
Quarks, Gluons, QCD

• Quarks: from a concept of classification to physics reality
• Deep inelastic electron scattering

- Pointlike constituents: ‘partons’
- Quantitative analysis: partons have spin ½ and fractional charge

• e+e- annihilation: 
- Number of quarks; color charge of quarks
- Discovery of gluons

• QCD Lagrangian
- Difference to QED
- Quark-Gluon Plasma
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Probing the size of the proton

• Probing the charge distribution, shown in figure 

• Approach; measure the angular distribution of 
electrons and compare to pointlike distribution

• with                     ;           ...Form factor
• Example: scattering of unpolarized electrons from static charge 

distribution 
• For a static target:                                            ... Fourier transform of 

charge distribution
• Form factor is Fourier transform of charge distribution
• Lorentz invariant four-momentum transfer
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e-μ- → e-μ-

• Reaction is relevant for understanding lepton scattering on constituents
• Scattering cross section in Lab frame (muon at rest, mass M) 

• Scattering cross section of  electron on spin ½ particle
• Electron beam used to study dimension and internal structure of protons
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Charge distribution of proton

• For       small; (small energy transfer, large ‘equivalent’ wavelength 
of electron)

assuming that charge distribution is spherically symmetric
• Low      , i.e. small angle scattering measures the mean square 

charge radius
• Cannot directly be applied to protons

- Need to consider magnetic moment; proton not static, will recoil
• Reference point-like cross-section is same as eμ scattering with MP

where A, B = 1 for point-like proton; E/E’ from proton recoil
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Charge distribution of proton

• Generalizing to extended source, one obtains two form factors 
(electric and magnetic ) with κ being the anomalous magnetic 
moment with the result

• ,                                           

• ‘Rosenbluth’ formula; the two form factors  F1,2 (q2 ) summarize the  
structure of the proton; determined experimentally; formula reduces 
to pointlike formula for κ=0 and F1(q2 ) = 1

• In practise                                                              

• For protons:            = (0.81* 10-13 cm)2

• Nobel prize for Hofstaedter in 1961
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Proton form factor versus q2
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Halzen Fig 8.4
Fourier transform of this
Form factor is exponential
Charge distribution
ρ (r) = ρ0 exp(- q0/ r)



Inelastic Electron-Proton scattering

• Probing the internal structure of the proton
- Increase the momentum transfer q2 of the photon, equivalent to 

photons of shorter wavelength
- However, if proton is composite object, it will get excited, break 

up under large momentum transfer, producing system of 
particles with invariant mass W
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The ep -> eX cross section

• The ep-> eX cross section as a function of the invariant mass of the 
particle system produced. The peak at W≈ M corresponds to 
scattering which does not breakup the proton; the peaks at higher W 
correspond to excited states of the proton; beyond the resonances 
multiparticle states with large invariant mass result in a smooth 
behaviour.

ΔΔ
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e-μ- → e-μ-

• Reaction is relevant for understanding lepton scattering on constituents
• Scattering cross section in Lab frame (muon at rest, mass M) 

• Scattering cross section of  electron on spin ½ particle
• Electron beam used to study dimension and internal structure of protons
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Deep inelastic scattering

• Generalization of the inelastic scattering process follows the 
formalism for e- µ- → e- µ- , but requires a more complicated 
description of the proton interaction, with two independent variables
- q2  , ν = p•q/ M,  q…four-momentum of virtual photon; 

M ..proton mass; 
- or alternatively
- x = - q2 / 2 p•q ; y = p•q/ p•k
- Invariant mass of final hadronic system

W2 = (p+q) 2 = M2 + 2νM + q2

• Giving the final result

with W1 and W2 to be determined experimentally… see later 10
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Summary: electron scattering

• The differential cross section for eμ-> eμ, ep -> ep (elastic)  and 
ep -> eX can written as 

• For eμ-> eμ

• For ep -> ep (elastic)

• Integration over δ-function gives

• For ep -> eX    very similar; see expression on previous slide          
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Studying the sub-structure of the proton

• The formalism developed for deep inelastic scattering ep-> eX can 
be applied to the special case of probing a possible proton sub-
structure
- Using sufficiently small wavelength (i.e. sufficiently large q2) it is 

possible to resolve a possible substructure, i.e. constituents
- The breaking-up of the proton is described by the inelastic form 

factors W1 and W2

- The scattering formalism is applied to electron scattering on the 
constituents, assuming certain properties
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Probing the proton composition

• Assuming pointlike constituents (‘partons’) with spin ½, the scattering 
cross section is related to eμ-scattering with (for convenience Q2 = - q2)

• m is the mass of the parton (or quark); pointlike: structureless Dirac 
particle

• Using the identity δ (x/a) = a δ (x) one finds

• With the intriguing result that these functions depend only on the ratio 
Q2/ 2mν and not on Q2 and ν independently
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Probing the proton composition

• Summarizing and replacing the parton mass scale with the proton 
mass scale M

for large Q2 and ω = 2Mν/ Q2 ; at a given ω, the structure functions 
are measured to be independent of Q2

• Inelastic structure functions are independent on Q2 -> constituents
are pointlike and quasi-free (inside the proton)  

• One experimental example
• Structure function = Fourier

Transform of charge distribution→
St.F. is constant → charge distrib.
is pointlike!
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What are the properties of the ‘partons’ ?

• Partons are spin ½, electrically charged pointlike particles 

• This picture recognizes that there are various partons in the proton: 
e.g. u, d quarks with different charges; uncharged gluons, with which 
the photon does not react; they carry different fraction x of the 
parent proton’s momentum and energy ->

• Parton momentum distribution 
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Parton momentum distribution functions

• fi(x ) gives probability that parton i carries fraction x of the proton’s 
momentum p; all the fractions have to add up to 1

• Which leads to the following expressions for the structure functions

with    x= 1/ω = Q2/ 2Mν , only dependent on x
• The momentum fraction is found to be identical to the kinematical 

variable x  of the virtual photon: the virtual photon must have the 
right value of x to be absorbed by the parton with momentum 
fraction x
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Looking at quarks inside the proton 

• Proton is composed of the constituent quarks (u,d quarks) (or 
‘valence’ quarks), gluons, and quark-antiquark pairs (‘sea’ quarks)

• For the proton
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Looking at quarks inside the proton

• Six unknown quark structure functions; additional information is 
provided by measuring electron-deuteron scattering, providing 
information on the corresponding neutron structure functions

• Due to isospin invariance their quark content is related
- There are as many u quarks in the proton as d quarks in the 

neutron

• Additional constraints: quantum numbers of proton must be those of 
the uud combination

• Measurement of F2 (x) confirms charge assignment of the u and d 
quarks
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Conceptual form of the structure functions 

19



Valence quark distribution

• From

one can directly measure the valence quark distributions
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Quark structure functions

• From the analysis of deep inelastic scattering data

21



Quark structure functions: ‘state of the art’



Deep inelastic scattering (DIS) experiments 
at Stanford Linear Accelerator(SLAC)

• Developed in the late 1960’s; 
was at the time one of the 
largest experimental facilities

• Originally conceived to study 
elastic scattering-> extension 
to inelastic scattering met with 
some scepticism by the Program 
Committees: what can one learn?

• Established the quark structure
• Nobel prize (1990) for J.I. Friedman, H.W. Kendall and R.E. Taylor 

for ‘structure of the proton’
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Summary: results from DIS

• From structure functions F2 (x, Q2) ≈ F2 (x) -> nucleons are 
composed from pointlike constituents

• From  2x F1 (x) = F2 (x) -> constituents have spin ½
• From experimental data on F2 (x) for protons and neutrons 

(supplemented with data from DIS neutrino scattering) -> charge 
assignment for the u and d quarks

• From  ∫F2 (x) dx -> quarks carry approximately 50 % of nucleon 
momentum; the rest is carried by the gluons; strong evidence for the 
reality and importance of gluons inside the nucleon

• Quantum numbers of the nucleon can be explained with the 
quantum number assignment of the quarks

24



e+e- Annihilations to Hadrons

•

•

s…center of mass energy
• Peaks in cross-section are due to boson resonances
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e+e− → Q Q → Q → hadron jet, Q → hadron jet
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e+e- Annihilations to Hadrons vs 
center of mass energy s



Experimental proof of 
color charge of quarks

• Measurement of of total cross section σ (e+e- → hadrons) relative to 
σ (e+e- → μ+μ- ) 

• Total cross section is obtained by summing over all contributing 
quarks:

- NC is the number of color charges (states)
- the (three) color states of a quark have the same electric charge
- The sum is over all energetically possibly produced quarks

• Measurement of the ratio

directly determines the number of color states
• Higher order effects ( 3 jets,..) modify R
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Measurement of R

6 quarks and three colors 45/9
5 quarks and three colors 33/9
5 quarks and one color     11/9 
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• Discovery of gluons in the observation of e+e- → three Jets → 
quark jet+ antiquark jet + gluon jet

- gluon is radiated by a quark (or antiquark)
• Independent confirmation in proton-proton collisions (quark-gluon 

scattering) and DIS (electrons and neutrinos)          
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e+e- → three Jets

• Angular distribution of the gluon jet is sensitive to spin of gluon->
- Spin of gluon = 1 (vector boson)

• Three-jet events can also be used to determine αs : rate of gluon 
radiation is proportional to αs

30
Event display of a 3-jet event at LEP



Summary: e+e- → hadrons

• Measurements are consistent with

- fractional charge for the quarks and three color states (value of 
R)

- Quarks (Antiquarks) can radiate gluons -> gluons have similar 
reality as quarks

- Gluon radiation can be quantitatively used to measure αs and to 
determine the spin of the gluon (S=1)
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Theory of Strong Interactions: 
Quantum Chromodynamics (QCD)

• Status (approx. 1970)
- Concept of quarks introduced for classification of hadrons

- The ‘Eightfold Way’ by Gell-Mann; similar concept by Zweig
- Classification needed another ingredient, ‘color’ charge of quarks

- Required to avoid problem with Pauli exclusion principle
- Free quarks were not observed-> are quarks really particles ?
- DIS showed that proton has a substructure-> partons

- Detailed experiments confirmed partons to have the 
properties of quarks( fractional charge, spin ½) 

- Quantum Electrodynamics (QED) confirmed with high 
experimental accuracy-> local gauge invariance as principle for 
deriving the Lagrangian of particle interactions 

- Experimental tests of nascent electroweak theory contemplated
• Ingredients prepared for attacking the ‘hardest’ problem: Strong 

Interactions 32



Quantum Chromodynamics (QCD)

o in QCD: color plays the role of 
charge

o fundamental vertex

o Analogous to

o bound state of
o Scattering of two quarks 
o force between two quarks is 

mediated by the exchange of 
gluons
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Quantum Chromodynamics QCD: 
similarities and differences to QED

• QED: one type of charge, i.e. one number (+, -); photon is neutral
• QCD: three kinds of color: red, green, blue

- Fundamental process
: color of quark (not its flavor may change in 

strong interactions)
e.g.: blue up-quark ⇒ red up-quark
color is conserved ⇒ gluon carries away the   
difference 
gluons are ‘bicolored’ with one positive and
negative unit (e.g.: one unit of blueness and 
minus one unit of redness)
3 x 3 = 9 possibilities ⇒ experimentally   
only 8 different gluons observed; ninth gluon 

would be ‘color singlet’ (color neutral) and therefore 
observable ⇒ not observed, i.e. does not exist 34
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QED and QCD: 
similarities and differences

• QED Lagrangian derived with the requirement of ‘local gauge 
invariance’; gauge group is U(1)

with Aµ a new massless field   such that 
• QCD Lagrangian 

with                         , describes interaction of three (equal mass) color 
states-> require invariance under U(3), with U being a 3x3 matrix which 
can be written as 

• Matrix          has determinant 1-> belongs to SU(3) -> want to derive 
Lagrangian invariant under local SU(3) invariance

• ; g is coupling constant
• Complete QCD Lagrangian

1st term: free quark; 2nd term: gluon field; 3rd term: quark-gluon interaction35
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QCD: Gluon-Gluon coupling

gluons, carrying color, 
(unlike the electrically 
neutral photon) may
couple to other gluons 
⇒three and four gluon 
vertices ⇒ QCD more 

complicated (but also richer: allows for more possibilities)
• Coupling constant αs ~> 1  ⇒ higher order diagrams make significant 

(sometimes even dominant) contributions: a real problem!

• However, triumph of QCD: discovery that αs is NOT constant, but 
depends on the separation of the interacting particles ⇒ ‘running’ 
coupling constant:
- αs is large at large distances (larger than proton) ⇒ ‘confinement’)
- αs is small at very short distances (smaller than proton) 

⇒(‘asymptotic freedom’)
36



QCD Lagrangian: 

• Complete QCD Lagrangian

with

• 1st part is analog to photon field in QED;2nd term is new: quadratic in 
gluon field

• quarks
• quarks      quark-gluon             gluons         gluon-gluon  self interaction

• Lagrangian describes three equal-mass Dirac fields (the three colors
of a given quark flavor) with eight massless vector fields (the gluons)

• Lagrangian applies to one specific quark flavor; need altogether six 
replicas of ψ for the six quark flavors 37
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Detour to QED

• Also in electrodynamics: effective coupling also depends on distance
- Charge q embedded in dielectric medium ε (polarizable)

• medium becomes polarized
• Particle q acquires  halo of negative particles, partially 

screening the charge q
• at large distance charge is reduced to q / ε
• in QED: vacuum behaves like dielectric
• full of virtual positron-electron pairs
• virtual electron attracted to q, positron repelled

• This vacuum polarization screens partially the charge 
at distances larger than h/mc= 2.4*10-10 cm (Compton 
wavelength of electron)

• Measurable, e.g. in structure of hydrogen levels
• NOTE: we measure the ‘screened’ charge, not the 

‘bare’ charge 38



Coupling constants: QED vs QCD

• QED : coupling constants modified by virtual effects (‘loop 
diagrams’)

which ‘screens’ the electric charge and modifies the coupling 
constant as a function of the distance ( or equivalently; of the 
momentum transfer of a reaction); observable: Lamb shift; 
anomalous magnetic moment

• Coupling constant αQED varies only very weakly with q2
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QCD: More complicated

• Diagrams analogous to QED contribute to vacuum polarization
• qqg vertex: contributes to increasing coupling strength at short distance
• In addition: direct  gg vertex

• Competition between quark polarization diagrams, αs and gluon 
polarization, αs at short distances 
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QCD vacuum polarization and ‘Camouflage’

• In polarized medium quark continuously emits and reabsorbs 
gluons, changing constantly its color

• Color-charged gluons propagate to appreciable distances, 
spreading the color charge of the quark, camouflaging the quark, 
which is source of the color charge
- The smaller the region around the quark the smaller the effective 

color charge of the quark→ color charge felt by quark of another 
color charge approaching the quark will diminish as the quark 
approaches the first one

• Net effect: competition between screening and camouflage
• QCD: critical parameter a = 2 f (of flavors) – 11 n (number of colors)

- if a is positive (as in QED), coupling increases at short distance
- in SM: n = 3, f = 6; a = -21; QCD coupling decreases at short 

distance
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Coupling constants: QCD

• The screening effects happen in QCD (quark-antiquark loops), BUT 
in addition due to gluon couplings

• with the result for the coupling constant 

• With n= colors (3 in SM) and f= number of quark flavors (6 in SM); μ
is a reference value around which αs is evaluated.

• At large q2 αs becomes less than 1-> perturbation theory is 
applicable; -> Asymptotic Freedom. 

• There are equivalent Feynman rules for quantitative calculations: 
peturbative QCD is quantitatively tested at the <1% level
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Coupling constants: QCD

• At small q2 αs becomes very large -> confinement
• The exact proof of confinement is very difficult to demonstrate within 

the frame work of QCD and is a very active topic of current research 
in strong interactions 
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QCD: One more difference

• quarks are confined in colorless 
packages

• experimental observations are 
indirect and are complicated 
manifestations of QCD

• force between two protons 
involves diagrams of the type 
shown

• reminiscent of the Yukawa
π-exchange model

• QCD: theory must prove confinement: ongoing major task of theoretical research!
• QCD prediction at very high temperature (short range) phase transition to 

deconfined ‘Quark-Gluon Plasma’ -> subject of intense theoretical and experimental 
current research

44



• Concept for proof of quark confiment: potential energy increases 
without limit as quarks are pulled farther and farther apart -> 
energetically more favorable to produce quark-antiquar pairs

• Conclusive proof for confinement still lacking: long-range interaction 
difficult to treat theoretically

45
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Quark-Gluon Plasma

• One ‘golden’ prediction of QCD is the ‘Quark-Gluon Plasma’, 
deconfined quarks and gluons at very high density or temperature 
- T ~ 170 MeV ~ 1012 K
- thought to have been the primordial matter during the first 

microsecond after the Big Bang 
• Considered to be created in very energetic collisions of heavy nuclei 

(e.g. lead ions)
- Was an active program at the CERN SPS; now actively being 

pursued at RHIC (Relativistic Heavy Ion Collider) at Brookhaven, 
USA

- Major research activity at the LHC with one dedicated facility
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Deconfined quarks in the ‘Quark Gluon 
Plasma’

47

At sufficiently high 
temperature
Nuclear Matter 
undergoes a phase
transition to 
deconfined quarks 
and
gluons: Quark-Gluon 
Plasma;

Phase Diagram of Quark Gluon Plasma



Gravity: a fundamental correspondence

• Most-cited theoretical development of last decade
Correspondence between anti-deSitter Gravity and conformal 
Quantum Field-Theories: AdS/CFT
- Discovery within frame of Superstring-Theory
- Strongly interacting Quantum Fieldtheorie (z.B. QCD)  in 3 space 

and 1 time dimension   →                                                                                        
equivalently described with 5-dimensional Gravity theory



Applying the AdS/CFT  correspondence: 
Black Holes <-> Quark-Gluon Plasma

• Spectacular application: strongly coupled Quark-Gluon Plasma is 
described with the physics of black holes in 5 dimensionen (and vice-
versa)

• Successful prediction: viscosity of Quark-Gluon Plasma 
• Quark-Gluon Plasma is a very active field of study at LHC
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