

Decays and Scattering

- Decay Rates
- Cross Sections
- Calculating Decays
- Scattering
- Lifetime of Particles

- There are THREE experimental probes of Elementary Particle **Interactions**
	- bound states
	- decay of particles
	- scattering of particles
- Decay of a particle
	- is of course a statistical process
	- represented by the average (mean) life time
- Remember:
	- elementary particles have no memory
	- probability of a given muon decaying in the next microsecond is independent of time of creation of muon (humans are VERY different !)
- Decay Rate Γ: probability per unit time that particle will disintegrate **²**

- Large collection of ; for example, muons N(t)
- Decay rate $dN = -\Gamma N dt$

 $N(t) = N(0) \exp(-\Gamma t)$

- Mean lifetime $\tau = 1/\Gamma$
- Most particles will decay by several routes
	- total decay rate $\Gamma_{\text{tot}} = \Sigma \Gamma_i$; $\tau = 1/\Gamma_{\text{tot}}$
- Branching ratio for ith decay mode
	- BR(i) = Γ_i / Γ_{tot}

Decay Width Γ

- Example: decay width of the J/ψ
- Shown is the original measurement at the SPEAR e⁺e⁻ Collider; the line width is larger (~ 3.4. MeV) due to energy spread in the beams
- Natural line width is 93 keV
- Lifetime is $\Delta E \Delta t \leq h/2\pi = 6.6 10^{-16} eV$
- Δt ~ 7 10 ⁻²¹ s
- We will see later within a discussion of the quark model – why this lifetime is relatively long

- What do we measure ? What do we calculate ?
- Classical analog:
	- aiming at target
	- what counts is the 'size' of the target
- Elementary particle scattering
	- size ('cross-sectional area') of particle is relevant
	- however: size is not 'rigidly' defined; size, area is 'fuzzy'
	- effect of 'collision' depends on distance between projectile and scattering center
	- we can define an 'effective cross section'
- Cross sections depend on
	- Nature and energy of projectile (electrons scatter off a proton more sharply than a neutrino)
	- nature of scattering result (elastic, inelastic \Rightarrow many different possibilities)

Cross Sections

- Inelastic scattering: several final states
	- $-e + p \rightarrow e + p + \gamma$; $\rightarrow e + p + \pi^0$;
	- each channel has its 'exclusive' scattering cross section
	- total ('inclusive') cross section $\sigma_{\text{tot}} = \Sigma \sigma_i$;
- Cross section depends in general on velocity of projectile
	- naively: σ proportional to time in vicinity of target $\Rightarrow \sigma \sim 1/v$
	- strong modification, if incident particle has energy to form a 'resonance' (or an excitation): a short-lived, quasi-bound state ⇒ remember the discovery of the J/ψ in e⁺e⁻ collisions at SLAC
	- Frequently used procedure to discover short-lived particles

- Suppose particle (e.g. electron) scatters of a potential (e.g. Coulomb potential of stationary proton)
- Scattering angle θ is function of impact parameter b, i.e. the distance by which the incoming particle would have missed the scattering center

Hard-Sphere Scattering

• Particle scatters elastically on sphere with radius R

- $b = R \sin \alpha$ 2 $\alpha + \theta = \pi$ sin $\alpha = \sin(\pi/2 - \theta/2) = \cos(\theta/2)$ b = R cos $(\theta/2)$ $\theta = 2 \cos^{-1} (\theta/R)$
- If particle impinges with impact parameter between b and $b + db \Rightarrow$ will emerge under angle θ and θ + d θ

More generally, if particle passes through an infinitesimal area do at impact parameter b, $b+db \Rightarrow$ will scatter into corresponding solid angle dΩ

• Differential cross section (differential with respect a certain parameter: solid angle; momentum of secondary particle…)

$$
d\sigma = D(\theta) d\Omega
$$

\n
$$
d\sigma = |b \, db \, d\phi|, \quad d\Omega = |\sin \theta \, d\theta d\phi|
$$

\n
$$
D(\theta) = \frac{d\sigma}{d\Omega} = \left| \frac{b}{\sin \theta} \left(\frac{db}{d\theta} \right) \right|
$$

• (areas, solid angles are intrinsically positive, hence absolute value signs)

• Hard-sphere scattering

$$
\frac{db}{d\theta} = -\frac{R}{2}\sin\left(\frac{\theta}{2}\right)
$$

$$
D(\theta) = \frac{Rb\sin(\theta/2)}{2\sin\theta} = \frac{R^2}{2}\frac{\cos(\theta/2)\sin(\theta/2)}{\sin\theta} = \frac{R^2}{4}
$$

• Total cross section $\sigma = \int d\sigma = \int D(\theta) d\Omega$

$$
- \quad \sigma_{\text{total}} \text{(hard-sphere)} = \int \frac{R^2}{4} d\Omega = \pi R^2
$$

- for hard-sphere: πR^2 obviously presents the scattering area
- Concept of ' cross section' applies also to 'soft' targets

• Particle with charge q_1 and energy E scatter off a stationary particle with charge q_2

• Classically:
$$
b = \frac{q_1 q_2}{2E} \cot(\theta/2)
$$

- Differential cross section: $D(\theta)=\left(\frac{q_{1}q_{2}}{4E\textrm{sin}^{2}(\theta /2)}\right) ^{2}$
- Total cross section: $\sigma = 2\pi \left(\frac{q_1 q_2}{4E}\right)^2$ 1 $\sin^2(\theta/2)$ 0 π $\int \frac{1}{\sin^2(\theta/2)} \sin \theta \, d\theta = \infty$

infinite, because Coulomb potential has infinite range

• Remember: in calculation of energy loss of a charged particle one imposes a cut off (b_{max}) , beyond which not atomic excitations are energetically possible.

• Particle with charge q_1 and energy E scatter off a stationary particle with charge q_2

• Classically:
$$
b = \frac{q_1 q_2}{2E} \cot(\theta/2)
$$

- Differential cross section: $D(\theta)=\left(\frac{q_{1}q_{2}}{4E\textrm{sin}^{2}(\theta /2)}\right) ^{2}$
- Total cross section: $\sigma = 2\pi \left(\frac{q_1 q_2}{4E}\right)^2$ 1 $\sin^2(\theta/2)$ 0 π $\int \frac{1}{\sin^2(\theta/2)} \sin \theta \, d\theta = \infty$

infinite, because Coulomb potential has infinite range

• Remember: in calculation of energy loss of a charged particle one imposes a cut off (b_{max}) , beyond which not atomic excitations are energetically possible.

neutrino flux: 5^{*} 10¹³ neutrinos/ cm² s

Tanks was located 11 m from reactor core, 12 m blow surface (why?) ν absorbed in water (200 l); effective area was 3000 cm2; depth ~ 70 cm Cross section for absorption (inverse $β$ -decay $σ = 6 * 10^{-44}$ cm²

Energy threshold for reaction: 1.8 MeV 3% of the reactor neutrinos are above threshold

 $N_A = 6.02 * 10^{23} / \text{mol}$...18 g H₂O

Number of scatterers N_S/cm^2 $N_S = N_A L \rho / 18 = 2.3 * 10^{24}$ Probability for interaction = Effective 'cross section'/ cm^2 =

$$
P = N_S \sigma = 2.3 * 10^{24} * 6 * 10^{-44}
$$

 $= 1.4 * 10^{-19}$

Rate= P^* Flux *Detector Area * Threshold = 6.3 * 10^{-4}

Rate is ~ 2 events/ hour...was actually observed!

Luminosity

• Luminosity *L* : number of particles per unit time and unit area: $\lceil \mathcal{L} \rceil = \text{cm}^{-2} \text{ s}^{-1}$

- $dN = \mathcal{L} d\sigma$ number of particles per unit time passing through area dσ and b, b+db, which is also number per unit time scattered into solid angle dΩ : dN = \mathcal{L} d σ = \mathcal{L} D(θ) dΩ
- Setting up a scattering experiment with a detector covering a solid angle $d\Omega$ and counting the number of particles per unit time dN
- Measurement of differential cross section $\mathbf{d}\sigma$ dN $\overline{d\Omega} = \overline{\mathcal{L} d\Omega}$
- After integration over $d\Omega \rightarrow N = \sigma \mathcal{L}$
- At LHC: $L = 10^{34}$ cm⁻² s⁻¹, σ = 100 mb= 10⁻²⁵ cm² → N = 10⁹ coll/s

Calculating Decay Rates and Cross Sections

- Calculation needs two ingredients
	- the amplitude M for the process (dynamics)
	- the phase space available (kinematics)
- *M* depends on the physics, type of interaction, reaction, ...
- Phase space: 'room to maneuver'
	- heavy particle decaying into light particles involves a large phase space factor
	- neutron decaying into $\text{p}+\text{e}^-+\overline{\text{v}}_\text{e}$ has a very small phase space factor
- Fermi 'Golden Rule'
	- transition rate = (phase space) \bullet |amplitude|²
	- Non-relativistic version formulated with perturbation theory
	- can be derived with relativistic quantum field theory **¹⁶**

- Particle 1 (at rest) decaying into 2, 3, 4, n particles $1 \rightarrow 2 + 3 + 4 + \dots + n$
- Decay rate Γ

$$
\Gamma = \frac{S}{2\hbar m_1} \int |\mathbf{M}|^2 (2\pi)^4 \delta^4 (p_1 - p_2 - p_3 ... - p_n) \times \prod_{j=2}^n 2\pi \delta \left(p_j^2 - m_j^2 c^2 \right) \theta \left(p_j^0 \right) \frac{d^4 p_j}{(2\pi^4)}
$$

- m_j , p_j is mass, four-momentum of jth particle ; S is statistical factor to account for identical particles in final state; (if no identical particles in final state $S = 1$)
- $|\mathcal{M}|^2$ is amplitude squared; contains the dynamics
- **The rest is 'Phase Space'** 17

- Integration over all outgoing four-momenta subject to three kinematical constraints
	- each outgoing particle lies on its mass shell: $p_j^2 = m_j^2 c^2$

i.e.
$$
E_j^2 - \vec{p}_j^2 c^2 = m_j^2 c^4
$$
, *enforcedby* $\delta(p_j^2 - m_j^2 c^2)$

- $\;$ each outgoing energy is positive: $\rm p_j^0$ = $\rm E_j/c$ $>$ $\rm 0$; this is ensured by x the θ – function $(\theta(x) = 0$ for x<0; $\theta(x) = 1$ for x>0)
- energy and momentum is conserved $p_1 = p_2 + p_3 \ldots + p_n$; this is ensured by delta function $\,\, \delta^{4}\big(p_{\rm 1} \!-\! p_{\rm 2} \!-\! \ldots \! - p_{\rm n}\big)\,$
- **Practical points:**
	- $d^4 p = dp^0 d^3 \vec{p}$

$$
\delta(p^2 - m^2 c^2) = \delta[(p^0)^2 - p^2 - m^2 c^2] \Rightarrow p^0 \text{ integrals doable, using } \delta \text{ function}
$$

$$
\Gamma = \frac{s}{2\hbar m_1} \int |\mathbf{M}|^2 (2\pi)^4 \delta^4 (p_1 - p_2 - p_3 ... - p_n) \times \prod_{j=2}^n \frac{1}{2\sqrt{p_j^2 + m_j^2 c^2}} \frac{d^3 \vec{p}_j}{(2\pi)^3}
$$

Two-Particle Decays

• For two particles in final state, previous expression reduces to

$$
\Gamma = \frac{S}{32\pi^2\hbar m_1} \int |\mathbf{M}|^2 \frac{\delta^4 (p_1 - p_2 - p_3)}{\sqrt{\bar{p}_2^2 + m_2^2 c^2} \sqrt{\bar{p}_3^2 + m_3^2 c^2}} d^3 \vec{p}_2 \times d^3 \vec{p}_3
$$

After several pages of algebra and integration

$$
\Gamma = \frac{S|\vec{p}|}{8\pi\hbar m_1^2 c} |\mathbf{M}|^2
$$

- Surprisingly simple: phase space integration can be carried out without knowing functional form of $M \Rightarrow$ two-body decays are kinematically determined: particles have to emerge back-to-back with opposite three-momenta
- no longer true for decays into more than two particles

• Particles 1 and 2 collide, producing 3,4, …. n particles 1 + 2 \rightarrow 3 + 4 + ... n : after performing p_j^0 integrals

$$
\sigma = \frac{S\hbar^2}{4\sqrt{(p_1 \bullet p_2)^2 - (m_1 m_2 c^2)^2}} \int \left| M \right|^2 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 \ldots - p_n) \times \prod_{j=3}^n \frac{1}{2\sqrt{p_j^2 + m_j^2 c^2}} \frac{d^3 \vec{p}_j}{(2\pi)^3}
$$

same definitions, procedures as for decay

- Two-body scattering in CM frame $1+2 \rightarrow 3+4$; $\left(\frac{\hbar c}{8\pi}\right)^{\!2}\!\frac{S|\mathcal{M}|^2}{\left(\mathrm{E}_1+\mathrm{E}_2\right)^{\!2}\!-\!\left|\vec{p}_i\right|}$ with $\left|\vec{p}_i\right|,\left|\vec{p}_f\right|$ the magnitude of either incoming or outgoing particle *E c S* $\frac{d\sigma}{d\Omega} = \left(\frac{\hbar c}{8\pi}\right)^2 \frac{S|\mathcal{M}|}{(E_1+E_2)^2} \frac{P}{|\vec{p}|}$ $\frac{1}{2}$ $\hbar c$ $\left. \begin{array}{cc} 2 & S \end{array} \right| \mathcal{M} |^2$ $\left. \begin{array}{cc} |P_f| \end{array} \right|$ 2 2 2 $S|\mathcal{M}|^2$ $_{\Omega} - \chi_{8\pi}$ / $_{\left(E_{1} + \right.}$ = π / (E_1) $\frac{d\sigma}{d\sigma} = \frac{\hbar c}{d\sigma} \sum_{i=1}^{\infty} \frac{S |\mathcal{M}|^2}{|\mathcal{P}_f|} \frac{d\mathcal{P}_f}{d\sigma}$ with $|\vec{p}_i|, |\vec{p}_f|$ $\vec{p}_2 = -\vec{p}_1$
- Dimensions and units

```
decay rate \Gamma = 1/\tau [sec<sup>-1</sup>];
cross section: area [cm<sup>2</sup>], 1 barn = 10^{-24} cm<sup>2</sup>
ds/dΩ … barns/steradian
M ... units depend on total number of particles involved [M] = (mc)^{4-n}
```