

Elementary Particle Dynamics (1) Quantum Electrodynamics (QED)

From Schrödinger to Dirac

Dirac: from Disaster to Triumph

QED through local gauge invariance

Getting a feeling for calculating Feynman diagrams

Two classic experiments : the power of QED

Presently: we see four forces in nature

• Strength: to be taken as an indication; depends on force, energy, distance (and maybe on time !)

- From Schrödinger to Dirac Equation
- Schrödinger equation: non-relativistic quantum-mechanical description
- Heuristic way to 'derive' it
	- from classical energy-momentum relation $\frac{P^2}{2m}+V=E$ \vec{p}^2
	- applying the quantum prescription $\vec{p} \rightarrow i\hbar \nabla$, $E \rightarrow i\hbar \frac{\partial}{\partial t}$
	- with resulting operators acting on 'wave function' Ψ

•
$$
-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar \frac{\partial \psi}{\partial t}
$$
 Schrödinger equation

- One possible relativistic generalization is Klein-Gordon equation, describing particles with $spin = 0$
	- starting with relativistic energy-momentum relation

$$
E^{2} - \vec{p}^{2}c^{2} = m^{2}c^{2} \quad or \, better \quad p^{\mu}p_{\mu} - m^{2}c^{2} = 0
$$

•
$$
-\frac{1}{c^2}\frac{\partial^2 \psi}{\partial t^2} + \nabla^2 \psi = \left(\frac{mc}{\hbar}\right)^2 \psi
$$
 Klein-Gordon equation

- Schrödinger derived initially the Klein-Gordon equation, but realized that it
	- does not reproduce energy levels for hydrogen (K-G applies to spin 0)
	- is not compatible with Born's statistical interpretation $\int_{0}^{\infty} |\psi(\vec{r})|^{2}$... probability of finding particle at point \bar{r} o this problem can be traced to fact that K-G is second order in t

(time)

- 1934: Pauli and Weisskopf showed that statistical interpretation must be reformulated in relativistic quantum theory⇒ relativistic theory must account for pair production and annihilation \Rightarrow number of particles is not conserved \Rightarrow showed that Klein-Gordon equation is appropriate for spin = 0 particles
- Dirac: aimed to find equation, consistent with relativistic energymomentum formula and first order in time **⁴**

• Strategy: 'factorize' energy-momentum relation $p^{\mu}p_{\mu}-m^{2}c^{2}=0$

- easy if
$$
\vec{p} = 0
$$
 $(p^0)^2 - m^2 c^2 = (p^0 + mc)(p^0 - mc) = 0$

- but with spatial components included, need something like • or explicitly: $(p^{\rm o})^{\rm 2} - (p^{\rm 1})^{\rm 2} - (p^{\rm 2})^{\rm 2} - (p^{\rm 3})^{\rm 2} - m^{\rm 2}c^{\rm 2}$ $p^{\mu}p_{\mu} - m^{2}c^{2} = (\beta^{k}p_{k} + mc)\gamma^{k}p_{\lambda} - mc) = \beta^{k}\gamma^{k}p_{k}p_{\lambda} - mc(\beta^{k} - \gamma^{k})p_{k} - m^{2}c^{2}$ $\kappa P \lambda$ ^κ λ λ λ κ κ $\mu^{\mu} p_{\mu} - m^2 c^2 = (\beta^{\kappa} p_{\kappa} + mc) \gamma^{\kappa} p_{\lambda} - mc) = \beta^{\kappa} \gamma^{\kappa} p_{\kappa} p_{\lambda} - mc (\beta^{\kappa} - \gamma)$ $=\left(\beta^{0} p^{0} - \beta^{1} p^{1} - \beta^{2} p^{2} - \beta^{3} p^{3} + mc\right)\left(\gamma^{0} p^{0} - \gamma^{1} p^{1} - \gamma^{2} p^{2} - \gamma^{3} p^{3} - mc\right)$
	- this gives 8 coefficients to be determined; to reach our goal:
	- must avoid terms linear in p_{κ} , required that $\beta^{\kappa} = \gamma^{\kappa}$;
	- and finally need to find γ^{κ} such that $p^{\mu}p_{\mu} = \gamma^{\kappa}\gamma^{\lambda} p_{\kappa}p_{\lambda}$

$$
(p^{0})^{2} - (p^{1})^{2} - (p^{2})^{2} - (p^{3})^{2} = (y^{0})^{2} (p^{0})^{2} + (y^{1})^{2} (p^{1})^{2} + (y^{2})^{2} (p^{2})^{2} + (y^{3})^{2} (p^{3})^{2}
$$

+
$$
(y^{0}y^{1} + y^{1}y^{0})p_{0}p_{1} + (y^{0}y^{2} + y^{2}y^{0})p_{0}p_{2} + (y^{0}y^{3} + y^{3}y^{0})p_{0}p_{3}
$$

+
$$
(y^{1}y^{2} + y^{2}y^{1})p_{1}p_{2} + (y^{1}y^{3} + y^{3}y^{1})p_{1}p_{3}
$$

+
$$
(y^{2}y^{3} + y^{3}y^{2})p_{2}p_{3}
$$

- As long as the coefficients γ^{μ} are numbers \Rightarrow impossible to avoid cross terms such as γ_1 γ_3 p_1 p_3 ,...
- Dirac's brilliant idea: what if γ 's are not numbers, but matrices ?
	- matrices do not commute \Rightarrow should be possible to find

$$
-(\gamma^{0})^{2}=(\gamma^{1})^{2}=(\gamma^{2})^{2}=(\gamma^{3})^{2}=-1
$$

$$
\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 0 \quad \text{for} \quad \mu \neq \nu
$$

- or more succinctly $\left\{\gamma^{\mu},\gamma^{\nu}\right\}=2g^{\mu\nu}$
- $g^{\mu\nu}$... Minkowski metric (4*4 matrix with 1, -1,-1,-1) in diagonal, rest=0); $\{ \}$ denotes anticommutator $\{A,B\} = AB + BA$
- Smallest matrices that work are 4 x 4; among the number of equivalent sets: 'Bjorken and Drell' convention most frequently used

$$
\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}, \sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$
 σ^i **Pauli matrices**

1 denotes 2 x 2 unit matrix **⁷**

• As a 4 x 4 matrix equation, relativistic energy momentum relation does factor

$$
\left(p^{\mu}p_{\mu}-m^{2}c^{2}\right)=\left(\gamma^{\kappa}p_{\kappa}+mc\right)\left(\gamma^{\lambda}p_{\lambda}-mc\right)=0
$$

• Choose one of the two factors: conventional choice

$$
\gamma^{\mu} p_{\mu} - mc = 0 \quad p_{\mu} \to i\hbar \partial_{\mu}
$$

•
$$
i\hbar\gamma^{\mu}\partial_{\mu}\psi - mc\psi = 0
$$
 Dirac equation

-
$$
\Psi
$$
 is a four-element column matrix
\n
$$
\Psi = \begin{pmatrix} \Psi^1 \\ \Psi^2 \\ \Psi^3 \\ \Psi^4 \end{pmatrix}
$$
 Dirac-Spinor

Solution to Dirac Equation: Disaster turned into triumph

• Assume ψ is independent of position

$$
\frac{\partial \psi}{\partial x} = \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial z} = 0
$$
 describes state with $\vec{p} = 0$ (particle at rest)

• Dirac equation reduces to: $\frac{i\hbar}{c}\gamma^0\frac{\partial\psi}{\partial t}-mc\Psi=0$ $\partial \psi$ $\int_{c}^{\infty} \gamma^{2} \frac{\partial \varphi}{\partial t} - mc$ *i*

or
$$
\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{\partial \psi_A}{\partial t} \\ \frac{\partial \psi_B}{\partial t} \end{pmatrix} = -i \frac{mc^2}{\hbar} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}
$$

upper two components:
$$
\psi_A = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}
$$
, lower two components: $\psi_B = \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}$

$$
\frac{\partial \psi_A}{\partial t} = -i \left(\frac{mc^2}{\hbar} \right) \psi_A; \quad -\left(\frac{\partial \psi_B}{\partial t} \right) = -i \left(\frac{mc^2}{\hbar} \right) \psi_B
$$

solutions

$$
\psi_A(t) = e^{-i(mc^2/\hbar)t} \psi_A(0); \psi_B^{(t)} = e^{+i(mc^2/\hbar)t} \psi_B^{(0)}
$$

 $e^{-iEt/\hbar}$ … time dependence of quantum state with energy $E = mc^2$ (particle at rest)

- Ψ_A corresponds to state with $\mathbf{p} = 0$, as expected
- ψ_B = ? state with negative energy (E = -mc²) : the famous 'disaster'
- $\psi_{\rm B}$ Dirac's way out: unseen 'sea' of negative-energy particle
- Pauli et al: particles describes antiparticle with positive energy

• Dirac equation with $p = 0$ has four independent solutions

$$
\psi^{(1)} = e^{-i(mc^2/\hbar)t} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \quad \psi^{(2)} = e^{-i(mc^2/\hbar)t} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \text{ electron spin up; spin down}
$$
\n
$$
\psi^{(3)} = e^{+i(mc^2/\hbar)t} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \quad \psi^{(4)} = e^{+i(mc^2/\hbar)t} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ position spin up; spin down}
$$

- Next step: plane-wave solution $\psi(x) = ae^{-ikx}u(k)$
	- describes particle with specified energy and momentum
	- find four-vector k^{μ} and associated bispinor $u^{(k)}$ such that $\psi(x)$ satifies the Dirac equation; putting this into Dirac equation and…
	- after several pages of matrix manipulation

$$
u^{(1)} = N \begin{pmatrix} 1 \\ 0 \\ \frac{c(p_z)}{E + mc^2} \\ \frac{c(p_x + ip_y)}{E + mc^2} \\ \frac{1}{E + mc^2} \end{pmatrix} u^{(2)} = N \begin{pmatrix} 0 \\ 1 \\ \frac{c(p_x - ip_y)}{E + mc^2} \\ \frac{c(-p_z)}{E + mc^2} \\ \frac{1}{E + mc^2} \end{pmatrix}; \quad v^{(1)}; v^{(2)}
$$

customary to use *v* for antiparticle (instead of u); $N = ((E=mc^2) /c)^{1/2}$

- **u** are the particles, satisfying $(\gamma^{\mu}p_{\mu} mc)$ $\mu = 0$; $ν$ are the antiparticles (($γ^up_u + mc$) $ν = 0$)
- $u^{(1)}$ is electron with spin up, $u^{(2)}$ electron with spin down
- Similar development for photons; example for plane wave:

$$
A_{\mu}(x) = a e^{-(i/\hbar)px} \varepsilon_{\mu}^{(s)}, \quad s = 1,2 \quad \text{for the two spin (polarization) states}
$$

• In modern language: Lagrangian invariant under local gauge transformation $U(1)$ -> generates gauge field A_u

- In classical particle mechanics: calculate position as a function of time
- In Field Theory: calculate one or several functions (e.g. temperature, electric potential) as function of position, time: $\phi(x, y, z, t)$
- Classically: Lagrangian $\mathcal{L} = \mathcal{L}(q_i, \dot{q}_i)$
- Field Theory: Lagrangian (density): function of the fields Φ, x,y,z,t $\mathcal{L} = \mathcal{L}(\phi_{\scriptscriptstyle i}, {\scriptstyle\mathcal{O}}_{\scriptscriptstyle \mu} \phi_{\scriptscriptstyle i}) \qquad \partial_{\scriptscriptstyle \mu} \, \phi_{\scriptscriptstyle \dot 1} =$ $\partial\phi_i$ ∂x^{μ}
- Classically, law of motion described by Euler-Lagrange equation $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i}\right) = \frac{\partial \mathcal{L}}{\partial q_i}$, $i = 1,2,3$ *d* ∂ ∂ ∂ ∂*L L* ż
	- Relativistic Theory: simplest generalization

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_i)}\right) = \frac{\partial \mathcal{L}}{\partial\phi_i}; i = 1, 2,
$$

Dirac Lagrangian for Spinor ψ (S= $\frac{1}{2}$) Field

• Consider Dirac Lagrangian for a Spinor (Spin ½) field

$$
\mathcal{L}=i(\hbar c)\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi-(mc^{2})\overline{\psi}\psi
$$

- Treating ψ and the adjoint spinor $\overline{\psi}$ as independent field variables and
- applying Euler-Lagrange $\left\| i\gamma^{\mu}\mathcal{O}_{\mu}\psi-\left(\frac{mc}{\hbar}\right)\psi=0\right\|$
	- gives Dirac equation, describing in quantum field theory a particle with spin ½ and mass *m*
- Corresponding 'momentum space' equation

$$
[p-(mc)]=0
$$

- Corresponding propagator for the free Lagrangian is *i* / [*p* − (*mc*)]

- Dirac Lagrangian is invariant under transformation $\psi \rightarrow e^{i\theta} \psi$ (global phase transformation); θ ... any real number
- However, if θ is a function of space-time x^{μ}
- 'Local' phase transformation: $\psi \rightarrow e^{i\theta(x)}\psi$

 \Rightarrow however $\mathcal{L} \mathcal{\rightarrow} \mathcal{L} - \hbar c (\mathcal{\partial}_{\mu} \theta) \overline{\psi} \gamma^{\mu} \psi$; NOT invariant

or with
$$
\lambda(x) = \frac{\hbar c}{q} \theta(x) \mathcal{L} \rightarrow \mathcal{L}(q\overline{\psi}\gamma^{\mu}\psi)\partial_{\mu}\lambda
$$

- New concept: require invariance of *L* under local phase transformation, must add extra term with ${\sf A}_\mu$ a new field, such that $\;\; {\rm A}_\mu \to {\rm A}_\mu + \partial_\mu \;\lambda \;\;$ (gauge invariance) $\{i\hbar c\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi-mc^2\overline{\psi}\psi\} { - } (q\overline{\psi}\gamma^{\mu}\psi) A_{\mu} \}$ μ $\mathcal{L=}\left[i\hbar c\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi-mc^{2}\overline{\psi}\psi\right]-\left(q\overline{\psi}\gamma^{\mu}\psi\right)A_{\mu}$
- Complete $\mathcal L$ includes is invariant at the price of a new term for free field A_μ Lagragian of QED $\left[\frac{1}{16\pi}F^{\mu\nu}F_{\mu\nu}\right]- (q\overline{\psi}\gamma^{\mu}\psi)A_{\mu} \ \ \ F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$ μ µν µν $\mathcal{L} =$ [i $\hbar c \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi - mc^2 \overline{\psi} \psi$] – $\left[\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu}\right]$ – $(q \overline{\psi} \gamma^{\mu} \psi) A_{\mu}$ $F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A$

- Demanding <u>local</u> gauge invariance introduces vector field A^µ; must be massless, because otherwise gauge invariant would be lost
	- \Rightarrow generates all of the electrodynamics and specifies the current produced by the Dirac particles
- Idea of local gauge invariance introduced by Hermann Weyl in 1918
- Its power was not fully appreciated until the early 1970's
- 't Hooft, Veltman: have shown that under certain conditions quantum field theories with local gauge invariance are renormalizable (will be explained later); Nobel Prize in Physics in 1999

- Phase transformation can be considered as $\psi' = U \psi$
- $U = e^{i\theta}$; $U^+ U = 1$
- Group of all such matrices is $U(1)$; is a 1x1 matrix
- Symmetry involved is called U(1) gauge invariance
- Young and Mills applied it to other field theories: $SU(2) \Rightarrow$ describes interaction of Dirac fields with three massless vector gauge fields (would be identified later with W $^+$, W \cdot , Z⁰)
- Idea extended to SU(3), generating QCD
- In Standard Model all of the fundamental interactions are generated through the requirement of local gauge invariance under $U(1)$ \otimes SU(2) \otimes SU(3) transformation
- Truely breathtaking: laws of Nature derived with one elegant concept

- Pictorial 'code' to represent particle interactions
- All electromagnetic processes are ultimately reducible to the process represented by the diagram below
	- Convention for interpreting the diagram

- time flows horizontally
- o the charged particle enters
- emits (or absorbs) a photon
- the charged particle exits
- charged particle could be
	- charged lepton
	- a quark

- Feynman diagrams are purely symbolic
- Horizontal dimension represents time
- Vertical dimension does NOT correspond to physical separation
- Quantitatively, each Feynman diagram represents a particular number, which can be calculated -> 'Feynman rules'
- **Approach**
	- draw/calculate all the diagrams contributing to a process
	- sum of all Feynman diagrams with the specific external lines represents the physical process
- In principle: an infinite number contribute
- In practice: saved by the fact that fine structure constant $\alpha = e^2/hc \approx 1/137$
- Higher orders contribute less; need only consider processes up to certain order, consistent with experimental accuracy/ aims/ tests

QED: 'Feynman diagrams': Pictorial description + theoretical rules

More complicated processes can be built up with combinations of this 'primitive' vertex

- two electrons enter
- a photon is exchanged between them
- the two electrons exit
- classically: Coulomb repulsion
- in QED: 'Møller Scattering'
- o arrow pointing back in time -> antiparticle going forward in time
- this process represents electron-positron annihilation; photon is formed, which produces electron-positron pair: 'Bhabha scattering'

QED: More processes

electron-positron scattering: also contributing to 'Bhabha Scattering' classically: Coulomb attraction

(pair annihilation) $e^+ + e^- \rightarrow \gamma + \gamma$

pair production $\gamma + \gamma \rightarrow e^+ + e^-$

 $e^- + \gamma \rightarrow e^- + \gamma$ (Compton Scattering)

QED: Virtual Particles

- both diagrams describe 'Møller Scattering'
- the internal lines/diagrams are not observed ('virtual' particles)
	- Virtual particle production allowed due to

Heisenberg uncertainty relation

- the internal lines describe the mechanism and contribute to the process in measurable ways
- only the external lines are observed

- Conservation of energy, momenta $(2\pi)^4 \delta^4 (k_1 + k_2 + k_3)$
- k_i are the four-momenta coming into the vertex 24

• Mott scattering for $M >> m \rightarrow R$ utherford scattering $v << c$

$$
(2\pi)^4 \int \left[\overline{u}^{(s_3)}(p_3)\left(i g_e \gamma^{\mu}\right) u^{(s_1)}(p_1)\right]^{-ig_{\mu\nu}} \left[\overline{u}^{(s_4)}(p4)\left(i g_e \gamma^{\nu}\right) u^{(s_2)}(p2)\right] \times \delta^4(p_1 - p_3 - q) \delta^4(p_2 + q - p_4) d^4q
$$

after q (= internal momenta) integration, amplitude

$$
\mathcal{M} = -\frac{g_e^2}{(p_1 - p_3)} \left[\overline{u}^{(s_3)}(p_3) \gamma^{\mu} u^{(s_1)}(p_1) \right] \left[\overline{u}^{(s_4)}(p_4) \gamma_{\mu} u^{(s_2)}(p_2) \right]
$$

• looks complicated (four spinors, 8 γ matrices, but this is just a number,which can be calculated, once the spin states are defined

Calculate the electron-muon scattering amplitude in CM system (electron and muon scatter along z-direction); initial and final particles have helicity $+1$

First, we need to evaluate the bispinors; for our case: $p_x=p_y=0$; $cp_z=c$ | p | = ((E-mc²)(E+mc²))^{1/2}

$$
u^{(1)} = \frac{\sqrt{E + mc^2}}{\sqrt{c}} \left(\frac{0}{\sqrt{\frac{(E - mc^2)}{(E + mc^2)}}} \right) = \frac{1}{\sqrt{c}} \left(\frac{\sqrt{E + mc^2}}{0} \right)
$$

$$
u^{(2)} = \frac{1}{\sqrt{c}} \begin{pmatrix} 0 \\ \sqrt{E + mc^2} \\ 0 \\ -\sqrt{E - mc^2} \end{pmatrix}
$$

\n
$$
v^{(1)} = \frac{\sqrt{E + mc^2}}{\sqrt{c}} \begin{pmatrix} \frac{0}{\sqrt{(E - mc^2)}} \\ \frac{-\sqrt{(E - mc^2)(E + mc^2)}}{(E + mc^2)} \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{c}} \begin{pmatrix} 0 \\ -\sqrt{E - mc^2} \\ 0 \\ \sqrt{E + mc^2} \end{pmatrix}
$$

\n
$$
u^{(2)} = \frac{1}{\sqrt{c}} \begin{pmatrix} \sqrt{E - mc^2} \\ 0 \\ \sqrt{E + mc^2} \\ 0 \end{pmatrix}
$$

For our problem we have specifically:

 $a_{+-} = ((E_e + m c^2)/c)^{1/2}$; $b_{+-} = ((E_\mu + M c^2)/c)^{1/2}$

$$
u(1) = \begin{pmatrix} a_+ \\ 0 \\ a_- \\ 0 \end{pmatrix}, u(2) = \begin{pmatrix} 0 \\ b_+ \\ 0 \\ b_- \end{pmatrix}, u(3) = \begin{pmatrix} 0 \\ a_+ \\ 0 \\ a_- \end{pmatrix}, u(4) = \begin{pmatrix} b_+ \\ 0 \\ b_- \\ 0 \end{pmatrix}
$$

$$
\mathsf{M} = -\frac{g_e^2}{\left(p_1 - p_3\right)^2} \quad \left\{ \left[\overline{u}\left(3\right)\gamma^0 u\left(1\right)\right] \left[\overline{u}\left(4\right)\gamma^0 u\left(2\right)\right] - \left[\overline{u}\left(3\right)\gamma^i u\left(1\right)\right] \left[\overline{u}\left(4\right)\gamma^i u\left(2\right)\right] \right\}
$$

where i is summed from 1 to 3

$$
\overline{u}(3)\gamma^{0} u(1) = (0 a_{+} 0 a_{-}) \gamma^{0} \gamma^{0} \begin{pmatrix} a_{+} \\ 0 \\ a_{-} \\ 0 \end{pmatrix} = (0 a_{+} 0 a_{-}) \begin{pmatrix} a_{+} \\ 0 \\ a_{-} \\ 0 \end{pmatrix} = 0.
$$

$$
\overline{u}(3)\gamma^{i} u(1) = (0 a_{+} 0 a_{-}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} a_{+} \\ 0 \\ a_{-} \\ 0 \end{pmatrix} = 0.
$$

$$
= (0a_+ 0 - a_-) \begin{pmatrix} \sigma^i \begin{pmatrix} a_- \\ 0 \end{pmatrix} \\ -\sigma^i \begin{pmatrix} a_+ \\ 0 \end{pmatrix} \end{pmatrix} = (0a_+) \sigma^i \begin{pmatrix} a_- \\ 0 \end{pmatrix} + (0a_-) \sigma^i \begin{pmatrix} a_+ \\ 0 \end{pmatrix}
$$

$$
=2a_{+}a_{-}\left[(0\ 1)\left(\begin{array}{cc}\sigma_{11}^{i} & \sigma_{12}^{i} \\ \sigma_{21}^{i} & \sigma_{22}^{i}\end{array}\right)\left(\begin{array}{c}1 \\ 0\end{array}\right)\right]=2a_{+}a_{-}\left[(0\ 1)\left(\begin{array}{c}\sigma_{11}^{i} \\ \sigma_{21}^{i}\end{array}\right)\right]=2a_{+}a_{-}\sigma_{21}^{i}.
$$

$$
\boxed{\frac{1}{\prod\limits_{w\text{ }}\mathcal{U}}}
$$

$$
\overline{u}(4)\gamma^{i}u(2) = (b_{+} 0 b_{-} 0)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ b_{+} \\ 0 \\ b_{-} \end{pmatrix}
$$

$$
=(b_+0-b_0)\begin{pmatrix} \sigma^i & \begin{pmatrix} 0 \\ b_-\end{pmatrix} \\ -\sigma^i & \begin{pmatrix} 0 \\ b_+\end{pmatrix} \end{pmatrix} = (b_+0)\sigma^i \begin{pmatrix} 0 \\ b_-\end{pmatrix} + (b_0)\sigma^i \begin{pmatrix} 0 \\ b_+\end{pmatrix}
$$

$$
=2\,b_{+}\,b_{-}\left[\begin{array}{cc} (1\,\,0)\begin{pmatrix} \sigma_{11}^{i} & \sigma_{12}^{i} \\ \sigma_{21}^{i} & \sigma_{22}^{i} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{array}\right]=2\,b_{+}\,b_{-}\left[\begin{array}{cc} (1\,\,0)\begin{pmatrix} \sigma_{12}^{i} \\ \sigma_{22}^{i} \end{pmatrix} \end{array}\right]=2\,b_{+}\,b_{-}\,\sigma_{12}^{i}\;.
$$

$$
M = -\frac{g_e^2}{(p_1 - p_3)^2} (2a_+ a_- 2b_+ b_-) \sigma_{21} \bullet \sigma_{12} = \frac{8g_e^2}{(p_1 - p_3)^2} (a_+ a_-) (b_+ b_-),
$$

where $\sigma_{21} \bullet \sigma_{12} = (1) (1) + (i) (-i) + (0) (0) = 2$ in the last step.

Now
$$
(a_+a_-) = \sqrt{\frac{E_e^2 - m^2 c^4}{c^2}} = \sqrt{\frac{p_e^2 c^2}{c^2}} = |\mathbf{p}_e|
$$
, $(b_+b_-) = |\mathbf{p}_\mu|$, and $|\mathbf{p}_e| = |\mathbf{p}_\mu|$.

So
$$
M = \frac{8g_e^2 \mathbf{p}_e^2}{(p_1 - p_3)^2}
$$
.

$$
p_1 = \left(\frac{E_e}{c}, \, \mathbf{p}_e\right), \quad p_3 = \left(\frac{E_e}{c}, -\mathbf{p}_e\right); \quad \text{so} \quad (p_1 - p_3) = (0, \, 2\mathbf{p}_e), \quad (p_1 - p_3)^2 = 0 - 4\mathbf{p}_e^2 \; .
$$

$$
\therefore \mathcal{M} = \frac{8g_e^2 \mathbf{p}_e^2}{-4\mathbf{p}_e^2} = -2g_e^2.
$$

- Electron-muon scattering
	- lowest order diagram:

- next order correction:

• Next order corrections lead to modification of photon propagator

$$
\frac{g_{\mu\nu}}{q^2} \rightarrow \frac{g_{\mu\nu}}{q^2} - \frac{i}{q^4} I_{\mu\nu}
$$

and gives divergent integrals

• Applying these rules to diagrams of the form

logarithmically divergent at large q

• Twenty year long struggle by some of the greatest physicists: Dirac, Pauli, Kramers, Weisskopf, Bethe, Tomonaga, Schwinger, Feynman … to develop a systematic approach to deal with these infinities to obtain calculable results which could be compared to measurements

- Classical electrodynamics of point particles
	- Electrostatic energy of point charge is infinite, makes infinite contribution to the particle's mass; electrostatic energy required to assemble sphere with charge e and 'effective' radius $r_{\rm e} \rightarrow E = mc^2 \rightarrow$ defines classical electron radius

$$
m_{em} = q^2 / 8\pi r_e; \quad r_e = \frac{1}{\alpha} \frac{\hbar}{m_e c} \approx 2.8 \times 10^{-15} m
$$

 r_e (classical electron radius) : mass m_e due to its electrostatic potential energy

- Total effective mass includes the bare mass of the spherical particle in addition to mass associated with field
	- assume, bare mass is allowed to be negative \rightarrow
	- perhaps possible to take a consistent point limit
	- called 'renormalization' by Lorentz
	- inspiration for later work = renormalization in QFT
- Maybe this is telling us that there are no point particles in nature; point particles only a theoretical construct **34**

- Treatment occupied some of the best physicists of the last century: Dirac, Born, Heisenberg, Pauli, Weisskopf, Schwinger, Tomonaga, Feynman, Dyson, ….
- Divergences appear in diagram with closed loops of virtual particles
- Virtual particles may have a mass different from their physical mass: 'off-shell'
- Integrals over the loop processes are often divergent
	- 'ultraviolet' (UV) divergences: loop particles with large momenta
		- short-distance, short-time phenomena
	- 'infrared' divergences: due to massless particles, like photons
		- treated in analogy to bremsstrahlung

Handling of Divergences

• Integrals are of the type

$$
\int_{m^2}^{\infty} \frac{d_z}{z} \to are considered in the form \int_{m^2}^{M} \frac{d_z}{z} = \ln \frac{M^2}{m^2}
$$

• Amplitude
$$
\mathcal{M} = -g_e^2 \left[\overline{u}(p_3) \gamma^\mu u(p_1) \right] \frac{g_{\mu\nu}}{q^2} \left\{ 1 - \frac{g_e^2}{12\pi^2} \left[\ln \left(\frac{M^2}{m^2} \right) - f \left(\frac{-q^2}{m^2 c^2} \right) \right] \right\}
$$

$$
\overline{\Pi} = \frac{1}{2} \left[\overline{u}(p_4) \gamma^\nu u(p_2) \right]
$$

- Redefine coupling constant $g_R = g_e \sqrt{1 \frac{g_e^2}{12 \pi^2}} \ell n \left(\frac{M^2}{m^2} \right)$ 2 $1-\frac{g_e}{12\pi^2}ln\left(\frac{M}{m}\right)$ $g_R \equiv g_e \sqrt{1 - \frac{g_e^2}{12\pi^2}} \ell n \left(\frac{M}{m}\right)$
- Resulting in $M = -g_R^2 \left[\overline{u}(p_3) \gamma^\mu u(p_1) \right] \frac{g_{\mu\nu}}{q^2}$ 1 + $\frac{g_R^2}{12\pi^2} f \left(\frac{-q^2}{m^2 c^2} \right)$ $\left(\frac{-q^2}{m^2c^2}\right)$ $\begin{array}{c} \hline \end{array}$ $\left\{ \right.$ \int $\left\{1+\frac{g_R^2}{12\pi^2}\int \left(\frac{-q^2}{m^2c^2}\right)\right\} \left[\overline{u}(p_4)\gamma^V u(p_2)\right]$

- Reference to cut off is absorbed in coupling constant
- g_R reflects the actual measurement; we are not measuring the 'bare' charge, but the physical charge, which includes the higher order terms
- Finite correction terms remain, depending on $q^2 \Rightarrow$ coupling depends on q^2

$$
g_R(q^2) = g_R(0)\sqrt{1 + \frac{g_R(0)^2}{12\pi^2} f\left(\frac{-q^2}{m^2c^2}\right)}
$$

• In terms of $g_e = \sqrt{4\pi\alpha}$ $\alpha(q^2) = \alpha(0) \left\{ 1 + \frac{\alpha(0)}{3\pi} f \left(\frac{-q^2}{m^2 c^2} \right) \right\}$ $\left($ $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ \setminus \int $\begin{array}{c} \hline \end{array}$ $\left\{ \right.$ \int $\Big\} _{1}$ $\begin{bmatrix} \end{bmatrix}$

- Regularization: mathematical procedure to cancel divergencies
- Introduce a cut-off procedure

- introduce factor $\sqrt{a^2-M^2c^2}$ under integral; M very large $\rm M^2c^2$ $q^2 - M^2 c^2$

- Integrals can be calculated and seperated into part independent of M; second term depending logarithmically on M
- With a surprising result: all M-dependent terms appear in the final answer in the form of
	- addition to the masses and the couplings
	- $m_{\text{physical}} = m + \delta m \ (\rightarrow \infty \text{ for } M \rightarrow \infty)$
	- $g_{\text{physical}} = g + \delta g \ (\rightarrow \infty \text{ for } M \rightarrow \infty)$
- Modern approach is Lorentz-invariant 'Dimensional Regularization':
- Four dimensions replaced with 4D-ε: result is a convergent part and part divergent as 1/ ε

- Insight: quantities appearing in the Lagrangian (mass, charge, coupling strength) do not correspond to the physical constants measured
- 'Bare' quantities do not take into account contributions of virtual particle loop effects, which contribute to the physical constants
- Formulae have to be rewritten in terms of measureable, renormalized quantities \rightarrow renormalization scale, which is characteristic to a specific measurement
- Example: charge of an electron would be defined as a quantity at the renormalization scale
- This procedure introduces the concept of the 'Running coupling constants' \rightarrow describes the changing behaviour of the QFT under change of the energies involved

• **Conceptual example:**
$$
\int_{0}^{a} \frac{1}{z} dz - \int_{0}^{b} \frac{1}{z} dz = \ln a - \ln 0 - \ln b - \ln 0
$$

take lower limit
$$
\varepsilon_a, \varepsilon_b: I = \ln \frac{a}{b} - \ln \varepsilon_A + \ln \varepsilon_B \to \ln \frac{a}{b}
$$
 for $\varepsilon_a, \varepsilon_b \to 0$

- Also in electrodynamics: effective coupling also depends on distance
	- Charge q embedded in dielectric medium ε (polarizable)

- in QED: vacuum behaves like dielectric
- full of virtual positron-electron pairs

- virtual electron attracted to q, positron repelled
- medium becomes polarized
- Particle q acquires halo of negative particles, partially screening the charge q
- at large distance charge is reduced to q / ε
- vacuum polarization screens partially the charge at distances larger than $h/mc= 2.4*10⁻¹⁰$ cm (Compton wavelength of electron)
- Measurable, e.g. in structure of hydrogen levels
- NOTE: we measure the 'screened' charge, not the 'bare' charge **40**

- Effective charge of electron (muon) depends on momentum transferred, i.e. on distance of approach \Rightarrow consequence of vacuum polarization, which 'screens' the charge
- Effect only significant at high energies
	- At head-on collision at $v = 0.1c \Rightarrow$
	- effect is at level of $\sim 6 \times 10^{-6}$
- However, as Lamb shift measurement shows, it is detectable; also directly measured in e⁺e⁻ - collisions

- Hydrogen levels calculated with Dirac equation
	- $-$ ²S_{1/2} and ²P_{1/2} levels have precisely the same energy (are 'degenerated')
- However, in QED we have additional diagrams

- Self interaction 'smears' position of electron over a range of
	- \sim 0,1 fermi (Bohr radius is 52900 fermi)
	- weakening the force on S-electron (which approaches nucleus closer) more than ${}^{2}P_{1/2}$ electron
	- ${}^{2}S_{1/2}$ level is $\sim 4.3 \times 10^{6}$ eV above ${}^{2}P_{1/2}$ level

$$
- \Delta E_{\text{Lamb}} \sim \alpha^5 f(n, l, j) \tag{42}
$$

- Need to form a beam of metastable 2 ${}^{2}S_{1/2}$ states
- Induce microwave transition between ${}^{2}S_{1/2}$ and ${}^{2}P_{1/2}$, which decays in \sim 10⁻⁹ sec under emission of light
- Hydrogen produced in tungsten oven \rightarrow bombarded by electrons \rightarrow to excite ²S_{1/2} states(1 in ~10⁸ !) \rightarrow impinge on metal plate, where they eject electrons and can therefore be detected
- Radio frequency transition from ${}^{2}S_{1/2}$ to ${}^{2}P_{1/2}$ states quenches ${}^{2}P_{1/2}$ states
- Transition frequency is $f \approx 1054$ MHz

Fig. 3. Cross section of second apparatus: (a) tungsten oven of hydrogen dissociator, (b) movable slits, (c) electron bombarder cathode, (d) grid, (e) anode, (f) transmission line, (g) slots for passage of metastable atoms through interaction space, (h) plate attached to center conductor of r-f transmission line, (i) d.c. quenching electrode, (j) target for metastable atoms, (k) collector for electrons ejected from target, (l) pole face of magnet, (m) window for observation of tungsten oven temperature.

g-2 of the Muon

- Magnetic moment $\mu = g \frac{e}{2mc} \bullet \left(\frac{\hbar}{2}\right)$
- If 'Dirac' particle: $g = 2$, exactly
- The value is modified by quantum fluctuations in the field around the muon
	- QED-effects of fluctuations: $\sim 10^{-3}$
	- electroweak effects (virtual W, Z): $\sim 10^{-8}$
	- strong interaction effects: $\sim 10^{-7}$
- Present value for $a_{\mu} = (g_{\mu} 2)/2 =$ $=$ (11659208.0 \pm 6.3) x 10⁻¹⁰
- Biggest theoretical uncertainty: hadronic vacuum polarization contrib.
	- determined from e+e- -> hadrons or τ -> hadrons
- Δ (Measurement SM-Theory) ~ 3.36 σ (e⁺e⁻) 0.96 σ (τ data)
- A genuine difference between Standard Model Theory and experiment would imply 'New Physics' (e.g. Supersymmetry)

Diagrams contributing to anomalous magnetic moment of the muon

solid line... muon; zig-zag line...photon; closed loops... creation of virtual electron-positron pair

- Longitudinally polarized particle, moving in uniform magnetic field B
	- momentum vector turns at cyclotron frequency $f_c = eB/2\pi$ mc
	- spin precession frequency is the same as for particle at rest: $2\pi f_s = 2\mu B/h = g (eB/2mc) = (1+a_u) (eB/1mc)$
	- if $g = 2 \Rightarrow f_c = f_s$
	- if $g > 2$, spin turns faster than momentum vector
	- in laboratory, rotating frequency of spin relative to momentum vector is

$$
2\pi f_a = 2\pi (f_s - f_c) = a_\mu
$$
 (eB/mc)

Comments on most recent (g-2) experimer at Brookhaven National Laboratory

- BNL uses continuous magnet, with field known to 0.1 ppm at 1.451 Tesla
- Polarized µ's moving in $\vec{B} \perp$ to muon spin and \perp to plane of the orbit of electric quadrupole field E (used for vertical focussing) U
→
- Muons are stored at magic momentum of 3.094 GeV/c in uniform magnetic field \rightarrow electric fields to focus muons do not disturb muon anomaly measurement
- Frequency difference ω_{a} between precession frequency ω_{s} and cyclotron frequency ω_c is

$$
\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \vec{\beta} \times \vec{E} \right) \right]
$$

- No E dependence for $\gamma = 29.3$ \rightarrow
- Achieved accuracy of 0.35 parts per million (ppm)

Conceptual layout of the (g-2) experiment

View of BNL (g-2) experiment

Typical count rates for electrons from muon decay

Count rate of electrons from muon decay: periodicity gives the precession frequency of the muon and hence g-2