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Zum Vergleich:
mean fieldd >4: a=0,5=
d= 2a—01/—1,ﬁ—8w
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Critical exponents

Finite-size scaling (FSS)

Extrapolation of critical behavior from finite system
(non-singular)

Hypothesis:

Relevant for singular behavior in F close to 2. order phase
transition is correlation length &,

not microscopic length scales (e.g., lattice distance).

Hence, numerical results for a hypercubic lattice with volume
V = L9 depend only on % close to T.

Scaling, renormalization group (RG) s. E
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Scaling

To leading order in 1/L, singular part (s) of F is (Wilson’s RG):

AL, T) = lVF(S)(L, T)
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To leading order in 1/L, singular part (s) of F is (Wilson’s RG):

1 1 - L
(s) — _ F(s) ~_ Ul _—_
(L T) = VF (L,T) ~ Vw(f(T))’ where "
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Scaling

To leading order in 1/L, singular part (s) of F is (Wilson’s RG):

1 1. L
(s) _1re 1
FNLT) = o FOLT) v"’(g(r))’ where "
T
T)=toc i e=[1——
M) =6 e=|t -5
= dimensionless length:
L 4
— = e’L 2
¢ €o (2)

Rescaling to microscopic length scale Ly:
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depend on universality class which in turn dependes on
dimensionality and type of order parameter).
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Scaling

All exponents and dependence of W on L/¢ are universal (only
depend on universality class which in turn dependes on
dimensionality and type of order parameter).
It is possible to derive scaling equations for the observables:
(setting Lo = 1):

1,,_8

m(L, T) = m(eLv)L™ (4)
X(L,T) = feLv)L? (5)

1

C(L,T) = C(eLv)L> (6)

To arrive at these equations, relations between the exponents
were used:

a+ 20 + v = 2 Rushbrooke v = (6 — 1) Widom
dr=2—-a« Josephson ~ = (2 — n) Fisher
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in practice corrections can be significant

©Q in general there is an additional (non-singular) regular part
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my(x), where my = mLLg; X =elv (7)
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Finite size scaling

@ scaling laws only true asymptotically fore — 0 and B — 0
in practice corrections can be significant

©Q in general there is an additional (non-singular) regular part

Practical applications of scaling:
To test critical exponents plot

(), where A, = myLv; x = elv (7)
Curves asymptotically collapse

m(x) = lim i (x) (8)

L—oo

seperatelyfor T < Tcand T > T..
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Finite size scaling

Problem

@ Replacing T — ¢ = [1 — £ | requires knowledge of T
(non-universal)
© exponents unknown or not known accurately




Critical exponents

Finite size scaling
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Determine T, from observables which are not renormalized by

L. For example:
(M?) qT_dL—g)Z und (M*) oc (LIL=0)4 9)
M=Lm
ratio not renormalized

(M%)
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Finite size scaling

Solution:
Determine T, from observables which are not renormalized by
L. For example:

(M?) qT_dL—g)Z und (M*) oc (LIL=0)4 9)
M=Lm
ratio not renormalized

(M%)

(Mzy2 > (L9=7) 22 = 10 (10)

or Binder cumulant Uy = 1 — % with Uy(L, T) = Us(x)
Plotting curves Uy (T) for different L, these curves cross
asymptotically at T = T¢.
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Finite size scaling
For example: 2D Ising-Modell

Binder's cumulant (10° sweeps)
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Critical exponents:

As soon as T is known, exponents can be determined by
logarithmic plot, here for
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