_B(x,t=0) = 1$

Technische Universität Wien

Diffusionspaar: Annahmen und Lösung:

Annahme I: A und B sind vollständig Mischbar Annahme II: Diffusionskoeffizient $A \rightarrow B =$ Diffusionskoeffizient $B \rightarrow A$

$$c_{A}(x,t) = \frac{1}{2} \cdot \left[1 - \operatorname{erf}\left(\frac{x}{2 \cdot \sqrt{D \cdot t}}\right) \right]$$
$$c_{B}(x,t) = 1 - c_{A}(x,t)$$

Gauss'sche Fehlerfunktion:

$$\operatorname{erf}(\xi) = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{\xi} \exp[\eta^{2}] \cdot d\eta$$
$$\operatorname{erf}(-\xi) = -\operatorname{erf}(\xi)$$
$$\operatorname{erf}(\infty) = 1$$

Technische Universität Wien

Diffusionspaar: Graphische Darstellung der Lösung:

Technische Universität Wien

Diffusionspaar: Schematische Darstellung:

Technische Universität Wien

Diffusionspaar: Zusammenfassung:

- Die Diffusionsgleichung kann f
 ür ein stufenf
 örmiges anf
 ängliches Konzentrationsprofil gel
 öst werden.
- Dieses sogenannte Diffusionspaar wird bei vollständiger Mischbarkeit von A und B sowie gleichen Diffusionskoeffizienten von A und B nach unendlich langer Zeit vollständig in eine Mischung mit c_A=c_B=0.5 umgesetzt.
- Die Mischzone breitet sich mit der Wurzel der Interdiffusionszeit aus (d²∝t). Dieser funktionale Zusammenhang wird als "parabolisches Gesetz" bezeichnet.

Terminale Phasen:

Ausgangspunkt: Bildung eines Diffusionspaares aus zwei Materialien A und B mit begrenzten Gleichgewichtslöslichkeiten $c_{\alpha\beta}^{eq}$ und $c_{\beta\alpha}^{eq}$. Zwischen $c_{\alpha\beta}^{eq}$ und $c_{\beta\alpha}^{eq}$ existiert ein Mischkristallbereich aus den begrenzenden Phasen α und β .

Technische Universität Wien

Terminale Phasen:

Das Diffusionspaar wird nach unendlich langer Intert=0 diffusionszeit in zwei wohlabgegrenzte Bereiche der Konzentration $c_{\alpha\beta}^{eq}$ und $t=t_1 c_{\beta\alpha}^{eq}$ umgesetzt. Für die Breite der Interdiffusionszone, d, gilt immer noch das parabolische t=t₂ Gesetz, d²∝t. $t=\infty$ $c_{\alpha\beta}^{eq}$ bzw. $c_{\beta\alpha}^{eq}$ werden nicht überschritten, da Kristallite mit höheren Konzentrationen instabil sind.

Technische Universität Wien

Intermediäre Phase:

Ausgangspunkt: Zwischen den Phasen α und β mit den Gleichgewichtslöslichkeiten $c_{\alpha\beta}^{eq}$ und $c_{\beta\alpha}^{eq}$ existient eine intermediäre Phase y mit einer geringeren freien Enthalpie G als der Mischkristallbereich α + β . Im Bereich der Grenzfläche zwischen A und B des **Diffusionspaares wird das** thermodynamisch günstige γ gebildet.

Technische Universität Wien

Intermediäre Phase:

Das Diffusionspaar wird sukzessive in die Intermediäre Phase γ umgesetzt. Die t=t₁ ehemalige Grenzfläche zwischen A un B verschwindet vollständig. t=t₂ Für die Dicke der γ -Phase, $\xi(t)$ gilt allerdings nicht mehr das reine parabolische Wachstumsgesetz.

Technische Universität Wien

Intermediäre Phase: Abhängigkeit der Dicke ξ der Phase γ von der Zeit t:

Bereich 1: Reaktionskontrolliertes Wachstum Bereich 2: Diffusionskontrolliertes Wachstum

Technische Universität Wien

Intermediäre Phase: Begriffsdefinitionen:

- Reaktionskontrolliertes Wachstum: Die Wachstumsgeschwindigkeit einer Phase γ wird durch die Geschwindigkeit der chemischen Reaktion nA+mB → γ an der Phasengrenzfläche bestimmt.
- Diffusionskontrolliertes Wachstum: Die Wachstumsgeschwindigkeit einer Phase γ wird durch den Nachschub der Reaktanten A und B zur Phasengrenzfläche bestimmt. Erfolgt der Materialtransport durch Diffusion, so gilt das parabolische Wachstumsgesetz.
Zusammenfassung: Diffusion und Phasen

- Existieren begrenzende Phasen α und β, so führt Interdiffusion zur Umsetzung der Ausgangsmaterialien des Diffusionspaares, A und B, in α und β. Die ehemalige Grenzfläche zwischen A und B bleibt erhalten. Die Interdiffusionszone breitet sich gemäss dem parabolischen Wachstumsgesetz aus.
- Existiert eine intermediäre Phase, γ, zwischen α und β, so wird das Diffusionspaar in γ umgesetzt. Die ehemalige Grenzfläche zwischen den Ausgangsstoffen A und B verschwindet. Für das Wachstum von γ gibt es einen Übergang zwischen Reaktions- und Diffusionskontrolle.