Elementary Particle Dynamics (1)
Quantum Electrodynamics (QED)

From Schrodinger to Dirac

Dirac: from Disaster to Triumph

QED through local gauge invariance

Getting a feeling for calculating Feynman diagrams

Two classic experiments : the power of QED



The Fundamental Forces

Presently: we see four forces in nature

Force Strength* Theory Mediator
Strong 10 Chromodynamics (QCD) Gluon
Electromagnetic 102 Electrodynamics (QED) Photon
Weak 10-13 (Flavordynamics) W, Z

Glashow-Weinberg-Salam

Gravitational 1042 General Theory of Relativity Graviton

« Strength: to be taken as an indication; depends on force, energy, distance
(and maybe on time !)



From Schrodinger to Dirac Equation

Schrodinger equation: non-relativistic quantum-mechanical description

Heuristic way to ‘derive’ it
: . P2 V=E
- from classical energy-momentum relation zm TV =
- applying the quantum prescription P — 1AV, E — ii5

- with resulting operators acting on ‘wave function’ ¥

2 2 2 O
—;’—mv 174 -I—VW = Ihﬁ—f Schrodinger equation

One possible relativistic generalization is Klein-Gordon equation, describing
particles with spin = 0

- starting with relativistic energy-momentum relation

2 =2.2 2.2 22
E°—p°c®=m°c® orbetter p“p,-m°c =0

52 2 2
—C% 5:{2/ +Vy = (%) W  Klein-Gordon equation



Dirac Equation

Schrodinger derived initially the Klein-Gordon equation, but realized that it
- does not reproduce energy levels for hydrogen (K-G applies to spin 0)
- Is not compatible with Born’s statistical interpretation

o) \l//(f)(z probability of finding particle at point 1

o this problem can be traced to fact that K-G is second order in t
(time)

1934: Pauli and Weisskopf showed that statistical interpretation must be
reformulated in relativistic quantum theory= relativistic theory must
account for pair production and annihilation = number of particles is not
conserved = showed that Klein-Gordon equation is appropriate for spin =
O particles

Dirac: aimed to find equation, consistent with relativistic energy-
momentum formula and first order in time



Dirac’s Approach

« Strategy: ‘factorize’ energy-momentum relation P*Py - m?c? =0

- easyif p=0 (p°f-m%?=(p®+mc)(p®-mc)=0

* but with spatial components included, need something like
p*p, —m*c? =(B*p, +me)y*p, —-mc)= 57" p,p, ~-mclB* —y* Jp, - m’c’
o or explicity:  (p°f =(p*f <(p?f = (p*f ~mc?=
:(,[)’Opo _ﬁlpl_ﬂzpz _ﬂsps +mc)(7/0 po _7/1p1_7/2p2 _ysps —mc)
 this gives 8 coefficients to be determined; to reach our goal:

« must avoid terms linear in P, , required that * = y* ;

- andfinally need to find y* suchthat p“p,=y*y" p.p,



p# Py = 7/’(7/1 Px- P, written out explicitly

(P92 = (%= (p%)2 = (1% = 92 (0%)% + (H2 (02 + D)2 (p%)? + ()% (p%)?

1+77)p|0+(7 +77)|0|0 +(7 +77)|0p

+(707
+(77 +7 4 )p P, +(77 +y 71)p1p3

+ (7273 +y yz) P, Py



Dirac’s Stroke of a Genius OAW

* As long as the coefficients y* are numbers = impossible to avoid cross terms
such as y; y3P1 P3»---

o Dirac’s brilliant idea: what if y's are not numbers, but matrices ?
- matrices do not commute = should be possible to find

N ) e I I A
vV +yYyt =0 for pu=#v
- or more succinctly {Y“,Yv }= 29

- g"v... Minkowski metric (4*4 matrix with 1, -1,-1,-1) in diagonal, rest=0) ;
{ } denotes anticommutator {A,B} = AB+BA

« Smallest matrices that work are 4 x 4; among the number of equivalent sets: ‘Bjorken and
Drell’ convention most frequently used

o (1 0); 0 o) 4 (01 , (0 -i) 5 (10 o' .....Pauli matrices
7/ = 7/ = . ’(7 = ’G = . ’G =
0 -1 o0 10 i 0 01

1 denotes 2 x 2 unit matrix 7



Dirac Equation

As a 4 x 4 matrix equation, relativistic energy momentum relation

does factor

(pﬂ P, —mzcz): (7/K P+ mc)(ﬂ P, —mc)z 0

Choose one of the two factors: conventional choice

y“p,—mc=0 pﬂ—>ih§ﬂ

\hy“c,w—mcy =0

Dirac equation

— ¥ is a four-element column matrix

\Vl

\VZ
W3
\V4

Dirac—Spinor



Solution to Dirac Equation: Disaster
turned into triumph

 Assume v is independent of position

oy _ Jy _ Oy
ox oy 0Oz

= 0 describes state with p = 0 (particle at rest)

. - : . dn 0oy .
Dirac equation reduces to: — Y S —moy =0

or 1 0)\(ow,lot =—imCZ v,
0 -1)\ dy,lot h \ws

V1
Vo

upper two components : i =( j lower two components g = (W?’j

Wa



Solution to Dirac Equation: Disaster
turned into triumph

ﬁgtA — i(mTcz)l//A; - (agtB ):_ i(mTCZ)WB

e solutions
W (t) _ e_i(mCZ/h)tWA (O) ’ WB(t) _ e+i(mc2/h)th(0)
e_iEt/h ... time dependence of quantum state with
energy E = mc? (particle at rest)
HERVN corresponds to state with p = 0, as expected
1 yg =? state with negative energy (E = -mc?) : the famous ‘disaster’
1 yg Dirac’s way out: unseen ‘sea’ of negative-energy particle

. Pauli et al: particles describes antiparticle with positive energy

10



Dirac Equation with p =0

Dirac equation with p = 0 has four independent solutions

(1) _ e—i(mczlh)t (2) _ o (mc2/n

(3) _ e+i(mc2/h)t

o r oo 2 °<©
P O O O o o r o

electron spin up; spin down

positron spin up; spin down

11



L Dirac Equation: Plane wave solution

. Next step: plane-wave solution w/(X) = ae™ “*u(k)
- describes particle with specified energy and momentum

- find four-vector k+ and associated bispinor u®) such that y(x)
satifies the Dirac equation; putting this into Dirac equation and...

- after several pages of matrix manipulation ....

u® =N

1
0
c(p,

E + mc?

N—r

c(p, +ip,)

E + mc?

u® =N

0
1
c(p, —ip,)
E + mc?
c(-=p,)
E + mc?

SRVOIRVC)

- customary to use v for antiparticle (instead of u); N=((E=mc?) /c)/2



Conceptual Next Steps

° U..... are the particles, satisfying (y“p, —mc) u = 0;
V... are the antiparticles ((y'p, + mc) v = 0)

ud) is electron with spin up, u® electron with spin down

Similar development for photons; example for plane wave:
Aﬂ (X) = ae‘(”h) prLS), S =12 forthe two spin (polarization) states

* In modern language: Lagrangian invariant under local gauge
transformation U(1) -> generates gauge field A,

13



Glimpse at Field Theory of QED EQOAW

In classical particle mechanics: calculate position as a function of time

In Field Theory: calculate one or several functions (e.g. temperature,
electric potential) as function of position, time: ¢ (x,y,z1)

Classically: Lagrangian L=1(q,.4,)

Field Theory: Lagrangian (density): function of the fields @, x,y,z,t
6 b d
L=Ll0,8) dubi=2n

Classically, law of motion described by Euler-Lagrange equation
ala)oajo123

dt \2q; oq; !

Relativistic Theory: simplest generalization

oL orL. .
8ﬂ (5(@@)) o6 1=12......

14
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Dirac Lagrangian for Spinor y (S=%) Field 9AW.

« Consider Dirac Lagrangian for a Spinor (Spin ¥2) field
] Ty 2\t
L=i(nc)y y* o,y —(mc”)py

« Treating ¥ and the adjoint spinor 1y as independent field variables
and

e applying Euler-Lagrange iy”é’ﬂw — (%)l// =0

- gives Dirac equation, describing in quantum field theory a
particle with spin %2 and mass m

e Corresponding ‘momentum space’ equation
[p—(mc)]=0

- Corresponding propagator for the free Lagrangianis 1/ [p — (mc)]
15


Presenter
Presentation Notes
Lagrangian consists of two contributions: the free Lagrangian plus terms specifying various interactions (expressed with the vertex factors)   


Local Gauge Invariance — Lagrangian of QED QOAW

Dirac Lagrangian is invariant under transformation v — gl y

(global phase transformation); 6 ... any real number
However, if 6 is a function of space-time x*
‘Local’ phase transformation: v — e'%®)

= however L — L —hc(2,0)y y“w; NOT invariant
or with  A(X) = %Q(X) L — £(q177/”gu)§ﬂl

New concept: require invariance of £ under local phase transformation,
must add extra term Tixciy v+ —mclizw = (a7 -
LHincy y o w —me yy]-(qwy w)A,
with A a new field, such that AH — AH +aH A (gauge invariance)

Complete L includes is invariant at the price of a new term for free field A,
L incyy*J,y —mc*yy]- LéﬂF‘”F VJ—(QW”W)A# F* =0"A" - 0" A

Lagragian of QED
16
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Local Gauge Invariance

Demanding local gauge invariance introduces vector field A%, must
be massless, because otherwise gauge invariant would be lost

= generates all of the electrodynamics and specifies the current
produced by the Dirac particles

|dea of local gauge invariance introduced by Hermann Weyl in 1918

Its power was not fully appreciated until the early 1970’s

't Hooft, Veltman: have shown that under certain conditions quantum
field theories with local gauge invariance are renormalizable (will be
explained later); Nobel Prize in Physics in 1999

17



From U(1) to SU(2) to SU(3)

Phase transformation can be considered as v’ = U vy
U=¢e%; Utu=1

Group of all such matricesis U(1) ; .... is a 1x1 matrix
Symmetry involved is called U(1) gauge invariance

Young and Mills applied it to other field theories: SU(2) = describes
Interaction of Dirac fields with three massless vector gauge fields (
would be identified later with W *, W -, Z9)

Idea extended to SU(3), generating QCD

In Standard Model all of the fundamental interactions are generated
through the requirement of local gauge invariance under
U(1) ® SU(2) ® SU(3) transformation

Truely breathtaking: laws of Nature derived with one elegant concept
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For ‘General’ Culture: Feynman Rules 9AW.

* Pictorial ‘code’ to represent particle interactions

» All electromagnetic processes are ultimately reducible to the process
represented by the diagram below

- Convention for interpreting the diagram
o time flows horizontally

the charged particle enters
emits (or absorbs) a photon
the charged particle exits
charged particle could be

- charged lepton

- a quark

Time -

O O O O

19
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Feynman Diagrams

Feynman diagrams are purely symbolic
Horizontal dimension represents time
Vertical dimension does NOT correspond to physical separation

Quantitatively, each Feynman diagram represents a particular number,
which can be calculated -> ‘Feynman rules’

Approach
- draw/calculate all the diagrams contributing to a process

- sum of all Feynman diagrams with the specific external lines
represents the physical process

In principle: an infinite number contribute
In practice: saved by the fact that fine structure constant «=e’/hc ~1/137

Higher orders contribute less; need only consider processes up to
certain order, consistent with experimental accuracy/ aims/ tests

20



QED: ‘Feynman diagrams’:
Pictorial description + theoretical rules

More complicated processes can be built up with combinations of this
‘primitive’ vertex

two electrons enter

a photon is exchanged between them
the two electrons exit

classically: Coulomb repulsion

iIn QED: ‘Mgller Scattering’

O O O O O

o arrow pointing back in time ->
antiparticle going forward in time

o this process represents electron-positron

annihilation; photon is formed, which
produces electron-positron pair:

‘Bhabha scattering’

21



electron-positron scattering:
also contributing to ‘Bhabha
Scattering’

classically: Coulomb attraction

e t+e >y+y y+y—>e +e
(pair annihilation) pair production

e +y—>e +y
(Compton Scattering)

22
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QED: Virtual Particles OAW

AN

both diagrams describe ‘Mgller Scattering’
the internal lines/diagrams are not observed (‘virtual’ particles)
- Virtual particle production allowed due to
Heisenberg uncertainty relation

the internal lines describe the mechanism and contribute to the process
In measurable ways

only the external lines are observed

23



For ‘General’ Culture: Feynman Rules QAW

P4
P /"
\ ~ T
Notation: see Figure T /
Ps

P2 [

—_—

VAN e

Electrons: incoming: U , outgoing: U (U spinor)
Positrons: incoming: v , outgoing: v _ (v spinor)
Photons:  incoming: &, , outgoing: 8ﬂ

Vertex contributes igey“ g =V4ma ...coupling constant

+ 4 i(y“qu+mc) . 2

q, are internal momenta

Conservation of energy, momenta (27;)4 5! (k1 + k2 + k3)

k; are the four-momenta coming into the vertex 24


Presenter
Presentation Notes
Remember: Lagrangian consists of two terms: the free Lagrangian for each participating field, which determines the ‘Propagator’ and the various interaction terms, which define the vertex factors; 


Example
— Electron-muon scattering

e+M—>e+M

L BX

p
Mott scattering for M >> m — Rutherford scattering v << c¢
4 S, 1 gpv Sy 2
@) | [ (0s) (ioer* ) o) |2 o) (04) (iger Ju (02
x84 (P —ps—0) 8% (py+9—py)d*a

after g (= internal momenta) integration, amplitude
M = = ep )[ 3)(p )7"u 1)(p )] [(84)(p )7,u (32)(p2)]

looks complicated (four spinors, 8 y matrices , but this is just a
number,which can be calculated, once the spin states are defined

25



U Example
Electron-muon scattering

Calculate the electron-muon scattering amplitude in CM system
(electron and muon scatter along z-direction); initial and final particles
have helicity +1

Before jM‘t ul
First, we need to evaluate the bispinors; for our case:
px=P,=0; cp,=C | p| = ((E-mc?)(E+mc?))”?

! VE + mc?
/ 0
U(l) _ E+m02 \/ 1 0

2 —_
Alc E-mc) e [4VE-mc?

(E +mc?)
0 0

26



Example
Electron-muon scattering

0
@ _ i VE + mc?
e 0
—E-mc?

0
0
e me? 2
Va)_m (E—mc“) (E+ mc?) 1 _/E_mcz

2 -
7 (E+5nc ) 7e 0
1 VE + mc?
E — mc?
G- 1 0

()
M
?
=
Or\)




Example

Electron-muon scattering
For our problem we have specifically:
a, = ((Ee - mCZ)/C)llz ; b+_ — ((Ep+-|\/|CZ)/C)1/2
ay 0 0 b,
_ 0 _ by | A+ B 0
u()= . ,U(2)= N , U(3)= 0 Ju(4)= y
0 b_ a_ 0
: : .
M= -— o EuO]E@ru@]- T O] F®r ve]]
(P1—P3)

where i is summed from 1to 3

28



Example
Electron-muon scattering

a, a,

u@3)y°u@)=(0a,0a_)y%° ao = (0a,0a) ao = 0.
a'+

— i _ 1 0 GI 0

u@y U(l)—(Oaan)[0 J (_G, 0] N

=2a, a{(o 1)(6%1 G}iz J(éﬂ:Za s a_{(o 1)[6%1H=2a ,a_oh.
021 02 021



Example
Electron-muon scattering

0
— i _ 1 0 GI b+
1(4)1'u(d=(b,0b_0) [0 _J [_Gi 0] ;
b_
GI O
~(b,0-b_0) b_J L (b+0)ai£ 0 j+(b_0)ai[ 0 j
_Gi O b_ b_|_
b,

:2b+b[(10) [0.11 Gi?] m =2b,b_| (L0O) [G.{ZJ =2b,b_ol,.
Gy O/ \1 G2
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Example i
: OAW
Electron-muon scattering
M= ~(2a,a_2b,b_)oy 00y, = 8. ~(a,a_) (b,b_),
(PL—P3) (PL—P3)
where G, 00, =(1)(1)+(i) (-1)+(0) (0)=2 In the last step.
2 2.4

Now (a+a_)=\/Ee CTC w/pg =|pe|. (b.b)=|p,|. and |p.|=|p,|.

2 2
SO M — 8ge pe 5
(P1—P3)

E E
plz(Telpej’ pSZ(Te’_pej; SO (pl_ps):(olzpe)’ (pl_p3)220_4p§'

M = 89 Pe =292 .
_4pe



Need another new concept: Renormalization 9AW.

e Electron-muon scattering

N
- lowest order diagram: ‘*‘T

- next order correction:

* Next order corrections lead to modification of photon propagator

9 9 -
quzV — quzv - ql4 | uv  and gives divergent integrals

32
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Including Higher Order Contributions

Applying these rules to diagrams of the form

leads to expressions of _‘m q%Cﬁdq = Enqjoo —> 0

logarithmically divergent at large g

Twenty year long struggle by some of the greatest physicists:
Dirac, Pauli, Kramers, Weisskopf, Bethe, Tomonaga, Schwinger,
Feynman ... to develop a systematic approach to deal with these
Infinities to obtain calculable results which could be compared to
measurements

33



Self-Interaction in Classical Physics  9AW.

» Classical electrodynamics of point particles

- Electrostatic energy of point charge is infinite, makes infinite contribution to
the particle’s mass; electrostatic energy required to assemble sphere with
charge e and ‘effective’ radius r,-> E= mc? -> defines classical electron
radius

e

My, =q°/8xr,; 1 =11~28x10"m

I, (classical electron radius) : mass m, due to its electrostatic potential energy

« Total effective mass includes the bare mass of the spherical particle in
addition to mass associated with field

- assume, bare mass is allowed to be negative —

- perhaps possible to take a consistent point limit

- called ‘renormalization’ by Lorentz

- inspiration for later work = renormalization in QFT

 Maybe this is telling us that there are no point particles in nature; point
particles only a theoretical construct 2


Presenter
Presentation Notes
The classical electron radius is roughly the size the electron would need to have for its mass to be completely due to its electrostatic potential energy - not taking quantum mechanics into account. Quantum field theory, is needed to understand the behavior of electrons at such short distance scales, thus the classical electron radius is no longer regarded as the actual size of an electron


Divergences in QED

Treatment occupied some of the best physicists of the last century:
Dirac, Born, Heisenberg, Pauli, Weisskopf, Schwinger, Tomonaga,
Feynman, Dyson, ....

Divergences appear in diagram with closed loops of virtual particles

Virtual particles may have a mass different from their physical mass:
‘off-shell’

Integrals over the loop processes are often divergent
- ‘ultraviolet’ (UV) divergences: loop particles with large momenta
- short-distance, short-time phenomena
- ‘infrared’ divergences: due to massless particles, like photons
- treated in analogy to bremsstrahlung

35



Handling of Divergences EOAW,

Integrals are of the type

[e¢]

M
j%aareconsideredinthefor _[72: “"—
m?

m2

| - Ouv
Amplitude M= —g3 [U(ps)v“u(pl)] q“z

o [ieruey) |

Redefine coupling constant g, = ge\/l 1;’7[ En( )

2 N2
Resulting in M= -g2 [U(ps)v“u(pl)]i%v {“ 1222 f[mgczj} [U(p4)yvu(p2)]

36



Concept

Reference to cut off is absorbed in coupling constant

gr reflects the actual measurement; we are not measuring the ‘bare’
charge, but the physical charge, which includes the higher order
terms

Finite correction terms remain, depending on g? = coupling depends
on g2

2

r(0)
00 (0%) = 9 (O 1+ =

NQ
N —1

Interms of ge =v4na  a(g®)= G(O){1+a(0)f( 2}

37
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2 Regularization of Divergent Integrals AW

* Regularization: mathematical procedure to cancel divergencies
* Introduce a cut-off procedure

M2c2
2_M2c2 under integral; M very large

- introduce factor q

* Integrals can be calculated and seperated into part independent of M; second
term depending logarithmically on M

« With a surprising result: all M-dependent terms appear in the final answer in the
form of
- addition to the masses and the couplings
m =m+om (— « for M — )
=g +06g (— ~forM — )

physical
g physical

 Modern approach is Lorentz-invariant ‘Dimensional Regularization’:

« Four dimensions replaced with 4D-¢: result is a convergent part and part
divergentas 1/ ¢

38
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* Insight: quantities appearing in the Lagrangian (mass, charge, coupling strength)
do not correspond to the physical constants measured

o ‘Bare’ quantities do not take into account contributions of virtual particle loop
effects, which contribute to the physical constants

 Formulae have to be rewritten in terms of measureable, renormalized quantities
— renormalization scale, which is characteristic to a specific measurement

« Example: charge of an electron would be defined as a quantity at the
renormalization scale

* This procedure introduces the concept of the ‘Running coupling constants’ —
describes the changing behaviour of the QFT under change of the energies
involved

a b
« Conceptual example:l = H dz - H dz = /na—¢n0—¢nb—/n0 ill defined
0 0

take lower limit ~ &,,&, 11 =In§—/Ine, +Ingg —> nf forg,, 6, >0



Running coupling constant in QED

« Also in electrodynamics: effective coupling also depends on distance
- Charge q embedded in dielectric medium ¢ (polarizable)

+

Intermolecular

separation

in QED: vacuum behaves like dielectric
full of virtual positron-electron pairs

virtual electron attracted to q, positron repelled
medium becomes polarized

Particle g acquires halo of negative particles, partially
screening the charge q

at large distance charge is reducedtoq/ ¢

vacuum polarization screens partially the charge at
distances larger than h/mc= 2.4*10-1° cm (Compton
wavelength of electron)

Measurable, e.g. in structure of hydrogen levels

NOTE: we measure the ‘screened’ charge, not the
‘bare’ charge 40



Running Coupling Constants

Effective charge of electron (muon) depends on momentum
transferred, i.e. on distance of approach = conseguence of vacuum
polarization, which ‘screens’ the charge

Effect only significant at high energies

- At head-on collisionatv=0.1c =
- effectis at level of ~ 6 x 106

However, as Lamb shift measurement shows, it Is detectable; also
directly measured in e*e” - collisions

41



Lamb Shift in Hydrogen

e Hydrogen levels calculated with Dirac equation
- 2S,,and 2P, levels have precisely the same energy (are ‘degenerated’)

 However, in QED we have additional diagrams

D a

p cl
self interaction, vacuum polarization
« Self interaction ‘smears’ position of electron over a range of
- ~ 0,1 fermi (Bohr radius is 52900 fermi)

- weakening the force on S-electron (which approaches nucleus closer)
more than 2P, electron

- 2S,), level is ~ 4.3 x 10-® eV above ?P,,, level
- AELamb - oc5f(n, , ])

42



Lo Lamb-Retherford Experiment

* Need to form a beam of metastable 2 S, , states

* Induce microwave transition between 2S,,, and ?P,,,, which decays
in ~10-° sec under emission of light

 Hydrogen produced in tungsten oven — bombarded by electrons —
to excite 2S,,, states(1 in ~108 I) — impinge on metal plate, where
they eject electrons and can therefore be detected

« Radio frequency transition from °S,, to ?P,,, states quenches %P,

states
e Transition frequency is f = 1054 MHz

43



Osterreichische Akadem
der Wissenschaften

/

Apparatus of Lamb and Retherford
FINE STRUCTURE OF THE HYDROGEN ATOM 289
i

Hydrogen %7 | S % | , / 0 electrorr;its%
|r'||1let N H i Magnet ;pole piece _ |

' W ! K

- | hemadl SIGSSS
{1 A7 220 7222 )
/,’i Rotating search coil
/

Yinch
Fig. 3. Cross section of second apparatus: (a) tungsten oven of hydrogen dissociator,
(b) movable slits, (c) electron bombarder cathode, (d) grid, (e) anode, (f) transmission
line, (g) slots for passage of metastable atoms through interaction space, (h) plate

attached to center conductor of r-f transmission line, (1) d.c. quenching electrode,
(j) target for metastable atoms, (k) collector for electrons ejected from target, (/) pole
face of magnet, (m) window for observation of tungsten oven temperature.



g-2 of the Muon

Magnetic moment 1 = gsz(f(%)

If ‘Dirac’ particle: g =2, exactly

The value is modified by quantum fluctuations in the field around the
muon

- QED-effects of fluctuations: ~ 103
- electroweak effects (virtual W, Z2): ~ 108
- strong interaction effects: ~ 107

Present value fora, =(g,-2)/2 =
= (11659208.0 + 6.3) x 1010
Biggest theoretical uncertainty: hadronic vacuum polarization contrib.
- determined from e+e- -> hadrons or T —> hadrons
A (Measurement — SM-Theory) ~3.36 0 (e*e”) 0.96 o (t data)

A genuine difference between Standard Model Theory and experiment

would imply ‘New Physics’ (e.g. Supersymmetry)
45



Diagrams contributing to anomalous
magnetic moment of the muon

Y
&

d e f

e solid line... muon; zig-zag line...photon; closed loops... creation of
virtual electron-positron pair



g-2 Precession

« Longitudinally polarized particle, moving in uniform magnetic field B

momentum vector turns at cyclotron frequency f, = eB/2x mc

spin precession frequency is the same as for particle at rest:
2n f, = 2p B/h = g (eB/2mc) = (1+a,) (eB/1mc)

ifg=2= f.=f,
If g > 2, spin turns faster than momentum vector

In laboratory, rotating frequency of spin relative to momentum
vector is

2n f, = 2n (fs— f) = a, (eB/mc)

a7
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~“'Comments on most recent (g-2) experimen;

Wi Z"'-

. emie
455?"5Eha l

at Brookhaven National Laboratory

 BNL uses continuous magnet, with field known to 0.1 ppm at 1.451
Tesla

e Polarized p’'s moving in |§ |to muon spin and | to plane of the
orbit of electric quadrupole field E (used for vertical focussing)
 Muons are stored at magic momentum of 3.094 GeV/c in uniform

magnetic field — electric fields to focus muons do not disturb muon
anomaly measurement

* Frequency difference m, between precession frequency o, and
cyclotron frequency o is

0, = _%{aﬂé _(aﬂ B 721—1'éx E)J

e NoE- dependence for y = 29.3

« Achieved accuracy of 0.35 parts per million (ppm)
48



J@“&EIConceptual layout of the (g-2) experlment&?"ﬂ}!xm

LIFE OF A MUON:

THE g-2 EXPERIMENT Muons are fed
Muons are into a uniform,
tiny magnets doughnut-shaped
spinning on magnetic field

After each circle,
muon's spin axis
changes by 12°,

yet it keeps on traveling

axis like tops. and travel in a circle.

/

o0 32 =t
Hit J ‘) *
Target.
Protons Pions, welghlng Pions decay
from AGS. 1/6 proton, to muons.

are created.
One of 24 detectors

see an electron, giving After circling the ring

the muon spin direction; many times, muons

g-2 is this angle, divided spontaneously decay to

by the magnetic field the electron, (plus neutrinos,)

muon is traveling through in the direction of the muon spin.
in the ring.
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View of BNL (g-2) experiment

der Wissenschaften
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