
Elementary Particle Dynamics (1)
Quantum Electrodynamics (QED)

From Schrödinger to Dirac

Dirac: from Disaster to Triumph

QED through local gauge invariance

Getting a feeling for calculating Feynman diagrams

Two classic experiments : the power of QED
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The Fundamental Forces

Presently: we see four forces in nature

Force Strength* Theory Mediator

Strong 10 Chromodynamics (QCD) Gluon

Electromagnetic 10-2 Electrodynamics (QED) Photon

Weak 10-13 (Flavordynamics) W, Z
Glashow-Weinberg-Salam

Gravitational 10-42 General Theory of Relativity Graviton

• Strength: to be taken as an indication; depends on force, energy, distance
(and maybe on time !)
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From Schrödinger to Dirac Equation

• Schrödinger equation: non-relativistic quantum-mechanical description 

• Heuristic way to ‘derive’ it
- from classical energy-momentum relation 

- applying the quantum prescription

- with resulting operators acting on ‘wave function’ Ψ

• Schrödinger equation

• One possible relativistic generalization is Klein-Gordon equation, describing 
particles with spin = 0 
- starting with relativistic energy-momentum relation

• Klein-Gordon equation
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Dirac Equation

• Schrödinger derived initially the Klein-Gordon equation, but realized that it
- does not reproduce energy levels for hydrogen (K-G applies to spin 0)
- is not compatible with Born’s statistical interpretation

o …  probability of finding particle at point
o this problem can be traced to fact that K-G is second order in t 

(time)

• 1934:  Pauli and Weisskopf showed that statistical interpretation must be 
reformulated in relativistic quantum theory⇒ relativistic theory must 
account for pair production and annihilation ⇒ number of particles is not 
conserved ⇒ showed that Klein-Gordon equation is appropriate for spin = 
0 particles

• Dirac: aimed to find equation, consistent with relativistic energy-
momentum formula and first order in time 4
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Dirac’s Approach

• Strategy: ‘factorize’ energy-momentum relation

- easy if

• but with spatial components included, need something like

• or  explicitly:

• this gives 8 coefficients to be determined; to reach our goal:

• must avoid terms linear in        , required that                ;

• and finally need to find 
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written out explicitly
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Dirac’s Stroke of a Genius

• As long as the coefficients γµ are numbers ⇒ impossible to avoid cross terms 
such as γ1 γ3 p1 p3 ,…

• Dirac’s brilliant idea: what if γ’s are not numbers, but matrices ?
- matrices do not commute ⇒ should be possible to find

-

- or more succinctly

- … Minkowski metric  (4*4 matrix with 1, -1,-1,-1) in diagonal, rest=0) ;                  
{ } denotes anticommutator {A,B} = AB+BA

• Smallest matrices that work are 4 x 4; among the number of equivalent sets: ‘Bjorken and 
Drell’ convention most frequently used

σi …..Pauli matrices                

1 denotes 2 x 2 unit matrix 7
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Dirac Equation

• As a 4 x 4 matrix equation, relativistic energy momentum relation 
does factor

• Choose one of the two factors: conventional choice

•

− Ψ is a four-element column matrix
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Solution to Dirac Equation: Disaster
turned into triumph

• Assume ψ is independent of position

• Dirac equation reduces to: 

or
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Solution to Dirac Equation: Disaster
turned into triumph

• solutions

… time dependence of quantum state with              
energy  E = mc2 (particle at rest)

� ψΑ           corresponds to state with p = 0, as expected

� ψB = ?  state with negative energy (E = -mc2) : the famous ‘disaster’

� ψB Dirac’s way out: unseen ‘sea’ of negative-energy particle

• Pauli et al: particles describes antiparticle with positive energy
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Dirac Equation with p = 0

• Dirac equation with p = 0 has four independent solutions

• electron spin up; spin down

positron spin up; spin down 
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Dirac Equation: Plane wave solution

• Next step: plane-wave solution
- describes particle with specified energy and momentum
- find four-vector kμ and associated bispinor u(k) such that ψ(x) 

satifies the Dirac equation; putting this into Dirac equation and…
- after several pages of matrix manipulation ….

- customary to use v for antiparticle (instead of u); N=((E=mc2 ) /c)1/2
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Conceptual Next Steps

• u ….. are the particles, satisfying (γupu – mc) u = 0; 
ν ….. are the antiparticles ((γupµ + mc) ν = 0)

• u(1) is electron with spin up, u(2) electron with spin down

• Similar development for photons; example for plane wave:

for the two spin (polarization) states

• In modern language: Lagrangian invariant under local gauge 
transformation U(1) -> generates gauge field Aμ
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Glimpse at Field Theory of QED

• In classical particle mechanics: calculate position as a function of time

• In Field Theory: calculate one or several functions (e.g. temperature, 
electric potential) as function of position, time:

• Classically: Lagrangian                         

• Field Theory: Lagrangian (density): function of the fields Φ, x,y,z,t  

• Classically, law of motion described by Euler-Lagrange equation

• Relativistic Theory: simplest generalization
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Dirac Lagrangian for Spinor ψ (S=½) Field

• Consider  Dirac Lagrangian for a Spinor (Spin ½) field

• Treating       and the adjoint spinor       as independent field variables 
and

• applying Euler-Lagrange

- gives Dirac equation, describing in quantum field theory a 
particle with spin ½ and mass m

• Corresponding ‘momentum space’ equation

- Corresponding propagator for the free Lagrangian is   
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Local Gauge Invariance → Lagrangian of QED

• Dirac Lagrangian is invariant under transformation
(global phase transformation); θ … any real number 

• However, if  θ is a function of space-time xμ

• ‘Local’ phase transformation:
⇒ however                                           ;  NOT invariant

or with 

• New concept: require invariance of L under local phase transformation, 
must add extra term    

with Aµ a new field, such that                                (gauge invariance)

• Complete L includes is invariant at the price of a new term for free field Aµ

Lagragian of QED
16
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Local Gauge Invariance

• Demanding local gauge invariance introduces vector field Aµ; must 
be massless, because otherwise gauge invariant would be lost
⇒ generates all of the electrodynamics and specifies the current 

produced by the Dirac particles

• Idea of local gauge invariance introduced by Hermann Weyl in 1918

• Its power was not fully appreciated until the early 1970’s
• ’t Hooft, Veltman: have shown that under certain conditions quantum 

field theories with local gauge invariance are renormalizable (will be 
explained later); Nobel Prize in Physics in 1999
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From U(1) to SU(2) to SU(3)

• Phase transformation can be considered as ψ’ = U ψ

• U = eiθ ;  U+ U = 1

• Group of all such matrices is U(1) ; ….  is a 1x1 matrix

• Symmetry involved is called U(1) gauge invariance

• Young and Mills applied it to other field theories: SU(2) ⇒ describes 
interaction of Dirac fields with three massless vector gauge fields ( 
would be identified later with W +, W -, Z0)

• Idea extended to SU(3), generating QCD

• In Standard Model all of the fundamental interactions are generated 
through the requirement of local gauge invariance under                       

U(1)     SU(2)     SU(3) transformation

• Truely breathtaking: laws of Nature derived with one elegant concept 
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For ‘General’ Culture: Feynman Rules

• Pictorial ‘code’ to represent particle interactions
• All electromagnetic processes are ultimately reducible to the process 

represented by the diagram below
- Convention for interpreting the diagram

 time flows horizontally
 the charged particle enters
 emits (or absorbs) a photon
 the charged particle exits
 charged particle could be

- charged lepton
- a quark
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Feynman Diagrams

• Feynman diagrams are purely symbolic
• Horizontal dimension represents time
• Vertical dimension does NOT correspond to physical separation
• Quantitatively, each Feynman diagram represents a particular number, 

which can be calculated -> ‘Feynman rules’
• Approach

- draw/calculate all the diagrams contributing to a process
- sum of all Feynman diagrams with the specific external lines 

represents the physical process
• In principle: an infinite number contribute
• In practice: saved by the fact that fine structure constant
• Higher orders contribute less; need only consider processes up to 

certain order, consistent with experimental accuracy/ aims/ tests 
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QED: ‘Feynman diagrams’: 
Pictorial description + theoretical rules

More complicated processes can be built up with combinations of this
‘primitive’ vertex

 two electrons enter
 a photon is exchanged between them
 the two electrons exit
 classically: Coulomb repulsion
 in QED: ‘Møller Scattering’

 arrow pointing back in time ->   
antiparticle going forward in time

 this process represents electron-positron
annihilation; photon is formed, which    

produces electron-positron pair:
‘Bhabha scattering’
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QED: More processes

electron-positron scattering:
also contributing to ‘Bhabha
Scattering’
classically: Coulomb attraction
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on)annihilati(pair 
γγ +→+ −+ ee
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ee −+ +→+ γγ

 

e− + γ → e− + γ
(Compton Scattering)



QED: Virtual Particles

• both diagrams describe ‘Møller Scattering’
• the internal lines/diagrams are not observed (‘virtual’ particles)

- Virtual particle production allowed due to 
Heisenberg uncertainty relation 

• the internal lines describe the mechanism and contribute to the process 
in measurable ways

• only the external lines are observed
23



For ‘General’ Culture: Feynman Rules

• Notation: see Figure

• Electrons: incoming:     , outgoing: (     spinor)
Positrons:    incoming:     , outgoing: (     spinor) 
Photons:      incoming:      , outgoing:         

• Vertex contributes                                     …coupling constant   

• Propagator                                                photons                                                   
qμ are internal momenta                                               

• Conservation of energy, momenta                                         

• ki are the four-momenta coming into the vertex   24
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Example
Electron-muon scattering

• e + µ → e + µ

• Mott scattering for  M >> m → Rutherford scattering ν << c

after  q (= internal momenta) integration, amplitude

M

• looks complicated (four spinors, 8 γ matrices , but this is just a 
number,which can be calculated, once the spin states are defined

25
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Example
Electron-muon scattering

Calculate the electron-muon scattering amplitude in CM system 
(electron and muon scatter along z-direction); initial and final particles
have helicity +1

First, we need to evaluate the bispinors; for our case:
px=py=0; cpz=c │p│= ((E-mc2)(E+mc2))1/2
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Example
Electron-muon scattering
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Example
Electron-muon scattering

For our problem we have specifically:
a+- = ((Ee +- mc2)/c)1/2 ;  b+- = ((Eμ+-Mc2)/c)1/2

where i is summed from 1 to 3
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Example
Electron-muon scattering
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Example
Electron-muon scattering
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Example
Electron-muon scattering
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Need another new concept: Renormalization 

• Electron-muon scattering

- lowest order diagram:

- next order correction:

• Next order corrections lead to modification of photon propagator

and gives divergent integrals
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Including Higher Order Contributions

• Applying these rules to diagrams of the form

leads to expressions of 

logarithmically divergent at large q
• Twenty year long struggle by some of the greatest physicists: 

Dirac, Pauli, Kramers, Weisskopf, Bethe, Tomonaga, Schwinger, 
Feynman … to develop a systematic approach to deal with these 
infinities to obtain calculable results which could be compared to 
measurements
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Self-Interaction in Classical Physics

• Classical electrodynamics of point particles
- Electrostatic energy of point charge is infinite, makes infinite contribution to 

the particle’s mass; electrostatic energy required to assemble sphere with 
charge e and ‘effective’ radius re -> E= mc2  -> defines classical electron 
radius

re (classical electron radius) : mass me due to its electrostatic potential energy

• Total effective mass includes the bare mass of the spherical particle in 
addition to mass associated with field 
- assume, bare mass is allowed to be negative →
- perhaps possible to take a consistent point limit
- called ‘renormalization’ by Lorentz 
- inspiration for later work = renormalization in QFT

• Maybe this is telling us that there are no point particles in nature; point 
particles only a theoretical construct 34
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Divergences in QED

• Treatment occupied some of the best physicists of the last century: 
Dirac, Born, Heisenberg, Pauli, Weisskopf, Schwinger, Tomonaga, 
Feynman, Dyson, ….

• Divergences appear in diagram with closed loops of virtual particles

• Virtual particles may have a mass different from their physical mass: 
‘off-shell’

• Integrals over the loop processes are often divergent
- ‘ultraviolet’ (UV) divergences: loop particles with large momenta

- short-distance, short-time phenomena
- ‘infrared’ divergences: due to massless particles, like photons

- treated in analogy to bremsstrahlung 
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Handling of Divergences

• Integrals are of the type

• Amplitude

• Redefine coupling constant

• Resulting in 
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Concept

• Reference to cut off is absorbed in coupling constant

• gR reflects the actual measurement; we are not measuring the ‘bare’ 
charge, but the physical charge, which includes the higher order 
terms

• Finite correction terms remain, depending on q2 ⇒ coupling depends 
on q2

• In terms of 
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Regularization of Divergent Integrals

• Regularization: mathematical procedure to cancel divergencies

• Introduce a cut-off procedure

- introduce factor                     under integral; M very large

• Integrals can be calculated and seperated into part independent of M; second 
term depending logarithmically on M

• With a surprising result: all M-dependent terms appear in the final answer in the 
form of 

- addition to the masses and the couplings 
- mphysical = m + δm (→ ∞ for M → ∞)
- gphysical = g  + δg  (→ ∞ for M → ∞)

• Modern approach is Lorentz-invariant ‘Dimensional Regularization’:

• Four dimensions replaced with 4D-ε: result is a convergent part and part 
divergent as 1/ ε
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Renormalization

• Insight: quantities appearing in the Lagrangian (mass, charge, coupling strength) 
do not correspond to the physical constants measured

• ‘Bare’ quantities do not take into account contributions of virtual particle loop 
effects, which contribute to the physical constants

• Formulae have to be rewritten in terms of measureable, renormalized quantities 
→ renormalization scale, which is characteristic to a specific measurement

• Example: charge of an electron would be defined as a quantity at the 
renormalization scale

• This procedure introduces the concept of the ‘Running coupling constants’ → 
describes the changing behaviour of the QFT under change of the energies 
involved 

• Conceptual example:                                                            ill defined

take lower limit 39

00
0

1

0

1 nnbnnadzdzI
b

z

a

z  −−−=−= ∫∫

0,:, →→+−= bab
a

BAb
a

ba fornnnnI εεεεεε 



Running coupling constant in QED

• Also in electrodynamics: effective coupling also depends on distance
- Charge q embedded in dielectric medium ε (polarizable)

• in QED: vacuum behaves like dielectric
• full of virtual positron-electron pairs

• virtual electron attracted to q, positron repelled
• medium becomes polarized
• Particle q acquires  halo of negative particles, partially 

screening the charge q
• at large distance charge is reduced to q / ε
• vacuum polarization screens partially the charge at 

distances larger than h/mc= 2.4*10-10 cm (Compton 
wavelength of electron)

• Measurable, e.g. in structure of hydrogen levels
• NOTE: we measure the ‘screened’ charge, not the 

‘bare’ charge 40



Running Coupling Constants

• Effective charge of electron (muon) depends on momentum 
transferred, i.e. on distance of approach ⇒ consequence of vacuum 
polarization, which ‘screens’ the charge

• Effect only significant at high energies
- At head-on collision at v = 0.1c ⇒
- effect is at level of ~ 6 x 10-6

• However, as Lamb shift measurement shows, it is detectable; also 
directly measured in e+e- - collisions
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Lamb Shift in Hydrogen

• Hydrogen levels calculated with Dirac equation
- 2S1/2 and 2P1/2 levels have precisely the same energy (are ‘degenerated’)

• However, in QED we have additional diagrams

self interaction, vacuum polarization
• Self interaction ‘smears’ position of electron over a range of 

- ~ 0,1 fermi  (Bohr radius is 52900 fermi)
- weakening the force on S-electron (which approaches nucleus closer) 

more than 2P1/2 electron
- 2S1/2 level is ~ 4.3 x 10-6 eV above 2P1/2 level
− ∆ELamb ~ α5 f (n, l, j)
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Lamb-Retherford Experiment

• Need to form a beam of metastable 2 2S1/2 states

• Induce microwave transition between 2S1/2 and 2P1/2, which decays 
in ~10-9 sec under emission of light

• Hydrogen produced in tungsten oven → bombarded by electrons → 
to excite 2S1/2 states(1 in ~108 !) → impinge on metal plate, where 
they eject electrons and can therefore be detected

• Radio frequency transition from 2S1/2 to 2P1/2 states quenches 2P1/2

states
• Transition frequency is f ≈ 1054 MHz
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Apparatus of Lamb and Retherford
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g-2 of the Muon

• Magnetic moment
• If ‘Dirac’ particle:  g = 2, exactly
• The value is modified by quantum fluctuations in the field around the 

muon
- QED-effects of fluctuations: ~ 10-3

- electroweak effects (virtual W, Z): ~ 10-8

- strong interaction effects: ~ 10-7

• Present value for aµ = (gµ -2) / 2 =
= (11659208.0 ± 6.3) x 10-10

• Biggest theoretical uncertainty: hadronic vacuum polarization contrib.
- determined from e+e- -> hadrons or τ −> hadrons

• Δ (Measurement – SM-Theory) ~ 3.36 σ (e+e-)      0.96 σ (τ data)
• A genuine difference between Standard Model Theory and experiment 

would imply ‘New Physics’ (e.g. Supersymmetry)
45
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• solid line… muon; zig-zag line…photon; closed loops... creation of  
virtual electron-positron pair

Diagrams contributing to anomalous 
magnetic moment of the muon



g-2 Precession

• Longitudinally polarized particle, moving in uniform magnetic field B

- momentum vector turns at cyclotron frequency fc = eB/2π mc 

- spin precession frequency is the same as for particle at rest:
2π fs = 2µ B/h = g (eB/2mc) = (1+aµ) (eB/1mc)

- if g = 2 ⇒ fc = fs

- if g > 2, spin turns faster than momentum vector

- in laboratory, rotating frequency of spin relative to momentum 
vector is 

2π fa = 2π (fs – fc) = aµ (eB/mc)
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Comments on most recent (g-2) experiment 
at Brookhaven National Laboratory

• BNL uses continuous magnet, with field known to 0.1 ppm at 1.451 
Tesla

• Polarized µ’s moving in        to muon spin and       to plane of the
orbit of electric quadrupole field      (used for vertical focussing)

• Muons are stored at magic momentum of 3.094 GeV/c in uniform 
magnetic field → electric fields to focus muons do not disturb muon 
anomaly measurement

• Frequency difference ωa between precession frequency ωs and 
cyclotron frequency ωc is

• No     - dependence for γ = 29.3   

• Achieved accuracy of 0.35 parts per million (ppm)
48
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Conceptual layout of the (g-2) experiment
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View of BNL (g-2) experiment
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Typical count rates for electrons from 
muon decay 
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Count rate of electrons from muon decay: periodicity gives the 
precession frequency of the muon and hence g-2 
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