Entmischungsvorgänge

Die Methode zur Präparation eines Mischsystems kann dazu führen, dass sich das Material nicht in seiner Gleichgewichtskonfiguration befindet.

Beispiel: vollkommen unmischbare Materialkombination

Das Material wird dazu neigen, von einer zufälligen Mischung in wohlabgegrenzte Bereiche aus reinem A bzw. B zu zerfallen

Technische Universität Wien

Anfangs- und Endzustand

Thermisch aktivierte Diffusionsvorgänge tragen dazu bei, das vorerst instabile Material in eine stabile Endkonfiguration überzuführen.

Technische Universität Wien

Entmischungsmechanismen

Thermisch aktivierte Diffusionsvorgänge führen allerdings nicht nur zu Konfigurationen höherer Stabilität:

Durch Diffusion können Zustände geringfügig erhöhter Stabilität auch wieder abgebaut werden!

Technische Universität Wien

Homogene Nukleation I

Ausscheidungen müssen eine Mindestgröße haben, um stabil zu sein! Eine solche Ausscheidung wird als kritischer Nukleus (kritischer Keim) bezeichnet.

Die Größe des kritischen Keimes kann mittels thermodynamischer Überlegungen ermittelt werden. Eine wesentliche Rolle spielt dabei das Verhältnis von Oberfläche zu Volumen für eine Ausscheidung wachsender Größe.

Technische Universität Wien

Homogene Nukleation II

Betrachte verdünnte Lösung mit n Einzelteilchen im Gleichgewicht mit einer Ausscheidung mit Radius r und Volumen V (V = $N \cdot V_{Teilchen}$).

Radius r Volumen V

Technische Universität Wien

Tröpfchenmodell I

Im Tröpfchenmodell wird davon ausgegangen, dass n groß ist und r und V als kontinuierliche Größen betrachtet werden können.

Unterschied der freien Enthalpie zwischen verdünnter Lösung und Ausscheidung aus N Teilchen, ∆G_N:

$$\Delta G_{\rm N} = \frac{4}{3} \pi \cdot r^3 \cdot (G_{\rm Vol} - G_{\rm Sol}) + 4\pi \cdot r^2 \cdot \sigma_{\rm AB}$$

G_{Vol} ... Freie Volumsenthalpie der Ausscheidung G_{Sol} ... Freie Volumsenthalpie der Lösung

σ_{AB} ... Oberflächenenergie zwischen Matrix (A) und Ausscheidung (B)

G_{Vol} – G_{Sol} < 0 wegen Bindungsabsättigung in B

Technische Universität Wien

Tröpfchenmodell II

Graphische Darstellung von ΔG_n :

$$r^* = -\frac{2 \cdot \sigma_{AB}}{(G_{Vol} - G_{Sol})}$$

kritischer Keimradius

$$\Delta G_{N}^{*} = \frac{16 \cdot \pi \cdot \sigma_{AB}^{3}}{3 \cdot (G_{Vol} - G_{Sol})}$$

Aktivierungsbarriere zur Keimbildung

Technische Universität Wien

Technische Universität Wien

Bedeutung von ΔG_N^*

Keimbildung als thermisch aktivierter Prozess:

$$N_{N} = N_{T} \cdot e^{-\frac{\Delta G_{N}}{k_{B}T}}$$

N_T ... Totalzahl der Einzelteilchen in Lösung N_N ... Anzahl der Ausscheidungen mit N Teilchen

 ΔG_N^* stellt eine (willkürliche) Grenze zwischen stabilen und instabilen Aggregaten dar. Mathematisch liegt das Maximum der Enthalpiekurve bei ΔG_N^* , Ausscheidungen dieser Grösse sind daher besonders instabil. Weitere Teilchenzufuhr senkt allerdings ΔG_N und führt daher zu stabileren Ausscheidungen.

Technische Universität Wien

Interpretation von Ausscheidungszahlen, N_N

$$N_{N} = N_{T} \cdot e^{-\frac{\Delta G_{N}}{k_{B}T}}$$

Fallunterscheidungen:

 $\Delta G_N > 0$: Instabile Ausscheidungen

 $T \uparrow \Rightarrow N_N \uparrow$: Steigende Temperatur bewirkt höhere Diffusion. Die Wahrscheinlichkeit zur Bildung kleiner, instabiler Aggregate steigt. Diese können allerdings auch rasch wieder zerfallen.

$\Delta G_n < 0$: Stabile Ausscheidungen

 $T \uparrow \Rightarrow N_N \psi$: Aufgrund der leichteren Zerfalles unterkritischer Ausscheidungen mit steigender Temperatur wird die Bildung stabiler Ausscheidungen erschwert.

Zusammenfassung homogene Nukleation

- Ausscheidungen unterhalb einer Mindestgröße, welche durch den kritischen Keimradius, r*, gegeben ist, sind instabil.
- Ausscheidungsbildung ist ein thermisch aktivierter Prozess. Die Zahl stabiler Ausscheidungen in einer Matrix ist daher temperaturabhängig und sinkt mit steigender Temperatur.
- Homogene Nukleation, d. h. der Übergang von gelösten Teilchen zu Ausscheidungen wird selten beobachtet, da r* und ∆G_N* meist groß sind.

Heterogene Nukleation

Die homogene Ausscheidungsbildung durch zufälliges Zusammentreffen gelöster Teilchen ist für dreidimensionale Ausscheidungen extrem selten, da r* und ΔG_N^* meist relativ groß sind.

Ausscheidungsbildung in Festkörpern erfolgt meist an Störstellen wie Korngrenzen, Verunreinigungen oder Defektansammlungen. Dieser Vorgang wird als heterogene Nukleation bezeichnet.

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Heterogene Nukleation

Material A: Matrix Material B: Ausscheidung

Die Ausscheidung ist nicht mehr kugelförmig, sondern benetzt die Korngrenze, da diese eine Grenzflächenenergie σ_{AA} aufweist. Der Benetzungswinkel ist mit θ bezeichnet.

Technische Universität Wien

Heterogene Nukleation und Benetzung

Die Benetzung der Korngrenze durch das Ausscheidungsmaterial B führt zu einer Verringerung des Maximums der Enthalpiekurve, ΔG_N^* :

$$\Delta G_{N}^{*} = \frac{16 \cdot \pi \cdot \sigma_{AB}^{3}}{3 \cdot (G_{Vol} - G_{Sol})} \cdot \frac{2 - 3 \cdot \cos \theta + \cos^{3} \theta}{8}$$

θ... Benetzungswinkel

Der kritische Keimradius, r* bleibt zwar gleich, repräsentiert hier aber die lineare Ausdehnung der Ausscheidung entlang der Korngrenze. Weiters gilt $\Delta G_N^* \rightarrow 0$ für $\theta \rightarrow 0$. Bei vollständiger Benetzbarkeit verschwindet die Keimbildungsbarriere.

Technische Universität Wien

Zusammenfassung heterogene Nukleation

- Störstellen in Festkörpern katalysieren den Nukleationsprozess
- Durch die Benetzung des Ausscheidungsbildenden Materiales an den Störstellen kommt es zu einer Reduktion der Keimbildungsbarriere ∆G_N*.
- Der kritische Keimradius, r*, bleibt unverändert, repräsentiert aber nur mehr die lineare Ausdehnung des Keimes entlang der Störstelle.

Nukleation: Experimentelle Befunde I

Homogene und heterogene Nukleation können anhand des zeitlichen Verhaltens der Dichte stabiler Ausscheidungen in einem Material, n_{Aus}, unterschieden werden:

Homogene Nukleation: Zunächst bilden sich Ausscheidungen mit konstanter Rate. Sättigungsdichte wird erst spät erreicht.

Heterogene Nukleation:

Ausscheidungsdichte ist von anfang an aufgrund des erniedrigten ΔG_N konstant.

Technische Universität Wien

Nukleation: Experimentelle Befunde II

Die Abhängigkeit von n_{Aus} von der Temperatur T ermöglicht einen Rückschluss auf ΔG_N^* :

Da jede stabile Ausscheidung das kritische Keimstadium durchlaufen haben muss, liefert die Steigung der Gerade im rechten Diagramm den Wert von ΔG_N^* . Das Auftragen des (natürlichen) Logarithmus einer Masszahl gegen 1/T wird als "Arrhenius" - Plot bezeichnet.

Technische Universität Wien

Rekristallisation

Rekristallisation ist die vollständige Umsetzung einer amorphen in eine kristalline Phase. Sie entspricht der Umsetzung eines homogenen Gemisches von Anfangssubstanzen in ein stöchiometrisches Endprodukt.

Rekristallisation umfasst die Nukleation der kristallinen Phase, Kristallitwachstum und das Zusammenwachsen der Kristallite. Sie kann mittels der sogenannten "Johnson-Mehl-Avrami" Kinetik beschrieben werden:

$$c_{crys} = 1 - \exp\left[-\left(k * \cdot T\right)^{\nu}\right]$$

c_{crvs} ... Anteil der kristallinen Phase

k* ... Repräsentativ für Umwandlungsgeschwindigkeit

Repräsentativ für Details des Nukleations- und Wachstumsprozesses der kristallinen Phase

Technische Universität Wien

ν....

Materialwissenschaften, Kapitel 3

Johnson-Mehl-Avrami Kinetik

Zeit

Durch den Parameter v werden verschiedene Nukleations- und Wachstumsszenarien wie z. B. homogene/hetrogene Nukleation bzw. diffusions- oder reaktionskontrolliertes Wachstum realisiert.

Technische Universität Wien

Zusammenfassung Nukleation

- Nukleation ist ein thermisch aktivierter Prozess. Kleine, lokale Konzentrationsfluktuationen führen nicht zur Entmischung, da eine Ausscheidung erst eine kritische Größe erreichen muss.
- Man unterscheidet zwischen homogener und heterogener Nukleation. Nukleationsvorgänge in dreidimensionalen Festkörpern sind meist heterogen.
- Wesentliche Beobachtbare Größe ist die Anzahl stabiler Ausscheidungen in einem Festkörper. Ihr Verhalten mit der Zeit t bzw. der Temperatur T ermöglicht Rückschlüsse auf Nukleationsmechanismen- und parameter.
- Die Nukleationstheorie kann auch zur Beschreibung von Rekristallisationsvorgängen oder chemischen Abläufen dienen.

Spinodale Entmischung I

Es gibt Zusammensetzungen, x_B, und Temperaturen, T, in einem Mischsystem, bei denen bereits infinitesimale, lokale Konzentrationsfluktuationen zu einer Verringerung der Freien Enthalpie G führen.

Diese (x_B,T) Paare sind durch jene Orte im Phasenraum bestimmte, bei denen die Krümmung von $G(x_B,T)$ einen negativen Wert aufweist, d. h.:

$$\frac{\partial^2 G(x_B, T)}{\partial x_B^2} < 0$$

Die Menge dieser Orte wird als Spinodale bezeichnet.

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Spinodale Entmischung II

Graphische Darstellung der Spinodalen:

- I: Mischbarkeit
- II: Entmischung durch Nukleation (Aktivierung erforderlich)
- **III: Spinodale Entmischung**

Technische Universität Wien

Spinodale Entmischung III

Mechanismus der spinodalen Entmischung

Dieser ist im mathematischen Detail relativ aufwändig und basiert auf einer Stabilitätsanalyse der Konzentrationsverteilung in einem Mischsystems wenn diese kleinen Störungen unterworfen wird. Es lassen sich folgende Schritte unterscheiden:

- Auftreten kleiner Konzentrationfluktuationen
- Verstärkung von Fluktuationen in einem bestimmten Wellenlängenbereich.
- Eine bestimmte Fluktuation mit einer kritischen Wellenlänge bleibt über.
- Ausbildung einer Phasenverteilung, in der sich die entmischten Materialien A und B in Abständen der kritischen Wellenlänge abwechseln.

Spinodale Entmischung: Phasenverteilung

Die Phasenverteilung bei Entmischung durch Nukleation unterscheidet sich deutlich von der bei spinodaler Entmischung:

Technische Universität Wien

Zusammenfassung spinodale Entmischung

- Spinodale Entmischung beinhaltet keine thermische Aktivierung.
- Infinitesimale Konzentrationsfluktuationen reichen aus, um den Entmischungsvorgang einzuleiten.
- Die Phasenverteilung in Systemen, welche sich durch Nukleation entmischt haben und solchen, die durch spinodale Entmischung hervorgegangen sind, unterscheiden sich deutlich.
- Durch spinodale Entmischung erzeugte Phasenverteilungen können sich durch besondere mechanische Eigenschaften auszeichnen und kommen z. B. in Polymermischungen ("Polymer Blends") zum Einsatz.

Grenzflächenphysik: Einleitung

Die Grenzflächenphysik hat sich in den letzten der Jahrzehnten zu einem Eigenständigen Bereich sowohl in der Wissenschaft als auch in der Anwendung entwickelt.

Unterscheidung Grenzfläche/Oberfläche:

- Grenzfläche (engl.: "Interface"): Phasengrenze zwischen Festkörper/Festkörper, Festkörper/Flüssigkeit, Festkörper/Gas, Flüssigkeit/Gas, Flüssigkeit/Flüssigkeit
- Oberfläche (engl.: "Surface"): Grenzfläche eines Festkörpers oder einer Flüssigkeit mit einer nicht näher definierten "Umgebung".

Der Begriff "Oberfläche" ist eine Untermenge des Begriffes "Grenzfläche".

Technische Universität Wien

Grundlagen der Grenzflächenphysik I

Einfaches Beispielsystem: Grenzfläche Flüssigkeit/Vakuum

Um ein Molekül aus dem Flüssigkeitsvolumen an die Grenzfläche zu bringen, muss eine Energie dE aufgewendet werden. Weiters bedeutet dieser Vorgang eine Vergrößerung der Grenzfläche um dA. Es gilt:

 $dE = \boldsymbol{\sigma} \cdot dA$

σ... Grenzflächenenergie
(Oberflächenenergie) [J/m²] bzw. [N/m]

Die Flüssigkeit ist bestrebt, maximales Volumen bei minimaler Oberfläche zu erzeugen (Kugelform). Mikroskopisch entspricht das einer Maximalzahl abgesättigter Bindungen.

Technische Universität Wien

Grundlagen der Grenzflächenphysik II

Grenzfläche Flüssigkeit/Festkörper: Drei wesentliche Fälle

Vollständige Unbenetzbarkeit Teilweise Benetzbarkeit, "Young'sche Gleichung"

Vollständige Benetzbarkeit (Spreiten)

Technische Universität Wien

Grundlagen der Grenzflächenphysik III

Festkörpergrenzflächen:

Eine Festkörpergrenzfläche kann durch Schnitt eines Kristalls in eine bestimmte Raumrichtung erzeugt werden. Je nach Relation Schnittrichtung/Kristallorientierung werden dabei mehr oder weniger Bindungen gebrochen.

Die Grenzflächenenergie ist dann die zum Aufbrechen dieser Bindungen benötigte Energie pro Flächeneinheit.

Im Gegensatz zu Flüssigkeiten ist die Grenzflächenenergie kristalliner Festkörper nicht mehr in allen Raumrichtungen gleich, d. h. isotrop.

Technische Universität Wien

Grenzflächenenergie von Festkörpern I

 $\theta=0^{\circ}$: 10 gebrochene Bindungen $\theta=45^{\circ}$: 18 gebrochene Bindungen

Prinzip der Erzeugung einer Festkörpergrenzfläche durch Schnitt durch einen Kristall

"Wulff-Plot" liefert die Abhängigkeit der Grenzflächen-Energie σ vom Schnittwinkel θ

Technische Universität Wien

Grenzflächenenergie von Festkörpern II

Interpretation des Wulff-Plots:

σ_{min}: geringe Grenzflächenenergie; wenige freie Bindungen; schlechte Benetzbarkeit z. B. durch Flüssigkeiten oder Metallschmelzen.

σ_{max}: hohe Grenzflächenenergie; viele freie Bindungen; gute Benetzbarkeit z. B. durch Flüssigkeiten oder Metallschmelzen.

Institut für Festkörperphysik

Technische Universität Wien

Diffusion an Grenzflächen

Im Gegensatz zum dreidimensionalen Festkörper kann es an Grenzflächen eine extreme Vielzahl an Diffusionsmechanismen geben. Einige sind hier (ohne Vollständigkeitsanspruch) dargestellt:

- (a) Migration adsorbierter Einzelatome.
- (b) Eindringen eines Adsorbates in die Oberfläche unter Verdrängung eines Oberflächenatoms. Das Oberflächenatom wird zum Adsorbat.
- (c) Eindringen eines Atomes in eine Inselkante. Die Insel vergrößert sich, ihr Schwerpunkt bewegt sich.
- (d) Anlagerung eines Adsorbates an eine Insel.
- (e) Migration eines Punktdefektes.
- (f) Ein Atom verlässt eine Inselkante
- (g) Anlagerung eines Einzelatoms an eine Inselkante

Technische Universität Wien

Zusammenfassung Grenzflächenphysik

- Die Bildung von Grenzflächen ist mit dem Aufbringen einer Grenzflächenenergie assoziiert.
- Die Grenzflächenenergie von Flüssigkeiten ist isotrop.
- Die Relation der Grenzflächenenergien steuert die Benetzbarkeit von Festkörperoberflächen durch Flüssigkeiten.
- Die Grenzflächenenergien von Festkörpern hängen von der Kristallographie der Festkörperoberfläche ab. Sie sind nicht mehr isotrop. Die Abhängigkeit der Grenzflächenenergie von der Kristallographie ist durch den Wulff-Plot gegeben.
- Grenzflächen weisen eine wesentlich höhere Anzahl von Diffusionsmechanismen auf. Materialtransport ist daher an Grenzflächen wesentlich schneller als im Bulkmaterial.

Anwendung von Grenzflächen I

Optik

- + Interferenzoptik und optische Vergütung
- + Spiegelsysteme
- + Lichtwellenleiter
- + Integrierte Optische Systeme, photonische Kristalle

Elektronik

- + Dünnschichtwiderstände
- + Halbleiterbauelemente
- + Metallisierung zur verhinderung elektrostatischer Aufladung
- + Mikroelektronische Bauelemente (MOSFET, RAM)

Technische Universität Wien

Anwendung von Grenzflächen II

- Materialien
 - + Festigkeitssteigerung durch innere Grenzflächen
 - + Steigerung der Duktilität durch weiche Einschlüsse
 - + Modifikation der Benetzungseigenschaften:
 - Vollständige Unbenetzbarkeit: Imprägnation, Haushalt
 - Vollständige Benetzbarkeit: Löten, Kleben

Tribologie

- + Werkzeugbeschichtungen
- + Motorkomponenten
- + Schmierstoffoptimierung

Technische Universität Wien

Anwendung von Grenzflächen III

- Katalyse
 - + Materialien mit hohem Oberflächenanteil Katalysator
 - + Oberflächenkatalysierte Reaktionen
 - + Spezielle Oberflächenlegierungen

Medizintechnik

- + Korrosionsschutz von Implantaten
- + Biokompatibilität
- + Hochporöse Materialien für Biopharmaka
- + Beschichtung von Röntgenanoden
- + SQUID-Magnetometer (Dünnschicht-Josephson Elemente)

Werksbild

Volkswag

Technische Universität Wien

Präparation: Einleitung

Zur Darstellung von Mehrstoffsystemen gibt es die unterschiedlichsten Methoden. Oft müssen zur Realisierung eines bestimmten Materiales mehrere Methoden kombiniert werden.

Präparationsmethoden können von einfachen Techniken wie konventionellen Gussverfahren bis hin zu hochkomplexen Verfahren wie z. B. dem Aufbau dreidimensionaler Werkstücke durch Laserbestrahlung von Polymerschmelzen reichen.

Auch innerhalb einer Verfahrensgruppe gibt es verschiedenste Ausformungen ein und derselben Präparationsmethode welche sich durch unterschiedliche Komplexitätsgrade auszeichnen.

Technische Universität Wien

Beispiel: Gleiche Verfahrenstypen I

Schmelzen und Giessen:

Hochofen einst ...

Technische Universität Wien

Beispiel: Gleiche Verfahrenstypen II

Elektrochemie:

... und heute

Technische Universität Wien

Beispiel: Unterschiedliche Einsatzgebiete

Elektrochemische Beschichtungen:

Hochverformbare Trägermaterialien

Stabile Teile

Technische Universität Wien

Verfahrenstypen I

- Abscheidung aus der Schmelze
 - + Konventionelles Schmelzen und Giessen
 - + Schmelzen Durch Laser- oder Partikelbeschuss
 - + Spritzguss, Druckguss und Extrusion
 - + Oberflächenschlzen zur Oberflächenvergütung
 - + Kristallzucht zur Herstellung hochreiner Einkristalle

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Verfahrenstypen II

Abscheidung aus der Gasphase

- + Physikalische Gasphasenabscheidung
- + Chemische Gasphasenabscheidung

Technische Universität Wien

Verfahrenstypen III

Abscheidung aus der flüssigen Phase

- + Elektrochemische Abscheidung
- + Anodische Oxidation
- + Schmelztauchen

Elektrochemische Abscheidung

Anodische Oxidation

Stromlose Abscheidung

Institut für Festkörperphysik

Technische Universität Wien

Materialwissenschaften, Kapitel 3

Verfahrenstypen IV

Technische Universität Wien

Verfahrenstypen V

- Nachbehandlungen
 - + Temperaturbehandlung
 - + Chemische Nachbehandlung
 - + Photochemische Nachbehandlung von Polymeren
 - + Schmieden, Verformen, Walzen
 - + Verkleben
 - + Bestrahlen
 - + Färben von Fasern
 - + Verweben
 - + Dispergieren von Einzelkomponenten (Fasern in Matrix...)
 - + Oberflächenvergütungen:
 - Lackieren
 - Beschichten