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Chapter 1

Introduction

Feynman integrals are indispensable for precision calculations in quantum field theory. They oc-

cur as soon as one goes beyond the leading order in perturbative quantum field theory. Feynman

integrals are also fascinating from a mathematical point of view. They can be used to teach and

illustrate a large part of modern mathematics with concrete non-trivial examples.

In recent years there were some exiting developments in the field of Feynman integrals, en-

larging significantly our knowledge and understanding of Feynman integrals. Although there are

some excellent older books on the subject [1–5], a modern introduction to the theory of Feynman

integrals, which includes the recent developments, will be helpful.

This book is intended for two types of readers: First, there is the physicist interested in pre-

cision calculations in quantum field theory, where she/he encounters Feynman integrals. Her/his

primary motivation is to be able to calculate these integrals. For this audience the book provides

current state-of-the-art techniques, covering all aspects of the computations, from the starting

definition of a Feynman integral to the final step of getting a number out.

Secondly, there is the mathematician, interested in the mathematical aspects underlying Feyn-

man integrals. These are rich and the book provides wherever possible the connection to mathe-

matics.

Of course, these two topics are not independent but interwoven, which makes the theory of

Feynman integrals so enthralling. The book is written in this spirit, showing the deep connection

between physics and mathematics in the field of Feynman integrals.

This book is intended for students at the master level in physics or mathematics. I tried to keep

the essential requirements to a minimum. As minimum requirements I assume that all readers

are familiar with special relativity on the physics side and the theory of complex functions (i.e.

Cauchy’s residue theorem) and differential forms on the mathematics side. Students of physics

or mathematics with an interest in mathematical physics should have covered these topics during

their bachelor studies. Of course, a knowledge of quantum field theory or algebraic geometry is

extremely helpful for the topic of this book. However, as most readers might have followed one

of these courses, but not both, I arranged the material covered in this book in such a way that no

prior knowledge of quantum field theory nor algebraic geometry is assumed. The relevant topics

are introduced as they are needed. In this way the book can complement a course in quantum field

theory or algebraic geometry. Of course, the book cannot substitute a course in quantum field

9
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theory nor a course in algebraic geometry and readers are encouraged to familiarise themselves

with quantum field theory and algebraic geometry beyond the topics required and introduced in

this book.

There are always some readers, who are impatient: Reading chapters 2, 6 and 7 should bring

them to the point that they can perform state-of-the-art Feynman integral calculations with the

method of differential equations. One might also be lucky that a particular Feynman integral is

already known in the literature. The database Loopedia [6] is a good place to check out first.

For all others, who would like to take the recommended long and scenic route, we start

in chapter 2 with introducing the central objects of this book: Feynman integrals. We do this

by requiring only a basic knowledge of special relativity, avoiding quantum field theory as a

prerequisite. The chapter also introduces the most popular integral representations for Feynman

integrals.

The Feynman parameter representation and the Schwinger parameter representation involve

two graph polynomials. These graph polynomials have many interesting properties and we dis-

cuss them in detail in chapter 3.

As we deliberately did not build upon quantum field theory in chapter 2, we should neverthe-

less discuss how Feynman integrals arise in quantum field theory. This is done in chapter 4.

In many applications within perturbation theory the next-to-leading order correction requires

one-loop integrals. The one-loop integrals are therefore of particular importance. We devote a

special chapter to them (chapter 5).

For all other Feynman integrals the most commonly method to compute these integrals (at the

time of writing this book) is the method of differential equations. We introduce this technique in

chapter 6. The most important result of this chapter is the fact, that the computation of Feynman

integrals can be reduced to the problem of finding a suitable transformation for the associated

differential equation. Methods to find such a transformation are discussed in chapter 7.

In chapter 8 we discuss an important class of functions, which appear in Feynman integral

computations: These are the multiple polylogarithms.

Apart from an iterated integral representation (which we use extensively in chapters 6 and 7)

Feynman integrals may also be represented as nested sums. We discuss this aspect in chapter 9.

In this chapter we also show the relation of Feynman integrals to Gelfand-Kapranov-Zelevinsky

hypergeometric systems.

Chapter 10 is devoted to sector decomposition. On the one hand sector decomposition (or

in a more mathematical language: blow-ups) allow us to device an algorithm, which computes

numerically the coefficients of the Laurent expansion in the dimensional regularisation parameter

of a Feynman integral. On the other hand (and on the more formal side), we may use this

algorithm to prove that these coefficients are numerical periods for rational input parameters.

In chapter 8 we discussed the algebraic properties of the multiple polylogarithms. Chapter 11

continues this theme and explores the coalgebra side: Coproducts, Hopf algebras, coactions,

symbols and single-valued projections are discussed in this chapter.

With the methods of chapters 6 and 7 we may transform the differential equation of a Feyn-

man integral, which evaluates to multiple polylogarithms, to a dlog-form. We may ask if there is

any relation between the arguments of the dlog’s and the original kinematic variables. This will

lead us to cluster algebras, which we introduce in chapter 12.
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In chapter 13 we discuss integrals, which do not evaluate to multiple polylogarithms. We

focus on the next-more-complicated case: These are Feynman integrals related to an elliptic

curve. We introduce elliptic curves, elliptic functions, modular transformations, modular forms

and the moduli space of a genus one curve with marked points.

Chapter 14 is the most mathematical chapter of this book: We introduce motives and mixed

Hodge structures and their relation to Feynman integrals. This chapter continues a thread, which

started on the one hand in chapter 10 with (numerical) periods and on the other hand in chapter 11

with coactions. In chapter 14 we bring these concepts together. We will see that each coefficient

of the Laurent expansion in the dimensional regularisation parameter of a Feynman integral

corresponds to a motivic period.

At the end of the day physics is about numbers: We would like to get for specified input

parameters (i.e. for specified kinematic variables) a number for a Feynman integral (more pre-

cisely for the coefficients of the Laurent expansion in the dimensional regularisation parameter).

In chapter 15 we discuss numerical evaluation routines. These methods can be used to obtain

numerical values to a high numerical precision (up to a few hundred or thousand digits). This

in turn opens the possibility to use the heuristic PSLQ algorithm to simplify analytic expres-

sions. The main application is the simplification of boundary constants. In this chapter we also

introduce the PSLQ algorithm.

In the last chapter of this book (chapter 16) we carry out a full project: We show in detail

how the two-loop penguin diagram on the title page is computed from the starting Feynman

diagram to the final numerical result. The purpose of this chapter is to show how the methods

and algorithms introduced in this book are used in practice.

This book is supplemented with several appendices:

In appendix A we review spinors in four space-time dimensions. These are useful for the

methods discussed in chapter 5. Chapter 5 is devoted to one-loop integrals. There are only

a finite number of one-loop integrals which we need to know. We list all relevant one-loop

integrals for massless theories in appendix B.

Appendix C is a supplement to chapter 9: We summarise the definitions and main proper-

ties of a few transcendental functions: Hypergeometric functions, Appell functions, Lauricella

functions and Horn functions are reviewed in this appendix.

Appendix D is devoted to Lie groups and Lie algebras. Of course Lie groups and Lie algebras

are omnipresent in particle physics. In the context of Feynman integrals it is useful to know the

classification of simple Lie algebras and their relation to Dynkin diagrams (which we will need in

chapter 12). The appendix gives a concise discussion of the classification of simple Lie algebras.

Appendices E and F supplement chapter 13: Appendix E introduces Dirichlet characters,

while appendix F discusses the moduli space Mg,n of a smooth algebraic curve of genus g with

n marked points.

Appendix G is a concise introduction to the main concepts of algebraic geometry. We give

the definitions of sheaves and schemes. These are avoided (as much as possible) in the main text

of the book, but one is confronted with these terms as soon as one consults the mathematical

literature.

Appendices H and I are supplements to chapters 6 and 7. Appendix H reviews standard

algorithms in polynomial rings for computing a Gröbner basis, a Nullstellensatz certificate and
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an annihilator. These are used in chapters 6 and 7. Appendix I introduces finite field methods,

which can be used to speed-up the integration-by-parts reduction discussed in chapter 6.1.

There are many exercises included in the main text of this book. The solutions to the exercises

are given in appendix J.

This book grew out of lectures on Feynman integrals given at the Johannes Gutenberg Uni-

versity Mainz in the summer term 2021 (covering the first half of the book) and of lectures given

at the Higgs Centre School of Theoretical Physics 2021 (covering some of the more advanced

topics). I am grateful to the students attending these lectures for their feedback and to Luigi del

Debbio, Einan Gardi and Roman Zwicky for organising the Higgs Centre School. My partic-

ular thanks go to Alexander Aycock, Christian Bogner, Ina Hönemann, Philipp Kreer, Sascha

Kromin, Hildegard Müller, Farroukh Peykar Negar Khiabani, Robert Runkel, Juan Pablo Vesga

and Xing Wang for valuable suggestions on the manuscript.

In writing this book I recycled some existing material. In particular, chapter 3 is a revision of

a review article [7] on graph polynomials written together with Christian Bogner. Other chapters

have their origin in shorter contributions to summer schools and conference proceedings [8–15].

I would like to thank my collaborators Luise Adams, Marco Besier, Isabella Bierenbaum,

Christian Bogner, Ekta Chaubey, Andre van Hameren, Philipp Kreer, Dirk Kreimer, Sven Moch,

Stefan Müller-Stach, Armin Schweitzer, Duco van Straten, Kirsten Tempest, Peter Uwer, Jens

Vollinga, Moritz Walden, Pascal Wasser and Raphael Zayadeh, for their shared work and research

interest related to various topics in relation with Feynman integrals.

Finally, I would like to thank a few colleagues, from whom I learned through discussions,

conversations or lectures about different aspects of Feynman integrals: My thanks go to David

Broadhurst, Johannes Brödel, Francis Brown, Lance Dixon, Claude Duhr, Johannes Henn, David

Kosower, Erik Panzer and Lorenzo Tancredi. I also would like to thank Jacob Bourjaily and

Henriette Elvang for useful information on book projects.

The figures in this book have been produced with the help of the programs Axodraw [16],

TikZ [17] and ROOT [18].



Chapter 2

Basics

In this chapter we introduce the central object of this book: Feynman integrals. We first review

special relativity in section 2.1 and the basic concepts of graphs in section 2.2. With these prepa-

rations and the Feynman rules for a scalar theory we define Feynman integrals in section 2.3.

Before we embark on calculating the first Feynman integrals we need to introduce two funda-

mental concepts: Wick rotation and regularisation. We do this in section 2.4. We conclude this

chapter with a section containing an overview of various integral representations for Feynman

integrals (section 2.5). This includes the Feynman parameter representation, the Schwinger pa-

rameter representation, the Baikov representation, the Lee-Pomeransky representation and the

Mellin-Barnes representation.

2.1 Special relativity

Let us denote by D the number of space-time dimensions. In our real world D equals 4 (one

time dimension and three spatial dimensions), but it is extremely helpful to keep this number

arbitrary. We will always assume that space-time consists of one time dimension and (D− 1)
spatial dimensions.

The momentum of a particle is a D-dimensional vector, whose first component gives the

energy E (divided by the speed of light c) and the remaining (D−1) components give the com-

ponents of the spatial momentum, which we label with superscripts:

p =

(
E

c
, p1, . . . , pD−1

)
. (2.1)

It is common practice in high-energy physics to work in natural units, where

c = ~ = 1. (2.2)

We use this convention throughout this book from now on. Let us set p0 = E. We then have

p =
(

p0, p1, . . . , pD−1
)
. (2.3)

13
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We write

pµ with 0 ≤ µ ≤ D−1 (2.4)

for a component of p. The index µ is called a Lorentz index.

We denote by gµν the components of the metric tensor. The indices µ and ν take integer

values between 0 and (D− 1). We are primarily concerned with the Minkowski metric. Our

convention for the Minkowski metric is

gµν =





1, µ = ν = 0,
−1, µ = ν ∈ {1, . . . ,D−1},

0, otherwise.
(2.5)

This convention is the standard convention in high-energy physics phenomenology. Some au-

thors (mostly in the field of formal high-energy physics theory) use a convention, where the roles

of (+1) and (−1) are interchanged. Working consistently within one or the other convention

does not change physics. The transition from one convention to the other is rather easy and given

by a minus sign. In this book we use the convention as given by eq. (2.5).

The Minkowski scalar product of two momentum vectors pa and pb is

pa · pb =
D−1

∑
µ=0

D−1

∑
ν=0

pµ
a gµν pν

b. (2.6)

Einstein’s summation convention is the convention to drop the summation symbol for any Lorentz

index, which occurs twice, once as an upper index and once as a lower index. The summation is

then implicitly assumed. With Einstein’s summation convention we may write

pa · pb = pµ
a gµν pν

b. (2.7)

The Minkowski scalar product pa · pb is an example of a Lorentz invariant: A Lorentz invariant

is a quantity, whose value is not changed under Lorentz transformations.

With the Minkowski scalar product at hand, we may in particular take the scalar product of a

momentum vector with itself. Let us write this out explicitly:

p2 = p · p =
(

p0
)2−

(
p1
)2−

(
p2
)2−·· ·−

(
pD−1

)2
. (2.8)

Please note that on the left-hand side p2 denotes the Minkowski scalar product of p with itself,

while on the right-hand side p2 (appearing in the term (p2)2) denotes the third component (the

second spatial component) of p. As the meaning should be clear from the context, we follow

common practice and do not disambiguate the notation.

Apart from the momentum, we also associate a mass m to a particle. We represent a particle

propagating in space-time by a line:

(2.9)
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If we would like to indicate the direction of the momentum flow, we optionally put an arrow:

p

(2.10)

The line in eq. (2.9) is our first building block for a Feynman graph. A Feynman graph is a

graphical notation for a mathematical formula and a line for a particle with momentum p and

mass m stands for

p,m
=

1

−p2 +m2
. (2.11)

On the right-hand side the Minkowski scalar product of p with itself appears. Note that the

right-hand side is independent of the orientation of p.

If one follows standard conventions in quantum field theory the propagator of a scalar particle

with momentum p and mass m is given by

i

p2−m2
. (2.12)

This differs by a factor (−i) from eq. (2.11). This is just a prefactor and easily adjusted. Through-

out this book we use the convention that the mathematical expression corresponding to a line is

given by eq. (2.11).

2.2 Graphs

Let us now turn to graphs. An unoriented graph consists of edges and vertices, where an edge

connects two vertices. A graph may be connected or disconnected. We will mainly consider

connected graphs. An oriented graph is a graph, where for every edge an orientation is chosen.

An oriented graph is also called a quiver. As any edge connects two vertices, say va and vb, an

orientation is equivalent to declaring one of the two vertices the source for this edge (for example

va) and the other vertex the sink for this edge (for example vb). An orientated edge is usually

drawn with an arrow line:

source sink
(2.13)

The valency of a vertex is the number of edges attached to it. Vertices of valency 0, 1 and 2 are

special. A vertex of valency 0 is necessarily disconnected from the rest of graph and therefore

not relevant for connected graphs. A vertex of valency 1 has exactly one edge attached to it.

This edge is called an external edge. All other edges are called internal edges. In the physics

community it is common practice not to draw a vertex of valency 1, but just the external edge.

A vertex of valency 2 is also called a dot. In physics the use of the word “vertex” sometimes

implies a vertex of valency 3 or greater. This derives from the fact that in a particle picture a

vertex of valency 3 or greater corresponds to a genuine interaction among particles.
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v1
v2

v3

v4
v5

e1

e2

e3 e4

e5

v6

Figure 2.1: A (disconnected) graph with five edges and six vertices. The vertex v6 is discon-

nected from the rest of the graph.

As an example for a graph let us look at fig. 2.1. Fig. 2.1 shows a disconnected graph with

five edges and six vertices. There, vertex v6 has valency 0 and is disconnected from the rest of

the graph. Vertices v1 and v5 have valency 1. The edges attached to them (e1 and e5) are the

external edges of the graph. Vertex v3 has valency 2 and is an example of a dot. Vertices v2 and

v4 have valency 3 and are genuine interaction vertices. The internal edges of the graph are e2, e3

and e4.

A Feynman graph is a graph with additional information. In the basic version we associate

to each edge an orientation (thus our graph becomes an oriented graph), a D-dimensional vector

p (the momentum) and a number m (the mass). The physics picture is that an oriented edge

represents the propagation of a particle with momentum p and mass m. The momentum flow

is in the direction of the orientation of the edge. Note that the choice of the orientation of an

edge does not matter if a change in the orientation is accompanied by reversing the momentum

p→−p. Consider again an edge e, which connects the vertices va and vb. We have

p,mva vb
=

−p,mva vb
(2.14)

Let us now consider a graph G with n edges and r vertices. Assume that the graph has k connected

components. The loop number l is defined by

l = n− r+ k. (2.15)

If the graph is connected we have l = n− r+1. The loop number l is also called the first Betti

number of the graph or the cyclomatic number. In the physics context it has the following

interpretation: If we fix all momenta of the external lines and if we impose momentum conser-

vation at each vertex, then the loop number is equal to the number of independent momentum

vectors not constrained by momentum conservation.

A connected graph of loop number 0 is called a tree. A graph of loop number 0, connected or

not, is called a forest. If the forest has k connected components, it is called a k-forest. A tree is
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a 1-forest. Feynman graphs which are trees pose no conceptual problem. Our focus in this book

is on connected Feynman graphs, which are not trees, e.g. Feynman graphs with loop number

l > 0.

Unless stated otherwise we consider in this book from now on only connected graphs.

Let us fix some notation: Consider a graph G with next external edges, nint internal edges and

loop number l. As we now always assume that the graph is connected, we know from eq. (2.15)

that the graph G must have

r = next +nint +1− l (2.16)

vertices. Out of these r vertices exactly next vertices are vertices of valency 1, this leaves

rint = nint +1− l (2.17)

vertices of valency > 1. For each edge we choose an orientation. We label the edges such that

e1, . . . ,enint
are the internal edges and enint+1, . . . ,enint+next are the external edges. For any edge

e j (internal or external) we denote the momentum flowing through this edge (with respect to

the chosen orientation) by q j. For external momenta we use a second notation: We label the

momentum flowing through the external edge enint+ j by p j. Thus we have

p j = qnint+ j. (2.18)

We will soon see that this redundant notation is useful and simplifies the notation in some for-

mulae. Consider a vertex va. We denote by

Esource(va) : set of edges, which have vertex va as source,

Esink(va) : set of edges, which have vertex va as sink. (2.19)

At each vertex va of valency > 1 we impose momentum conservation:

∑
e j∈Esource(va)

q j = ∑
e j∈Esink(va)

q j. (2.20)

Furthermore, we denote by

E in : set of edges, which have a vertex of valency 1 as source,

Eout : set of edges, which have a vertex of valency 1 as sink. (2.21)

The edges in E in and Eout are necessarily external edges.

Exercise 1: Consider a connected graph G with the notation as above. Show that momentum con-
servation at each vertex of valency > 1 implies momentum conservation of the external momenta:

∑
e j∈E in

q j = ∑
e j∈Eout

q j. (2.22)
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If we choose an orientation such that all external edges have a vertex of valency 1 as sink (e.g. E in = /0)
this translates to

next

∑
j=1

p j = 0. (2.23)

Let us now investigate how many independent momenta we have. Our graph has n = next +nint

edges and thus we start from n momenta qi (1 ≤ i ≤ n). Clearly, in a space of dimension D
there can only be D linear independent momenta. This is not the effect we want to study here.

Therefore we assume that the dimension D of space-time is large enough (D ≥ next−1+ l will

be sufficient). We have seen in the exercise above that the external momenta satisfy momentum

conservation. Thus they are not independent and there is at least one linear relation among

them. We will assume that the external momenta are generic, e.g. there are besides momentum

conservation no further linear relations among the external momenta. Thus we have (next −
1) linear independent external momenta. (A non-generic or special configuration of external

momenta is for example given by the four momenta p1, p2, p3 = 2p1, p4 = −3p1− p2.) Each

vertex of valency > 1 gives us through momentum conservation at this vertex a relation among

the n momenta q j. Assuming that the external momenta are known quantities, this leaves

n− (next−1)− rint = l (2.24)

momenta undetermined. We label these momenta by k1, . . . ,kl and call them the independent

loop momenta. We may then express any other momentum q j as linear combination of the l
independent loop momenta and the (next− 1) independent external momenta with coefficients

{−1,0,1}:

q j =
l

∑
r=1

λ jrkr +
next−1

∑
r=1

σ jr pr, λ jr,σ jr ∈ {−1,0,1}. (2.25)

Let us look at some examples: We start with a tree graph, shown in fig. 2.2. This graph has five

edges (n = 5) and six vertices (r = 6). The graph is connected, hence k = 1. Eq. (2.15) gives

then the loop number as

l = 5−6+1 = 0, (2.26)

confirming that it is a tree graph. Two vertices have valency > 1, in fig. 2.2 these two vertices

are labelled v1 and v2. Momentum conservation at these two vertices yields

v1 : p1 + p2 +q1 = 0,

v2 : p3 + p4 = q1. (2.27)

From the first equation we have q1 = −p1 − p2 and combining the two equations we obtain

momentum conservation for the external momenta:

p1 + p2 + p3 + p4 = 0. (2.28)
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q1

p1

p2 p3

p4

v1 v2

Figure 2.2: A tree graph with five edges and six vertices. There are four external edges (labelled

with momenta p1, . . . , p4) and one internal edge (labelled with momentum q1). The orientation

of the external edges is chosen such that all external momenta are outgoing.

p1

p2 p3

p4

q1 q4 q7

q2 q5

q3 q6

v1

v2 v4

v3

v6

v5

Figure 2.3: A two-loop graph with eleven edges and ten vertices. There are four external edges

(labelled with momenta p1, . . . , p4) and seven internal edges (labelled with momenta q1, . . . ,q7).

Six vertices have valency > 1. These are labelled by v1, . . . ,v6. The orientation of the external

edges is chosen such that all external momenta are outgoing.
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In particular, p4 = −p1− p2− p3 and all momenta can be expressed as a linear combination of

p1, p2, p3 with coefficients {−1,0,1}. Since we considered a tree graph there are no independent

loop momenta in this example.

In the next example we look at a loop graph. The graph is shown in fig. 2.3. This graph has

eleven edges (n = 11) and ten vertices (r = 10). Again, the graph is connected, hence k = 1. The

loop number is therefore

l = 11−10+1 = 2. (2.29)

Six vertices have valency > 1, in fig. 2.3 these vertices are labelled by v1, . . . ,v6. Momentum

conservation at these vertices gives

v1 : p1 +q1 = q3,

v2 : p2 +q2 = q1,

v3 : q3 +q6 = q4,

v4 : q4 = q2 +q5,

v5 : p4 +q7 = q6,

v6 : p3 +q5 = q7. (2.30)

Let us take p1, p2, p3 as the independent external momenta and

k1 = q3, k2 = q6 (2.31)

as the independent loop momenta. All other momenta may then be expressed as a linear combi-

nation of k1,k2, p1, p2, p3 with coefficients {−1,0,1}. This is nothing else than solving the linear

system in eq. (2.30) for the momenta q1,q2,q4,q5,q7, p4. Explicitly we have

q1 = k1− p1,

q2 = k1− p1− p2,

q4 = k1 + k2,

q5 = k2 + p1 + p2,

q7 = k2 + p1 + p2 + p3 (2.32)

and p4 =−p1− p2− p3.

Exercise 2: We stepped from a tree example immediately to a two-loop example. As an exercise consider
the one-loop graph shown in fig. 2.4. Write down the equations expressing momentum conservation at
each vertex of valency > 1. Use p1, p2, p3 as independent external momenta and k1 = q4 as the indepen-
dent loop momentum. Express all other momenta as linear combinations of these.

Let us now return to a general graph with next external momenta (satisfying momentum con-

servation) and l independent loop momenta. We may consider the external momenta as input

data, but what shall we do with the l independent loop momenta? As they are independent of the
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p1

p2 p3

p4

q1 q3

q2

q4

v1

v2 v3

v4

Figure 2.4: A one-loop graph with eight edges and eight vertices. There are four external edges

(labelled with momenta p1, . . . , p4) and four internal edges (labelled with momenta q1, . . . ,q4).

Four vertices have valency > 1. These are labelled by v1, . . . ,v4. The orientation of the external

edges is chosen such that all external momenta are outgoing.

external momenta there is no reason to prefer a particular configuration over any other configu-

ration. Quantum field theory instructs us to integrate over the independent loop momenta. Thus

we include for every independent loop momentum kr (1≤ r ≤ l) a D-dimensional integration

∫
dDkr

iπ
D
2

. (2.33)

i denotes the imaginary unit. This is the measure which we will use in this book. It is normalised

conveniently. If one follows standard conventions in quantum field theory, the measure is given

by

∫
dDkr

(2π)D . (2.34)

The difference is a simple prefactor and one easily converts from one convention to the other

convention.

We should also specify the integration contour. Our naive expectation is that we integrate

each of the D components of kr along the real axis from −∞ to +∞. However, we have to be

more careful. An internal edge with momentum kr and mass m contributes a factor

kr,m
=

1

−k2
r +m2

(2.35)
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to the integrand and there will be poles on the real axis. For example, for the k0
r -integration we

will have poles at

k0
r = ±

√√√√D−1

∑
i=1

(ki
r)

2 +m2. (2.36)

(ki
r denotes the i-th component of the D-dimensional vector kr.) We can go around these poles

in the complex plane, but for two poles there a four possibilities: For each poles we may either

escape above the real axis or below the real axis into the complex plane. In order to avoid to

write down the square root more often, let us define

E~kr
=

√√√√D−1

∑
i=1

(ki
r)

2 +m2. (2.37)

Quantum field theory and causality in particular dictates us that the correct integration contour is

the following:

Re(k0
r )

Im(k0
r )

−E~kr

E~kr

Thus we escape for the pole at k0
r = −E~kr

into the complex lower half-plane and for the pole at

k0
r = E~kr

into the complex upper half-plane. Alternatively, we may keep the contour along the

real axis and move the pole at k0
r = −E~kr

an infinitesimal amount above the real axis and the

pole as k0
r = E~kr

an infinitesimal amount below the real axis. This can be done by adding an

infinitesimal small imaginary part to the Feynman rule for an internal edge:

q,m
=

1

−q2 +m2− iδ
(2.38)

with δ an infinitesimal small positive number. This is Feynman’s iδ-prescription. In this book

we usually don’t write the iδ explicitly and only include it where it is needed. This is common

practice in the field.

We started defining the basic version of a Feynman graph as a graph, where we associate to

every edge a momentum and a mass. Let us add some additional information. The motivation is

as follows: Consider a vertex of valency 2 inside a Feynman graph. By momentum conservation,

the momenta flowing through the two edges attached to this vertex are (with an appropriate
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choice of orientation of the two edges) identical. Let us assume that the masses associated with

these two edges are identical as well. The two edges would then contribute two identical factors

q,m q,m
=

1

(−q2 +m2)
2
. (2.39)

We get the same effect if we associate to each edge in addition to the momentum and the mass a

further number ν, corresponding to the power to which the propagator occurs:

q,m,ν
=

1

(−q2 +m2)
ν (2.40)

This convention will prove useful in later chapters of the book.

2.3 Feynman rules

Feynman rules translate a Feynman graph into a mathematical formula. In the previous paragraph

we already discussed the essential ingredients. Let’s wrap them up and finalise them.

We consider a (connected) Feynman graph G with next external edges, nint internal edges and

l loops. This graph has

r = next +nint +1− l (2.41)

vertices. To each external edge we associate an external momentum. We label the external

momenta by p1, . . . , pnext . To each internal edge e j we associate a triple (q j,m j,ν j), where q j is

the momentum flowing through this edge, m j the mass and ν j the power to which the propagator

occurs. Momentum conservation at each vertex of valency > 1 allows us to express any q j as

a linear combination of (next−1) linear independent external momenta and l independent loop

momenta. We denote the latter by k1, . . . ,kl. Thus

q j =
l

∑
r=1

λ jrkr +
next−1

∑
r=1

σ jr pr, λ jr,σ jr ∈ {−1,0,1}. (2.42)

The Feynman integral I corresponding to this Feynman graph is obtained as follows:

1. For each internal edge e j include a factor

1(
−q2

j +m2
j

)ν j
. (2.43)

2. For each independent loop momentum kr include an integration

∫
dDkr

iπ
D
2

. (2.44)
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3. Multiply by the prefactor

elεγE
(
µ2
)ν− lD

2 where ε =
[D]−D

2
, ν =

nint

∑
j=1

ν j. (2.45)

The prefactor in rule 3 requires some explanation. First of all, it is just a prefactor. All compli-

cations in computing Feynman integrals come from the integrations in rule 2. The sole purpose

of the prefactor is to make the final result as simple as possible. We will see examples later on.

Let us discuss the ingredients of the prefactor. ε is called the dimensional regularisation

parameter. For a start we may define ε as follows: If D denotes the dimension of space-time,

we define [D] to be the closest integer to D. The dimensional regularisation parameter ε is then

defined to be

ε =
[D]−D

2
. (2.46)

This may sound weird at first sight. Up to now we implicitly assumed that the dimension D
of space-time is a positive integer and the closest integer to an integer is the integer itself: If

D is an integer we have [D] = D and therefore ε = 0. Later on in this book we will work with

the assumption that D is an arbitrary complex number, not necessarily an integer. This is called

dimensional regularisation. Very often we will write

D = 4−2ε, (2.47)

where we assume that |ε| is a small number. In this case

[D] = 4 (2.48)

and eq. (2.47) agrees with the definition in eq. (2.46). Rearranging eq. (2.46) gives

D = [D]−2ε, (2.49)

and once we specify Dint = [D] as the integer dimension of the physical space-time we are in-

terested in, we may give up the restriction |Re(ε)|< 1/2 and consider ε as an arbitrary complex

parameter. In other words, as we will be using perturbation theory in ε, the quantity Dint denotes

the (integer) expansion point in the complex D-plane and ε the expansion parameter. We will

also denote the integer dimension of the physical space-time by Dint. Eq. (2.49) reads then

D = Dint−2ε. (2.50)

The symbol γE denotes Euler’s constant (also called the Euler-Mascheroni constant). This

constant is defined by

γE = lim
n→∞

(
− lnn+

n

∑
j=1

1

j

)
. (2.51)
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The numerical value is

γE = 0.57721566490153286 . . . (2.52)

We will later see that without the prefactor elεγE Euler’s constant will appear in the final result

for a Feynman integral. The dependence of the result on γE is rather simple (later we will see

explicitly that it is given by e−lεγE) and it is convenient to factor this out. Thus the prefactor elεγE

removes this factor and with this prefactor included Euler’s constant will not clutter the final

result of a Feynman integral.

In physics we like to work with dimensionless quantities. The momentum squared p2 is not

dimensionless, it has mass dimension 2 (recall that we work in natural units where c = 1). We

have nint internal edges, each bringing a factor 1/(−q2
j +m2

j)
ν j . The total mass dimension of

these factors is

dim




nint

∏
j=1

1(
−q2

j +m2
j

)ν j


 = −2ν, ν =

nint

∑
j=1

ν j. (2.53)

The integral measure has mass dimension

dim

(
l

∏
r=1

dDkr

iπ
D
2

)
= lD. (2.54)

In order to enforce that our Feynman integral is dimensionless, we introduce an arbitrary param-

eter µ with mass dimension

dim(µ) = 1 (2.55)

and multiply by (µ2)v−lD/2.

In summary, the Feynman integral corresponding to a Feynman graph G with next external

edges, nint internal edges and l loops is given in D space-time dimensions by

I = elεγE
(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

nint

∏
j=1

1(
−q2

j +m2
j

)ν j
, (2.56)

where each internal edge e j of the graph is associated with a triple (q j,m j,ν j), specifying

the momentum q j flowing through this edge, the mass m j and the power ν j to which the

propagator occurs. The external momenta are labelled by p1, . . . , pnext . Furthermore

ε =
Dint−D

2
, ν =

nint

∑
j=1

ν j, q j =
l

∑
r=1

λ jrkr +
next−1

∑
r=1

σ jr pr. (2.57)

The coefficients λ jr and σ jr can be obtained from momentum conservation at each vertex

of valency > 1. The integration contour is given by Feynman’s iδ-prescription.
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Eq. (2.56) defines the central object of this book. We would like to compute integrals of this

type. We will learn about methods how to approach this task and the underlying mathematics in

the sequel of this book.

We already mentioned that the Feynman integral defined in eq. (2.56) differs by a prefactor

from standard conventions in quantum field theory. Let us summarise the (small) differences: If

we come from quantum field theory, each edge corresponds to a single power of a propagator.

Thus ν j = 1. A scalar propagator is given by

i

q2
j −m2

j

, (2.58)

the integral measure is given by

dDkr

(2π)D (2.59)

and the prefactor elεγE(µ2)ν−lD/2 is replaced by one. If one later chooses the modified minimal

subtraction scheme for renormalisation, Euler’s constant is removed in the same way as the

factor elεγE removes γE from the final result. The ε-dependent part of (µ2)ν−lD/2 is (µ2)lε. The

latter is introduced to keep the action dimensionless (in natural units ~= 1). The parameter µ is

known as the renormalisation scale.

2.4 Fundamental concepts

2.4.1 Wick rotation

Minkowski space comes with the Minkowski metric, given by gµν = diag(1,−1,−1,−1, . . .). It

will be simpler to work with the standard Euclidean metric deucl
µν = diag(1,1,1,1, . . .). The Wick

rotation [19] allows us effectively to go from the Minkowski metric to the standard Euclidean

metric.

We explain the basic idea for the one-loop case, where the integrand depends on the integra-

tion variables only through k2. The simplest example is given by the one-loop tadpole integral

T1 = eεγE
(
µ2
)1−D

2

∫
dDk

iπ
D
2

1

(−k2 +m2)
. (2.60)

Remember, that k2 written out in components in D-dimensional Minkowski space reads

k2 =
(
k0
)2−

(
k1
)2−

(
k2
)2−

(
k3
)2−·· ·−

(
kD−1

)2
. (2.61)

Furthermore, when integrating over k0, we encounter poles which are avoided by Feynman’s

iδ-prescription

1

−k2 +m2− iδ
. (2.62)
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✲ Re k0

✻

Im k0

Figure 2.5: Integration contour for the Wick rotation. The little circles along the real axis

exclude the poles.

In the complex k0-plane we consider the integration contour shown in fig. 2.5. Since the contour

does not enclose any poles, the integral along the complete contour is zero:

∮
dk0 f (k0) = 0. (2.63)

If the quarter-circles at infinity give a vanishing contribution (it can be shown that this is the case)

we obtain

∞∫

−∞

dk0 f (k0) = −
−i∞∫

i∞

dk0 f (k0). (2.64)

We now make the following change of variables:

k0 = iK0,

k j = K j, for 1≤ j ≤ D−1. (2.65)

As a consequence we have

k2 = −K2,

dDk = idDK, (2.66)

where K2 is now given with Euclidean signature:

K2 =
(
K0
)2

+
(
K1
)2

+
(
K2
)2

+
(
K3
)2

+ · · ·+
(
KD−1

)2
. (2.67)

In this book we use lower case letters for vectors in Minkowski space and upper case letters for

vectors in Euclidean space. Combining the exchange of the integration contour with the change

of variables we obtain for the integration of a function f (k2) in D dimensions

∫
dDk

iπ
D
2

f (−k2) =

∫
dDK

π
D
2

f (K2), (2.68)
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whenever there are no poles inside the contour of fig. 2.5 and the arcs at infinity give a vanishing

contribution. The integral on the right-hand side is now in D-dimensional Euclidean space. This

equation justifies our convention to introduce in the definition of the Feynman integral a factor i
in the denominator of the measure and a minus sign for each propagator. These conventions are

just such that after Wick rotation we have simple formulae.

2.4.2 Dimensional regularisation

Before we start with an actual calculation of a Feynman integral, we should mention one compli-

cation: Loop integrals are often divergent! Let us first look at the simple example of a one-loop

tadpole integral with a double propagator and vanishing internal mass in four space-time dimen-

sions:

T2 =
∫

d4k

iπ2

1

(−k2)2
=

∫
d4K

π2

1

(K2)2
=

∞∫

0

dK2

K2
=

∞∫

0

dx

x
. (2.69)

Here, we first performed a Wick rotation to Euclidean space. We then used spherical coordinates

in four dimensions and integrated over the angles. We are left with the radial integration, where

we used as variable the norm squared. This integral diverges at

• x→ ∞, which is called an ultraviolet (UV) divergence and at

• x→ 0, which is called an infrared (IR) divergence.

Any quantity, which is given by a divergent integral, is of course an ill-defined quantity. There-

fore the first step is to make these integrals well-defined by introducing a regulator. There are

several possibilities how this can be done. One possibility is cut-off regularisation with an ultra-

violet regulator Λ and an infrared regulator λ:

∞∫

0

dx

x
→

Λ∫

λ

dx

x
= lnΛ− lnλ. (2.70)

For infrared divergences mass regularisation can be used:

∫
d4K
π2

1

(K2)2
→

∫
d4K
π2

1

(K2+m2)2
=

∞∫

0

dK2 K2

(K2 +m2)2
. (2.71)

This cures the problem at K2 → 0, but not at K2 → ∞. A third possibility is lattice regulari-

sation, where in position space space-time is approximated by a finite lattice with finite lattice

spacing. Ultraviolet divergences are regulated by the finite lattice spacing, infrared divergences

are regulated by the finite lattice. However, within perturbative quantum field theory the method

of dimensional regularisation [20–22] has almost become a standard, as the calculations in this

regularisation scheme turn out to be the simplest. Within dimensional regularisation one replaces
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the four-dimensional integral over the loop momentum by a D-dimensional integral, where D is

now an additional parameter, which can be a non-integer or even a complex number. We con-

sider the result of the integration as a function of D and we are interested in the behaviour of this

function as D approaches 4.

At first sight the concept of dimensional regularisation may sound strange, as it is hard to

imagine a space of non-integer dimension, but the concept is closely related to the following

situation: Consider a function f (z), which is defined for any positive integer n ∈ N by

f (n) = n! = 1 ·2 ·3 · · · · ·n. (2.72)

We then would like to define f (z) for any value z ∈ C (except for a countable set of isolated

points, where f (z) is allowed to have poles). Of course, the answer is well known in mathematics

and given by Euler’s gamma function

f (z) = Γ(z+1) . (2.73)

We will soon see that dimensional regularisation is based on the analytic properties of Euler’s

gamma function.

Let us start with general properties of dimensional regularisation: The D-dimensional in-

tegration still fulfils the standard laws for integration, like linearity, translation invariance and

scaling behaviour [23, 24]. If f and g are two functions, and if a and b are two constants, linear-

ity states that

∫
dDK

π
D
2

[a f (K)+bg(K)] = a
∫

dDK

π
D
2

f (K)+b
∫

dDK

π
D
2

g(K) . (2.74)

Translation invariance requires that

∫
dDK

π
D
2

f (K +P) =
∫

dDK

π
D
2

f (K) (2.75)

for any vector P. The scaling law states that

∫
dDK

π
D
2

f (λK) = λ−D
∫

dDK

π
D
2

f (K) . (2.76)

The integral measure is normalised such that it agrees with the result for the integration of a

Gaussian function for all integer values D:

∫
dDK

π
D
2

exp
(
−K2

)
= 1. (2.77)

In eq. (2.50) we introduced Dint as an integer, giving the dimension of space-time we are inter-

ested in. We further introduced the dimensional regularisation parameter ε such that

D−Dint = −2ε. (2.78)
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Let us take Dint and D−Dint = −2ε as two independent quantities. We will assume that we can

always decompose any vector into a Dint-dimensional part and a (D−Dint)-dimensional part

K(D) = K(Dint)+K(D−Dint), (2.79)

and that the Dint-dimensional and (D−Dint)-dimensional subspaces are orthogonal to each other:

K(Dint) ·K(D−Dint) = 0. (2.80)

If we substitute k0 = iK0 and k j =K j for 1≤ j≤ (D−1) this also implies the Minkowski version

k(Dint) · k(D−Dint) = 0. (2.81)

If D is an integer greater than Dint, eq. (2.79) and eq. (2.80) are obvious. We postulate that these

relations are true for any value of D. One can think of the underlying vector space as a space of

sufficiently high dimension (possibly infinite), where the integral measure mimics the one in D
dimensions.

Digression. Constructing vector spaces associated to dimensional regularisation

Let us digress and discuss how eq. (2.79) and eq. (2.80) can actually be realised. This will give
us some insight how to interpret a space-time of dimension D = 3.99.

We start with a simpler but related question: Suppose we know the natural numbers N to-
gether addition and multiplication. Subtraction and division are not yet known to us. How do we
construct the integer numbers Z, the rational numbers Q, the real numbers R and the complex
numbers C?

The way to do it is well-known to mathematicians: Let’s consider the first step, constructing
the integer numbers Z from the natural numbers N. Consider pairs (a,b) with a,b ∈ N together
with an equivalence relation. Two pairs (a1,b1) and (a2,b2) are equivalent if there is a n ∈ N
such that

a1 +b2 +n = a2 +b1 +n. (2.82)

We denote the equivalence classes by [(a,b)]. One defines an addition on the set of equivalence
classes by

[(a1,b1)]+ [(a2,b2)] = [(a1 +a2,b1 +b2)] . (2.83)

One can show that this definition does not depend on the representatives of the equivalence
classes. The set of equivalence classes together with the addition defined by eq. (2.83) forms
a group, isomorphic to Z. The neutral element is the equivalence class [(1,1)], the inverse of
[(a,b)] is [(b,a)]. Note that we never used a minus sign in this construction.

The construction of the rational numbers Q from the integer numbers Z proceeds in a similar
way: One considers pairs (p,q) with p,q ∈ Z together with an equivalence relation. Two pairs
(p1,q1) and (p2,q2) are equivalent if there is a n ∈ Z such that

p1 ·q2 ·n = p2 ·q1 ·n. (2.84)
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Let us denote the equivalence classes by [(p,q)]. One defines a multiplication on the set of
equivalence classes by

[(p1,q1)] · [(p2,q2)] = [(p1 · p2,q1 ·q2)] . (2.85)

Again, one can show this does not depend on the representatives and that the set of equivalence
classes together with the multiplication defines a group isomorphic to Q. The neutral element is
[(1,1)], the inverse of [(p,q)] is [(q, p)].

This construction is quite general. We started from the natural numbers N, an Abelian semi-
group with respect to addition, and constructed the integer numbers Z, an Abelian group with
respect to addition. We then used the integer numbers Z, which form an Abelian semi-group with
respect to multiplication and constructed the rational numbers Q, an Abelian group with respect
to multiplication. The mathematical framework, which associates to each Abelian semi-group an
Abelian group, is the domain of K-theory. If A is an Abelian semi-group with composition ◦, the
Grothendieck group K(A) of A is constructed in the same way as in the examples above: We
consider pairs (a,b) with a,b ∈ A together with the equivalence relation

(a1,b1)∼ (a2,b2) ⇔ ∃ p ∈ A : a1 ◦b2 ◦ p = a2 ◦b1 ◦ p. (2.86)

Then by definition K(A) = A×A/ ∼. The Grothendieck group K(A) is an Abelian group. Ele-
ments of K(A) are denoted [(a,b)].

Let us now consider a set of vector space V = {V1,V2,V3, . . .}, where the vector space Vj

has dimension dimVj = j. On V we have two operations, the direct sum and the tensor product,
such that

Vi⊕Vj ∈ V and Vi⊗Vj ∈ V (2.87)

are again elements of V . It is easy to see that with respect to each of these operations V is an
Abelian semi-group. The dimensions of the resulting vector spaces are:

dim
(
Vi⊕Vj

)
= i+ j, dim

(
Vi⊗Vj

)
= i · j. (2.88)

We may therefore proceed as above and construct the Grothendieck K-groups. As an example we
consider the K-group with respect to the direct sum: One considers pairs (Va,Vb) with Va,Vb ∈V
together with an equivalence relation. Two pairs (Va1

,Vb1
) and (Va2

,Vb2
) are equivalent if there

is a Vn ∈ V such that

Va1
⊕Vb2

⊕Vn =Va2
⊕Vb1

⊕Vn, (2.89)

where the equal sign refers to an isomorphism between vector spaces. The equivalence classes
are denoted by [(Va,Vb)]. On the set of equivalence classes one defines the operation⊕ by

[(Va1
,Vb1

)]⊕ [(Va2
,Vb2

)] = [(Va1
⊕Va2

,Vb1
⊕Vb2

)] . (2.90)

Again, one can show that this is independent of the chosen representative. For example we have

[(V5,V1)] = [(V42,V38)] . (2.91)
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Since we are considering equivalence classes of pairs of vector spaces, the dimensions of the
vector spaces representing an equivalence class have no particular meaning. However, the rank
defined by

rank [(Vi,Vj)] = dimVi−dimVj (2.92)

is an integer number and independent of the representative. The rank of an equivalence class
corresponds to our variable D, and we managed to construct equivalence classes, where the rank
is a negative integer. We then repeat the argumentation where we replace the direct sum with the
tensor product. This gives us equivalence classes, where the rank is a rational number.

It remains to define the integration on these equivalence classes. It is no problem to define
the integration on a representative of an equivalence class. The subtle point is that we have
to show that this definition is independent of the chosen representative. Integration is a linear
functional on a space of functions, and the space of functions we are interested is rather special.
The functions we want to integrate depend only on a few components

k0,k1, . . . ,k(D−1) (2.93)

explicitly and on the rest of the components only through the combination

(
k0
)2

+
(
k1
)2

+ · · ·+
(

kd−1
)2

, (2.94)

where d is the sum of dimensions of the vector spaces making up the representative. In this case
it is possible to define an integration, which is independent of the chosen representative and has
the desired properties [25].

Thus we managed to give a meaning to integration in spaces of dimension D ∈ Q, where D
corresponds to the rank of the equivalence class. In the last step one extends the integration
to D ∈ R and D ∈ C in the same way as the real and complex numbers are constructed: Each
real number is the limit of a sequence of rational numbers and each complex number can be
represented by a pair of real numbers.

In practice we will always arrange things such that every function we integrate over D di-

mensions is rotational invariant, e.g. is a function of k2. In this case the integration over the

(D−1) angles is trivial and can be expressed in a closed form as a function of D. Let us assume

that we have an integral, original in four space-time dimensions, which has a UV-divergence, but

no IR-divergences. Let us further assume that this integral would diverge logarithmically, if we

would use a cut-off regularisation instead of dimensional regularisation, e.g. the integral behaves

for large x in four space-time dimensions as

logarithmically divergent :

Λ∫

1

dx

x
= lnΛ. (2.95)

It turns out that this integral will be convergent if the real part of D is smaller than 4. Therefore

we may compute this integral under the assumption that Re(D)< 4 and we will obtain as a result
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a function of D. This function can be analytically continued to the whole complex plane. We are

mainly interested in what happens close to the point D = 4. For an ultraviolet divergent one-loop

integral we will find that the analytically continued result will exhibit a pole at D = 4. It should

be mentioned that there are also integrals which in the ultraviolet region diverge stronger. An

integral diverges for large x linearly, respectively quadratically if it behaves as a function of the

cut-off as

linearly divergent :

Λ∫

0

dx = Λ,

quadratically divergent : 2

Λ∫

0

x dx = Λ2, (2.96)

For example, if the integral diverges quadratically for D = 4 we can repeat the argumentation

above with the replacement Re(D)< 2.

The terminology also applies to infrared divergences. An integral is said to be logarithmically

divergent at x = 0 if it behaves as

logarithmically divergent :

1∫

λ

dx
x

= − lnλ. (2.97)

The integrand is said to have a simple pole at x = 0. Integrands with a double pole correspond

to linearly divergent integrals, integrands with a pole of order three to quadratically divergent

integrals. This is most easily seen by the substitution λ = 1/Λ′, for example

∞∫

λ

dx

x2
=

1

λ
= Λ′. (2.98)

Let us now consider a logarithmic IR-divergent integral, which has no UV-divergence. This in-

tegral will be convergent if Re(D) > 4. Again, we can compute the integral in this domain and

continue the result to D = 4. Logarithmic IR-divergent one-loop integral may have a divergence

in the radial integration as well as in the angular integration. The former is called a soft diver-

gence, the latter a collinear divergence. Each divergence will give a pole at D = 4, and if both

divergences are present this will lead in total to a double pole at D = 4.

We will use dimensional regularisation to regulate both the ultraviolet and infrared diver-

gences. The attentive reader may ask how this goes together, as we argued above that UV-

divergences require Re(D) < 4 or even Re(D) < 2, whereas IR-divergences are regulated by

Re(D) > 4. Suppose for the moment that we use dimensional regularisation just for the UV-

divergences and that we use a second regulator for the IR-divergences. For the IR-divergences

we could keep all external momenta off-shell, or introduce small masses for all massless parti-

cles or even raise the original propagators to some power ν. The exact implementation of this

regulator is not important, as long as the IR-divergences are screened by this procedure. We
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then perform the loop integration in the domain where the integral is UV-convergent. We ob-

tain a result, which we can analytically continue to the whole complex D-plane, in particular to

Re(D)> 4. There we can remove the additional regulator and the IR-divergences are now regu-

lated by dimensional regularisation. Then the infrared divergences will also show up as poles at

D = 4.

In summary, within dimensional regularisation the initial divergences show up as poles in

the complex D-plane at the point D = 4. What shall we do with these poles? The answer has

to come from physics and we distinguish again the case of UV-divergences and IR-divergences.

The UV-divergences are removed through renormalisation. On the level of Feynman diagrams

we can associate to any UV-divergent part a counter-term, which has exactly the same pole term

at D = 4, but with an opposite sign, such that in the sum the two pole terms cancel.

As far as infrared-divergences are concerned we first note that any detector has a finite res-

olution. Therefore two particles which are sufficiently close to each other in phase space will

be detected as one particle. The Kinoshita-Lee-Nauenberg theorem [26, 27] guarantees that all

infrared divergences cancel, when summed over all degenerate physical states. To make this

cancellation happen in practice requires usually quite some work, as the different contributions

live on phase spaces of different dimensions. We will discuss the cancellation of ultraviolet and

infrared divergences in chapter 4.

A Feynman integral I in D space-time dimensions will therefore have a Laurent expansion

around D = Dint:

I =
∞

∑
j= jmin

ε j I( j), ε =
Dint−D

2
, (2.99)

where I( j) denotes the coefficient of ε j. For precision calculations we are interested in the first

few terms I( jmin), I( jmin+1), . . . of this Laurent series. The exact number of required terms depends

on the order of perturbation theory we are calculating. Let us stress that we would like to get the

I( j)’s, not necessarily I itself. There are situations where a closed form expression for I is readily

obtained, but the Laurent expansion in ε is not immediate.

Let us now start to get our hands dirty. We compute the first Feynman integrals. For the

moment we focus on one-loop integrals, which only depend on the loop momentum squared

(and no scalar product k · p with some external momentum). At first sight it seems that there

aren’t too many Feynman integrals of this type. The one-loop tadpole integral already exhausts

these specifications:

Tν = eεγE
(
µ2
)ν−D

2

∫
dDk

iπ
D
2

1

(−k2 +m2)
ν . (2.100)

However, we will later see that we can always arrange the integrand in such a way that it only de-

pends on k2. Thus this covers an important case and doing this loop-by-loop allows us to perform

all loop momenta integrations. However, there is no free lunch: Re-organising the integrand such

that it depends only on k2 introduces additional integrations (typically over Schwinger or Feyn-

man parameters) and we merely shifted the complications from the loop momentum integration

to the Schwinger or Feynman parameter integration.
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After Wick rotation we have

Tν = eεγE
(
µ2
)ν−D

2

∫
dDK

π
D
2

1

(K2 +m2)
ν . (2.101)

As the integrand only depends on K2, it is natural to introduce spherical coordinates. In D
dimensions they are given by

K0 = K cosθ1,

K1 = K sinθ1 cosθ2,

...

KD−2 = K sinθ1...sinθD−2 cosθD−1,

KD−1 = K sinθ1...sinθD−2 sinθD−1. (2.102)

In D dimensions we have one radial variable K, (D−2) polar angles θ j (with 1≤ j≤D−2) and

one azimuthal angle θD−1. The measure becomes

dDK = KD−1dK dΩD, dΩD =
D−1

∏
i=1

sinD−1−i θi dθi. (2.103)

Integration over the angles yields

∫
dΩD =

π∫

0

dθ1 sinD−2 θ1...

π∫

0

dθD−2 sinθD−2

2π∫

0

dθD−1 =
2π

D
2

Γ
(

D
2

) . (2.104)

Γ(z) denotes Euler’s gamma function.

Digression. Euler’s gamma function and Euler’s beta function

It is now the appropriate place to introduce two special functions, Euler’s gamma function and
Euler’s beta function, which are used within dimensional regularisation to continue the results
from integer D towards non-integer values. The gamma function is defined for Re(z)> 0 by

Γ(z) =

∞∫

0

e−ttz−1dt. (2.105)

It fulfils the functional equation

Γ(z+1) = z Γ(z). (2.106)

For positive integers n it takes the values

Γ(n+1) = n! = 1 ·2 ·3 · ... ·n. (2.107)
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The gamma function Γ(z) has simple poles located on the negative real axis at z = 0,−1,−2, . . . .
Quite often we will need the expansion around these poles. This can be obtained from the expan-
sion around z = 1 and the functional equation. The expansion around z = 1 reads

Γ(1+ ε) = exp

(
−γEε+

∞

∑
n=2

(−1)n

n
ζnεn

)
, (2.108)

where γE is Euler’s constant and ζn is given by

ζn =
∞

∑
j=1

1

jn . (2.109)

ζn is called a zeta value. As an example we obtain for the Laurent expansion around z = 0

Γ(ε) =
1

ε
− γE +O(ε). (2.110)

It will be useful to know the residues of Γ(z+a) and Γ(−z+a) at the poles

res(Γ(z+a),z =−a−n) =
(−1)n

n!
, n ∈ N0,

res(Γ(−z+a),z = a+n) = −(−1)n

n!
. (2.111)

For integers n we have the reflection identity

Γ(z−n)

Γ(z)
= (−1)n Γ(1− z)

Γ(1− z+n)
. (2.112)

Furthermore

Γ(z)Γ(1− z) =
π

sinπz
, (2.113)

from which we may deduce the value at z = 1/2:

Γ

(
1

2

)
=
√

π. (2.114)

There is a duplication formula for the gamma function:

k−1

∏
j=0

Γ

(
z+

j

k

)
= (2π)

k−1
2 k

1
2−kz Γ(kz) , k ∈ N. (2.115)

In particular we have for k = 2

Γ(z)Γ

(
z+

1

2

)
= 21−2z √π Γ(2z) . (2.116)
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Euler’s beta function is defined for Re(z1)> 0 and Re(z2)> 0 by

B(z1,z2) =

1∫

0

tz1−1(1− t)z2−1dt, (2.117)

or equivalently by

B(z1,z2) =

∞∫

0

tz1−1

(1+ t)z1+z2
dt. (2.118)

The beta function can be expressed in terms of Gamma functions:

B(z1,z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
. (2.119)

Note that the integration on the left-hand side of eq. (2.104) is defined for any natural number

D, whereas the result on the right-hand side is an analytic function of D, which can be continued

to any complex value. Performing the angular integrations for our tadpole integral we obtain

Tν =
eεγE

(
µ2
)ν−D

2

Γ
(

D
2

)
∞∫

0

dK2

(
K2
)D

2−1

(K2 +m2)
ν . (2.120)

Please note that in eq. (2.120) we may now allow non-integer values for D without any problems.

Let us proceed and let us substitute t = K2/m2. We obtain

Tν =
eεγE

Γ
(

D
2

)
(

m2

µ2

)D
2−ν ∞∫

0

dt
t

D
2−1

(t +1)ν . (2.121)

The remaining integral is just Euler’s beta function

∞∫

0

dt
t

D
2−1

(1+ t)ν =
Γ
(

D
2

)
Γ
(
ν− D

2

)

Γ(ν)
. (2.122)

Thus we computed our first Feynman integral (recall D = Dint−2ε):

Tadpole integral:

Tν

(
D,

m2

µ2

)
=

eεγEΓ
(
ν− D

2

)

Γ(ν)

(
m2

µ2

)D
2−ν

. (2.123)
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We are interested in the Laurent expansion of Feynman integrals. With D = 4− 2ε, ν = 1

and L = ln(m2/µ2) we obtain

T1 (4−2ε) =
m2

µ2
eεγEΓ(−1+ ε)e−εL

=
m2

µ2

[
−1

ε
+(L−1)+

(
−1

2
L2− 1

2
ζ2 +L−1

)
ε

]
+O

(
ε2
)
. (2.124)

The pole at ε = 0 originates from the ultraviolet divergence of tadpole integral with ν = 1 in four

space-time dimensions.

The result in eq. (2.123) is valid for any D, so we may as well expand it around two space-

time dimensions. Just for fun, let’s do it:

ε T1 (2−2ε) = eεγEΓ(1+ ε)e−εL

= 1−Lε+

(
1

2
L2 +

1

2
ζ2

)
ε2 +O

(
ε3
)
. (2.125)

Let us define a weight. We declare that L = ln(m2/µ2) has weight one and that Ln and ζn have

weight n. A rational number has weight 0. The weight of a product is the sum of the weights

of its factors. We then spot a difference between ε T1(2− 2ε) and ε (µ2/m2)T1(4− 2ε). In

ε T1(2− 2ε) we see that the j-th term in the ε-expansion only involves terms of weight j (we

have only given the first three terms of the ε-expansion, but this statement holds to any order),

whereas in ε (µ2/m2)T1(4−2ε) the j-th term in the ε-expansion involves terms of weight j and

terms of lower weight. In this sense, ε T1(2−2ε) has a simpler ε-expansion. We call ε T1(2−2ε)
to be of uniform weight. We will discuss this issue in more detail in chapter 6.

From eq. (2.123) we also deduce

Tν (2−2ε) = νTν+1 (4−2ε) . (2.126)

This is an example of a dimensional shift relation, relating integrals in D = 2− 2ε and D =
4−2ε space-time dimensions. Also dimensional shift relations will be discussed in more detail

in chapter 6.

Exercise 3: Prove

Tν (D) = νTν+1 (D+2) . (2.127)

Let us set temporarily

J1 = ε T1 (2−2ε) = eεγEΓ(1+ ε)e−εL. (2.128)

It is not too difficult to show that

Tν (D) =
Γ
(

ν− Dint
2

+ ε
)

Γ(ν)Γ(1+ ε)

(
m2

µ2

)(Dint
2 −ν

)

J1. (2.129)
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For ν ∈ N and Dint even, the prefactor is always a rational function in ε and m2, for example for

D = 4−2ε and ν = 1 we have

Γ
(

ν− Dint

2
+ ε
)

Γ(ν)Γ(1+ ε)

(
m2

µ2

)(Dint
2 −ν

)

= − 1

ε(1− ε)

m2

µ2
. (2.130)

Eq. (2.129) expresses any integral Tν(D) as a coefficient times J1. For the tadpole integrals this

is a trivial statement, as the coefficient is just the ratio Tν(D)/J1. Later on we will see, that this

generalises as follows: We may express any member of a family of Feynman integrals as a linear

combination of Feynman integrals from a finite set. The Feynman integrals from this finite set

are called master integrals. A master integral, which is of uniform weight, is called a canonical

master integral. Thus J1 is a canonical master integral.

Let us close this section with some results on related integrals. The first result is a generali-

sation of the tadpole integrals and is helpful whenever we iteratively integrate out loop momenta

(after having arranged that the integrand only depends on k2). We consider

T̃ = eεγE
(
µ2
)ν−D

2−a
∫

dDk

iπ
D
2

(
−k2

)a

(−Uk2 +V )
ν , (2.131)

where U , V and a do not depend on k. For a = 0, U = 1 and V = m2 we recover the tadpole

integral. Following the same steps as for the tadpole integral one finds

T̃ = eεγE
(
µ2
)ν−D

2−a Γ
(

D
2
+a
)

Γ
(

D
2

) Γ
(
ν− D

2
−a
)

Γ(ν)

U−
D
2−a

V ν−D
2−a

(2.132)

and the

one-loop master formula:

∫
dDk

iπ
D
2

(
−k2

)a

(−Uk2 +V )
ν =

Γ
(

D
2
+a
)

Γ
(

D
2

) Γ
(
ν− D

2
−a
)

Γ(ν)

U−
D
2−a

V ν−D
2−a

. (2.133)

In the definition of T̃ we allowed additional powers (−k2)a of the loop momentum in the

numerator. Note that the dependency of the result on a, apart from a factor Γ(D/2+a)/Γ(D/2),
occurs only in the combination D/2+a. Therefore adding additional powers (−k2)a to the nu-

merator is almost equivalent to consider the integral without this factor in dimensions (D+2a).

Exercise 4: Derive eq. (2.132).

There is one more generalisation: Sometimes it is convenient to decompose k2 into a Dint-

dimensional piece and a remainder:

k2
(D) = k2

(Dint)
+ k2

(−2ε). (2.134)
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If D is an integer greater than Dint we have

k2
(Dint)

=
(
k0
)2−

(
k1
)2− ...−

(
kDint−1

)2
,

k2
(−2ε) = −

(
kDint

)2− ...−
(
kD−1

)2
. (2.135)

We also need loop integrals where additional powers of (−k2
(−2ε)) appear in the numerator. These

are related to integrals in higher dimensions as follows:

ε-components in the numerator:

∫
dDk

iπ
D
2

(
−k2

(−2ε)

)r
f
(

k(Dint),k
2
(−2ε)

)
=

Γ(r− ε)

Γ(−ε)

∫
dD+2rk

iπ
D+2r

2

f
(

k(Dint),k
2
(−2ε)

)
.(2.136)

Here, f (k(Dint),k
2
(−2ε)) is a function which depends on kDint , kDint+1, ..., kD−1 only through

k2
(−2ε). The dependency on k0, k1, ..., kDint−1 is not constrained.

Exercise 5: Derive eq. (2.136).

Hint: Split the D-dimensional integration into a Dint-dimensional part and a (−2ε)-dimensional part.
Eq. (2.136) can be derived by just considering the (−2ε)-dimensional part.

Finally it is worth noting that

∫
dDk

iπ
D
2

(
−k2

)a
=

{
(−1)

D
2 Γ
(
1− D

2

)
, if D

2
+a = 0,

0, otherwise.
(2.137)

Exercise 6: Derive eq. (2.137).

Hint: Consider the mass dimension of the integral to prove the statement for D/2+a 6= 0 and the normal-
isation of the integral measure in eq. (2.77) to prove the statement for D/2+a = 0.

2.5 Representations of Feynman integrals

There are several integral representations for Feynman integrals. We introduce the various inte-

gral representations in this section.

As before, we consider a Feynman graph G with next external edges, nint internal edges and

l loops. To each external edge we associate an external momentum, labelled by p1, . . . , pnext .

To each internal edge e j we associate a triple (q j,m j,ν j), where q j is the momentum flowing

through this edge, m j the mass and ν j the power to which the propagator occurs. Momentum

conservation at each vertex of valency > 1 allows us to express any q j as a linear combination of

(next−1) linear independent external momenta and l independent loop momenta. We denote the

latter by k1, . . . ,kl.
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2.5.1 The momentum representation of Feynman integrals

The momentum representation of Feynman integrals is the one we started with in eq. (2.56):

I = elεγE
(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

nint

∏
j=1

1(
−q2

j +m2
j

)ν j
, (2.138)

where

ε =
Dint−D

2
, ν =

nint

∑
j=1

ν j, q j =
l

∑
r=1

λ jrkr +
next−1

∑
r=1

σ jr pr. (2.139)

The coefficients λ jr and σ jr can be obtained from momentum conservation at each vertex of

valency > 1. The integration contour is given by Feynman’s iδ-prescription.

Let us discuss the variables the Feynman integral depends on. First of all, the Feynman

integrals depends on the dimension of space-time D ∈ C and through the prefactor elεγE on Dint.

Secondly, the Feynman integral depends also on the nint-tuple (ν1, . . . ,νnint
). In principle we may

allow ν j ∈ C, but very often we will limit us to the case ν j ∈ Z. Thirdly, the Feynman integral

depends on kinematic variables. The Feynman integral in eq. (2.138) is a scalar integral, thus the

dependence on the (next− 1) linear independent external momenta is only through the Lorentz

invariants

pi · p j. (2.140)

The Feynman integral in eq. (2.138) is dimensionless, therefore the dependence on the Lorentz

invariants, the internal masses and the scale µ is only through the dimensionless ratios

−pi · p j

µ2
,

m2
i

µ2
. (2.141)

We call these the kinematic variables. We will denote the kinematic variables by x1,x2, . . . . Let

us count how many kinematic variables there can be. We may have next(next− 1)/2 kinematic

variables of the type

−pi · p j

µ2
, 1≤ i≤ j ≤ (next−1) , (2.142)

and nint kinematic variables of the type

m2
i

µ2
. (2.143)

However, if we rescale all kinematic variables by a factor λ we have

I (λx1,λx2, . . .) = λ
lD
2 −νI (x1,x2, . . .) . (2.144)
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This is most easily seen by substituting µ2→ µ2/λ in eq. (2.138). Thus, we may set one kinematic

variable to 1 and recover the full dependence on all kinematic variables from the scaling relation

in eq. (2.144).

In total we may have up to

next (next−1)

2
+nint−1 (2.145)

kinematic variables. In typical applications some of them may be zero (for example some internal

masses might be zero) or identical (for example some internal masses might be identical). We

denote the number of independent kinematic variables by NB and the independent kinematic

variables by x1, . . . ,xNB :

Notation:

number of independent kinematic variables: NB

independent kinematic variables: x1,x2, . . . ,xNB

The x j’s are dimensionless quantities of the form as in eq. (2.141).

Exercise 7: Consider again the one-loop box graph shown in fig.2.4. Assume first that all internal
masses are non-zero and pairwise distinct and that the external momenta are as generic as possible. How
many kinematic variables are there?

Secondly, assume that all internal masses are zero and that the external momenta satisfy p2
1 = p2

2 =

p2
3 = p2

4 = 0. How many kinematic variables are there now?

We allow the x j’s to be complex numbers. We will often encounter the situation, where a

kinematic variable is given by a real number plus an infinitesimal small imaginary part. The

infinitesimal small imaginary part is inherited from Feynman’s iδ-prescription. The special case,

where all kinematic variables are real and non-negative is called the Euclidean region. We have

defined the kinematic variables involving Lorentz invariants of the external momenta with a mi-

nus sign as in eq. (2.142). We may define Euclidean external momenta in the same way as we

defined the Euclidean loop momentum in eq. (2.65):

p0 = iP0,

p j = P j, for 1≤ j ≤ D−1. (2.146)

Then

−pi · p j

µ2
=

Pi ·Pj

µ2
, (2.147)

where the scalar product on the right-hand side is calculated with Euclidean signature

(+,+,+,+, . . .). (2.148)
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Thus, if everything is expressed in Euclidean variables, no minus sign appears.

Let us add one word on our notation: We denote the Feynman integral in eq. (2.138) by I. If

we want to emphasise that this integral corresponds to the graph G we write

IG, (2.149)

if we want to give the dependence on all variables we write

Iν1...νnint
(D,x1, . . . ,xNB ,Dint) . (2.150)

In situations, where the dependence on some specific variables is relevant, while the dependence

on the other variables is not, we may write the former and suppress the latter. In particular we

will almost always suppress the dependence on Dint and write

Iν1...νnint
(D,x1, . . . ,xNB) . (2.151)

Examples of even shorter notations are Iν1...νnint
or I(D). Thus we will use the notation which is

most appropriate within a given context.

2.5.2 The Schwinger parameter representation

The Schwinger parameter representation is the first representation, where we trade the (lD) mo-

mentum integrations for some auxiliary integrations. In the case of the Schwinger parameter

representation we will treat the momentum integration for an integration over nint Schwinger

parameters. We start from the following identity, also called Schwinger’s trick: Let A > 0 and

Re(ν)> 0. We have

1

Aν
=

1

Γ(ν)

∞∫

0

dα αν−1 e−αA. (2.152)

Eq. (2.152) follows immediately from the definition of Euler’s gamma function. We apply

eq. (2.152) for A = Q2 +m2 = −q2 +m2 (the quantity A is positive after Wick rotation and

for external Euclidean kinematics):

1

(−q2
j +m2

j)
ν j

=
1

Γ(ν j)

∫

α j≥0

dα j α
ν j−1

j exp
(
−α j(−q2

j +m2
j)
)

(2.153)

The variable α j is called a Schwinger parameter. Doing this for all internal edges gives

I =
elεγE

(
µ2
)ν− lD

2

nint

∏
j=1

Γ(ν j)

∫

α j≥0

dnintα

(
nint

∏
j=1

α
ν j−1

j

)∫ l

∏
r=1

dDkr

iπ
D
2

exp

(
−

nint

∑
j=1

α j
(
−q2

j +m2
j

)
)
.

(2.154)
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Using

q j =
l

∑
r=1

λ jrkr +
next−1

∑
r=1

σ jr pr (2.155)

we express the argument of the exponential function as

nint

∑
j=1

α j(−q2
j +m2

j) = −
l

∑
r=1

l

∑
s=1

krMrsks +
l

∑
r=1

2kr · vr + J. (2.156)

where M is a l × l matrix with scalar entries, v is a l-vector with D-dimensional momentum

vectors as entries and J is scalar. Let us define

U = det(M), F = det(M)
(
J + vT M−1v

)
/µ2. (2.157)

The functions U and F are called graph polynomials (they are polynomials in the α j’s) and are

discussed in detail in chapter 3. The polynomials U and F have the following properties:

• They are homogeneous in the Schwinger parameters, U is of degree l, F is of degree l+1.

• U is linear in each Schwinger parameter. If all internal masses are zero, then also F is

linear in each Schwinger parameter.

• In expanded form each monomial of U has coefficient +1.

We call U the first Symanzik polynomial and F the second Symanzik polynomial.

From linear algebra we know that for a real symmetric positive definite (n×n)-matrix A we

have

∞∫

−∞

dy1...dyn exp
(
−~yT A~y+2~wT~y+ c

)
= πn/2 (detA)−

1
2 exp

(
~wT A−1~w+ c

)
, (2.158)

and due to eq. (2.77) this extends to dimensional regularisation. We may therefore perform the

loop momentum integration and obtain the

Schwinger parameter representation:

I =
elεγE

nint

∏
j=1

Γ(ν j)

∫

α j≥0

dnintα

(
nint

∏
j=1

α
ν j−1

j

)
[U (α)]−

D
2 exp

(
−F (α)

U (α)

)
. (2.159)

Thus we went from a (l ·D)-fold momentum integration to a nint-fold Schwinger parameter

integration. Note that the number of space-time dimensions D enters only the exponent of U−D/2

(and the prefactor elεγ through ε = (Dint−D)/2).
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We now encountered for the first time the sum on the left-hand side of eq. (2.156) and the

two graph polynomials U and F . As these ingredients will occur quite frequently throughout

this book, it is worth working them out in a non-trivial example. We consider the two-loop graph

shown in fig. 2.3 for the case

p2
1 = 0, p2

2 = 0, p2
3 = 0, p2

4 = 0,

m1 = m2 = m3 = m4 = m5 = m6 = m7 = 0. (2.160)

We define

s = (p1 + p2)
2 = (p3 + p4)

2 , t = (p2 + p3)
2 = (p1 + p4)

2 . (2.161)

We have

7

∑
j=1

α j
(
−q2

j

)
= −(α1 +α2 +α3 +α4)k2

1−2α4k1 · k2− (α4 +α5 +α6 +α7)k2
2 (2.162)

+2 [α1 p1 +α2 (p1 + p2)] · k1 +2 [α5 (p3 + p4)+α7p4] · k2− (α2 +α5)s.

In comparing with eq. (2.156) we find

M =

(
α1 +α2 +α3 +α4 α4

α4 α4 +α5 +α6 +α7

)
,

v =

(
α1p1 +α2 (p1 + p2)
α5 (p3 + p4)+α7p4

)
,

J = (α2 +α5)(−s) . (2.163)

Plugging this into eq. (2.157) we obtain the graph polynomials as

U = (α1 +α2 +α3)(α5 +α6 +α7)+α4 (α1 +α2 +α3 +α5 +α6 +α7) ,

F = [α2α3 (α4 +α5 +α6 +α7)+α5α6 (α1 +α2 +α3 +α4)+α2α4α6 +α3α4α5]

(−s

µ2

)

+α1α4α7

(−t

µ2

)
. (2.164)

We see in this example that U is of degree 2 and F is of degree 3 in the Schwinger parameters.

Each polynomial is linear in each Schwinger parameter. Furthermore, when we write U in

expanded form

U = α1α5 +α1α6 +α1α7 +α2α5 +α2α6 +α2α7 +α3α5 +α3α6 +α3α7

+α1α4 +α2α4 +α3α4 +α4α5 +α4α6 +α4α7, (2.165)

each term has coefficient +1.

Exercise 8: Determine with the method above the graph polynomials U and F for the graph shown
in fig. 2.6 for the case where all internal masses are zero.
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p1

p2

p3

q1

q3

q2

q6

q4

q5

Figure 2.6: A two-loop non-planar vertex graph.

2.5.3 The Feynman parameter representation

Probably the most popular parameter representation is the Feynman parameter representation. It

is effectively a (nint−1)-fold integral representation. We obtain the Feynman parameter repre-

sentation from the Schwinger parameter representation as follows: We first note that the sum of

the Schwinger parameters is non-negative:

n

∑
j=1

α j ≥ 0. (2.166)

We then insert a 1 in the form of

1 =

∞∫

−∞

dt δ

(
t−

n

∑
j=1

α j

)
=

∞∫

0

dt δ

(
t−

n

∑
j=1

α j

)
, (2.167)

where in the last step we used the fact that the sum of the Schwinger parameters is non-negative.

δ(x) denotes Dirac’s delta distribution. Changing variables according to a j = α j/t gives us the

identity

∫

α j≥0

dnα f (α1, . . . ,αn) =
∫

a j≥0

dna δ

(
1−

n

∑
j=1

a j

) ∞∫

0

dt tn−1 f (ta1, . . . , tan) . (2.168)
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We apply this identity to the Schwinger parameter representation and use the fact that U and F
are homogeneous of degree l and (l+1), respectively. We obtain

I =
elεγE

nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]−

D
2 (2.169)

×
∞∫

0

dt tν− lD
2 −1 exp

(
−F (a)

U (a)
t

)

=
elεγE

nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

∞∫

0

dt tν− lD
2 −1e−t .

In the step towards the last line we substituted t → tU(a)/F (a). The final integral over t gives

Γ(ν− lD/2). We thus arrive at the

Feynman parameter representation:

I =
elεγEΓ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (2.170)

The polynomials U and F are as before, with α j substituted by a j. The variable a j is called

a Feynman parameter.

We have derived the Feynman parameter representation from the Schwinger parameter rep-

resentation. We may go directly from the momentum representation to the Feynman parameter

representation with the help of Feynman’s trick: For A j > 0 and Re(ν j)> 0 we have

n

∏
j=1

1

A
ν j
j

=
Γ(ν)

n
∏
j=1

Γ(ν j)

∫

a j≥0

dna δ(1−
n

∑
j=1

a j)

(
n

∏
j=1

a
ν j−1

j

)
1(

n
∑
j=1

a jA j

)ν ,

ν =
n

∑
j=1

ν j. (2.171)

Exercise 9: Prove eq. (2.171).

We use this formula with A j =−q2
j +m2

j . We may then use translational invariance (i.e. eq. (2.75))

for each D-dimensional momentum integral and shift each loop momentum kr to complete the

square, such that the integrand depends only on k2
r . Then all D-dimensional momentum integrals

can be performed with the help of eq. (2.133) and we recover eq. (2.170).

Let us look at an example. We consider the one-loop bubble diagram shown in fig. 2.7. The
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q2

p

q1

−p

Figure 2.7: The one-loop bubble diagram.

momentum representation is

Iν1ν2
= eεγE

(
µ2
)ν−D

2

∫
dDk

iπ
D
2

1(
−q2

1 +m2
1

)ν1
(
−q2

2 +m2
2

)ν2
, (2.172)

with

q1 = k− p, q2 = k. (2.173)

Feynman parametrisation gives us

Iν1ν2
=

eεγEΓ(ν)

Γ(ν1)Γ(ν2)

(
µ2
)ν−D

2

∫
d2a δ(1−a1−a2)aν1−1

1 aν2−1
2

×
∫

dDk

iπ
D
2

1[
a1

(
−q2

1 +m2
1

)
+a2

(
−q2

2 +m2
2

)]ν . (2.174)

Completing the square we obtain

a1

(
−q2

1 +m2
1

)
+a2

(
−q2

2 +m2
2

)
=

−(a1 +a2)

(
k− a1

a1 +a2
p

)2

+
a1a2

a1 +a2

(
−p2

)
+a1m2

1 +a2m2
2. (2.175)

Let us set

U = a1 +a2,

F = a1a2

(−p2

µ2

)
+(a1 +a2)

[
a1

(
m2

1

µ2

)
+a2

(
m2

2

µ2

)]
. (2.176)

These are the two graph polynomials. With the substitution k→ k+a1/(a1 +a2)p we obtain

Iν1ν2
=

eεγEΓ(ν)

Γ(ν1)Γ(ν2)

(
µ2
)ν−D

2

∫
d2a δ(1−a1−a2)aν1−1

1 aν2−1
2

∫
dDk

iπ
D
2

1[
−Uk2 + F

U µ2
]ν .

(2.177)
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This is now in the form of eq. (2.133) and using the one-loop master formula yields

Iν1ν2
=

eεγEΓ
(
ν− D

2

)

Γ(ν1)Γ(ν2)

∫
d2a δ(1−a1−a2)aν1−1

1 aν2−1
2

Uν−D

F ν−D
2

. (2.178)

This is again the Feynman parameter representation of eq. (2.170), which we recovered “by

foot”. Of course, it is just sufficient to determine the two graph polynomials and use eq. (2.170)

directly. We have seen one method to determine the two graph polynomials in section 2.5.2. We

will learn more (efficient) methods to determine the graph polynomials in chapter 3.

Let us now specialise to the case, where the internal masses vanish: m1 = m2 = 0. In this

case the second graph polynomial simplifies to

F = a1a2

(−p2

µ2

)
(2.179)

and the one-loop bubble integral to

Iν1ν2
=

eεγEΓ
(
ν− D

2

)

Γ(ν1)Γ(ν2)

(−p2

µ2

)D
2−ν 1∫

0

da a
D
2−ν2−1 (1−a)

D
2−ν1−1 . (2.180)

The integral over a is just Euler’s beta function and we obtain

Iν1ν2
= eεγE

Γ
(
ν− D

2

)
Γ
(

D
2
−ν1

)
Γ
(

D
2
−ν2

)

Γ(ν1)Γ(ν2)Γ(D−ν)

(−p2

µ2

)D
2−ν

. (2.181)

If we further specialise to ν1 = ν2 = 1, D = 4−2ε and set L = ln(−p2/µ2) we find

I11 =
1

ε
+2−L+O (ε) . (2.182)

Thus we calculated our second Feynman integral, the massless one-loop two-point function.

Exercise 10: Calculate with the help of the Feynman parameter representation the one-loop triangle
integral

Iν1ν2ν3
= eεγE

(
µ2
)ν−D

2

∫
dDk

iπ
D
2

1(
−q2

1

)ν1
(
−q2

2

)ν2
(
−q2

3

)ν3
, (2.183)

shown in fig. 2.8 for the case where all internal masses are zero (m1 = m2 = m3 = 0) and for the kinematic
configuration p2

1 = p2
2 = 0, p2

3 6= 0.

The Feynman parameter representation of eq. (2.170) treats every internal edge equal. This

is called the democratic approach. However, this is not the only possibility. We may also use
a hierarchical approach. The following exercise shows, that there are situations where this is

useful.
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q1
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Figure 2.8: The one-loop triangle diagram.

Exercise 11: Consider again the one-loop box graph in fig. 2.4, this time for the kinematic configu-
ration

p2
2 = p2

4 = 0, m1 = m2 = m3 = m4 = 0. (2.184)

Write down the Feynman parameter representation as in eq. (2.170). Obtain a second integral repre-
sentation by first combining propagators 1 and 2 with a pair of Feynman parameters, then combining
propagators 3 and 4 with a second pair of Feynman parameters and finally the two results with a third
pair of Feynman parameters.

Projective integrals

The Feynman parameter representation is actual a projective integral. It pays off to rewrite the

Feynman parameter representation in terms of differential forms on projective space. Below we

will state the Cheng-Wu theorem, which follows directly from the fact the Feynman parameter

representation is a projective integral.

We start with introducing the essential facts about projective space.

Digression. Projective space

Let F be a field. Relevant to us are the cases where the field F is either the field of real numbers
R or the field of complex numbers C.

The projective space Pn (F) is the set of lines through the origin in Fn+1. Equivalently, it is
the set of points in Fn+1\{0} modulo the equivalence relation

(x0,x1, ...,xn)∼ (y0,y1, ...,yn) ⇔ ∃ λ 6= 0 : (x0,x1, ...,xn) = (λy0,λy1, ...,λyn) . (2.185)

Points in Pn (F) will be denoted by

[z0 : z1 : ... : zn] . (2.186)

The coordinates in eq. (2.186) are called homogeneous coordinates. Affine coordinate patches
are defined as follows: We consider the open subsets

U j =
{
[z0 : z1 : ... : zn] | z j 6= 0

}
, 0≤ j ≤ n. (2.187)
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We have the homeomorphisms

ϕ j : U j→ Fn,

[z0 : z1 : ... : zn]→
(

z0

z j
, ...,

z j−1

z j
,
z j+1

z j
, ...,

zn

z j

)
. (2.188)

The inverse mapping is given by

ϕ−1
j : Fn→U j,(

z0, ...,z j−1,z j+1, ...,zn
)
→
[
z0 : ... : z j−1 : 1 : z j+1 : ... : zn

]
. (2.189)

The pair (U j,ϕ j) defines a chart for Pn (F), and the collection of all (U j,ϕ j) for 0 ≤ j ≤ n
provides an atlas for Pn (F).

For F= C or F= R we will also use the notation

CPn = Pn (C) , RPn = Pn (R) , (2.190)

and we will speak about the complex projective space and the real projective space, respectively.
The positive real projective space RPn

>0 is the set of all points of RPn, which can be repre-
sented by

[x0 : x1 : ... : xn] with x j > 0, 0≤ j ≤ n. (2.191)

Thus we have [1 : 2 : 3] ∈ RP2
>0 and [(−4) : (−5) : (−6)] ∈ RP2

>0 (we may choose λ = −1 in
eq. (2.185)), but [7 : (−8) : 9] /∈ RP2

>0.
The non-negative real projective space RPn

≥0 is the set of all points of RPn, which can be
represented by

[x0 : x1 : ... : xn] with x j ≥ 0, 0≤ j ≤ n. (2.192)

In the literature the notation is sometimes used in a sloppy way, e.g. the word positive real
projective space is also used where the non-negative real projective space is meant. However,
the symbols RPn

>0 and RPn
≥0 clearly indicate what is meant.

We return to the Feynman parameter representation. We denote the integrand of the Feynman

parameter representation by

f (a) =
elεγEΓ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

(
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (2.193)

If we rescale all Feynman parameters by λ we have

f (λa1, . . . ,λanint
) = λ−nint f (a1, . . . ,anint

) . (2.194)
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This follows easily from the homogeneity of U and F in the Feynman parameters. We also have

(
nint +

nint

∑
j=1

a j
∂

∂a j

)
f (a) = 0. (2.195)

Exercise 12: Prove eq. (2.195).

Let us further introduce the differential (nint−1)-form

ω =
nint

∑
j=1

(−1)nint− j a j da1∧ ...∧ d̂a j∧ ...∧danint
, (2.196)

where the hat indicates that the corresponding term is omitted. Let us denote by ∆ the (nint−1)-
dimensional standard simplex:

∆ =

{
(a1, . . . ,anint

) ∈ Rnint |
nint

∑
j=1

a j = 1,a j ≥ 0

}
. (2.197)

With these definitions we may write the Feynman parameter representation as

I =

∫

∆

f ω. (2.198)

Exercise 13: Show explicitly that eq. (2.198) is equivalent to eq. (2.170).

The differential (nint−1)-form ω has the property that when we integrate it along a line through

the origin, the result vanishes. In general, integrating a (nint− 1)-form along a curve gives a

(nint− 2)-form. If the curve is defined by the vector field X , integrating along an infinitesimal

interval gives a (nint− 2)-form proportional to the interior product ιX ω. A line through the

origin is defined by the vector field

X = λ1e1 + · · ·+λnint
enint

, (2.199)

where λ1, . . . ,λnint
are constants and (λ1, . . . ,λnint

) 6= (0, . . . ,0). e1, . . . ,enint
are basis vectors of

the tangent space. The statement above, that the integration of ω along a line through the origin

vanishes, is equivalent to

ιX ω = 0. (2.200)

Exercise 14: Prove eq. (2.200).

From eq. (2.195) it follows that f ω is closed:

d ( f ω) = 0. (2.201)
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Exercise 15: Prove eq. (2.201).

Let us temporarily assume that f ω is non-singular for all points a ∈ ∆. (This assumption is

not as innocent as it may seem. The case, where f ω is singular for some points a ∈ ∆ will stalk

us in the sequel of the book. For the moment, we are certainly safe in the Euclidean region, if

all internal propagators have a non-zero mass (this avoids infrared singularities) and D < 0 (this

avoids ultraviolet singularities)). We now have all ingredients to claim that the Feynman param-

eter representation is a projective integral over the non-negative real projective space RPnint−1
≥0 :

Projective Feynman parameter integral representation:

I =
∫

RP
nint−1

≥0

f ω, (2.202)

where f is defined in eq. (2.193), ω is defined in eq. (2.196) and RPnint−1
≥0 denotes the

non-negative real projective space of dimension (nint−1).

In particular we may integrate over any hyper-surface covering the solid angle a j ≥ 0.

The proof is based on Stoke’s theorem’s: Since d( f ω) is closed, integration over any nint-

dimensional domain Σ in Rnint gives zero. Thus∫

Σ

d ( f ω) =

∫

∂Σ

f ω. (2.203)

We may choose Σ as a domain bounded by the standard simplex ∆, the hyper-surface ∆̃ we are

interested in and covering the solid angle a j ≥ 0, and additional (nint−1)-dimensional domains

in the coordinate sub-spaces a j = 0. An example for nint = 2 is shown in fig. 2.9. Due to

eq. (2.200) the integration over the (nint−1)-dimensional domains in the coordinate sub-spaces

a j = 0 vanishes. and the result follows.

Let us now relax the assumption, that f ω is regular for all points a ∈ ∆. We may allow

integrable singularities on the boundary ∂∆. The Feynman integral exists as an improper integral.

In the proof above we replace the domain Σ by Σδ, which avoids all singular points by an angle

δ, such that the domains connecting ∆ and ∆̃ (these domains are shown in green in fig. 2.9) have

always a direction along a line through the origin. For Σδ we may use the proof as above, and

in particular the integration over the domains connecting ∆ and ∆̃ give a vanishing contribution.

Taking then the limit δ→ 0 shows that the two improper integrals over ∆ and ∆̃ are equal.

A consequence of the fact, that we may choose any hyper-surface covering the solid angle

a j ≥ 0 is the Cheng-Wu theorem [28]. To state this theorem, let S be a non-empty subset of

{1, . . . ,nint}.
Theorem 1. (Cheng-Wu theorem): We may replace the argument

1−
nint

∑
j=1

a j (2.204)
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a1

a2

Σ

1

1

a1

a2

Σδ

1
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Figure 2.9: The left picture shows an example for nint = 2. The domain Σ is bounded by

the one-dimensional standard simplex ∆ (shown in black), a hyper-surface ∆̃, covering the solid

angle a1,a2 ≥ 0 (shown in red) and two one-dimensional domains along the coordinate sub-

space a1 = 0 and a2 = 0 (shown in green). Integration over the domains along the coordinate

sub-spaces vanishes, and therefore the integration over ∆ gives the same result as the integration

over ∆̃. If the integrand has an integrable singularity for [a1 : a2] = [1 : 0] we first consider the

domain Σδ, where we avoid the a1-axis by an angle δ. The domains shown in green are still along

the radial direction. In the end we take the limit δ→ 0.

of the delta distribution in eq. (2.170) by

1−∑
j∈S

a j. (2.205)

The Feynman integral is then given by

I =
elεγEΓ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−∑

j∈S

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (2.206)

In particular one may choose S = { j0}, which sets a j0 to one. The integration is then over all
other Feynman parameters from zero to infinity.

Proof. The proof uses again Stoke’s theorem, where the nint-dimensional domain Σ is now

bounded by the standard simplex ∆, the hyper-plane defined by

∑
j∈S

a j = 1, (2.207)

coordinate sub-spaces a j = 0 for j ∈ S and hyper-surfaces at infinity. The hyper-surfaces at

infinity can be taken as a j = Λ for j /∈ S with Λ→ ∞. An example for nint = 2 is shown in

fig. 2.10. The integration over the (nint−1)-dimensional domains in the coordinate sub-spaces

gives a vanishing contribution for the same reasons as before. The integration over the hyper-

planes at infinity corresponds to an infinitesimal small solid angle and gives therefore a vanishing

contribution. Hence, the claim follows.
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a1

a2

Σ

1

1

Λ

Figure 2.10: Illustration for the Cheng-Wu theorem for the case nint = 2. The domain Σ is

bounded by the one-dimensional standard simplex ∆ (shown in black), the hyper-plane a2 = 1

(shown in red), a one-dimensional domain along the coordinate sub-space a2 = 0 (shown in

green) and a domain at infinity (shown in blue).

Exercise 16: An alternative proof of the Cheng-Wu theorem: Prove the Cheng-Wu theorem directly
from the Schwinger parameter representation by inserting

1 =

∞∫

−∞

dt δ

(
t−∑

j∈S

α j

)
=

∞∫

0

dt δ

(
t−∑

j∈S

α j

)
, (2.208)

where in the last step we used again the fact that the sum of the Schwinger parameters is non-negative.

Let us give an example for the application of the Cheng-Wu theorem: We consider again the

one-loop bubble integral with vanishing internal masses. We choose

S = {2} . (2.209)

Setting x =−p2/µ2, the Feynman integral is then given by

Iν1ν2
=

eεγEΓ
(
ν− D

2

)

Γ(ν1)Γ(ν2)

∫

a j≥0

d2a δ(1−a2)aν1−1
1 aν2−1

2

Uν−D

F ν−D
2

,

U = a1 +a2, F = a1a2x. (2.210)

The integration over a2 is trivial due to the delta distribution, leaving us with

Iν1ν2
=

eεγEΓ
(
ν− D

2

)

Γ(ν1)Γ(ν2)

∞∫

0

da1 aν1−1
1

(a1 +1)ν−D

(a1x)ν−D
2

=
eεγEΓ

(
ν− D

2

)

Γ(ν1)Γ(ν2)
x

D
2−ν

∞∫

0

da1

a
D
2−ν2−1

1

(1+a1)
D−ν

. (2.211)

The integral over a1 gives Euler’s beta function B(D/2−ν2,D/2−ν1) and we recover the result

of eq. (2.181):

Iν1ν2
= eεγE

Γ
(
ν− D

2

)
Γ
(

D
2
−ν1

)
Γ
(

D
2
−ν2

)

Γ(ν1)Γ(ν2)Γ(D−ν)
x

D
2−ν. (2.212)
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2.5.4 The Lee-Pomeransky representation

The Lee-Pomeransky representation is as the Schwinger parameter representation a nint-fold in-

tegral representation. It has the advantage that only one polynomial G enters, given by the sum

of the two graph polynomials G = U +F . The Lee-Pomeransky representation reads [29]:

Lee-Pomeransky representation:

I =
elεγEΓ

(
D
2

)

Γ
(
(l+1)D

2
−ν
) nint

∏
j=1

Γ(ν j)

∫

u j≥0

dnintu

(
nint

∏
j=1

u
ν j−1

j

)
[G (u)]−

D
2 ,

with G (u) = U (u)+F (u) . (2.213)

In order to derive the Lee-Pomeransky representation it is simplest to work backwards: We

start with the Lee-Pomeransky representation and show that the Lee-Pomeransky representation

is equivalent to the Feynman parameter representation. In order to do this, we use the same trick

as before and we insert a one in the form of

1 =

∞∫

0

dt δ

(
t−

nint

∑
j=1

u j

)
(2.214)

into the Lee-Pomeransky representation. We then change variables according to a j = u j/t and

exploit again that U and F are homogeneous of degree l and (l+1), respectively. We arrive at

I =
elεγEΓ

(
D
2

)

Γ
(
(l+1))D

2
−ν
) nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)

×
∞∫

0

dt tν− lD
2 −1 [U (a)+F (a) t]−

D
2 . (2.215)

We then substitute t→ tU(a)/F (a). This gives us

I =
elεγEΓ

(
D
2

)

Γ
(
(l+1))D

2
−ν
) nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

×
∞∫

0

dt tν− lD
2 −1 (1+ t)−

D
2 . (2.216)

We recognise the integral over t as the second integral representation of Euler’s beta function:

∞∫

0

dt tν− lD
2 −1 (1+ t)−

D
2 =

Γ
(
ν− lD

2

)
Γ
(
(l+1)D

2
−ν
)

Γ
(

D
2

) . (2.217)
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With this result we recover the Feynman parameter representation. We call the variables u j

Lee-Pomeransky variables.

Let us also consider for the Lee-Pomeransky representation an example. Again, we choose

the one-loop two-point integral with vanishing internal masses. The Lee-Pomeransky polynomial

is in this case

G = u1 +u2 +u1u2x, (2.218)

where we set x =−p2/µ2. The Lee-Pomeransky representation is then given by

Iν1ν2
=

eεγEΓ
(

D
2

)

Γ(D−ν)Γ(ν1)Γ(ν2)

∞∫

0

du1

∞∫

0

du2 uν1−1
1 uν2−1

2 [u1 +u2 +u1u2x]−
D
2 . (2.219)

2.5.5 The Baikov representation

Up to now we always considered arbitrary Feynman graphs with next external edges, nint internal

edges and l loops. In particular we never assumed that there is an additional relation between

next, nint and l.
The Baikov representation [30] applies to a subset of Feynman graphs, where the number of

internal edges nint equals the number of independent scalar products involving the loop momenta.

Let p1, p2, ..., pnext denote the external momenta and denote by

e = dim〈p1, p2, ..., pnext〉 (2.220)

the dimension of the span of the external momenta. For generic external momenta and D ≥
next−1 we have e = next−1. Lorentz invariants involving the loop momenta are of the form

−k2
i , 1 ≤ i ≤ l,

−ki · k j, 1 ≤ i < j ≤ l,

−ki · p j, 1 ≤ i ≤ l, 1 ≤ j ≤ e. (2.221)

In total we have

NV =
1

2
l (l +1)+ el (2.222)

linear independent scalar products involving the loop momenta. We denote this number by NV

and the linear independent scalar products involving the loop momenta by

σ = (σ1, ...,σNV ) = (−k1 · k1,−k1 · k2, ...,−kl · kl,−k1 · p1, ...,−kl · pe) . (2.223)

A Feynman graph G has a Baikov representation if

NV = nint (2.224)
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and if we may express any internal inverse propagator as a linear combination of the linear

independent scalar products involving the loop momenta and terms independent of the loop mo-

menta. The second condition says, that there is an invertible NV ×NV -dimensional matrix C and

a loop-momentum independent NV -dimensional vector f such that

−q2
s +m2

s = Cstσt + fs (2.225)

for all 1 ≤ s ≤ nint. At first sight it might seem that the Baikov representation applies due to

the conditions in eq. (2.224) and eq. (2.225) only to a very special subset of Feynman graphs.

However, we will soon see that for a given graph G, which not necessarily satisfies the conditions

eq. (2.224) and eq. (2.225), we can always find a graph G̃ which does, and obtain the induced

Baikov representation of the graph G from the Baikov representation of the graph G̃.

In order to arrive at the Baikov representation we change the integration variables to the

Baikov variables z j:

z j = −q2
j +m2

j . (2.226)

The Baikov variables are nothing else than the inverse propagators. From eq. (2.225) we have

the inverse relation

σt =
(
C−1

)
ts (zs− fs) . (2.227)

The Baikov representation of I is given by

I = elεγE
(
µ2
)ν− lD

2
π−

1
2 (NV−l)

l
∏
j=1

Γ
(

D−e+1− j
2

)
[detG(p1, ..., pe)]

−D+e+1
2

detC

×
∫

C

dNV z [detG(k1, ...,kl, p1, ..., pe)]
D−l−e−1

2

NV

∏
s=1

z−νs
s , (2.228)

where the Gram determinants are defined by

detG(q1, ...,qn) = det
(
−qi ·q j

)
= det

(
Qi ·Q j

)
, (2.229)

e.g.

detG(q1,q2) =

∣∣∣∣
−q2

1 −q1 ·q2

−q1 ·q2 −q2
2

∣∣∣∣ = q2
1q2

2− (q1 ·q2)
2 . (2.230)

Note that exchanging two vectors leaves the Gram determinant invariant

detG
(
. . . ,qi, . . . ,q j, . . .

)
= detG

(
. . . ,q j, . . . ,qi, . . .

)
, (2.231)

as this corresponds to the exchange of two rows and two columns.
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The determinant detG(k1, ...,kl, p1, ..., pe) expressed in the variables zs’s through eq. (2.227)

is called the Baikov polynomial:

B (z1, ...,zNV ) = detG(k1, ...,kl, p1, ..., pe) . (2.232)

The domain of integration C is given by

C = C1∩C2∩· · ·∩Cl (2.233)

with

C j =

{
detG

(
k j,k j+1, ...,kl, p1, ..., pe

)

detG
(
k j+1, ...,kl, p1, ..., pe

) ≥ 0

}
. (2.234)

Putting everything together we arrive at the

Baikov representation (for a graph G satisfying eq. (2.224) and eq. (2.225)):

I =
elεγE

(
µ2
)ν− lD

2 [detG(p1, ..., pe)]
−D+e+1

2

π
1
2 (NV−l) (detC)

l
∏
j=1

Γ
(

D−e+1− j
2

)
∫

C

dNV z [B (z)]
D−l−e−1

2

NV

∏
s=1

z−νs
s . (2.235)

The Baikov representation is very useful if we would like to calculate cuts of Feynman inte-

grals, i.e. the residue when one or several propagators go on-shell.

Before we go into the details of the derivation of the Baikov representation, let us first discuss

how to get around the restrictions imposed by eq. (2.224) and eq. (2.225). The most common

situation is that the number of internal propagators nint is smaller than the number NV of linear

independent scalar products involving the loop momenta:

nint < NV . (2.236)

This does not occur at one-loop, but it frequently occurs beyond one-loop. As an example let us

look at the two-loop double box graph in fig. 2.3. In this example we have seven propagators

(nint = 7), but nine linear independent scalar products involving the loop momenta:

−k2
1, −k2

2, −k1 · k2, −k1 · p1, −k1 · p2, −k1 · p3, −k2 · p1, −k2 · p2, −k2 · p3. (2.237)

We may express seven scalar products

−k2
1, −k2

2, −k1 · k2, −k1 · p1, −k1 · p2, −k2 · (p1 + p2) , −k2 · p3 (2.238)

in terms of inverse propagators, but not

−k1 · p3, −k2 · p1. (2.239)
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p1

p2 p3

p4

q1 q4 q7

q2 q5

q3 q6q8 q9

p24 p13

Figure 2.11: An auxiliary graph G̃ with nine internal propagators. For this graph we have as

many internal propagators as linear independent scalar products involving the loop momenta. We

use the notation pi j = pi + p j.

The scalar products in eq. (2.239) are called irreducible scalar products. The solution is to

consider the original graph G as a subgraph of a larger graph G̃. An example of an auxiliary

graph G̃ for the double box graph G is shown in fig. 2.11. This graph has nine internal edges and

six external edges. However, the dimension of the span of the external momenta is still

e = dim〈p1, p2, p3, p4, p1 + p3, p2 + p4〉 = 3, (2.240)

and hence the number of linear independent scalar products involving the loop momenta remains

NV = 9. For the graph G̃ we may express any internal inverse propagator as a linear combination

of the linear independent scalar products involving the loop momenta and terms independent of

the loop momenta. The Baikov representation of the graph G is then given by the Baikov repre-

sentation of the graph G̃ with ν8 = ν9 = 0. Setting ν8 = ν9 = 0 ensures that the two additional

propagators corresponding to the edges e8 and e9 are absent.

It is always possible to find a graph G̃. To see this, let us first introduce for a graph G the

associated chain graph Gchain as follows: We group the internal propagators into chains. Two

propagators belong to the same chain, if their momenta differ only by a linear combination of

the external momenta. Obviously, each internal line can only belong to one chain. To each

graph G we associate a new graph Gchain called the chain graph by deleting all external lines

and by choosing one propagator for each chain as a representative. Up to three loops, all chain

graphs are (sub-) graphs of the three chain graphs shown in fig. 2.12. A non-trivial example is

given by the three-loop ladder graph shown in the left figure of fig. 2.13. In this example we

note that propagators 1 and 6′ belong to the same chain, as the same loop momentum is flowing

through both propagators. Hence, the associated chain graph is the one shown in the right figure
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1 1

2

3

2

1

3
6

5 4

Figure 2.12: The basic chain graphs up to three loops. Up to this loop order, all other chain

graphs are subgraphs of these three graphs.

6
′

1

2 5 4 3

2

1

3

5 4

Figure 2.13: The left figure shows a three-loop graph. Propagators 1 and 6′ belong to the same

chain. The underlying chain graph is the five-propagator graph shown in the right figure. This

chain graph is a subgraph of the three-loop chain graph of fig. 2.12.
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p1

p2 −p1

−p2

q1 q3

q2

q4

Figure 2.14: A one-loop box graph with external momenta p1, p2,−p1,−p2. For this graph we

have e = dim〈p1, p2,−p1,−p2〉= 2.

of fig. 2.13. This chain graph is a subgraph of the three-loop Mercedes-Benz graph shown in the

right figure of fig. 2.12.

With the chain graph Gchain at hand, we re-insert external edges to the chains, such that all

linear independent scalar products involving the loop momenta can be expressed in terms of

inverse propagators and terms independent of the loop momenta. In practice one starts with

the original propagators and then adds additional propagators such that the irreducible scalar

products may be expressed in terms of the inverse propagators. In a final step one adjusts the

external momenta appropriately.

Having discussed the case nint < NV , let us now turn to the other case:

nint > NV . (2.241)

In practice, this case is rather special. We discuss this case for completeness. An example is

shown in fig. 2.14. This graph has four internal propagators, but with

e = dim〈p1, p2,−p1,−p2〉 = 2 (2.242)

we only have three linear independent scalar products involving the loop momenta:

−k2, −k · p1 − k · p2. (2.243)

At the same time, the four inverse propagators of the graph in fig. 2.14 are not independent. We

have

−q2
3 +m2

3 = (2.244)

−
[
−q2

1 +m2
1

]
+
[
−q2

2 +m2
2

]
+
[
−q2

4 +m2
4

]
+2p1 · p2 +m2

1−m2
2 +m2

3−m2
4.
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We may therefore consider as graph G̃ a one-loop triangle graph with internal edges {e1,e2,e4}.
With

z1 = −q2
1 +m2

1, z2 = −q2
2 +m2

2, z4 = −q2
4 +m2

4 (2.245)

we obtain the induced Baikov representation of the graph G from the Baikov representation of

the graph G̃ by replacing

1(
−q2

3 +m2
3

)ν3
=

1

(−z1 + z2 + z4 + f )ν3
, f = 2p1 · p2 +m2

1−m2
2 +m2

3−m2
4. (2.246)

Digression. Details on the derivation of the Baikov representation

The basic idea to derive the Baikov representation is to split the loop momentum variables into
a set, on which the integrands depends non-trivially and a set, on which the integrand depends
trivially. For the former set we perform a change of variables to the Baikov variables, while for
the latter set we integrate over these variables.

Let us start with the one-loop case. We decompose the loop momentum

k = k‖+ k⊥ (2.247)

into a component living in the parallel space, defined by

k‖ ∈ 〈p1, p2, ..., pnext〉 (2.248)

and a component living in the complement, called the orthogonal space. The dependence of the
integrand on k⊥ is only through

k2 = k2
‖+ k2

⊥. (2.249)

For the measure we have

dDk = dek‖ dD−ek⊥. (2.250)

The relation with the Euclidean measure is

dDk = idDK, dek‖ = ideK‖, dD−ek⊥ = dD−eK⊥. (2.251)

The energy component is part of the parallel space. From the standard formulae

dDK =
(
K2
)D−2

2 dK2 1

2
dΩD and

∫
dΩD =

2π
D
2

Γ
(

D
2

) (2.252)

we obtain

dD−eK⊥ =
π

D−e
2

Γ
(

D−e
2

)
(
K2
⊥
)D−e−2

2 dK2
⊥. (2.253)



64 CHAPTER 2. BASICS

This allows us to perform all angular integrations in the orthogonal space.
The linear independent scalar products involving the loop momenta are

σ =
(
−k2,−k · p1, · · ·− k · pe

)
=
(
K2,K ·P1, . . .K ·Pe

)
. (2.254)

We have

J =
∂(σ2, ...,σe+1)

∂(K0, ...,Ke−1)
=




P0
1 P1

1 ... Pe−1
1

P0
2 P1

2 ... Pe−1
2

...
P0

e P1
e ... Pe−1

e


 . (2.255)

We have JJT = (Pi ·Pj) and therefore

detJ =
√

detGeucl (P1, . . . ,Pe) =
√

detG(p1, . . . , pe). (2.256)

Here we defined the Euclidean Gram determinant by

detGeucl (Q1, . . . ,Qn) = det(Qi ·Q j) = det(−qi ·q j) = detG(q1, . . . ,qn) . (2.257)

In addition, we may trade the integration over dK2
⊥ for an integration over σ1 =−k2 = K2 with

Jacobian

∂σ1

∂K2
⊥

=
∂
(

K2
‖ +K2

⊥

)

∂K2
⊥

= 1. (2.258)

Our final change of variables is to change from the variables σ = (σ1, . . . ,σe+1) to the Baikov
variables (z1, . . . ,zNV ), where NV = e+1. From eq. (2.225)

zs = Cstσt + fs (2.259)

we obtain the Jacobian

∂zs

∂σt
= detC. (2.260)

It remains to express−k2
⊥ = K2

⊥ in terms of the Baikov variables. This can be done by first noting
that

−k2
⊥ = K2

⊥ =
detGeucl (K,P1, ...,Pe)

detGeucl (P1, ...,Pe)
=

detG(k, p1, ..., pe)

detG(p1, ..., pe)
, (2.261)

and then replacing the scalar products involving the loop momenta with the Baikov variables
with the help of eq. (2.227).

Exercise 17: Prove eq. (2.261).
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Putting everything together we obtain for the measure

dDk

iπ
D
2

=
1

π
e
2 (detC)Γ

(
D−e

2

) [detG(p1, ..., pe)]
−D+e+1

2 [detG(k, p1, ..., pe)]
D−e−2

2 dNV z. (2.262)

The domain of integration follows from the requirement

−k2
⊥ = K2

⊥ =
detG(k, p1, ..., pe)

detG(p1, ..., pe)
≥ 0. (2.263)

For a multi-loop integral (l > 1) we may apply the argument above l-times, starting with loop
momentum k1 and ending with loop momentum kl , keeping in mind that the parallel space for
loop momentum k j is spanned by the external momenta and all loop momenta not yet integrated
out:

parallel space for k j :
〈
k j+1, . . . ,kl, p1, p2, . . . , pnext

〉
. (2.264)

Doing so, one derives eq. (2.235).

Let us now look at a simple example for the Baikov representation. We consider the one-loop

tadpole integral

Tν (D,x) = eεγE
(
µ2
)ν−D

2

∫
dDk

iπ
D
2

1

(−k2 +m2)
ν , x =

m2

µ2
, (2.265)

which we already computed in eq. (2.123). This integral does not depend on any external mo-

menta, therefore

e = 0, and NV = 1. (2.266)

There is one Baikov variable z1 =−k2 +m2. The Gram determinant is given by

detG(k) = −k2 = z1−m2. (2.267)

Thus, we obtain the Baikov polynomial as

B (z1) = z1−m2. (2.268)

The requirement detG(k)≥ 0 defines the integration region z1 ∈ [m2,∞[. We arrive at the Baikov

representation of the tadpole integral:

Tν (D,x) =
eγEε

(
µ2
)ν−D

2

Γ
(

D
2

)
∫

C

dz1 [B (z1)]
D
2−1 1

zν
1

, (2.269)

where the contour is given by C = [m2,∞[.
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p1

p2 p3

p4

k2

k1

Figure 2.15: A two-loop graph, where a one-loop bubble is inserted into a one-loop box.

Exercise 18: Perform the integration in eq. (2.269).

We close this section by introducing a variant of the Baikov representation. In the Baikov rep-

resentation in eq. (2.235) we treated any scalar product of a loop momentum with any other

momentum on equal footing. This is referred to as the democratic approach. This approach al-

lows us to express any irreducible scalar product in terms of the Baikov variables. This is useful,

when irreducible scalar products appear in the numerator of the loop momentum representation

of the Feynman integral and we would like to convert the Feynman integral to the Baikov repre-

sentation. Up to now we didn’t discuss this case. We will treat this case in chapter 4. The price

to pay for being able to express any irreducible scalar product in terms of Baikov variables is the

number of Baikov variables:

NV =
1

2
l (l +1)+ el. (2.270)

However, if we are only interested in scalar Feynman integrals (without any irreducible scalar

product in the numerator) – and we will see in chapter 4 that it is enough to focus on these

integrals – we might have an additional interest in keeping the number of integration variables

as low as possible. There is a variant of the Baikov representation, known as the loop-by-loop

approach [31], which achieves this. This is best explained by an example. Consider the two-loop

graph shown in fig. 2.15. With

e = dim〈p1, p2, p3, p4〉 = 3 (2.271)

we have

NV = 9 (2.272)
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p

q1

q2

q3

−p

Figure 2.16: The two-loop sunrise diagram (also known as sunset diagram or London transport

diagram).

independent scalar products involving the loop momenta:

−k2
1, −k1 · k2, −k2

2, −k1 · p1, −k1 · p2, −k1 · p3, −k2 · p1, −k2 · p2, −k2 · p3. (2.273)

However, the external momenta relative to the loop with k1 are just k2 (and −k2) and not the full

set k2, p1, p2, p3. Thus we may decompose k1 in

k1 = k1,‖+ k1,⊥, (2.274)

where k1,‖ is spanned by

loop-by-loop parallel space for k1 : 〈k2〉 (2.275)

instead of

democratic parallel space for k1 : 〈k2, p1, p2, p3〉 (2.276)

We then use eq. (2.262) for the integration over k1 with the loop-by-loop parallel space for k1.

This introduces only two Baikov variables. For the integration over k2 the parallel space is

spanned by

parallel space for k2 : 〈p1, p2, p3〉 , (2.277)

giving four additional Baikov variables. We therefore obtain the loop-by-loop Baikov represen-

tation with only six integration variables.

Exercise 19: Derive the Baikov representation of the graph shown in fig. 2.16 within the democratic
approach and within the loop-by-loop approach. Assume that all internal masses are non-zero and equal.
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2.5.6 The Mellin-Barnes representation

Up to now we presented for all representations of Feynman integrals (momentum representation,

Schwinger parameter representation, Feynman parameter representation, Lee-Pomeransky rep-

resentation and Baikov representation) a closed integral formula for the Feynman integral. We

won’t do this for the Mellin-Barnes representation. The Mellin-Barnes representation [32, 33]

can be applied to any representation discussed so far and allows to trivialise the integrations

of the representation we start with at the expense of introducing new integrations over Mellin-

Barnes variables. We explain the Mellin-Barnes representation by starting from the Feynman

parameter representation.

The Feynman parameter representation in eq. (2.170) depends on two graph polynomials U
and F . Assume for the moment that the two graph polynomials U and F are absent from the

Feynman parameter integral. In this case we have an integral of the form

∫

a j≥0

dna δ

(
1−

n

∑
j=1

a j

) (
n

∏
j=1

a
ν j−1

j

)
=

n
∏
j=1

Γ(ν j)

Γ(ν1 + ...+νn)
. (2.278)

The Mellin-Barnes transformation allows us to reduce the Feynman parameter integration to this

case. The Mellin-Barnes transformation reads

(A1 +A2 + ...+An)
−c =

1

Γ(c)

1

(2πi)n−1

i∞∫

−i∞

dσ1...

i∞∫

−i∞

dσn−1 (2.279)

×Γ(−σ1)...Γ(−σn−1)Γ(σ1+ ...+σn−1 + c) Aσ1

1 ...Aσn−1

n−1 A−σ1−...−σn−1−c
n .

Each contour is such that the poles of Γ(−σ) are to the right and the poles of Γ(σ+ c) are to the

left. This transformation can be used to convert the sum of monomials of the polynomials U and

F into a product, such that all Feynman parameter integrals are of the form of eq. (2.278). As

this transformation converts a sum into a product it is the “inverse” of Feynman parametrisation,

which converts a product into a sum.

Eq. (2.279) is derived from the theory of Mellin transformations: Let h(x) be a function

which is bounded by a power law for x→ 0 and x→ ∞, e.g.

|h(x)| ≤ Kx−c0 for x→ 0,

|h(x)| ≤ K′xc1 for x→ ∞. (2.280)

Then the Mellin transform is defined for c0 < Re σ < c1 by

hM (σ) =

∞∫

0

dx h(x) xσ−1. (2.281)

The inverse Mellin transform is given by

h(x) =
1

2πi

γ+i∞∫

γ−i∞

dσ hM (σ) x−σ. (2.282)
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The integration contour is parallel to the imaginary axis and c0 < Re γ < c1. As an example for

the Mellin transform we consider the function

h(x) =
xc

(1+ x)c (2.283)

with Mellin transform hM (σ) = Γ(−σ)Γ(σ+ c)/Γ(c). For Re(−c)< Re γ < 0 we have

xc

(1+ x)c =
1

2πi

γ+i∞∫

γ−i∞

dσ
Γ(−σ)Γ(σ+ c)

Γ(c)
x−σ. (2.284)

From eq. (2.284) one obtains with x = B/A the Mellin-Barnes formula

(A+B)−c =
1

2πi

γ+i∞∫

γ−i∞

dσ
Γ(−σ)Γ(σ+ c)

Γ(c)
AσB−σ−c. (2.285)

Eq. (2.279) is then obtained by repeated use of eq. (2.285).

With the help of eq. (2.278) and eq. (2.279) we may exchange a Feynman parameter integral

against a multiple contour integral. A typical single contour integral is of the form

I =
1

2πi

γ+i∞∫

γ−i∞

dσ
Γ(σ+a1)...Γ(σ+am)

Γ(σ+ c1)...Γ(σ+ cp)

Γ(−σ+b1)...Γ(−σ+bn)

Γ(−σ+d1)...Γ(−σ+dq)
x−σ. (2.286)

If max(Re(−a1), ...,Re(−am))<min(Re(b1), ...,Re(bn)) the contour can be chosen as a straight

line parallel to the imaginary axis with

max(Re(−a1), ...,Re(−am)) < Re γ < min(Re(b1), ...,Re(bn)) , (2.287)

otherwise the contour is indented, such that the residues of Γ(σ+ a1), ..., Γ(σ+ am) are to the

left of the contour, whereas the residues of Γ(−σ+ b1), ..., Γ(−σ+ bn) are to the right of the

contour, as shown in fig. 2.17.

The integral eq. (2.286) is most conveniently evaluated with the help of the residue theorem

by closing the contour to the left or to the right. To sum up all residues which lie inside the

contour it is useful to know the residues of the Gamma function:

res (Γ(σ+a),σ =−a−n) =
(−1)n

n!
, res (Γ(−σ+a),σ = a+n) =−(−1)n

n!
.(2.288)

Remember that in the case where we close the contour to the right, there is an extra minus sign

from the negative winding number.

In general there are multiple contour integrals, and as a consequence one obtains multiple

sums. In particular simple cases the contour integrals can be performed in closed form with the

help of two lemmas of Barnes. Barnes’ first lemma states that

1

2πi

i∞∫

−i∞

dσ Γ(a+σ)Γ(b+σ)Γ(c−σ)Γ(d−σ) =
Γ(a+ c)Γ(a+d)Γ(b+ c)Γ(b+d)

Γ(a+b+ c+d)
,(2.289)
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Re σ

Im σ

Figure 2.17: The integration contour for Mellin-Barnes integrals: Residues of Γ(σ+ a1), ...,

Γ(σ+am) are to the left of the contour, residues of Γ(−σ+b1), ..., Γ(−σ+bn) are to the right

of the contour.

if none of the poles of Γ(a+σ)Γ(b+σ) coincides with the ones from Γ(c−σ)Γ(d−σ). Barnes’

second lemma reads

1

2πi

i∞∫

−i∞

dσ
Γ(a+σ)Γ(b+σ)Γ(c+σ)Γ(d−σ)Γ(e−σ)

Γ(a+b+ c+d + e+σ)

=
Γ(a+d)Γ(b+d)Γ(c+d)Γ(a+ e)Γ(b+ e)Γ(c+ e)

Γ(a+b+d+ e)Γ(a+ c+d + e)Γ(b+ c+d + e)
. (2.290)



Chapter 3

Graph polynomials

The Schwinger parameter representation and the Feynman parameter representation involve two

graph polynomials U and F , the Lee-Pomeransky representation involves the sum of these two

polynomials G = U+F . These polynomials encode the essential information of the integrands.

In this chapter we study these polynomials in more detail. Previously, we defined the polynomials

U and F in eq. (2.157). In this chapter we will also learn alternative methods to compute these

polynomials.

3.1 Spanning trees and spanning forests

In this section we delve deeper into concepts of graph theory. We define spanning trees and

spanning forests. These concepts lead to a second method for the computation of the graph

polynomials. We consider a connected graph G with n edges and r vertices. We label the edges

by {e1, . . . ,en} and the vertices by {v1, . . . ,vr}. Vertices of valency 1 are called external vertices,

all other vertices are internal vertices. There is exactly one edge connected to an external vertex.

Such an edge is called an external edge. Edges, which are not external edges are called internal

edges. We label the edges of the graph G such that the first nint edges are the internal edges and

the remaining next edges are the external edges:

internal edges : {e1,e2, . . . ,enint
},

external edges : {enint+1,enint+2, . . . ,enint+next}. (3.1)

We have n = nint +next. In a similar way we label the vertices such that the first rint vertices are

the internal vertices and the remaining next vertices are the external vertices (there are exactly

next external vertices):

internal vertices : {v1,v2, . . . ,vrint
},

external vertices : {vrint+1,vrint+2, . . . ,vrint+next}. (3.2)

The distinction between internal edges and external edges (and internal vertices and external

vertices) is necessary for the application towards Feynman integrals: The Feynman rules for the

71
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Figure 3.1: An example for a Feynman graph G (left) and the associated internal graph Gint

(right). The latter is obtained by deleting all external vertices and all external edges.

internal and external objects differ (and the variables of the graph polynomials are in one-to-one

correspondence with the internal edges of the graph). However, pure mathematicians might pre-

fer to work just with a graph (consisting of edges and vertices), without any particular distinction

between internal and external vertices and edges. In order to reconcile the two approaches, let

us introduce the internal graph Gint associated to G as the sub-graph of G obtained by delet-

ing the external vertices and the external edges from G. The internal graph Gint has nint edges

{e1,e2, . . . ,enint
} and rint vertices {v1,v2, . . . ,vrint

}. An example is shown in fig. 3.1.

As before we denote by l the first Betti number of the graph (or in physics jargon: the number

of loops). We have the relation

l = n− r+1 = nint− rint +1. (3.3)

If we would allow for disconnected graphs, the corresponding formula for the first Betti number

would be n− r+ k, where k is the number of connected components.

Definition 2. (spanning tree): A spanning tree for the graph G is a sub-graph T of G satisfying
the following requirements:

• T contains all the vertices of G,

• the first Betti number of T is zero,

• T is connected.

If T is a spanning tree for G, then it can be obtained from G by deleting l edges. In general

a given graph G has several spanning trees. We will later obtain a formula which counts the

number of spanning trees for a given graph G.

Definition 3. (spanning forest): A spanning forest for the graph G is a sub-graph F of G
satisfying just the first two requirements:

• F contains all the vertices of G,
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Figure 3.2: The left picture shows a spanning tree for the graph of fig. 2.3, the right picture shows

a spanning 2-forest for the same graph. The spanning tree is obtained by deleting edges 4 and 7,

the spanning 2-forest is obtained by deleting edges 1, 4 and 7.

• the first Betti number of F is zero.

It is not required that a spanning forest is connected. If F has k connected components, we

say that F is a k-forest. A spanning tree is a spanning 1-forest. If F is a spanning k-forest for G,

then it can be obtained from G by deleting l+ k−1 edges.

For the application towards Feynman graphs we need a refinement of this definition:

Definition 4. (spanning forest with respect to an edge set): A spanning forest for the graph G
with respect to an edge set E is a sub-graph F of G satisfying:

• F contains all the vertices of G,

• the first Betti number of F is zero.

• F contains all edges {e1, . . . ,en}\E.

The third requirement states that we may only delete edges from the set E, but not from the

complement {e1, . . . ,en}\E. For E = {e1, . . . ,en} the two definitions agree: A spanning forest

with respect to the edge set {e1, . . . ,en} is a spanning forest in the sense of definition 3. The

typical application towards Feynman graphs is the case, where E is the set of internal edges

E = {e1,e2, . . . ,enint
} . (3.4)

In this case the third condition ensures that no external edges are deleted. As this is the most

common case, we will from now on always assume that a k-forest of a Feynman graph G is a

k-forest of G with respect to the internal edges, unless stated otherwise.

Fig. 3.2 shows an example for a spanning tree and a spanning 2-forest for the graph of fig. 2.3.

We denote by T the set of spanning forests of G (by default with respect to the internal

edges, unless stated otherwise) and by Tk the set of spanning k-forests of G (again by default
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with respect to the internal edges unless stated otherwise). Obviously, we can write T as the

disjoint union

T =
rint⋃
k=1

Tk. (3.5)

T1 is the set of spanning trees. For an element of Tk we write

(T1,T2, . . . ,Tk) ∈ Tk. (3.6)

The Ti are the connected components of the k-forest. They are necessarily trees. We denote by

PTi the set of external momenta attached to Ti. For the example of the 2-forest in the right picture

of fig. 3.2 we have (compare with the momentum labelling in fig. 2.3)

PT1
= {p2, p3}, PT2

= {p1, p4}. (3.7)

The spanning trees and the spanning 2-forests (with respect to the internal edges) of a graph G
are closely related to the graph polynomials U and F of the graph:

Graph polynomials from spanning trees and the spanning 2-forests:

U (a) = ∑
T∈T1

∏
ei /∈T

ai, (3.8)

F (a) = ∑
(T1,T2)∈T2

(
∏

ei /∈(T1,T2)

ai

)
 ∑

p j∈PT1

∑
pk∈PT2

p j · pk

µ2


 + U (a)

nint

∑
i=1

ai
m2

i

µ2
.

The sum is over all spanning trees for U, and over all spanning 2-forests (with respect to

the internal edges) in the first term of the formula for F .

Eq. (3.8) provides a second method for the computation of the graph polynomials U and F .

Let us first look at the formula for U. For each spanning tree T we take the edges ei, which have

been removed from the graph G to obtain T . The product of the corresponding parameters ai

gives a monomial. The first formula says, that U is the sum of all the monomials obtained from

all spanning trees. The formula for F has two parts: One part is related to the external momenta

and the other part involves the masses. The latter is rather simple and we write

F (a) = F0 (a)+U (a)
nint

∑
i=1

ai
m2

i

µ2
. (3.9)

We focus on the polynomial F0. Here the 2-forests with respect to the internal edges are relevant.

For each 2-forest (T1,T2) we consider again the edges ei, which have been removed from the

graph G to obtain (T1,T2). The product of the corresponding parameters ai defines again a
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monomial, which in addition is multiplied by a quantity which depends on the external momenta.

We define the square of the sum of momenta through the deleted lines of (T1,T2) by

s(T1,T2) =


 ∑

e j /∈(T1,T2)

q j




2

. (3.10)

Here we assumed for simplicity that the orientation of the momenta of the deleted internal lines

are chosen such that all deleted momenta flow from T1 to T2 (or alternatively that all deleted

momenta flow from T2 to T1, but not mixed). From momentum conservation it follows that the

sum of the momenta flowing through the deleted edges out of T1 is equal to the negative of the

sum of the external momenta of T1. With the same reasoning the sum of the momenta flowing

through the deleted edges into T2 is equal to the sum of the external momenta of T2. Therefore

we can equally write

s(T1,T2) = −


 ∑

pi∈PT1

pi


 ·


 ∑

p j∈PT2

p j


 (3.11)

and F0 is given by

F0 (a) = ∑
(T1,T2)∈T2

(
∏

ei /∈(T1,T2)

ai

)(−s(T1,T2)

µ2

)
. (3.12)

Since we have to remove l edges from G to obtain a spanning tree and (l +1) edges to obtain a

spanning 2-forest, it follows that U(a) and F (a) are homogeneous in the parameters a of degree

l and (l +1), respectively. From the fact, that an internal edge can be removed at most once, it

follows that U and F0 are linear in each parameter a j. Finally it is obvious from eq. (3.8) that

each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 3.3 shows the graph of a two-loop two-point integral. We

take again all internal masses to be zero. The set of all spanning trees for this graph is shown in

fig. 3.4. There are eight spanning trees. Fig. 3.5 shows the set of spanning 2-forests with respect

to the internal edges for this graph. There are ten spanning 2-forests. The last example in each

row of fig. 3.5 does not contribute to the graph polynomial F , since the momentum sum flowing

through all deleted edges is zero. Therefore we have in this case s(T1,T2) = 0. In all other cases

we have s(T1,T2) = p2. We arrive therefore at the graph polynomials

U = (a1 +a4)(a3+a5)+(a1+a3 +a4 +a5)a2,

F = [(a1 +a5)(a3 +a4)a2 +a1a4(a3 +a5)+a3a5(a1 +a4)]

(−p2

µ2

)
. (3.13)

Exercise 20: Re-compute the first graph polynomial U for the graph shown in fig. 2.6 from the set
of spanning trees.
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Figure 3.3: A two-loop two-point graph.

Figure 3.4: The set of spanning trees for the two-loop two-point graph of fig. 3.3.

Figure 3.5: The set of spanning 2-forests for the two-loop two-point graph of fig. 3.3.
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3.2 The matrix-tree theorem

In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed

from the topology of the graph. The determinant of a minor of this matrix where the i-th row

and column have been deleted gives us the Kirchhoff polynomial of the graph, which in turn

upon a simple substitution leads to the first Symanzik polynomial. We then show how this

construction generalises for the second Symanzik polynomial. This provides a third method for

the computation of the two graph polynomials. This method is very well suited for computer

algebra systems, as it involves just the computation of a determinant of a matrix. The matrix is

easily constructed from the data defining the graph.

We begin with the Kirchhoff polynomial of a graph G. We associate a parameter a j to any

edge e j (internal or external). The Kirchhoff polynomial is defined by

K (a1, . . . ,an) = ∑
T∈T1

∏
e j∈T

a j. (3.14)

In physics we associate parameters a j only to internal edges. We set

Kint (G) = K (Gint) = ∑
T∈T1

∏
e j∈(T∩E)

a j, (3.15)

where E is the set of internal edges. The definition is very similar to the expression for the first

Symanzik polynomial in eq. (3.8). Again we have a sum over all spanning trees, but this time we

take for each spanning tree the monomial of the Feynman parameters corresponding to the edges

which have not been removed. The Kirchhoff polynomial is therefore homogeneous of degree

(nint− l) in the parameters a. There is a simple relation between the Kirchhoff polynomial Kint

and the first Symanzik polynomial U:

U(a1, . . . ,anint
) = a1 . . .anint

Kint

(
1

a1
, . . . ,

1

anint

)
,

Kint(a1, . . . ,anint
) = a1 . . .anint

U

(
1

a1
, . . . ,

1

anint

)
. (3.16)

These equations are immediately evident from the fact that U and Kint are homogeneous poly-

nomials which are linear in each variable together with the fact that a monomial corresponding

to a specific spanning tree in one polynomial contains exactly those Feynman parameters which

are not in the corresponding monomial in the other polynomial.

We now define the Laplacian of a graph G.

Definition 5. (Laplacian of a graph): Let G be a graph with n edges and r vertices. To each
edge e j one associates a parameter a j. The Laplacian of the graph G is a r× r-matrix L, whose
entries are given by

Li j =

{
∑ak if i = j and edge ek is attached to vi and is not a self-loop,
−∑ak if i 6= j and edge ek connects vi and v j.

(3.17)

The graph may contain multiple edges and self-loops.
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Figure 3.6: The left picture shows a graph with a double edge, the right picture shows a graph

with a self-loop.

We speak of a multiple edge, if two vertices are connected by more than one edge. We speak

of a self-loop if an edge starts and ends at the same vertex. In the physics literature a self-loop

is known as a tadpole. Fig. 3.6 shows a simple example for a double edge and a self-loop. If the

vertices vi and v j are connected by two edges ek1
and ek2

, then the Laplacian depends only on the

sum ak1
+ ak2

. If an edge ek is a self-loop attached to a vertex vi, then it does not contribute to

the Laplacian.

For the application towards Feynman graphs we need a refinement of this definition. (This

can already be anticipated from the fact, that we associate parameters a j to all internal edges, but

not to the external edges.)

Definition 6. (Laplacian of a graph with respect to internal vertices and edges): Let G be a
graph with nint internal edges and rint internal vertices. To each internal edge e j one associates
a parameter a j. Denote by Gint the internal graph of G. The Laplacian of the graph G with
respect to internal vertices and edges is the (ordinary) Laplacian of the graph Gint:

Lint (G) = L(Gint) . (3.18)

Phrased differently, the Laplacian of the graph G with respect to internal vertices and edges is a
rint× rint-matrix Lint, whose entries are given by

(Lint)i j =

{
∑ak if i = j and edge ek is attached to vi and is not a self-loop,
−∑ak if i 6= j and edge ek connects vi and v j.

(3.19)

In eq. (3.19) only internal vertices and edges are considered.

Unless stated otherwise, we will from now on always assume that the Laplacian of a Feynman

graph G refers to the Laplacian of the graph G with respect to internal vertices and edges.

Let us consider an example: The Laplacian of the two-loop two-point graph of fig. 3.3 is

given by

Lint =




a1 +a4 −a1 0 −a4

−a1 a1 +a2 +a5 −a5 −a2

0 −a5 a3 +a5 −a3

−a4 −a2 −a3 a2 +a3 +a4


 . (3.20)
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In the sequel we will need minors of the matrices L and Lint. It is convenient to introduce the

following notation: For a r× r matrix A we denote by A[i1, . . . , ik; j1, . . . , jk] the (r− k)× (r− k)
matrix, which is obtained from A by deleting the rows i1, . . . , ik and the columns j1, . . . , jk. For

A[i1, . . . , ik; i1, . . . , ik] we will simply write A[i1, . . . , ik].
Let vi be an arbitrary vertex of G. The matrix-tree theorem states [34]

K = det L[i]. (3.21)

i.e. the Kirchhoff polynomial is given by the determinant of the minor of the Laplacian, where

the i-th row and column have been removed. One can choose for i any number between 1 and r.

For an arbitrary internal vertex vi of G we have

Kint = det Lint[i]. (3.22)

Choosing for example i = 4 in eq. (3.20) one finds for the Kirchhoff polynomial of the two-loop

two-point graph of fig. 3.3

Kint =

∣∣∣∣∣∣

a1 +a4 −a1 0

−a1 a1 +a2 +a5 −a5

0 −a5 a3 +a5

∣∣∣∣∣∣
= a1a5(a3 +a4)+(a1 +a5)a3a4 +(a1a5 +a1a3 +a4a5 +a3a5)a2. (3.23)

Using eq. (3.16) one recovers the first Symanzik polynomial of this graph as given in eq. (3.13).

Exercise 21: Re-compute the first graph polynomial U for the graph shown in fig. 2.6 from the Laplacian
of the graph.

The matrix-tree theorem allows to determine the number of spanning trees of a given graph

G. Setting a1 = · · · = an = 1, each monomial in K , Kint and U reduces to 1. There is exactly

one monomial for each spanning tree, therefore one obtains

|T1| = K (1, . . . ,1) = Kint(1, . . . ,1) = U(1, . . . ,1). (3.24)

The matrix-tree theorem as in eq. (3.21) relates the determinant of the minor of the Laplacian,

where the i-th row and the i-th column have been deleted to a sum over the spanning trees of the

graph. There are two generalisations we can think of:

1. We delete more than one row and column.

2. We delete different rows and columns, i.e. we delete row i and column j with i 6= j.

The all-minors matrix-tree theorem relates the determinant of the corresponding minor to a spe-

cific sum over spanning forests [35–37]. We first state the version for the Laplacian L and then

specialise to Lint. To state this theorem we need some notation: We consider a graph with r ver-

tices (internal and external). Let I = (i1, . . . , ik) with 1≤ i1 < · · ·< ik ≤ r denote the rows, which
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we delete from the Laplacian L, and let J = ( j1, . . . , jk) with 1 ≤ j1 < · · · < jk ≤ r denote the

columns to be deleted from the Laplacian L. We set |I|= i1+ · · ·+ ik and |J|= j1 + · · ·+ jk. We

denote by T I,J
k the spanning k-forests (in sense of definition 3), such that each tree of an element

of T I,J
k contains exactly one vertex viα and exactly one vertex v jβ . The set T I,J

k is a sub-set of all

spanning k-forests. We now consider an element F of T I,J
k . Since the element F is a k-forest, it

consists therefore of k trees and we can write it as

F = (T1, . . . ,Tk) ∈ T I,J
k . (3.25)

We can label the trees such that vi1 ∈ T1, . . . , vik ∈ Tk. By assumption, each tree Tα contains also

exactly one vertex from the set {v j1, . . . ,v jk}, although not necessarily in the order v jα ∈ Tα. In

general it will be in a different order, which we can specify by a permutation πF ∈ Sk:

v jα ∈ TπF (α). (3.26)

The all-minors matrix-tree theorem reads then

det L[I,J] = (−1)|I|+|J| ∑
F∈T I,J

k

sign(πF) ∏
e j∈F

a j. (3.27)

Let us now specialise to Lint. We consider a graph with rint internal vertices. As before we denote

the deleted rows by I = (i1, . . . , ik), now with 1 ≤ i1 < · · · < ik ≤ rint. The deleted columns are

denoted by J = ( j1, . . . , jk) with 1≤ j1 < · · ·< jk ≤ rint. As before we set |I|= i1 + · · ·+ ik and

|J|= j1 + · · ·+ jk. The set T I,J
k now denotes the spanning k-forests in sense of definition 4, such

that each tree of an element of T I,J
k contains exactly one vertex viα and exactly one vertex v jβ .

As before we consider

F = (T1, . . . ,Tk) ∈ T I,J
k (3.28)

and define πF ∈ Sk by v jα ∈ TπF(α). The all-minors matrix-tree theorem for the internal graph

reads

det Lint[I,J] = (−1)|I|+|J| ∑
F∈T I,J

k

sign(πF) ∏
e j∈F

a j. (3.29)

In the special case I = J this reduces to

det Lint[I] = ∑
F∈T I,I

k

∏
e j∈F

a j. (3.30)

If we specialise further to I = J = (i), the sum equals the sum over all spanning trees (since

each spanning 1-forest of T
(i),(i)

1 necessarily contains the vertex vi). We recover the classical

matrix-tree theorem:

det Lint[i] = ∑
T∈T1

∏
e j∈T

a j. (3.31)
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Figure 3.7: The left picture shows the labelling of the vertices for the two-loop two-point func-

tion. The middle and the right picture show the two 2-forests contributing to T I,J
2 with I = (2,4)

and J = (3,4).

Let us illustrate the all-minors matrix-tree theorem with an example. We consider again the

two-loop two-point graph with the labelling of the vertices as shown in fig. 3.7. Taking as an

example

I = (2,4) and J = (3,4) (3.32)

we find for the determinant of Lint[I;J]:

det Lint[2,4;3,4] =

∣∣∣∣
a1 +a4 −a1

0 −a5

∣∣∣∣=−a1a5−a4a5. (3.33)

On the other hand there are exactly two 2-forests, such that in each 2-forest the vertices v2 and v3

are contained in one tree, while the vertex v4 is contained in the other tree. These two 2-forests

are shown in fig. 3.7. The monomials corresponding to these two 2-trees are a1a5 and a4a5,

respectively. The permutation πF is in both cases the identity and with |I|= 6, |J|= 7 we have

an overall minus sign

(−1)|I|+|J| = −1. (3.34)

Therefore, the right hand side of eq. (3.27) equals −a1a5− a4a5, showing the agreement with

the result of eq. (3.33).

Eq. (3.21) together with eq. (3.16) allows to determine the first Symanzik polynomial U from

the Laplacian of the graph.

We may ask if also the polynomial F0 can be obtained in a similar way. We consider again

a graph G with nint internal edges (e1, . . . ,enint
), rint internal vertices (v1, . . . ,vrint

), next external

edges (enint+1, . . . ,enint+next) and next external vertices (vrint+1, . . . ,erint+next). As before we asso-

ciate the parameters ai to the edges ei (1 ≤ i ≤ nint) and new parameters b j to the edges enint+ j

(1≤ j ≤ next). The Laplacian of G is a (rint+next)×(rint+next) matrix. We are now considering

the Laplacian as in definition 5, not the Laplacian with respect to internal vertices and edges.

Let us consider the polynomial

W (a1, . . . ,anint
,b1, . . . ,bnext) = det L(G) [rint +1, . . . ,rint +next]. (3.35)
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W is a polynomial of degree rint = nint− l +1 in the variables ai and b j. We can expand W in

polynomials homogeneous in the variables b j:

W = W (0)+W (1)+W (2)+ · · ·+W (m), (3.36)

where W (k) is homogeneous of degree k in the variables b j. We further write

W (k) = ∑
( j1,..., jk)

W
(k)
( j1,..., jk)

(a1, . . . ,anint
) b j1 . . .b jk . (3.37)

The sum is over all indices with 1 ≤ j1 < · · · < j j ≤ next. The W
(k)
( j1,..., jk)

are homogeneous

polynomials of degree rint− k in the variables ai. For W (0) and W (1) one finds

W (0) = 0, W (1) = Kint (a1, . . . ,anint
)

next

∑
j=1

b j, (3.38)

therefore

U = a1 . . .anint
W

(1)
( j)

(
1

a1
, . . . ,

1

anint

)
, (3.39)

for any j ∈ {1, . . . ,next}. F0 is related to W (2):

F0 = a1 . . .anint ∑
( j,k)

(
p j · pk

µ2

)
·W (2)

( j,k)

(
1

a1
, . . . ,

1

anint

)
. (3.40)

The proof of eqs. (3.38)-(3.40) follows from the all-minors matrix-tree theorem. The all-minors

matrix-tree theorem states

W (a1, . . . ,anint
,b1, . . . ,bnext) = ∑

F∈T I,I
next(G)

∏
e j∈F

c j, (3.41)

with I = (rint+1, . . . ,rint +next) and c j = a j if e j is an internal edge or c j = b j−nint
if e j is an ex-

ternal edge. The sum is over all next-forests of G (in the sense of definition 3), such that each tree

in an next-forest contains exactly one of the external vertices vrint+1, . . . , vrint+next . Each next-forest

has next connected components. The polynomial W (0) by definition does not contain any variable

b j. W (0) would therefore correspond to forests where all edges connecting the external vertices

erint+1, . . . , erint+next have been cut. The external vertices appear therefore as isolated vertices in

the forest. For l > 0, such a forest must necessarily have more than next connected components.

This is a contradiction with the requirement of having exactly next connected components and

therefore W (0) = 0. Next, we consider W (1). Each term is linear in the variables b j. Therefore

(next− 1) vertices of the external vertices vrint+1, . . . , vrint+next appear as isolated vertices in the

next-forest. The remaining added vertex is connected to a spanning tree of Gint. Summing over

all possibilities one sees that W (1) is given by the product of (b1+ · · ·+bnext) with the Kirchhoff
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Figure 3.8: The labelling of the vertices and the Feynman parameters for the “double box”-graph.

polynomial of Gint. Finally we consider W (2). Here, (next−2) of the added vertices appear as

isolated vertices. The remaining two are connected to a spanning 2-forest of the graph Gint, one

to each tree of the 2-forest. Summing over all possibilities one obtains eq. (3.40).

Let us summarise the results on the Laplacian:

Graph polynomials from the Laplacian of the graph:

U = a1 . . .anint
W

(1)
( j)

(
1

a1
, . . . ,

1

anint

)
, for any j ∈ {1, . . . ,next},

F0 = a1 . . .anint ∑
( j,k)

(
p j · pk

µ2

)
·W (2)

( j,k)

(
1

a1
, . . . ,

1

anint

)
. (3.42)

The quantities W
(1)
( j) and W

(2)
( j,k) are obtained from the Laplacian of the graph by

eqs. (3.35)-(3.37). The graph polynomial F is obtained from F0 and U by eq. (3.9).

Eq. (3.42) together with eq. (3.9) allow the computation of the first and second Symanzik

polynomial from the Laplacian of the graph G. This provides a third method for the computation

of the graph polynomials U and F .

As an example we consider the double-box graph of fig. 2.3. Fig. 3.8 shows the labelling of

the vertices and the Feynman parameters for the graph G. The Laplacian of G (in the sense of

definition 3) is a 10× 10-matrix. We are interested in the minor, where – with the labelling of
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fig. 3.8 – we delete the rows and columns 7, 8, 9 and 10. The determinant of this minor reads

W = det L[7,8,9,10] =

=

∣∣∣∣∣∣∣∣∣∣∣∣

a1 +a3 +b1 −a1 −a3 0 0 0

−a1 a1 +a2 +b2 0 −a2 0 0

−a3 0 a3 +a4 +a6 −a4 −a6 0

0 −a2 −a4 a2 +a4 +a5 0 −a5

0 0 −a6 0 a6 +a7 +b4 −a7

0 0 0 −a5 −a7 a5 +a7 +b3

∣∣∣∣∣∣∣∣∣∣∣∣
= W (1)+W (2)+W (3)+W (4). (3.43)

For the polynomials W (1) and W (2) one finds

W (1) = (b1 +b2 +b3 +b4)

(a1a2a3a5a6 +a1a2a3a5a7 +a1a2a3a6a7 +a1a2a4a5a6 +a1a2a4a5a7

+a1a2a4a6a7 +a1a2a5a6a7 +a1a3a4a5a6 +a1a3a4a5a7 +a1a3a4a6a7

+a1a3a5a6a7 +a2a3a4a5a6 +a2a3a4a5a7 +a2a3a4a6a7 +a2a3a5a6a7) ,

W (2) = (b1 +b4)(b2 +b3)a2a3a5a6

+(b1 +b2)(b4+b3)(a1a2a3a7 +a1a2a4a7 +a1a2a6a7 +a1a3a4a7 +a1a3a5a7 +a1a4a5a6

+a1a4a5a7 +a1a4a6a7 +a1a5a6a7 +a2a3a4a7)

+b1(b2+b3 +b4)a2 (a3a5a7 +a4a5a6 +a4a5a7 +a4a6a7 +a5a6a7)

+b2(b1+b3 +b4)a3 (a2a6a7 +a4a5a6 +a4a5a7 +a4a6a7 +a5a6a7)

+b3(b1+b2 +b4)a6 (a1a2a3 +a1a2a4 +a1a3a4 +a1a3a5 +a2a3a4)

+b4(b1+b2 +b3)a5 (a1a2a3 +a1a2a4 +a1a2a6 +a1a3a4 +a2a3a4) . (3.44)

With the help of eq. (3.39) and eq. (3.40) and using the kinematic specifications of eq. (2.160)

we recover U and F of eq. (2.164).

We would like to make a few remarks: The polynomial W is obtained from the determinant

of the matrix L = L(G) [rint +1, . . . ,rint +next]. This matrix was constructed from the Laplacian

of the graph G, taking external vertices and external edges into account. Then one deletes the

rows and columns corresponding to the external vertices. There are two alternative ways to arrive

at the same matrix L:

The first alternative consists in merging the external vertices vrint+1,vrint+2, . . . ,vrint+next into a

single new vertex v∞, which connects to all external lines. This defines a new graph Ĝ, which by

construction no longer has any external lines. As before we associate variables b1, . . . , bnext to

the edges connected to v∞. Fig. 3.9 shows an example for the graph Ĝ associated to a one-loop

graph with three external legs. The Laplacian of Ĝ is a (rint +1)× (rint +1)-matrix. It is easy to

see that

L = L
(
Ĝ
)
[rint +1]. (3.45)



3.3. DELETION AND CONTRACTION PROPERTIES 85
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v4

v5
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Ĝ

v1

v2

v3

v∞

Figure 3.9: The left picture shows a one-loop graph with three external edges. The right picture

shows the graph Ĝ associated to G, where all external vertices have been joined in one additional

vertex v∞.

From eq. (3.21) we see that the polynomial W is nothing else than the Kirchhoff polynomial of

the graph Ĝ:

W (G) = K
(
Ĝ
)
= detL

(
Ĝ
)
[ j], (3.46)

where j is any number between 1 and rint +1.

For the second alternative one starts from the Laplacian with respect to internal vertices and

edges of the original graph G. Let π be a permutation of (1, . . . ,rint). We consider the diagonal

matrix diag
(
bπ(1), . . . ,bπ(rint)

)
. We can choose the permutation π such that

π(i) = j, if the external edge enint+ j is attached to vertex vi. (3.47)

We then have

L = Lint (G)+ diag
(
bπ(1), . . . ,bπ(rint)

)∣∣
bnext+1=···=brint

=0
. (3.48)

3.3 Deletion and contraction properties

In this section we study two operations on a graph: the deletion of an edge and the contraction of

an edge. This leads to a recursive algorithm for the calculation of the graph polynomials U and

F . In addition we discuss the multivariate Tutte polynomial and Dodgson’s identity.

In graph theory an edge is called a bridge, if the deletion of the edge increases the number of

connected components. In the physics literature the term “one-particle-reducible” is used for a

connected graph containing at least one bridge as an internal edge. The contrary is called “one-

particle-irreducible”, i.e. a connected graph containing no internal bridges. All external edges

are necessarily bridges. Fig. 3.10 shows an example. The edge e3 is a bridge, while the edges

e1, e2, e4 and e5 are not bridges. Note that all edges of a tree graph are bridges. An edge which

is neither a bridge nor a self-loop is called a regular edge. All regular edges are internal edges.

For a graph G and a regular edge e we define

G/e to be the graph obtained from G by contracting the regular edge e,

G− e to be the graph obtained from G by deleting the regular edge e. (3.49)
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e1

e2

e3

e4

e5

Figure 3.10: A one-particle-reducible graph: The edge e3 is called a bridge. Deleting e3 results

in two connected components.

e1

e4

e2

e3
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e1
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e1
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Figure 3.11: The left picture shows the graph G of the two-loop two-point function. The middle

picture shows the graph G− e5, where edge e5 has been deleted. The right picture shows the

graph G/e5, where the two vertices connected to e5 have been joined and the edge e5 has been

removed.

Fig. 3.11 shows an example. If the graph G has loop number l it follows that G− e has loop

number (l−1), while G/e has loop number l. This follows easily from the formula l = n− r+1

for a connected graph: G− e has one edge less, but the same number of vertices, while G/e has

one edge and one vertex less.

Let us now study the behaviour of the Laplacian under these operations. Under deletion the

Laplacian behaves as

Lint (G− ek) = Lint(G)|ak=0 , (3.50)

i.e. the Laplacian of the graph G− ek is obtained from the Laplacian of the graph G by setting

the variable ak to zero. The behaviour of the Laplacian under contraction is slightly more com-

plicated: As before we consider a graph with rint internal vertices. Assume that edge ek connects

the vertices va and vrint
. The Laplacian Lint(G/ek) is then a (rint− 1)× (rint− 1)-matrix with

entries

Lint (G/ek)i j =





Lint(G)aa +Lint(G)rintrint
+Lint(G)arint

+Lint(G)rinta, if i = j = a,

Lint(G)a j +Lint(G)rint j, if i = a, j 6= a,

Lint(G)ia+Lint(G)irint
, if j = a, i 6= a,

Lint(G)i j, otherwise.

(3.51)

Therefore the Laplacian of Lint(G/ek) is identical to the minor Lint(G)[rint] except for the row

and column a. The choice that the edge ek is connected to the last internal vertex vrint
was

merely made to keep the notation simple. If the edge connects the vertices va and vb with a < b
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one deletes from Lint(G) row and column b and modifies row and column a analogously to the

formula above with b substituted for rint. In particular we have [38]

Lint (G/ek) [a] = Lint (G) [a,b]. (3.52)

The deletion/contraction operations can be used for a recursive definition of the graph polynomi-

als. For any regular edge ek we have

U(G) = U(G/ek)+akU(G− ek),

F0(G) = F0(G/ek)+akF0(G− ek). (3.53)

The recursion terminates when all edges are either bridges or self-loops. This is then a graph,

which can be obtained from a tree graph by attaching self-loops to some vertices. These graphs

are called terminal forms. If a terminal form has rint internal vertices and l (self-) loops, then

there are (rint−1) “tree-like” propagators, where the momenta flowing through these propagators

are linear combinations of the external momenta pi alone and independent of the independent

loop momenta k j. The momenta of the remaining l propagators are on the other hand independent

of the external momenta and can be taken as the independent loop momenta k j, j = 1, . . . , l. Let

us agree that we label the (rint−1) “tree-like” internal edges from 1 to rint−1, and the remaining

l internal edges from rint to nint (with nint = rint + l − 1). We further denote the momentum

squared flowing through edge j by q2
j . For a terminal form we have

U = arint
. . .anint

, F0 = arint
. . .anint

rint−1

∑
j=1

a j

(
−q2

j

µ2

)
. (3.54)

In the special case that the terminal form is a tree graph, this reduces to

U = 1, F0 =
rint−1

∑
j=1

a j

(
−q2

j

µ2

)
. (3.55)

The Kirchhoff polynomial has for any regular edge the recursion relation

K (G) = akK (G/ek)+K (G− ek),

Kint(G) = akKint(G/ek)+Kint(G− ek), (3.56)

Note that the factor ak appears here in combination with the contracted graph G/ek. The recur-

sion ends again on terminal forms. For these graphs we have with the conventions as above

Kint = a1 . . .a(rint−1), (3.57)

and a similar formula holds for the terminal forms of K . The recursion relations eq. (3.53) and

eq. (3.56) are proven with the help of the formulae, which express the polynomials U, K and

Kint in terms of spanning trees. For F0 one uses the corresponding formula, which expresses this

polynomial in terms of spanning 2-forests. As an example consider the polynomial U and the set
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of all spanning trees. This set can be divided into two sub-sets: the first sub-set is given by the

spanning trees, which contain the edge ek, while the second subset is given by those which do

not. The spanning trees in the first sub-set are in one-to-one correspondence with the spanning

trees of G/ek, the relation is given by contracting and decontracting the edge ek. The second

subset is identical to the set of spanning trees of G− ek. The graphs G and G− ek differ by the

edge ek which has been deleted, therefore the explicit factor ak in front of U(G− ek).
We summarise the results on the deletion and contraction properties:

Graph polynomials from recursion: For any regular edge ek we have

U(G) = U(G/ek)+akU(G− ek),

F0(G) = F0(G/ek)+akF0(G− ek). (3.58)

The recursion terminates when all edges are either bridges or self-loops, in which case the

graph polynomials are given by

U = arint
. . .anint

, F0 = arint
. . .anint

rint−1

∑
j=1

a j

(
−q2

j

µ2

)
, (3.59)

where we associate the parameters a1, . . . ,arint−1 to the internal bridges and the parameters

arint
, . . . ,anint

to the self-loops. The graph polynomial F is obtained from F0 and U by

eq. (3.9).

Eq. (3.58) and eq. (3.59) together with eq. (3.9) provide a fourth method for the computation

of the graph polynomials U and F .

Exercise 22: Consider a massless theory. Show that in this case the Lee-Pomeransky polynomial G
satisfies for any regular edge ek the recursion

G(G) = G(G/ek)+akG(G− ek). (3.60)

We now look at a generalisation of the Kirchhoff polynomial satisfying a recursion relation

similar to eq. (3.56). For a graph G – not necessarily connected – we denote by S the set of

all spanning sub-graphs of G, i.e. sub-graphs H of G, which contain all vertices of G. It is

not required that a spanning sub-graph is a forest or a tree. We denote by k(H) the number of

connected components of H. As before we associate to each edge ei a variable ai. We will need

one further formal variable q. We recall that the loop number of a graph G with n internal edges

and r vertices is given by

l = n− r+ k, (3.61)

where k is the number of connected components of G. We can extend the definition of the

deletion and contraction properties to edges which are not regular. It is straightforward to define
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the operation of deleting a bridge or a self-loop (just delete the edge). It is also straightforward

to define the operation of contracting a bridge (just contract the bridge). Only the operation

of contracting a self-loop needs a dedicated definition: If the edge e is a self loop, we define

the contracted graph G/e to be identical to G− e. The multivariate Tutte polynomial is defined

by [39]

Z (q,a1, . . . ,an) = ∑
H∈S

qk(H) ∏
ei∈H

ai. (3.62)

It is a polynomial in q and a1, . . . , an. The multivariate Tutte polynomial generalises the standard

Tutte polynomial [40–45], which is a polynomial in two variables. For the multivariate Tutte

polynomial we have the recursion relation

Z(G) = akZ(G/ek)+Z(G− ek), (3.63)

where ek is any edge, not necessarily regular. The terminal forms are graphs which consists

solely of vertices without any edges. For a graph with r vertices and no edges one has

Z = qr. (3.64)

The multivariate Tutte polynomial starts as a polynomial in q with qk if G is a graph with k
connected components. If the graph G is not connected we write G = (G1, . . . ,Gk), where G1 to

Gk are the connected components. For a disconnected graph the multivariate Tutte polynomial

factorises:

Z (G) = Z (G1) . . .Z (Gk) . (3.65)

Some examples for the multivariate Tutte polynomial are

Z
( )

= qa+q2,

Z
( )

= q(a+1) ,

Z
( )

= q(a1a2 +a1 +a2)+q2. (3.66)

If G is a connected graph we recover the Kirchhoff polynomial K (G) from the Tutte polynomial

Z(G) by first taking the coefficient of the linear term in q and then retaining only those terms

with the lowest degree of homogeneity in the variables ai. Expressed in a formula we have

K (a1, . . . ,an) = lim
λ→0

lim
q→0

λ1−rq−1Z (q,λa1, . . . ,λan) . (3.67)

To prove this formula one first notices that the definition in eq. (3.62) of the multivariate Tutte

polynomial is equivalent to

Z (q,a1, . . . ,an) = qr ∑
H∈S

ql(H) ∏
ei∈H

ai

q
. (3.68)
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One then obtains

λ1−rq−1Z (q,λa1, . . . ,λan) = ∑
H∈S

qk(H)−1λl(H)−k(H)+1 ∏
ei∈H

ai. (3.69)

The limits q→ 0 and λ→ 0 select k(H) = 1 and l(H) = 0, hence the sum over the spanning

sub-graphs reduces to a sum over spanning trees and one recovers the Kirchhoff polynomial.

At the end of this section we want to discuss Dodgson’s identity1. Dodgson’s identity states

that for any n×n matrix A and integers i, j with 1≤ i, j ≤ n and i 6= j one has [46, 47]

det(A)det(A[i, j]) = det(A[i])det(A[ j])−det(A[i; j])det(A[ j; i]) . (3.70)

We remind the reader that A[i, j] denotes a (n−2)× (n−2) matrix obtained from A by deleting

the rows and columns i and j. On the other hand A[i; j] denotes a (n−1)× (n−1) matrix which

is obtained from A by deleting the i-th row and the j-th column. The identity in eq. (3.70) has

an interesting application towards graph polynomials: Let ea and eb be two regular edges of a

graph G, which share one common vertex. Assume that the edge ea connects the vertices vi

and vk, while the edge eb connects the vertices v j and vk. The condition i 6= j ensures that after

contraction of one edge the other edge is still regular. (If we would allow i= j we have a multiple

edge and the contraction of one edge leads to a self-loop for the other edge.) For the Kirchhoff

polynomial of the graph G− ea− eb we have

K (G− ea− eb) = detL(G− ea− eb) [k]. (3.71)

Let us now consider the Kirchhoff polynomials of the graphs G/ea−eb and G/eb−ea. One finds

K (G/ea− eb) = detL(G− ea− eb) [i,k],

K (G/eb− ea) = detL(G− ea− eb) [ j,k]. (3.72)

Here we made use of the fact that the operations of contraction and deletion commute (i.e.

G/ea− eb = (G− eb)/ea) as well as of the fact that the variable aa occurs in the Laplacian

of G only in rows and columns i and k, therefore L(G− eb) [i,k] = L(G− ea− eb) [i,k]. Finally

we consider the Kirchhoff polynomial of the graph G/ea/eb, for which one finds

K (G/ea/eb) = detL(G− ea− eb) [i, j,k]. (3.73)

The Laplacian of any graph is a symmetric matrix, therefore

detL(G− ea− eb)[i,k; j,k] = detL(G− ea− eb)[ j,k; i,k]. (3.74)

We can now apply Dodgson’s identity to the matrix L(G− ea − eb)[k]. Using the fact that

L(G− ea− eb) [i,k; j,k] = L(G) [i,k; j,k] one finds [48]

K (G/ea− eb)K (G/eb− ea)−K (G− ea− eb)K (G/ea/eb) = (detL(G) [i,k; j,k])2 . (3.75)

1Dodgson’s even more famous literary work contains the novel “Alice in wonderland” which he wrote using the

pseudonym Lewis Carroll.



3.3. DELETION AND CONTRACTION PROPERTIES 91

The version for the internal graph reads

Kint (G/ea− eb)Kint (G/eb− ea)−Kint (G− ea− eb)Kint (G/ea/eb) = (3.76)

(detLint (G) [i,k; j,k])2 .

This equation shows that the expression on the left-hand side factorises into a square. The ex-

pression on the right-hand side can be re-expressed using the all-minors matrix-tree theorem as

a sum over 2-forests, such that the vertex vk is contained in one tree of the 2-forest, while the

vertices vi and v j are both contained in the other tree.

Expressed in terms of the first Symanzik polynomial we have

U (G/ea− eb)U (G/eb− ea)−U (G− ea− eb)U (G/ea/eb) =

(
∆1

aaab

)2

. (3.77)

The expression ∆1 is given by

∆1 = ∑
F∈T

(i,k),( j,k)
2

∏
et /∈F

at . (3.78)

The sum is over all 2-forests F = (T1,T2) of G such that vi,v j ∈ T1 and vk ∈ T2. Note that each

term of ∆1 contains aa and ab. The factorisation property of eq. (3.77) plays a crucial role in the

algorithms of refs. [49–51].

A factorisation formula similar to eq. (3.77) can be derived for an expression containing both

the first Symanzik polynomial U and the polynomial F0. As before we assume that ea and eb are

two regular edges of a graph G, which share one common vertex. The derivation uses the results

of sect. 3.2 and starts from eq. (3.75) for the graph Ĝ associated to G. Eq. (3.46) relates then the

Kirchhoff polynomial of Ĝ to the W -polynomial of G. The W -polynomial is then expanded in

powers of b. The lowest order terms reproduce eq. (3.77). The next order yields

U (G/ea− eb)F0 (G/eb− ea)−U (G− ea− eb)F0 (G/ea/eb) (3.79)

+F0 (G/ea− eb)U (G/eb− ea)−F0 (G− ea− eb)U (G/ea/eb) = 2

(
∆1

aaab

)(
∆2

aaab

)
.

The quantity ∆2 appearing on the right-hand side is obtained from the all-minors matrix-tree

theorem. We can express this quantity in terms of spanning three-forests of G as follows: Let

us denote by T
((i, j),•,k)

3 the set of spanning three-forests (T1,T2,T3) of G such that vi,v j ∈ T1 and

vk ∈ T3. Similar we denote by T
(i, j,k)

3 the set of spanning three-forests (T1,T2,T3) of G such that

vi ∈ T1, v j ∈ T2 and vk ∈ T3. Then

∆2 = ∑
(T1,T2,T3)∈T

(i, j,k)
3

∑
vc∈T1,vd∈T2

(
pc · pd

µ2

)
∏

et /∈(T1,T2,T3)

at

− ∑
(T1,T2,T3)∈T

((i, j),•,k)
3

∑
vc,vd∈T2

(
pc · pd

µ2

)
∏

et /∈(T1,T2,T3)

at . (3.80)
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In this formula we used the convention that the momentum p j equals zero if no external leg is at-

tached to vertex v j. Expanding the W -polynomial to order b4 we have terms of order b2 squared

as well as terms which are products of order b with order b3. We are interested in an expression

which arises from terms of order b2 squared alone. In this case we obtain a factorisation formula

only for special kinematic configurations. If for all external momenta one has

(pi1 · pi2) · (pi3 · pi4) = (pi1 · pi3) · (pi2 · pi4) , i1, i2, i3, i4 ∈ {1, . . . ,m} (3.81)

then

F0 (G/ea− eb)F0 (G/eb− ea)−F0 (G− ea− eb)F0 (G/ea/eb) =

(
∆2

aaab

)2

. (3.82)

Eq. (3.81) is satisfied for example if all external momenta are collinear. A second example is

given by a three-point function. In the kinematic configuration where

(
p2

1

)2
+
(

p2
2

)2
+
(

p2
3

)2−2p2
1p2

2−2p2
1 p2

3−2p2
2p2

3 = 0, (3.83)

eq. (3.81) is satisfied.

3.4 Duality

We have seen that the Kirchhoff polynomial Kint and the first Symanzik polynomial U of a graph

G with nint internal edges are related by the equations (3.16):

U (a1, . . . ,anint
) = a1 . . .anint

Kint

(
1

a1
, . . . ,

1

anint

)
,

Kint (a1, . . . ,anint
) = a1 . . .anint

U

(
1

a1
, . . . ,

1

anint

)
.

Let G be a graph with n edges (internal and external). In this section we will ask if one can

find a graph G∗ with n edges such that K (G∗) = U(G) and K (G) = U(G∗). Such a graph G∗

will be called a dual graph of G. In this section we will show that for a planar graph one can

always construct a dual graph. The dual graph of G need not be unique, there might be several

topologically distinct graphs G∗ fulfilling the above mentioned relation. In other words two

topologically distinct graphs G1 and G2 both of them with n edges can have the same Kirchhoff

polynomial.

In this section we associate parameters a j to all edges (internal and external). This is no

restriction, as the following exercise shows:

Exercise 23: Let G be a graph with nint edges and next edges and set n = nint +next. Label the edges as

internal edges : {e1,e2, . . . ,enint
},

external edges : {enint+1,enint+2, . . . ,enint+next
}. (3.84)
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=

Figure 3.12: The “crossed double-box”-graph can be drawn as a planar graph.

K5 K3,3

Figure 3.13: The ’smallest’ non-planar graphs.

Let Gint be the internal graph of G. Define U, K and Kint as before. Define Ũ by

Ũ (a1, . . . ,an) = a1 . . .an K

(
1

a1

, . . . ,
1

an

)
. (3.85)

Show

Ũ (a1, . . . ,an) = U (a1, . . . ,anint
) ,

K (a1, . . . ,an) = anint+1 . . .anK (a1, . . . ,anint
) . (3.86)

The exercise also shows that Ũ = U and in particular Ũ is independent of anint+1, . . . , an, so

we can simply use U to denote both polynomials.

A graph is called planar if it can be embedded in a plane without crossings of edges. We

would like to note that the “crossed double-box”-graph shown in fig. 3.12 is a planar graph. The

right picture of fig. 3.12 shows how this graph can be drawn in the plane without any crossing of

edges.

Fig. 3.13 shows two examples of non-planar graphs. The first graph is the complete graph
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Figure 3.14: The first two pictures show a graph G and its dual graph G∗. The right picture shows

the construction of G∗ from G (or vice versa).

with five vertices K5. The second example is denoted K3,3. A theorem states that a graph G
is planar if and only if none of the graphs obtained from G by a (possibly empty) sequence of

contractions of edges contains K5 or K3,3 as a sub-graph [52–54].

Exercise 24: Determine the number of loops for K5 and K3,3.

Each planar graph G has a dual graph G⋆ which can be obtained as follows:

• Draw the graph G in a plane, such that no edges intersect. In this way, the graph divides

the plane into open subsets, called faces.

• Draw a vertex inside each face. These are the vertices of G⋆.

• For each edge ei of G draw a new edge e∗i connecting the two vertices of the faces, which

are separated by ei. The new edges e∗i are the edges of G⋆.

An example for this construction is shown in fig. 3.14. We note from the construction of the dual

graph, that for each external edge in G there is a self-loop in G⋆ and that for each self-loop in G
there is an external edge in G⋆.

If we now associate the variable ai to the edge ei of G as well as to the edge e∗i of G∗ we have

K (G∗) = U(G), K (G) = U(G∗). (3.87)

It is important to note that the above construction of the dual graph G⋆ depends on the way, how

G is drawn in the plane. A given graph G can have several topologically distinct dual graphs.

These dual graphs have the same Kirchhoff polynomial. An example is shown in fig. 3.15. For

this example one finds

K (G) = U(G∗1) = U(G∗2) = (a1 +a2)(a3+a4)(a5+a6)+a3a4(a5 +a6)+(a3+a4)a5a6,

U(G) = K (G∗1) = K (G∗2) = a1a2(a3 +a4 +a5 +a6)+(a1 +a2)(a3 +a4)(a5 +a6). (3.88)
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e1

e2

e3

e5

e4

e6
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e1e2

e4e5
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G∗
1

e1

e3 e4

e2

e5 e6
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e4e2

e5

e6
G∗

2

Figure 3.15: An example showing that different embeddings of a planar graph G into the plane

yield different dual graphs G∗1 and G∗2.

3.5 Matroids

In this section we introduce the basic terminology of matroid theory. We are in particular in-

terested in cycle matroids. A cycle matroid can be constructed from a graph and it contains the

information which is needed for the construction of the Kirchhoff polynomial and therefore as

well for the construction of the first Symanzik polynomial U. In terms of matroids we want

to discuss the fact, that two different graphs can have the same Kirchhoff polynomial. We have

already encountered an example in fig. 3.15. We review a theorem on matroids which determines

the classes of graphs whose Kirchhoff polynomials are the same. For a detailed introduction to

matroid theory we refer to [55, 56].

We introduce cycle matroids by an example and consider the graph G of fig. 3.16. The graph

G has three vertices V = {v1, v2, v3} and four edges E = {e1, e2, e3, e4}. The graph has five span-

ning trees given by the sets of edges {e1, e3}, {e1, e4}, {e2, e3}, {e2, e4}, {e3, e4}, respectively.

We obtain the Kirchhoff polynomial K = a1a3 + a1a4 + a2a3 + a2a4 + a3a4. The unoriented

incidence matrix of a graph G with r vertices and n edges is a r× n-matrix Bincidence = (bi j),
defined by

bi j =

{
1, if e j is incident to vi and e j is not a self-loop,
0, else.

(3.89)

There is also the definition of the oriented incidence matrix of an oriented graph G with r
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e3

e4

e1 e2

v1

v2

v3

Figure 3.16: A graph G.

vertices and n edges. This is again r×n-matrix Boriented incidence = (bi j), whose entries are

bi j =





+1, if vi is the source of e j and e j is not a self-loop,
−1, if vi is the sink of e j and e j is not a self-loop,
0, else.

(3.90)

The entries in each column of Boriented incidence sum up to zero, as every edge has exactly one

source and one sink. A self-loop corresponds to a zero column in Boriented incidence and Bincidence.

Given Boriented incidence for an oriented graph G, we obtain the unoriented incidence matrix Bincidence

for G as

Bincidence = Boriented incidence mod 2. (3.91)

For the graph G of fig. 3.16 the unoriented incidence matrix reads

e1 e2 e3 e4




1 1 1 0

0 0 1 1

1 1 0 1


 ,

where we indicated that each column vector corresponds to one edge of the graph. Let us focus

on the set of these four column vectors. We want to consider all subsets of these vectors which are

linearly independent over Z2. Obviously the set of all four vectors and the set of any three of the

given vectors are linearly dependent over Z2. Furthermore the first two columns corresponding

to {e1, e2} are equal and therefore linearly dependent. Hence the linearly independent subsets

are all sets with only one vector and all sets with two vectors, except for the just mentioned one

consisting of the first and second column. For each set of linearly independent vectors let us now

write the set of the corresponding edges. The set of all these sets shall be denoted I. We obtain

I = { /0, {e1} , {e2} , {e3} , {e4} ,
{e1, e3} , {e1, e4} , {e2, e3} , {e2, e4} , {e3, e4}} . (3.92)
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The empty set is said to be independent and is included here by definition. Let us make the

important observation, that the sets in I which have two elements, i.e. the maximal number of

elements, are exactly the sets of edges of the spanning trees of the graph given above.

The pair (E, I) consisting of the set of edges E and the set of linearly independent sets I is

an example of a matroid. Matroids are defined as ordered pairs (E, I) where E is a finite set,

the ground set, and where I is a collection of subsets of E, called the independent sets, fulfilling

the following conditions:

1. /0 ∈ I.

2. If I ∈ I and I′ ⊆ I, then I′ ∈ I.

3. If I1 and I2 are in I and |I1|< |I2| , then there is an element e of I2− I1 such that I1∪e ∈ I.

All subsets of E which do not belong to I are called dependent. The definition goes back to

Whitney who wanted to describe the properties of linearly independent sets in an abstract way.

In a similar way as a topology on a space is given by the distinction between open and closed sets,

a matroid is given by deciding, which of the subsets of a ground set E shall be called independent

and which dependent. A matroid can be defined on any kind of ground set, but if we choose E
to be a set of vectors, we can see that the conditions for the independent sets match with the

well-known linear independence of vectors.

Let us go through the three conditions. The first condition simply says that the empty set

shall be called independent. The second condition states that a subset of an independent set is

again an independent set. This is fulfilled for sets of linearly independent vectors as we already

have seen in the above example. The third condition is called the independence augmentation

axiom and may be clarified by an example. Consider the sets

I1 =








1

0

0

0


 ,




0

1

0

0








, I2 =








1

0

0

0


 ,




0

1

1

1


 ,




1

0

0

1








.

Both sets are sets of linearly independent vectors. The set I2 has one element more than I1.

I2− I1 is the set of vectors in I2 which do not belong to I1. The set I2− I1 contains for example

e = (1, 0, 0, 1)T and if we include this vector in I1 then we obtain again a linearly independent

set. The third condition states that such an e can be found for any two independent sets with

different numbers of elements.

The most important origins of examples of matroids are linear algebra and graph theory. The

cycle matroid (or polygon matroid) of a graph G is the matroid whose ground set E is given by

the edges of G and whose independent sets I are given by the linearly independent subsets over

Z2 of column vectors in the incidence matrix of G. We can convince ourselves, that I fulfils the

conditions laid out above.

Let us consider the bases or maximal independent sets of a matroid (E, I). These are the

sets in I which are not proper subsets of any other sets in I. The set of these bases of a matroid

shall be denoted B and it can be defined by the following conditions:
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1. B is non-empty.

2. If B1 and B2 are members of B and x ∈ B1−B2, then there is an element y of B2−B1 such

that (B1−{x})∪ y ∈ B.

One can show, that all sets in B have the same number of elements. Furthermore I is uniquely

determined by B: it contains the empty set and all subsets of members of B .

Let M = (E, I) be the cycle matroid of a connected graph G and let B(M) be the set of bases.

Then one can show that B(M) consists of the sets of edges of the spanning trees in G. In other

words, T is a spanning tree of G if and only if its set of edges are a basis in B(M). We can

therefore relate the Kirchhoff polynomial to the bases of the cycle matroid:

K = ∑
B j∈B(M)

∏
ei∈B j

ai. (3.93)

The Kirchhoff polynomial of G is called a basis generating polynomial of the matroid M associ-

ated to G. The Kirchhoff polynomial allows us to read off the set of bases B(M). Therefore two

graphs without any self-loops have the same Kirchhoff polynomial if and only if they have the

same cycle matroid associated to them.

Let us cure a certain ambiguity which is still left when we consider cycle matroids and Kirch-

hoff polynomials and which comes from the freedom in giving names to the edges of the graph.

In the graph of fig. 3.16 we could obviously choose different names for the edges and their edge

variables, for example the edge e2 could instead be named e3 and vice versa. As a consequence

we would obtain a different cycle matroid where compared to the above one, e3 takes the place of

e2 and vice versa. Similarly, we would obtain a different Kirchhoff polynomial, where the vari-

ables a2 and a3 are exchanged. Of course we are not interested in any such different cases which

simply result from a change of variable names. Therefore it makes sense to consider classes of

isomorphic matroids and Kirchhoff polynomials.

Let M1 and M2 be two matroids and let E(M1) and E(M2) be their ground sets, respectively.

The matroids M1 and M2 are called isomorphic if there is a bijection ψ from E(M1) to E(M2)
such that ψ(I) is an independent set in M2 if and only if I is an independent set in M1. The

mentioned interchange of e2 and e3 in the above example would be such a bijection: ψ(e2) = e3,

ψ(e3) = e2, ψ(ei) = ei for i = 1, 4. The new matroid obtained this way is isomorphic to the

above one and its independent sets are given by interchanging e2 and e3 in I of eq. (3.92). In the

same sense we want to say that two Kirchhoff polynomials are isomorphic if they are equal up

to bijections on their sets of variables.

Now let us come to the question when the Kirchhoff polynomials of two different graphs

are isomorphic, which means that after an appropriate change of variable names they are equal.

From the above discussion and eq. (3.93) it is now clear, that a sufficient condition is that the

cycle matroids of the graphs are isomorphic. The question when two graphs have isomorphic

cycle matroids was answered in the following theorem of Whitney [57] (also see [58]) which

was one of the foundational results of matroid theory:
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u v w

G G′

Figure 3.17: Vertex identification and cleaving

Isomorphic cycle matroids:

Let G and H be graphs having no isolated vertices. Then the cycle matroids M(G) and

M(H) are isomorphic if and only if G is obtained from H after a sequence of the following

three transformations:

1. Vertex identification: Let u and v be vertices of distinct components of a graph G.
Then a new graph G′ is obtained from the identification of u and v as a new vertex

w in G′ (see the transition from G to G′ in fig. 3.17).

2. Vertex cleaving: Vertex cleaving is the reverse operation of vertex identification,

such that from cleaving at vertex w in G′ we obtain u and v in distinct components

of G (see the transition from G′ to G in fig. 3.17).

3. Twisting: Let G be a graph which is obtained from two disjoint graphs G1 and G2 by

identifying the vertices u1 of G1 and u2 of G2 as a vertex u of G and by identifying

the vertices v1 of G1 and v2 of G2 as a vertex v of G. Then the graph G′ is called the

twisting of G about {u, v} if it is obtained from G1 and G2 by identifying instead u1

with v2 and v1 with u2 (see fig. 3.18).

Proofs can be obtained from [55, 57–59]. Whitney’s theorem does not exclude self-loops.

If self-loops are allowed, isomorphic cycle matroids are a sufficient condition for isomorphic

Kirchhoff polynomials, but not a necessary condition, as the next exercise shows:

Exercise 25: Consider the two graphs G1 and G2 shown in fig. 3.19, which differ by a self-loop. For each
of the two graphs, give the Kirchhoff polynomial K and the first graph polynomial U. Show that the cycle
matroids are not isomorphic.

As a consequence of Whitney’s theorem, the Kirchhoff polynomials K (G) and K (H) of the
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Figure 3.18: Twisting about u and v
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Figure 3.19: Two graphs G1 and G2, which differ by the self-loop formed by e5.
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G1 G3

G2 G4

Figure 3.20: The graphs G1 and G2 have three external edges, the graphs G3 and G4 have four

external edges.

connected graphs G and H, both without any self-loops, are isomorphic if and only if G is ob-

tained from H by a sequence of the above three transformations. For the transformations of

vertex identification and vertex cleaving this is obvious from a well-known observation: If two

distinct components G1 and G2 are obtained from G after vertex cleaving, then K (G) is the

product of K (G1) and K (G2). Therefore any other graph G′ obtained from G1 and G2 after

vertex identification has the same Kirchhoff polynomial K (G′) = K (G1) ·K (G2) = K (G). The

non-trivial part of the statement on the Kirchhoff polynomials of G and H is the relevance of

the operation of twisting. In the initial example of fig. 3.15 the two graphs G∗1 and G∗2 can be

obtained from each other by twisting.

Let us now discuss the implications for the two graph polynomials U and F0. Consider two

connected graphs G and H, possibly with external edges and self-loops. Suppose that G can be

obtained from H by sequence of vertex identifications, vertex cleavings and twisting. Then the

first graph polynomials U(G) and U(H) are isomorphic. Denote by Ĝ the graph obtained from

G by merging all external vertices into a single new vertex v∞, which connects to all external

lines, as discussed at the end of section 3.2. Similarly, denote by Ĥ the graph obtained from H
through the same operation. If Ĝ can be obtained from Ĥ by sequence of vertex identifications,

vertex cleavings and twisting, then the graph polynomials F0(G) and F0(H) are isomorphic.
This follows directly from eq. (3.46).

Exercise 26: Consider first the two graphs G1 and G2 shown in fig. 3.20, both with three external
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legs. Assume that all internal masses vanish. Show that

U (G1) = U (G2) , F (G1) = F (G2) . (3.94)

Consider then the graphs G3 and G4 with four external legs. Show that

U (G3) = U (G4) , (3.95)

but

F (G3) 6= F (G4) . (3.96)

There is an alternative definition of a matroid: Instead of specifying the set I of independent

sets a matroid can be defined by a rank function, which associates a non-negative integer to

every sub-set of the ground set. The rank function has to satisfy for all S,S′ ⊆ E the following

three conditions:

1. rk(S)≤ |S|.

2. S′ ⊂ S implies rk(S′)≤ rk(S).

3. rk(S∪S′)+ rk(S∩S′)≤ rk(S)+ rk(S′).

The independent sets are exactly those for which rk(S) = |S| holds. For the cycle matroid of a

graph G we can associate to a subset S of E the spanning sub-graph H of G obtained by taking

all the vertices of G, but just the edges which are in S. In this case the rank of S equals the

number of vertices of H minus the number of connected components of H. The multivariate

Tutte polynomial for a matroid is defined by

Z̃ (q,a1, . . . ,an) = ∑
S⊆E

q−rk(S) ∏
ei∈S

ai. (3.97)

It is a polynomial in 1/q and a1, . . . , an. Since a matroid can be defined by giving the rank for

each subset S of E, it is clear that the multivariate Tutte polynomial encodes all information of a

matroid. For the cycle matroid of a graph G with r vertices the multivariate Tutte polynomial Z̃
of the matroid is related to the multivariate Tutte polynomial Z of the graph by

Z̃ (q,a1, . . . ,an) = q−rZ (q,a1, . . . ,an) . (3.98)

For a matroid there are as well the notions of duality, deletion and contraction. Let us start with

the definition of the dual of a matroid. We consider a matroid M with the ground set E and the

set of bases B(M) = {B1, ,B2, . . . , Bn}. The dual matroid M⋆ of M is the matroid with ground

set E and whose set of bases is given by B(M⋆) = {E−B1, E−B2, . . . , E−Bn}. It should be

noted that in contrast to graphs the dual matroid can be constructed for any arbitrary matroid.
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Deletion and contraction for matroids are defined as follows: Let us consider a matroid M =
(E, I) with ground set E and I being the set of independent sets. Let us divide the ground set E
into two disjoint sets X and Y :

E = X ∪Y, X ∩Y = /0. (3.99)

We denote by IY the elements of I, which are sub-sets of Y . The matroid M−X is then defined

as the matroid with ground set E −X = Y and whose set of independent sets is given by IY .

We say that the matroid M−X is obtained from the matroid M by deleting X . The contracted

matroid M/X is defined as follows:

M/X = (M∗−X)∗ , (3.100)

i.e. one deletes from the dual M∗ the set X and takes then the dual. The contracted matroid M/X
has the ground set E−X . With these definitions of deletion and contraction we can now state

the recursion relation for the multivariate Tutte polynomial of a matroid: We have to distinguish

two cases. If the one-element set {e} is of rank zero (corresponding to a self-loop in a graph) we

have

Z̃ (M) = Z̃ (M−{e})+aeZ̃ (M/{e}) . (3.101)

Otherwise we have

Z̃ (M) = Z̃ (M−{e})+ ae

q
Z̃ (M/{e}) . (3.102)

The recursion terminates for a matroid with an empty ground set, in this case we have Z̃ = 1.

The fact that one has a different recursion relation for the case where the one-element set {e} is

of rank zero is easily understood from the definition of Z̃ and the relation to graphs: For a cycle

matroid Z̃ differs from Z by the extra factor q−r, where r is the number of vertices of the graph.

If e is a self-loop of G, the contracted graph G/e equals G− e and in particular it has the same

number of vertices as G. In all other cases the contracted graph G/e has one vertex less than G,

which is reflected by the factor 1/q in eq. (3.102).
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Chapter 4

Quantum field theory

We introduced Feynman integrals in chapter 2, building only on the knowledge of special rela-

tivity and graphs. We did not discuss how Feynman integrals arise in perturbative quantum field

theory. This is of course the main application for Feynman integrals. In this chapter we fill this

gap and give a brief outline in section 4.1, how Feynman integrals arise in the perturbative ex-

pansion for scattering amplitudes in quantum field theory. This is also covered in depth in many

books on quantum field theory and readers not yet familiar with quantum field theory are invited

to consult one of these textbooks [60–63].

We have seen quite early on with the example of eq. (2.69) that Feynman integrals in four

space-time dimensions are often divergent. In order to have a well-defined expression, we intro-

duced dimensional regularisation. This regulates all divergences. The original divergences show

up as poles in the dimensional regularisation parameter ε. While this procedure allows us to work

with well-defined expressions, it does not tell us anything what we shall do with these poles. The

answer comes again from quantum field theory. In the end we would like to have finite results,

where we can take the limit ε→ 0. The way divergences cancel is explained in section 4.2.

The definition of a Feynman integral in eq. (2.56) corresponds to a “scalar” integral. From

the Feynman rules for most quantum field theories (like Yang-Mills theory, QED, QCD or more

generally any quantum field theory, which is not a scalar theory) we get Feynman integrals,

which are “tensor” integrals. In section 4.3 we show that tensor integrals can be expressed in

terms of scalar integrals. It is therefore sufficient to focus our attention on scalar integrals.

Quantum field theories with spin 1/2-fermions involve the Dirac matrices and the weak in-

teractions involve γ5. As we use dimensional regularisation as our regularisation scheme, the

Dirac algebra has to be continued from four space-time dimensions to D space-time dimensions.

For the most part of the Dirac algebra this is straightforward, but the treatment of γ5 is a little bit

more subtle. We discuss this in section 4.4.

4.1 Basics of perturbative quantum field theory

Elementary particle physics is described by quantum field theory. To begin with let us start with

a single field φ(x). Important concepts in quantum field theory are the Lagrangian, the action and

105
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the generating functional. If φ(x) is a scalar field, a typical Lagrangian is

L =
1

2

(
∂µφ(x)

)
(∂µφ(x))− 1

2
m2φ(x)2 +

1

4
λφ(x)4. (4.1)

The quantity m is interpreted as the mass of the particle described by the field φ(x), the quantity

λ describes the strength of the interactions among the particles. Integrating the Lagrangian over

Minkowski space yields the action:

S [φ] =
∫

dDx L (φ) . (4.2)

The action is a functional of the field φ. In order to arrive at the generating functional we in-

troduce an auxiliary field J(x), called the source field, and integrate over all field configurations

φ(x):

Z[J] = N
∫

Dφ ei(S[φ]+
∫

dDxJ(x)φ(x)). (4.3)

The integral over all field configurations is an infinite-dimensional integral. It is called a path

integral. The prefactor N is chosen such that Z[0] = 1. The next-point Green function is given by

〈0|T (φ(x1)...φ(xnext))|0〉 =

∫
Dφ φ(x1)...φ(xnext)e

iS(φ)

∫
Dφ eiS(φ)

. (4.4)

With the help of functional derivatives this can be expressed as

〈0|T (φ(x1)...φ(xnext))|0〉 = (−i)next
δnextZ[J]

δJ(x1)...δJ(xnext)

∣∣∣∣
J=0

. (4.5)

We are in particular interested in connected Green functions. These are obtained from a func-

tional W [J], which is related to Z[J] by

Z[J] = eiW [J]. (4.6)

The connected Green functions are then given by

Gnext (x1, ...,xnext) = (−i)next−1 δnextW [J]

δJ(x1)...δJ(xnext)

∣∣∣∣
J=0

. (4.7)

It is convenient to go from position space to momentum space by a Fourier transformation. We

define the Green functions in momentum space by

Gnext (x1, ...,xnext) = (4.8)∫
dD p1

(2π)D ...
dDpnext

(2π)D e−i∑ p jx j (2π)D δD (p1 + ...+ pnext) G̃next (p1, ..., pnext) .



4.1. BASICS OF PERTURBATIVE QUANTUM FIELD THEORY 107

Note that the Fourier transform G̃next is defined by explicitly factoring out the δ-function δ(p1 +
...+ pnext) and a factor (2π)D. We denote the two-point function in momentum space by G̃2(p).
In this case we have to specify only one momentum, since the momentum flowing into the Green

function on one side has to be equal to the momentum flowing out of the Green function on

the other side due to the presence of the δ-function in eq. (4.8) . We now are in a position to

define the scattering amplitude: In momentum space the scattering amplitude with next external

particles is given by the connected next-point Green function multiplied by the inverse two-point

function for each external particle:

iAnext (p1, ..., pnext) = G̃2 (p1)
−1 ...G̃2 (pnext)

−1 G̃next (p1, ..., pnext) . (4.9)

The multiplication with the inverse two-point function for each external particle amputates the

external propagators. This is the reason, why we distinguish in a graph external and internal

edges.

The scattering amplitude enters directly the calculation of a physical observable. Let us first

consider the scattering process of two incoming elementary spinless particles with no further

internal degrees of freedom (like colour) and momenta p′a and p′b and (next−2) outgoing parti-

cles with momenta p1 to pnext−2. Let us further assume that we are interested in an observable

O(p1, ..., pnext−2) which depends on the momenta of the outgoing particles. In general the ob-

servable depends on the experimental set-up and can be an arbitrary complicated function of the

momenta. In the simplest case this function is just a constant equal to one, corresponding to the

situation where we count every event with (next−2) particles in the final state. In more realistic

situations one takes for example into account that it is not possible to detect particles close to

the beam pipe. The function O would then be zero if all final state particles are in this region of

phase space. Furthermore any experiment has a finite resolution. Therefore it will not be possible

to detect particles which are very soft nor will it be possible to distinguish particles which are

very close in angle. We will therefore sum over the number of final state particles. In order to

obtain finite results within perturbation theory we have to require that in the case where one or

more particles become unresolved the value of the observable O has a continuous limit agreeing

with the value of the observable for a configuration where the unresolved particles have been

merged into “hard” (or resolved) pseudo-particles. Observables having this property are called

infrared-safe observables. The expectation value for an infrared-safe observable O is given by

〈O〉 =
1

2(p′a + p′b)
2 ∑

next

∫
dφnext−2O(p1, ..., pnext−2) |Anext |2 , (4.10)

where 1/2/(p′a+ p′b)
2 is a normalisation factor taking into account the incoming flux. The phase

space measure is given by

dφn =
1

n!

n

∏
i=1

dD−1 pi

(2π)32Ei
(2π)D δD

(
p′a + p′b−

n

∑
i=1

pi

)
. (4.11)

The quantity Ei is the energy of particle i, given by

Ei =
√
~p2

i +m2
i . (4.12)
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We see that the expectation value of O is given by the phase space integral over the observable,

weighted by the norm squared of the scattering amplitude. As the integrand can be a rather

complicated function, the phase space integral is usually performed numerically by Monte Carlo

integration.

Let us now look towards a more realistic theory relevant to LHC physics. LHC is the ab-

breviation for the Large Hadron Collider at CERN, Geneva. As an example for a more realistic

theory we consider quantum chromodynamics (QCD) consisting of quarks and gluons. Quarks

and gluons are collectively called partons. There are a few modifications to eq. (4.10). The

master formula reads now

〈O〉= ∑
fa, fb

∫
dxa f fa(xa)

∫
dxb f fb(xb) (4.13)

1

2ŝns(a)ns(b)nc(a)nc(b)
∑
next

∫
dφnext−2O(p1, ..., pnext−2) ∑

spins,colour

|Anext |2 .

The partons have internal degrees of freedom, given by the spin and the colour of the partons. In

squaring the amplitude we sum over these degrees of freedom. For the particles in the initial state

we would like to average over these degrees of freedom. This is done by dividing by the factors

ns(i) and nc(i), giving the number of spin degrees of freedom (2 for quarks and gluons) and the

number of colour degrees of freedom (3 for quarks, 8 for gluons). The second modification is

due to the fact that the particles brought into collision are not partons, but composite particles

like protons. At high energies the elementary constituents of the protons interact and we have

to include a function f fa(xa) giving us the probability of finding a parton of flavour fa with

momentum fraction xa of the original proton momentum inside the proton. If the momenta of

the incoming protons are P′a and P′b, then the momenta of the two incoming partons are given by

p′a = xaP′a, p′b = xbP′b. (4.14)

ŝ is the centre-of-mass energy squared of the two partons entering the hard interaction. Neglect-

ing particle masses we have

ŝ =
(

p′a + p′b
)2

= xaxb
(
P′a +P′b

)2
. (4.15)

In addition there is a small change in eq. (4.11). The quantity (n!) is replaced by (∏n j!), where

n j is the number of times a parton of type j occurs in the final state.

It is very convenient to calculate the amplitude with the convention that all particles are out-

going. To this aim we set

pnext−1 = −p′a, pnext = −p′b (4.16)

and calculate the amplitude for the momentum configuration

{p1, ..., pnext−2, pnext−1, pnext} . (4.17)

Momentum conservation reads

p1 + ...+ pnext−2 + pnext−1 + pnext = 0. (4.18)
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Note that the momenta pnext−1 and pnext have negative energy components.

We have seen through eq. (4.10) and eq. (4.13) that the scattering amplitudes Anext with next

external particles enter the theory predictions for an observable O. Thus we need to compute

the scattering amplitudes. Unfortunately, it is usually not possible to calculate the scattering

amplitudes exactly. However, we may calculate scattering amplitudes within perturbation theory,

if all couplings describing the strengths of interactions among the particles are small. Let us

assume for simplicity that there is only one coupling, which we denote by g. We expand the

scattering amplitude in powers of g:

Anext = A
(0)
next +A

(1)
next +A

(2)
next +A

(3)
next + ..., (4.19)

where A
(l)
next contains (next− 2+ 2l) factors of g. Eq. (4.19) gives the perturbative expansion of

the scattering amplitude. In this expansion, A
(l)
next is an amplitude with next external particles and

l loops. The recipe for the computation of A
(l)
next based on Feynman diagrams is as follows:

Algorithm 1. Calculation of scattering amplitudes from Feynman diagrams.

1. Draw all Feynman diagrams for the given number of external particles next and the
given number of loops l.

2. Translate each graph into a mathematical formula with the help of the Feynman
rules.

3. The quantity iA(l)
next is then given as the sum of all these terms.

Tree-level amplitudes are amplitudes with no loops and are denoted by A
(0)
next . They give the

leading contribution to the full amplitude. The computation of tree-level amplitudes involves

only basic mathematical operations: Addition, multiplication, contraction of indices, etc.. The

above algorithm allows therefore in principle for any next the computation of the corresponding

tree-level amplitude. (In practice, the number of contributing Feynman diagrams is a limiting

factor for tree-level amplitudes with a large number of external particles. For a review of methods

to tackle this problem see [64].) The situation is different for loop amplitudes A
(l)
next (with l ≥ 1).

Here, the Feynman rules involve an integration over each internal momentum not constrained by

momentum conservation. That’s where Feynman integrals enter the game.

In the algorithm above a Feynman diagram is translated into a mathematical expression with

the help of the Feynman rules. The starting point for a physical theory (or a model) of particle

physics is usually the Lagrangian. In eq. (4.1) we specified a scalar φ4-theory by giving the

Lagrangian. For a more realistic theory let’s look at quantum chromodynamics (QCD). For

QCD the Lagrange density reads in Lorenz gauge:

LQCD = −1

4
Fa

µν(x)F
aµν(x)− 1

2ξ
(∂µAa

µ(x))
2− c̄a(x)∂µDab

µ cb(x),

+ ∑
quarks q

ψ̄q(x)
(
iγµDµ−mq

)
ψq(x), (4.20)
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with

Fa
µν(x) = ∂µAa

ν(x)−∂νAa
µ(x)+g f abcAb

µ(x)A
c
ν. (4.21)

The gluon field is denoted by Aa
µ(x), the Faddeev-Popov ghost fields are denoted by ca(x) and the

quark fields are denoted by ψq(x). The sum is over all quark flavours. The masses of the quarks

are denoted by mq. The quark fields also carry a colour index j and a Dirac index α, which

we didn’t denote explicitly. The variable g gives the strength of the strong coupling. QCD is

a SU(3)-gauge theory. Indices referring to the fundamental representation of SU(3) are chosen

from the middle of the alphabet i, j,k, . . . and range from 1 to 3, while indices referring to the

adjoint representation of SU(3) are chosen from the beginning of the alphabet a,b,c, . . . and

range from 1 to 8. The generators of the group SU(3) are denoted by T a and satisfy

[
T a,T b

]
= i f abcT c. (4.22)

The quantity Fa
µν is called the field strength, the quantity Dµ = Dµ, jk denotes the covariant deriva-

tive in the fundamental representation of SU(3), Dab
µ denotes the covariant derivative in the ad-

joint representation of SU(3):

Dµ, jk = δ jk∂µ− igT a
jkAa

µ,

Dab
µ = δab∂µ−g f abcAc

µ. (4.23)

The variable ξ is called the gauge-fixing parameter. Gauge-invariant quantities like scattering

amplitudes are independent of this parameter.

In order to derive the Feynman rules from the Lagrangian one proceeds as follows: We first

order the terms in the Lagrangian according to the number of fields they involve. From the terms

bilinear in the fields one obtains the propagators, while the terms with three or more fields give

rise to vertices. Note that a “normal” Lagrangian does not contain terms with just one or zero

fields. Furthermore we always assume within perturbation theory that all fields fall off rapidly

enough at infinity. Therefore we can use partial integration and ignore boundary terms. Using

partial integration we may re-write the Lagrangian of φ4-theory of eq. (4.1) as

L =
1

2
φ(x)

[
−✷−m2

]
φ(x)+

1

4
λφ(x)4, (4.24)

where we denoted the d’Alembert operator by ✷ = ∂µ∂µ. As a second example we consider the

gluonic part of the QCD Lagrange density:

LQCD =
1

2
Aa

µ(x)

[
∂ρ∂ρgµνδab−

(
1− 1

ξ

)
∂µ∂νδab

]
Ab

ν(x)

−g f abc (∂µAa
ν(x)

)
Abµ(x)Acν(x)− 1

4
g2 f eab f ecdAa

µ(x)A
b
ν(x)A

cµ(x)Adν(x)

+Lquarks +LFP. (4.25)
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Let us first consider the terms bilinear in the fields, giving rise to the propagators. A generic term

for real boson fields φi has the form

Lbilinear(x) =
1

2
φi(x)Pi j(x)φ j(x), (4.26)

where P is a real symmetric operator that may contain derivatives and must have an inverse.

Define the inverse of P by

∑
j

Pi j(x)P
−1
jk (x− y) = δikδD(x− y), (4.27)

and its Fourier transform by

P−1
i j (x) =

∫
dDq
(2π)D e−iq·xP̃−1

i j (q). (4.28)

Then the propagator is given by

∆F(q)i j = iP̃−1
i j (q). (4.29)

Let’s see how this works out for the scalar propagator in φ4-theory and for the gluon propagator

in QCD. We start with φ4-theory: From eq. (4.24) we deduce

P(x) = −✷−m2. (4.30)

It is not too difficult to show that

P̃−1(q) =
1

q2−m2
. (4.31)

The propagator of a scalar particle is therefore given by

∆F(k) = =
i

q2−m2
(4.32)

and drawn as a line.

Let us now look into a more involved example. We consider the gluon propagator in QCD.

The first line of eq. (4.25) gives the terms bilinear in the gluon fields. This defines an operator

Pµν ab(x) = ∂ρ∂ρgµνδab−
(

1− 1

ξ

)
∂µ∂νδab. (4.33)

For the propagator we are interested in the inverse of this operator

Pµσ ac(x)
(
P−1

)cb
σν

(x− y) = gµ
νδabδ4(x− y). (4.34)
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Working in momentum space we are more specifically interested in the Fourier transform of the

inverse of this operator:

(
P−1

)ab
µν
(x) =

∫
dDq

(2π)D e−iq·x (P̃−1
)ab

µν
(q). (4.35)

The Feynman rule for the propagator is then given by (P̃−1)ab
µν(q) times the imaginary unit. For

the gluon propagator one finds the Feynman rule

µ,a ν,b =
i

q2

(
−gµν +(1−ξ)

qµqν

q2

)
δab. (4.36)

Exercise 27: Derive eq. (4.36) from eq. (4.34) and eq. (4.35).

Hint: It is simpler to work directly in momentum space, using the Fourier representation of δD(x− y).

Let us now consider a generic interaction term with n≥ 3 fields. We may write this term as

Lint(x) = Oi1...in (∂1, ...,∂n)φi1(x)...φin(x), (4.37)

with the notation that ∂ j acts only on the j-th field φi j(x). For each field we have the Fourier

transform

φi(x) =
∫

dDq

(2π)D e−iqx φ̃i(q), φ̃i(q) =
∫

dDx eiqx φi(x), (4.38)

where q denotes an in-coming momentum. We thus have

Lint(x) =

∫
dDq1

(2π)D ...
dDqn

(2π)D e−i(q1+...+qn)xOi1...in (−iq1, ...,−iqn) φ̃i (q1) ...φ̃i (qn) . (4.39)

Changing to outgoing momenta we replace q j by −q j. The vertex is then given by

V = i ∑
permutations

(−1)PF Oi1...in (iq1, ..., iqn) , (4.40)

where the momenta are taken to flow outward. The summation is over all permutations of indices

and momenta of identical particles. In the case of identical fermions there is in addition a minus

sign for every odd permutation of the fermions, indicated by (−1)PF .

Let us also work out some examples here. We start again with scalar φ4-theory. There is only

one interaction term, containing four field φ(x):

Lint(x) =
λ

4!
φ(x)φ(x)φ(x)φ(x). (4.41)
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Thus O = λ/4! and the Feynman rule for the vertex is given by

= iλ. (4.42)

The factor 1/4! is cancelled by summing over the 4! permutations of the four identical particles.

It is instructive to consider also a more involved example. We derive the Feynman rule for

the three-gluon vertex in QCD. The relevant term in the Lagrangian is the first term in the second

line of eq. (4.25):

Lggg = −g f abc (∂µAa
ν(x)

)
Abµ(x)Acν(x). (4.43)

This term contains three gluon fields and will give rise to the three-gluon vertex. We may rewrite

this term as

Lggg = −g f abcgµρ∂ν
1 Aa

µ(x)A
b
ν(x)A

c
ρ(x). (4.44)

Thus

Oabc,µνρ (∂1,∂2,∂3) = −g f abcgµρ∂ν
1, Oabc,µνρ (iq1, iq2, iq3) = −g f abcgµρiqν

1. (4.45)

The Feynman rule for the vertex is given by the sum over all permutations of identical particles

of the function Oabc,µνρ(iq1, iq2, iq3) multiplied by the imaginary unit i. For the case at hand, we

have three identical gluons and we have to sum over 3! = 6 permutations. One finds

Vggg = i ∑
permutations

(
−g f abcgµρiqν

1

)

= −g f abc [gµν
(
qρ

1−qρ
2

)
+gνρ

(
qµ

2−qµ
3

)
+gρµ (qν

3−qν
1)
]
. (4.46)

Note that we have momentum conservation at each vertex, for the three-gluon vertex this implies

q1 +q2 +q3 = 0. (4.47)

In a similar way one obtains the Feynman rules for the four-gluon vertex, the ghost-antighost-

gluon vertex and the quark-antiquark-gluon vertex.

Let us summarise the Feynman rules for the propagators and the vertices of QCD: The gluon

propagator (in Feynman gauge, corresponding to ξ = 1), the ghost propagator and the quark

propagator are given by

µ,a ν,b =
−igµν

q2
δab,

a b =
i

q2
δab,

j k = i
/q+m

q2−m2
δ jk. (4.48)
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Here we used the notation /q = qµγµ. The Feynman rules for the vertices of QCD are

q1,µ,a

q2,ν,bq3,ρ,c

= g
(

i f abc
)

i
[
gµν
(
qρ

1−qρ
2

)
+gνρ

(
qµ

2−qµ
3

)
+gρµ (qν

3−qν
1)
]
,

µ,a

ν,bρ,c

σ,d

= ig2
[(

i f abe
)(

i f ecd
)
(gµρgνσ−gνρgµσ)

+
(

i f bce
)(

i f ead
)
(gνµgρσ−gρµgνσ)

+(i f cae)
(

i f ebd
)
(gρνgµσ−gµνgρσ)

]
,

q1,a

µ,b

c

= ig
(

i f abc
)

qµ
1.

µ,a

l

j
= igγµT a

jl, (4.49)

When translating a Feynman diagram to a mathematical expression, the Feynman rules distin-

guish between internal edges and external edges. Whereas an internal edge is translated to the

mathematical formula for the corresponding propagator, an external edge translates to a factor

describing the spin polarisation of the corresponding particle. Thus, there is a polarisation vec-

tor εµ(q) for each external spin-1 boson and a spinor ū(q), u(q), v̄(q) or v(q) for each external

spin-1/2 fermion. For spin-0 bosons there is no non-trivial spin polarisation to be described,

hence an external edge corresponding to a spin-0 boson translates to the trivial factor 1.

In addition, there are a few additional Feynman rules:

• There is an integration

∫
dDq

(2π)D (4.50)

for each internal momentum not constrained by momentum conservation. Such an inte-

gration is called a “loop integration” and the number of independent loop integrations in a

diagram is called the loop number of the diagram.

• A factor (−1) for each closed fermion loop.
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• Each diagram is multiplied by a factor 1/S, where S is the order of the permutation group

of the internal lines and vertices leaving the diagram unchanged when the external lines

are fixed.

With the methods outlined above we may obtain the Feynman rules for any theory specified by a

Lagrangian. As examples we considered a scalar φ4-theory and QCD. The list of Feynman rules

for the various propagators and interaction vertices of the full Standard Model of particle physics

is rather long and not reproduced here. The Feynman rules for the Standard Model comprise

apart from the Feynman rules for QCD discussed above also the Feynman rules for the electro-

weak sector and the Higgs sector. These rules can be found in many textbooks of quantum field

theory, for example [61]. However, we would like to show one particular Feynman rule: The

Feynman rule for the coupling of a Z-boson to a fermion-antifermion pair reads

µ =
ie

2sinθW cosθW
γµ (v f −a f γ5

)
, (4.51)

where e denotes the elementary electric charge (i.e. the magnitude of the electric charge of the

electron), θW denotes the Weinberg angle and the quantities v f and a f are given by

v f = I3−2Qsin2 θW , a f = I3. (4.52)

Here Q denotes the electric charge of the fermion in units of e and I3 equals 1/2 for up-type

fermions and −1/2 for down-type fermions. We picked this specific Feynman rule for the fol-

lowing reason: The Feynman rule involves the Dirac matrix γ5. In four space-time dimensions

γ5 is defined by

γ5 = iγ0γ1γ2γ3. (4.53)

γ5 is an inherently four-dimensional object. Therefore, the treatment of γ5 within dimensional

regularisation requires some care and is discussed in section 4.4.

Exercise 28: Compute the four-gluon amplitude A
(0)
4 from the four diagrams shown in fig. 4.1. As-

sume that all momenta are outgoing. The result will involve scalar products 2pi · p j, 2pi · ε j and 2εi · ε j.
For a 2→ 2 process (more precisely for a 0→ 4 process, since we take all momenta to be outgoing), the
Mandelstam variables are defined by

s = (p1 + p2)
2 , t = (p2 + p3)

2 , u = (p1 + p3)
2 . (4.54)

The four momenta p1, p2, p3 and p4 are on-shell, p2
i = 0 for i = 1, ...,4, and satisfy momentum conserva-

tion. Derive the Mandelstam relation

s+ t +u = 0. (4.55)
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Figure 4.1: The four Feynman diagrams contributing to the tree-level four-gluon amplitude A
(0)
4 .

This relation allows to eliminate in the result for A
(0)
4 one variable, say u. Furthermore the polarisation

vector of gluon j is orthogonal to the momentum of gluon j, i.e. we have the relation 2p j · ε j = 0. Com-
bined with momentum conservation we may eliminate several scalar products 2pi ·ε j, such that for a given
j we only have 2p j−1 · ε j and 2p j+1 · ε j, where the indices ( j− 1) and ( j+ 1) are understood modulo 4.
You might want to use a computer algebra system to carry out the calculations. The open-source com-
puter algebra systems FORM [65] and GiNaC [66] have their roots in particle physics and were originally
invented for calculations of this type.

Let us summarise:

Feynman rules:

• For each internal edge include a propagator. The propagator is derived from the

terms in the Lagrangian bilinear in the fields.

• For each external edge include a factor, describing the spin polarisation of the parti-

cle.

• For each internal vertex include a vertex factor. The vertex factor for a vertex of

valency n is derived from the terms of the Lagrangian containing exactly the n fields

meeting at this vertex.

• For each internal momentum not constrained by momentum conservation integrate

with measure

∫
dDq

(2π)D (4.56)

• Include a factor (−1) for each closed fermion loop.

• Include a factor 1/S, where S is the order of the permutation group of the internal

lines and vertices leaving the diagram unchanged when the external lines are fixed.

Let us now look at an example how to translate a Feynman diagram with a loop into a math-
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p1

p2

p3p4

p5

Figure 4.2: A one-loop Feynman diagram contributing to the process e+e−→ qgq̄.

ematical expression. Fig. 4.2 shows a Feynman diagram contributing to the one-loop correction

for the process e+e−→ qgq̄. At high energies we can ignore the masses of the electron and the

light quarks. From the Feynman rules one obtains for this diagram:

−e2g3CFT a
jl v̄(p4)γ

µu(p5)
1

p2
123

∫
dDk1

(2π)D

1

k2
2

ū(p1)/ε(p2)
/p12

p2
12

γν
/k1

k2
1

γµ
/k3

k2
3

γνv(p3). (4.57)

Here, p12 = p1+ p2, p123 = p1+ p2+ p3, k2 = k1− p12, k3 = k2− p3. Further /ε(p2) = γτετ(p2),
where ετ(p2) is the polarisation vector of the outgoing gluon. All external momenta are assumed

to be massless: p2
i = 0 for i = 1, . . . ,5. We can reorganise this formula into a part, which depends

on the loop integration and a part, which does not. The loop integral to be calculated reads:

∫
dDk1

(2π)D

kρ
1kσ

3

k2
1k2

2k2
3

, (4.58)

while the remaining factor, which is independent of the loop integration is given by

−e2g3CFT a
jl v̄(p4)γ

µu(p5)
1

p2
123 p2

12

ū(p1)/ε(p2)/p12
γνγργµγσγνv(p3). (4.59)

The loop integral in eq. (4.58) contains in the denominator three propagator factors and in the

numerator two factors of the loop momentum. We call a loop integral, in which the loop momen-

tum occurs also in the numerator a “tensor integral”. A loop integral, in which the numerator is

independent of the loop momentum is called a “scalar integral”. The scalar integral associated

to eq. (4.58) reads

∫
dDk1

(2π)D

1

k2
1k2

2k2
3

. (4.60)

It is always possible to reduce tensor integrals to scalar integrals and we will discuss a method to

achieve that in section 4.3.

4.2 How to obtain finite results

We have already seen in eq. (2.124) that the result of a regularised Feynman integral may contain

poles in the regularisation parameter ε. These poles reflect the original ultraviolet and infrared
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singularities of the unregularised integral. What shall we do with these poles? The answer has to

come from physics and we distinguish again the case of UV-divergences and IR-divergences. The

UV-divergences are removed through renormalisation. Ultraviolet divergences are absorbed

into a redefinition of the parameters. As an example we consider the renormalisation of the

coupling in QCD:

g︸︷︷︸
divergent

= Zg︸︷︷︸
divergent

gr︸︷︷︸
finite

. (4.61)

The renormalisation constant Zg absorbs the divergent part. However Zg is not unique: One may

always shift a finite piece from gr to Zg or vice versa. Different choices for Zg correspond to dif-

ferent renormalisation schemes. Two different renormalisation schemes are always connected

by a finite renormalisation. Note that different renormalisation schemes give numerically differ-

ent answers. Therefore one always has to specify the renormalisation scheme. Some popular

renormalisation schemes are the on-shell scheme, where the renormalisation constants are de-

fined by conditions at a scale where the particles are on-shell. A second widely used scheme is

modified minimal subtraction (MS-scheme). In this scheme one always absorbs the combina-

tion

∆ =
1

ε
− γE + ln4π (4.62)

into the renormalisation constants. One proceeds similar with all other quantities appearing in

the original Lagrangian. For example:

Aa
µ =

√
Z3Aa

µ,r, ψq =
√

Z2ψq,r, g = Zggr, m = Zmmr, ξ = Zξξr. (4.63)

The fact that square roots appear for the field renormalisation is just convention. Let us look a

little bit closer into the coupling renormalisation within dimensional regularisation and the MS-

renormalisation scheme. Within dimensional regularisation the renormalised coupling gr is a

dimensionfull quantity. We define a dimensionless quantity gR by

gr = gRµε, (4.64)

where µ is an arbitrary mass scale, called the renormalisation scale. From a one-loop calculation

one obtains

Zg = 1− 1

2
β0

g2
R

(4π)2
∆+O(g4

R), β0 =
11

3
Nc−

2

3
N f . (4.65)

Nc is the number of colours and N f the number of light quarks. The quantity gR will depend on

the arbitrary scale µ. To derive this dependence one first notes that the unrenormalised coupling

constant g is of course independent of µ:

d

dµ
g = 0 (4.66)
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Substituting g = ZgµεgR into this equation one obtains

µ
d
dµ

gR = −εgR−
(

Z−1
g µ

d
dµ

Zg

)
gR. (4.67)

From eq. (4.65) one obtains

Z−1
g µ

d

dµ
Zg = β0

g2
R

(4π)2
(ε∆)+O(g4

R). (4.68)

Instead of gR one often uses the quantity αs = g2
R/(4π), Going to D = 4 (in this limit we have

ε∆ = 1+O(ε)) one arrives at

µ2 d
dµ2

αs

4π
= −β0

(αs

4π

)2

+O

((αs

4π

)3
)
+O (ε) . (4.69)

This differential equation gives the dependence of αs on the renormalisation scale µ. At leading

order the solution is given by

αs(µ)

4π
=

1

β0 ln
(

µ2

Λ2

) , (4.70)

where Λ is an integration constant. The quantity Λ is called the QCD scale parameter. For QCD

β0 is positive and αs(µ) decreases with larger µ. This property is called asymptotic freedom:

The coupling becomes smaller at high energies. In QED β0 has the opposite sign and the fine-

structure constant α(µ) increases with larger µ. The electromagnetic coupling becomes weaker

when we go to smaller energies.

Let us now look at the infrared divergences: We first note that any detector has a finite

resolution. Therefore two particles which are sufficiently close to each other in phase space will

be detected as one particle. Now let us look again at eqs. (4.10) and (4.19). The next-to-leading

order term will receive contributions from the interference term of the one-loop amplitude A
(1)
next

with the leading-order amplitude A
(0)
next , both with (next−2) final state particles. This contribution

is of order g2next−2. Of the same order is the square of the leading-order amplitude A
(0)
next+1 with

(next − 1) final state particles. This contribution we have to take into account whenever our

detector resolves only (next−2) final-state particles. It turns out that the phase space integration

over the regions where one or more particles become unresolved is also divergent, and, when

performed in D dimensions, leads to poles with the opposite sign as the one encountered in

the loop amplitudes. Therefore the sum of the two contributions is finite. The Kinoshita-Lee-

Nauenberg theorem [26,27] guarantees that all infrared divergences cancel, when summed over

all degenerate physical states. As an example we consider the NLO corrections to γ∗→ 2 jets,

where we treat the quarks as massless. The interference term of the one-loop amplitude with the

Born amplitude is given for one flavour by

2 Re A
(0)
3

∗
A

(1)
3 =

αs

π
CF

(
− 1

ε2
− 3

2ε
−4+

7

12
π2

)
Sε

∣∣∣A(0)
3

∣∣∣
2

+O (ε) . (4.71)
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Sε =(4π)εe−εγE is the typical phase-space volume factor in D= 4−2ε dimensions. For simplicity

we have set the renormalisation scale µ equal to the centre-of-mass energy squared s. The square

of the Born amplitude is given by

∣∣∣A(0)
3

∣∣∣
2

= 16πNcα(1− ε)s. (4.72)

This is independent of the final state momenta and the integration over the phase space can be

written as

∫
dφ2

(
2 Re A

(0)
3

∗
A

(1)
3

)
=

αs

π
CF

(
− 1

ε2
− 3

2ε
−4+

7

12
π2

)
Sε

∫
dφ2

∣∣∣A(0)
3

∣∣∣
2

+O (ε) . (4.73)

The real corrections are given by the leading order matrix element for γ∗→ qgq̄ and read

∣∣∣A(0)
4

∣∣∣
2

= 128π2ααsCFNc(1− ε)

[
2

x1x2
− 2

x1
− 2

x2
+(1− ε)

x2

x1
+(1− ε)

x1

x2
−2ε

]
, (4.74)

where x1 = s12/s123, x2 = s23/s123 and s123 = s is again the centre-of-mass energy squared. The

quantities si j and si jk are defined by

si j =
(

pi + p j
)2
, si jk =

(
pi + p j + pk

)2
. (4.75)

For massless particles these quantities are equal to

si j = 2pi · p j, si jk = 2pi · p j +2pi · pk +2p j · pk. (4.76)

For this particular simple example we can write the three-particle phase space in D dimensions

as

dφ3 = dφ2dφunres,

dφunres =
(4π)ε−2

Γ(1− ε)
s1−ε

123 d3xδ(1− x1− x2− x3)(x1x2x3)
−ε . (4.77)

Integration over the phase space φunres yields

∫
dφ3

∣∣∣A(0)
4

∣∣∣
2

=
αs

π
CF

(
1

ε2
+

3

2ε
+

19

4
− 7

12
π2

)
Sε

∫
dφ2

∣∣∣A(0)
3

∣∣∣
2

+O (ε) . (4.78)

We see that in the sum the poles cancel and we obtain the finite result

∫
dφ2

(
2 Re A

(0)
3

∗
A

(1)
3

)
+

∫
dφ3

∣∣∣A(0)
4

∣∣∣
2

=
3

4
CF

αs

π

∫
dφ2

∣∣∣A(0)
3

∣∣∣
2

+O (ε) . (4.79)

In this example we have seen the cancellation of the infrared (soft and collinear) singularities

between the virtual and the real corrections according to the Kinoshita-Lee-Nauenberg theorem.

In this example we integrated over the phase space of all final state particles. In practise one is
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often interested in differential distributions. In these cases the cancellation is technically more

complicated, as the different contributions live on phase spaces of different dimensions and one

integrates only over restricted regions of phase space. Methods to overcome this obstacle are

known under the name “phase-space slicing” and “subtraction method” [67–74].

The Kinoshita-Lee-Nauenberg theorem is related to the finite experimental resolution in de-

tecting final state particles. In addition we have to discuss initial state particles. Let us go back

to eq. (4.13). The differential cross section we can write schematically

dσH1H2
= ∑

a,b

∫
dxa fH1→a(xa)

∫
dxb fH2→b(xb)dσab(xa,xb), (4.80)

where fH→a(x) is the parton distribution function, giving us the probability to find a parton

of type a in a hadron of type H carrying a fraction x to x + dx of the hadron’s momentum.

dσab(xa,xb) is the differential cross section for the scattering of partons a and b. Now let us look

at the parton distribution function fa→b of a parton inside another parton. At leading order this

function is trivially given by δabδ(1− x), but already at the next order a parton can radiate off

another parton and thus loose some of its momentum and/or convert to another flavour. One finds

in D dimensions

fa→b(x,ε) = δabδ(1− x)− 1

ε

αs

4π
P0

a→b(x)+O(α2
s), (4.81)

where P0
a→b is the lowest order Altarelli-Parisi splitting function. To calculate a cross section

dσH1H2
at NLO involving parton densities one first calculates the cross section dσ̂ab where the

hadrons H1 and H2 are replaced by partons a and b to NLO:

dσ̂ab = dσ̂0
ab +

αs

4π
dσ̂1

ab +O(α2
s ) (4.82)

The hard scattering part dσab is then obtained by inserting the perturbative expansions for dσ̂ab

and fa→b into the factorisation formula.

dσ̂0
ab +

αs

4π
dσ̂1

ab = dσ0
ab +

αs

4π
dσ1

ab−
1

ε

αs

4π ∑
c

∫
dx1P0

a→cdσ0
cb−

1

ε

αs

4π ∑
d

∫
dx2P0

b→ddσ0
ad.

One therefore obtains for the LO- and the NLO-terms of the hard scattering part

dσ0
ab = dσ̂0

ab

dσ1
ab = dσ̂1

ab +
1

ε ∑
c

∫
dx1P0

a→cdσ̂0
cb +

1

ε ∑
d

∫
dx2P0

b→ddσ̂0
ad. (4.83)

The last two terms remove the collinear initial state singularities in dσ̂1
ab.

4.3 Tensor reduction

In section 4.1 we listed the Feynman rules for a theory like QCD and worked out one example in

eq. (4.57) how a one-loop Feynman diagram translates into a mathematical formula involving a
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Feynman integral. The attentive reader will have noticed, that the Feynman integral in eq. (4.58)

does not fit directly the definition of Feynman integrals in eq. (2.56). There are two issues here:

One issue is rather trivial and concerns prefactors: If we follow standard conventions within

quantum field theory, the propagator of a scalar particle is given by (see eq. (4.32))

i

q2−m2
, (4.84)

and the integral measure for every internal momentum not constrained by momentum conserva-

tion is given by (see eq. (4.56))

∫
dDq

(2π)D . (4.85)

On the other hand, we used in chapter 2 the convention, that an edge corresponds to (see

eq. (2.43))

1

−q2 +m2
, (4.86)

and the integral measure is given by (see eq. (2.44))

∫
dDq

iπ
D
2

. (4.87)

In addition, we included in chapter 2 a factor (see eq. (2.45))

elεγE
(
µ2
)ν− lD

2 (4.88)

for each Feynman integral. This issue is rather trivial and only concerns prefactors: If we are

able to compute a Feynman integral within one convention for prefactors, we also are able to

compute this Feynman integral within any other convention for prefactors. The only point to

remember is, that we should not forget to adjust the prefactors appropriately in the final result.

The second issue is more serious: The integral in eq. (4.58) is a tensor integral, while in

chapter 2 we only discussed scalar integrals. Thus we have to show that any tensor integral can

always be reduced to a linear combination of scalar integrals. This can be done if we allow in

the linear combination of scalar integrals shifted space-time dimensions (D→ D+2) and raised

propagators (ν j → ν j + 1) [75, 76]. We denote a tensor integral by giving the numerator in

square brackets:

Iν1...νnint
(D,x1, . . . ,xNB)

[
kµ1

i1
. . .kµt

it

]
= elεγE

(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

kµ1

i1
. . .kµt

it
nint

∏
j=1

(
−q2

j +m2
j

)ν j
,

ki1, . . . ,kit ∈ {k1, . . . ,kl} . (4.89)
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In this notation, a scalar integral is an integral, where the numerator equals one:

Iν1...νnint
(D,x1, . . . ,xNB) [1] = Iν1...νnint

(D,x1, . . . ,xNB)

= elεγE
(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

1
nint

∏
j=1

(
−q2

j +m2
j

)ν j
. (4.90)

Let us introduce two operators D+ and D−, which raise, respectively lower, the number of space-

time dimensions by two units:

D±Iν1...νnint
(D,x1, . . . ,xNB) = Iν1...νnint

(D±2,x1, . . . ,xNB) . (4.91)

The operators D± are called dimensional-shift operators. In addition, we introduce raising

operators j+ (with j ∈ {1, . . . ,nint}), which raise the power of the propagator j by one unit:

j+Iν1...ν j...νnint
(D,x1, . . . ,xNB) = ν j · Iν1...(ν j+1)...νnint

(D,x1, . . . ,xNB) . (4.92)

Note that we defined j+ such that it raises the index ν j→ ν j +1 and multiplies the integral with

a factor ν j. With this definition we have for example

(
j+
)2

Iν1...ν j...νnint
(D,x1, . . . ,xNB) = ν j

(
ν j +1

)
· Iν1...(ν j+2)...νnint

(D,x1, . . . ,xNB) . (4.93)

Let us now study how the operators D+ and j+ act on the integrand of the Schwinger parameter

representation of a scalar Feynman integral. We will see that they act in a rather simple way. Let

us write for the graph polynomials in the Schwinger parameter representation U = U(α) and

F = F (α). From

Iν1...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
1

U
D
2

e−
F
U (4.94)

we find

D+Iν1...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

α
νk−1
k

)
1

U ·U D
2

e−
F
U ,

j+Iν1...ν j...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
α j

U
D
2

e−
F
U . (4.95)

We see that an additional factor of the first graph polynomial U in the denominator corresponds

to a shift D→D+2. An additional factor of the Schwinger parameter α j in the numerator corre-

sponds to the application of j+ (i.e. a multiplication of the integral by ν j and a shift ν j→ ν j +1).
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Exercise 29: Let n ∈ N. Show that the action of (j+)n on the integrand of the Schwinger parameter
representation is given by

(
j+
)n

Iν1...ν j...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
αn

j

U
D
2

e−
F
U . (4.96)

Applying j+ to a Feynman integral with ν j = 0 gives zero, due to explicit prefactor ν j in

eq. (4.92):

j+Iν1...ν j−10ν j+1...νnint
= 0 · Iν1...ν j−11ν j+1...νnint

= 0. (4.97)

The algorithm for reducing tensor integrals to scalar integrals proceeds as follows: We start

from a tensor integral in the momentum representation. For each propagator we introduce a

Schwinger parameter as in eq. (2.153). We then obtain an integral over the loop momenta and

the Schwinger parameters similar to eq. (2.154), but with the additional tensor structure in the

integrand. The argument of the exponential function is as in the scalar case the quadric (see

eq. (2.156))

nint

∑
j=1

α j(−q2
j +m2

j) = −
l

∑
r=1

l

∑
s=1

krMrsks +
l

∑
r=1

2kr · vr + J. (4.98)

By a suitable change of the independent loop momenta variables kr → k′r we bring this quadric

to the form

nint

∑
j=1

α j(−q2
j +m2

j) = −
l

∑
r=1

λrk
′
r
2
+ J′. (4.99)

This decouples the l momentum integrations and we can treat each momentum integration sepa-

rately. We have to consider integrals of the form

∫
dDk

iπD/2
kµ1 . . .kµt f (k2), (4.100)

where f (k2) = eλk2
. Integrals with an odd power of the loop momentum in the numerator vanish

by symmetry:

∫
dDk

iπD/2
kµ1 . . .kµ2t−1 f (k2) = 0, t ∈ N. (4.101)

Integrals with an even power of the loop momentum must be proportional to a symmetric tensor

build from the metric tensor due to Lorentz symmetry. For the simplest cases we have

∫
dDk

iπD/2
kµkν f (k2) = − 1

D
gµν

∫
dDk

iπD/2
(−k2) f (k2), (4.102)

∫
dDk

iπD/2
kµkνkρkσ f (k2) =

1

D(D+2)
(gµνgρσ +gµρgνσ +gµσgνρ)

∫
dDk

iπD/2
(−k2)2 f (k2).
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The generalisation to arbitrary higher tensor structures is obvious.

Exercise 30: Work out the corresponding formula for
∫

dDk

iπD/2
kµ1kµ2kµ3 kµ4kµ5kµ6 f (k2). (4.103)

Each loop momentum integral is now of the form

∫
dDk

iπD/2

(
−k2

)a
eλk2

=

∫
dDK

πD/2

(
K2
)a

e−λK2

=
Γ
(

D
2
+a
)

Γ
(

D
2

) 1

λ
D
2 +a

. (4.104)

This leaves us with the Schwinger parameter integrals. The change of variables kr → k′r and

the integration in eq. (4.104) may introduce additional powers of the Schwinger parameters in

the numerator and additional powers of the first graph polynomial U in the denominator. With

the help of eq. (4.95) we may write these integrals as scalar integrals with raised powers of

the propagators and shifted space-time dimensions. This completes the algorithm for the tensor

reduction.

Let us consider an example. We consider the two-loop double-box graph shown in fig. 2.3

for the case

p2
1 = 0, p2

2 = 0, p2
3 = 0, p2

4 = 0,

m1 = m2 = m3 = m4 = m5 = m6 = m7 = 0. (4.105)

This example is a continuation of the example discussed in section 2.5.2. Suppose we would like

to reduce the tensor integral

I1111111 (D)
[
kµ

1kν
2

]
= e2εγE

(
µ2
)7−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

kµ
1kν

2

7

∏
j=1

(
−q2

j

) (4.106)

to scalar integrals. Introducing Schwinger parameters we have

I1111111 (D)
[
kµ

1kν
2

]
= e2εγE

(
µ2
)7−D

∫

α j≥0

d7α

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

kµ
1kν

2e
−

7

∑
j=1

α j(−q2
j)
. (4.107)

We may write the argument of the exponential function as

7

∑
j=1

α j
(
−q2

j

)
= −α1234

(
k1−

1

α1234
(α12 p1 +α2 p2−α4k2)

)2

− U

α1234

(
k2−

1

U
(−α12α4p1−α2α4p2 +α1234α5 p3 +α1234α57 p4)

)2

+µ2 F

U
. (4.108)
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Here we used the notation αi1i2...in = αi1 +αi2 + · · ·+αin . We substitute

k′1 = k1−
1

α1234
(α12 p1 +α2p2−α4k2) (4.109)

followed by

k′2 = k2−
1

U
(−α12α4 p1−α2α4p2 +α1234α5p3 +α1234α57 p4) . (4.110)

This gives

k1 = k′1−
α4

α1234
k′2 +

1

U
[α4567 (α12 p1 +α2 p2)−α4 (α5p3 +α57 p4)] ,

k2 = k′2 +
1

U
[−α4 (α12 p1 +α2p2)+α1234 (α5p3 +α57 p4)] . (4.111)

The Jacobian of the transformation (k1,k2)→ (k′1,k
′
2) is one. With the help of eq. (4.101) we

obtain

I1111111 (D)
[
kµ

1kν
2

]
= (4.112)

e2εγE
(
µ2
)7−D

∫

α j≥0

d7α

∫
dDk′1
iπ

D
2

dDk′2
iπ

D
2

e
α1234k′1

2+ U
α1234

k′2
2−µ2 F

U

{
− α4

α1234
k′2

µk′2
ν

+
1

U2

[
α4567

(
α12 pµ

1 +α2 pµ
2

)
−α4

(
α5 pµ

3 +α57 pµ
4

)]
[−α4 (α12 pν

1 +α2 pν
2)

+α1234 (α5 pν
3 +α57 pν

4)]} .

Let us consider two terms in more detail (the others are similar). We first consider the term

proportional to k′2
µk′2

ν
:

Ĩ1 = −e2εγE
(
µ2
)7−D

∫

α j≥0

d7α

∫
dDk′1
iπ

D
2

dDk′2
iπ

D
2

α4

α1234
k′2

µk′2
νe

α1234k′1
2+ U

α1234
k′2

2−µ2 F
U

=
gµν

D
e2εγE

(
µ2
)7−D

∫

α j≥0

d7α
α4

α1234

∫
dDk′1
iπ

D
2

dDk′2
iπ

D
2

(
−k′2

2
)

e
α1234k′1

2+ U
α1234

k′2
2−µ2 F

U .

With

∫
dDk′1
iπ

D
2

eα1234k′1
2

=
1

α
D
2

1234

,

∫
dDk′2
iπ

D
2

(
−k′2

2
)

e
U

α1234
k′2

2

=
Γ
(

D
2
+1
)

Γ
(

D
2

)
(α1234

U

)D
2 +1

(4.113)
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we obtain

Ĩ1 =
gµν

2
e2εγE

∫

α j≥0

d7α
α4

U
D
2 +1

e−
F
U =

1

2
gµν I1112111 (D+2) . (4.114)

Note that the powers of α1234 have cancelled out. As second term we consider

Ĩ2 = −e2εγE
(
µ2
)7−D

∫

α j≥0

d7α

∫
dDk′1
iπ

D
2

dDk′2
iπ

D
2

(
α4α1pµ

1

)(
α4α1pν

1

)

U2
e

α1234k′1
2+ U

α1234
k′2

2−µ2 F
U

= −pµ
1 pν

1e2εγE
(
µ2
)7−D

∫

α j≥0

d7α
α2

1α2
4

U2

∫
dDk′1
iπ

D
2

dDk′2
iπ

D
2

e
α1234k′1

2+ U
α1234

k′2
2−µ2 F

U

= −pµ
1 pν

1e2εγE

∫

α j≥0

d7α
α2

1α2
4

U
D
2 +2

e−
F
U = −4pµ

1 pν
1I3113111 (D+4) . (4.115)

All other terms are similar to the last one. Thus we are able to express the tensor integral

I1111111(D)[kµ
1kν

2] in terms of scalar integrals.

4.4 Dimensional regularisation and spins

We introduced dimensional regularisation to regulate divergent Feynman integrals. In the calcu-

lation of amplitudes the tensor integrals are multiplied by loop momenta independent prefactors.

In theories with particles with spin, these prefactors include the polarisation factors for the ex-

ternal particles (i.e. spinors for spin-1/2 fermions and polarisation vectors for spin-1 bosons).

Within dimensional regularisation we have to specify how to continue these polarisation factors

from four space-time dimensions to D space-time dimensions.

There are several schemes on the market which treat this issue differently. To discuss these

schemes it is best to look how they treat the momenta and the polarisation factors of observed

and unobserved particles. Unobserved particles are particles circulating inside loops or emitted

particles not resolved within a given detector resolution. The most commonly used schemes

are the conventional dimensional regularisation scheme (CDR) [24], where all momenta and

all polarisation factors are taken to be in D dimensions (the momenta of the observed parti-

cles can be taken to lie in a four-dimensional sub-space of the D-dimensional space) and the ’t

Hooft-Veltman scheme (HV) [20, 77], where the momenta and the polarisation factors of the

unobserved particles are D-dimensional, whereas the momenta and the polarisation factors of

the observed particles are four-dimensional.

Let us also mention two further schemes, dimensional reduction and the four-dimensional

helicity scheme. These two schemes introduce an additional space of dimension Ds. In the

modern formulation of dimensional reduction (DRED) [78–80] all momenta are taken to be

in D dimensions, whereas all polarisation factors are taken to be in Ds dimensions. As above,

the momenta of the observed particles can be taken to lie in a four-dimensional sub-space of the
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D-dimensional space. In the four-dimensional helicity scheme (FDH) [25,81,82] the momenta

of the unobserved particles are D-dimensional, the momenta of the observed particles are four-

dimensional, the polarisation factors of the unobserved particles are Ds-dimensional and the

polarisation factors of the observed particles are four-dimensional. Let us summarise:

Dimensional regularisation schemes for particles with spin:

momenta momenta polarisation polarisation

observed unobserved observed unobserved

CDR D D D D
HV 4 D 4 D
DRED D D Ds Ds

FDH 4 D 4 Ds

One assumes that the four-dimensional space can be embedded into the D-dimensional space,

and that the D-dimensional space can be embedded into the Ds dimensional space. Thus, there

is a projection from the Ds-dimensional space to the D-dimensional space, which forgets the

(Ds−D)-dimensional components. Likewise, there is a projection from the D-dimensional space

to the four-dimensional space, which forgets the (D−4)-dimensional components. This implies

for example the algebraic rules

g(4)µρ g(D) ρ
ν = g(4)µν , g(D)

µρ g(Ds) ρ
ν = g(D)

µν , g(4)µρ g(Ds) ρ
ν = g(4)µν . (4.116)

As mentioned in section 2.4.2 we may realise spaces of non-integer dimensions as equivalence

classes of tuples of vector space. In this construction, the quantities Ds, D and 4 corresponds to

the rank of the tuples of vector spaces.

In dimensional reduction and in the four-dimensional helicity scheme the space of dimension

Ds is only used for the polarisations. The final result will be an analytic function of Ds. As

the polarisations only enter in the numerator, the limit Ds→ 4 will not lead to additional poles.

Thus, we may take the limit Ds→ 4 at the end of the calculation without any problems. This also

explains the name “four-dimensional helicity scheme”.

It is possible to relate results obtained in one scheme to another scheme, using simple and

universal transition formulae [83–85].

4.4.1 The Dirac algebra within dimensional regularisation

In four space-time dimensions the Dirac matrices are 4×4-matrices satisfying the anti-commu-

tation relation
{

γ
µ
(4),γ

ν
(4)

}
= 2gµν

(4) ·1, (4.117)

where1 denotes the unit matrix in spinor space. The hermitian properties are

(
γ0
(4)

)†

= γ0
(4),

(
γi
(4)

)†

= −γi
(4), 1≤ i≤ 3. (4.118)
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The matrix γ5 is defined by

γ5 = iγ0
(4)γ

1
(4)γ

2
(4)γ

3
(4) =

i

24
εµνρσγ

µ
(4)γ

ν
(4)γ

ρ
(4)γ

σ
(4), (4.119)

where εµνρσ denotes the totally anti-symmetric tensor with ε0123 = 1. The matrix γ5 satisfies

{
γ

µ
(4),γ5

}
= 0, γ2

5 = 1 (4.120)

and

γ†
5 = γ5. (4.121)

In evaluating traces of Dirac matrices we have the following rules:

1. Traces of an even number of Dirac matrices are evaluated with the rules

Tr
(

γ
µ
(4)γ

ν
(4)

)
= 4gµν

(4),

Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n
(4)

)
=

2n

∑
j=2

(−1) j g
µ1µ j

(4) Tr
(

γ
µ2

(4)...γ
µ j−1

(4) γ
µ j+1

(4) ...γ
µ2n
(4)

)
. (4.122)

2. Traces of an odd number of Dirac matrices vanish:

Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
= 0 (4.123)

3. For traces involving γ5 we have

Tr(γ5) = 0,

Tr
(

γ
µ
(4)γ

ν
(4)γ5

)
= 0,

Tr
(

γ
µ
(4)γ

ν
(4)γ

ρ
(4)γ

σ
(4)γ5

)
= 4iεµνρσ. (4.124)

In particular, we have a non-zero value for Tr(γ
µ
(4)γ

ν
(4)γ

ρ
(4)γ

σ
(4)γ5).

Exercise 31: Prove eqs. (4.122)-(4.124).

Let us now consider the Dirac algebra in D dimensions. The generalisation of eq. (4.117) reads

{
γ

µ
(D),γ

ν
(D)

}
= 2gµν

(D) ·1. (4.125)

This is unproblematic. 1 denotes again the unit matrix in spinor space. If D is a positive even

integer, the standard representation of the Dirac matrices is given by matrices of size 2
D
2 ×2

D
2 . It
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is common practice to use for simplicity the convention that the trace of the unit matrix in spinor

space equals

Tr(1) = 4, (4.126)

and not the more natural choice from a mathematical point of view

Tr(1) = 2
D
2 . (4.127)

As a trace of Dirac matrices is always associated with a closed fermion loop, we may convert eas-

ily between these two conventions. We will follow standard conventions and use the convention

of eq. (4.126) from now on.

However, there is no way of continuing the definition of γ5 to D dimensions, maintaining the

cyclicity of the trace and the relations

{
γ

µ
(D),γ5

}
= 0, 0 ≤ µ ≤ D−1,

Tr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
= 4iεµνρσ, µ,ν,ρ,σ ∈ {0,1,2,3}. (4.128)

In order to see this, consider

g(D)
αβ

εµνρσTr
(

γα
(D)γ

µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ

β
(D)γ5

)
. (4.129)

We first note that from eq. (4.125) we have

γ
µ
(D)γ

(D)
µ = D ·1. (4.130)

We then evaluate the expression in eq. (4.129) in two ways: We first use the cyclicity of the trace,

anti-commute γ5 with γα
(D) and use eq. (4.130):

g(D)
αβ εµνρσTr

(
γα
(D)γ

µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ

β
(D)γ5

)
= g(D)

αβ εµνρσTr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ

β
(D)γ5γα

(D)

)

= −g(D)
αβ

εµνρσTr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ

β
(D)γ

α
(D)γ5

)

= −DεµνρσTr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
. (4.131)

On the other hand, we may anti-commute γα
(D) through the string γ

µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D), followed by

the application of eq. (4.130):

g(D)
αβ

εµνρσTr
(

γα
(D)γ

µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ

β
(D)γ5

)

= 2εµνρσ

[
Tr
(

γν
(D)γ

ρ
(D)γ

σ
(D)γ

µ
(D)γ5

)
−Tr

(
γ

µ
(D)γ

ρ
(D)γ

σ
(D)γ

ν
(D)γ5

)
+Tr

(
γ

µ
(D)γ

ν
(D)γ

σ
(D)γ

ρ
(D)γ5

)

−Tr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)]
+DεµνρσTr

(
γ

µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)

= (D−8)εµνρσTr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
. (4.132)
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Combining eq. (4.131) and eq. (4.132) we arrive at

2(D−4)εµνρσTr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
= 0. (4.133)

At D = 4 this equation permits the usual non-zero trace of γ5 with four other Dirac matrices.

However, for D 6= 4 we conclude that the trace equals zero, and there is no smooth limit D→ 4

which reproduces the non-zero trace at D = 4.

Thus we cannot have simultaneously the cyclicity of the trace, the anti-commutation relation

as in eq. (4.128) and a non-zero value for the trace as in eq. (4.128). On physical grounds we

insist on keeping the non-zero value for the trace. It enters the theoretical description of certain

decays of particles. If the trace would be zero, the predicted decay rate would be zero as well,

in contradiction with experiment. We also would like to maintain the cyclicity of the trace.

Therefore we have to give up the simple anti-commutation relation of γ5 in D dimensions.

The ’t Hooft-Veltman prescription [20] defines γ5 as the product of the first four Dirac matri-

ces in D dimensions:

γ5 = iγ0
(D)γ

1
(D)γ

2
(D)γ

3
(D). (4.134)

With this definition, γ5 anti-commutes with the first four Dirac matrices (as in four space-time

dimensions), but commutes with the remaining ones:

{
γ

µ
(D),γ5

}
= 0, if µ ∈ {0,1,2,3},[

γ
µ
(D),γ5

]
= 0, otherwise.

(4.135)

Exercise 32: Show that with the definitions and conventions as above the rules for the traces of Dirac
matrices carry over to D dimensions. In detail, show:

1. Traces of an even number of Dirac matrices are evaluated with the rules

Tr
(

γ
µ
(D)γ

ν
(D)

)
= 4gµν

(D),

Tr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n

(D)

)
=

2n

∑
j=2

(−1) j g
µ1µ j

(D) Tr
(

γ
µ2

(D)...γ
µ j−1

(D) γ
µ j+1

(D) ...γ
µ2n

(D)

)
. (4.136)

2. Traces of an odd number of Dirac matrices vanish:

Tr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)
= 0 (4.137)

3. For traces involving γ5 we have

Tr(γ5) = 0,

Tr
(

γ
µ
(D)γ

ν
(D)γ5

)
= 0,

Tr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
=

{
4iεµνρσ, µ,ν,ρ,σ ∈ {0,1,2,3},
0, otherwise.

(4.138)
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iγµγ5

iγα

iγβ

k

p1

p2

iγµγ5

iγα

iγβ

p1

p2

Figure 4.3: The triangle graphs for the anomaly

Let us now look at the implications of the ’t Hooft-Veltman prescription for γ5. We first show

that with this definition of γ5 we correctly obtain the triangle anomaly within dimensional regu-

larisation. On the other hand, the ’t Hooft-Veltman prescription for γ5 treats the first four indices

differently from the remaining indices, as can be seen in the anti-commutation / commutation

relations in eq. (4.135). As such, the regularisation scheme breaks a symmetry of the original

unregularised theory. This is unavoidable and not a problem. However, we have to include finite

renormalisations, which restore Ward identities reflecting the original symmetry. We discuss this

in the context of the non-singlet axial vector current.

From now on we always take the Dirac algebra in D dimensions and we drop the subscript

(D).

The singlet axial-vector current and the triangle anomaly

The triangle anomaly for one axial-vector coupling and two vector couplings originates from the

two diagrams shown in fig. 4.3. For massless fermions we obtain for the sum of the two graphs

(ignoring coupling factors)

Aαβµ =
∫

dDk

(2π)D

Nαβµ

q2
0q2

1q2
2

, (4.139)

where

Nαβµ = Tr
(
/q1

γβ/q0
γα/q2

γµγ5

)
−Tr

(
/q2

γα/q0
γβ/q1

γµγ5

)
(4.140)

and q0 = k, q1 = k− p2 and q2 = k+ p1. It is convenient to calculate the graphs for the kinematic

configuration where p2
1, p2

2 and (p1 + p2)
2 are non-zero. In that case there will be no infrared

divergences, which are not relevant to the discussion of the anomaly. Contracting Aαβµ with

(p1 + p2)
µ gives the anomaly:

AAVV = (p1 + p2)
µ Aαβµ. (4.141)

Let us now calculate the anomaly. In the first trace of (p1 + p2)
µNαβµ we use

(
/p1

+ /p2

)
γ5 =

(
/q2
−/q1

)
γ5 = /q2

γ5 + γ5/q1
−2/k(−2ε)γ5. (4.142)



4.4. DIMENSIONAL REGULARISATION AND SPINS 133

For the second trace we use
(
/p1

+ /p2

)
γ5 =

(
/q2
−/q1

)
γ5 =−/q1

γ5− γ5/q2
+2/k(−2ε)γ5. (4.143)

The terms /q1/q1
and /q2/q2

inside the traces cancel propagators and the resulting tensor bubble

integrals can be shown to vanish after integration. Therefore the only relevant term is

−2
(

Tr /q1
γβ/q0

γα/q2
/k(−2ε)γ5 +Tr /q2

γα/q0
γβ/q1

/k(−2ε)γ5

)
. (4.144)

The traces evaluate to

Tr /q1
γβ/q0

γα/q2
/k(−2ε)γ5 = k2

(−2ε) ·4iεαλβκpλ
1 pκ

2 + . . . ,

Tr /q2
γα/q0

γβ/q1
/k(−2ε)γ5 = k2

(−2ε) ·4iεαλβκpλ
1 pκ

2 + . . . , (4.145)

where the dots stand for terms, which vanish after integration.

Exercise 33: Derive eq. (4.145).

We then obtain for the anomaly

AAVV = 16εαλβκ pλ
1 pκ

2

∫
dDk

(2π)Di

k2
(−2ε)

k2
0k2

1k2
2

=
1

(4π)2
8εαβλκ pλ

1 pκ
2 +O (ε) , (4.146)

which is the well-known result for the anomaly in the ’t Hooft-Veltman scheme [20].

Exercise 34: Show

∫
dDk

(2π)Di

k2
(−2ε)

k2
0k2

1k2
2

= −1

2

1

(4π)2
+O (ε) . (4.147)

The non-singlet axial-vector current

The Ward identity for the non-singlet axial-vector current for massless fermions reads

(p1− p2)
µΓµ5 = S−1

F (p1)γ5 + γ5S−1
F (p2), (4.148)

where iSF(p) denotes the full fermion propagator and iΓµ5 denotes the full iγµγ5-vertex. We

are now going to check the Ward identity at one-loop level. The relevant diagrams are shown

in fig. 4.4. The momentum p1 is flowing outwards, whereas we take the momentum p2 to be

directed inwards. The one-loop contribution from the right-hand-side of eq. (4.148) reads:

−
∫

dDk
(2π)Di

γν/q2
γν

q2
0q2

2

γ5− γ5

∫
dDk

(2π)Di

γν/q1
γν

q2
0q2

1

γ5, (4.149)
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p1 − p2

p1

p2

Figure 4.4: Feynman graphs for the non-singlet axial-vector Ward identity

where we used the notation q0 = k, q1 = k + p2 and q2 = k + p1. The contribution from the

three-point diagram reads:

∫
dDk

(2π)Di

γν/q2
γµγ5/q1

γν

q2
0q2

1q2
2

(4.150)

Contracting with (p1− p2)
µ and rewriting p1− p2 = q2−q1 we obtain

γν/q2

(
/p1
− /p2

)
γ5/q1

γν =
1

2

[
γν/q2

(
/p1
− /p2

)
γ5/q1

γν− γν/q2
γ5

(
/p1
− /p2

)
/q1

γν
]

=
1

2

[
γν/q2

(
/q2
−/q1

)
γ5/q1

γν− γν/q2
γ5

(
/q2
−/q1

)
/q1

γν
]

= −q2
1γν/q2

γνγ5−q2
2γ5γν/q1

γν (4.151)

+4εq2
1/q2

γ5 +4εq2
2γ5/q1

−
(
k(−2ε)

)2
γν

(
γ5/q1

+/q2
γ5

)
γν.

The two terms on the second-to-last line correspond exactly to the right-hand-side of eq.(4.148).

However, the terms on the last line spoil the Ward identity. These terms give the contribution

−4
1

(4π)2

(
/p1
− /p2

)
γ5 +O (ε) . (4.152)

In order to restore the Ward identity we have to perform a finite renormalisation on the non-

singlet axial-vector current

Γr
µ5 = Zns

5 Γ0
µ5. (4.153)

For QCD the finite renormalisation Zns
5 is given in the ’t Hooft-Veltman scheme (including a

factor g2CF , where CF = TrT aT a is the fundamental Casimir of the gauge group) by

Zns
5 = 1−4

αs

4π
CF , (4.154)

with αs = g2/(4π).



Chapter 5

One-loop integrals

The simplest, but most important loop integrals are the one-loop integrals. Within perturbative

quantum field theory they enter the first quantum corrections. Contributions of this order are

called next-to-leading order (NLO) contributions. The leading-order (LO) contribution is

(usually) the tree-level approximation or Born approximation. As the perturbative expansion

is an expansion in a small coupling, the next-to-leading order corrections are expected to give

numerically the dominant corrections to the tree-level approximation.

The one-loop Feynman integrals are very well understood. They are simpler than the full

class of all Feynman integrals. First of all, at one-loop there are no irreducible scalar products

in the numerator. As a consequence, there is an alternative algorithm for the reduction of tensor

integrals to scalar integrals. This algorithm is known as Passarino-Veltman reduction and dis-

cussed in section 5.1. The Passarino-Veltman method does not shift the space-time dimension,

nor does it raise the powers of the propagators.

In relativistic quantum field theory (and by using dimensional regularisation) we are usually

interested in results for loop integrals in D = 4−2ε space-time dimensions. A second important

result states, that we may reduce any scalar one-loop integral to scalar one-loop integrals with no

more than 5 external legs. Furthermore, we are usually only interested in the Laurent expansion

up to and including the O(ε0). In this case, only scalar integrals with no more than 4 external

legs are relevant. This is discussed in section 5.2. The number of one-loop integrals is therefore

finite, and they can be calculated (and have been calculated) once and for all. In appendix B we

provide the full list of scalar one-loop integrals for massless theories and give references, where

results for one-loop integrals with internal masses can be found.

As mentioned above, for NLO calculations we are usually only interested in the Laurent

expansion up to and including the O(ε0)-term. We may ask, what transcendental functions appear

in these terms. The answer at one-loop is amazingly simple: Up to and including the O(ε0)-term

there are just two transcendental functions. These are the logarithm and the dilogarithm

Li1 (x) = − ln(1− x) =
∞

∑
n=1

xn

n
, Li2 (x) =

∞

∑
n=1

xn

n2
. (5.1)

In section 5.3 we will study a Feynman integral, which leads to a dilogarithm. We will also

discuss the properties of the dilogarithm.
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The Passarino-Veltman method mentioned above is conceptually simple and historically im-

portant, but it also has a short-coming: Expressing a tensor integral as a linear combination of

scalar integrals, the coefficients of this linear combination may contain Gram determinants in

the denominator. This can lead to numerical instabilities in certain regions of phase-space. We

discuss a more efficient method in section 5.4.

At the end of the day our real interest are loop amplitudes, i.e. the sum of all relevant Feyn-

man integrals. Of course, if we know how to compute all relevant Feynman integrals, we may

sum up the individual results and obtain the loop amplitude. However, as the number of Feyn-

man diagrams growths, this approach becomes inefficient and methods which directly deal with

loop amplitudes are preferred. For one-loop amplitudes we have efficient methods which bypass

individual Feynman diagrams. These methods exploit the fact that we know all relevant one-loop

integrals, therefore only the coefficients in front of these integrals need to be determined. These

methods are discussed in section 5.5.

5.1 Passarino-Veltman reduction

The Passarino-Veltman reduction method [86] reduces one-loop tensor integrals to scalar inte-

grals and offers for one-loop integrals an alternative to the general method discussed in sec-

tion 4.3. The Passarino-Veltman reduction method exploits the fact, that at one-loop, any scalar

product involving the loop momentum and the external momenta can be expressed as a linear

combination of inverse propagators and a loop-momentum independent term. This is not true for

a general Feynman integral beyond one-loop, as there might be irreducible scalar products. This

is exactly the same issue as in our discussion of the Baikov representation in section. 2.5.5. In

other words, the Passarino-Veltman reduction method exploits the fact that any one-loop graph G
has a Baikov representation, which implies that we may express any scalar product involving the

loop momentum and the external momenta as a linear combination of inverse propagators and a

loop-momentum independent term. In particular, there is no need to consider a larger graph G̃.

Let us first introduce the Passarino-Veltman notation for one-loop tensor integrals. For scalar

integrals with one, two or three external legs we write

A0(m) = eεγEµ2ε
∫

dDk

iπD/2

1

(−k2 +m2)
, (5.2)

B0(p,m1,m2) = eεγEµ2ε
∫

dDk

iπD/2

1

(−k2 +m2
1)(−(k− p)2 +m2

2)
,

C0(p1, p2,m1,m2,m3) =

eεγEµ2ε
∫

dDk

iπD/2

1

(−k2 +m2
1)(−(k− p1)2 +m2

2)(−(k− p1− p2)2 +m2
3)
,

with an obvious generalisation towards more external legs. Four-point functions are denoted

with the letter D, five-point functions are denoted with the letter E, etc.. For tensor integrals we

use the notation Xµ1µ2...µr , with X ∈ {A,B,C, . . .} and the superscripts µ1µ2 . . .µr indicate that the
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numerator is

kµ1kµ2 . . .kµr . (5.3)

To give an example:

Bµ1(p,m1,m2) = eεγEµ2ε
∫

dDk

iπD/2

kµ1

(−k2 +m2
1)(−(k− p)2 +m2

2)
,

Bµ1µ2(p,m1,m2) = eεγEµ2ε
∫

dDk

iπD/2

kµ1kµ2

(−k2 +m2
1)(−(k− p)2 +m2

2)
. (5.4)

The reduction technique according to Passarino and Veltman uses the fact that due to Lorentz

symmetry the result can only depend on tensor structures which can be build from the external

momenta pµ
j and the metric tensor gµν. We therefore write the tensor integrals in the most general

form in terms of form factors times external momenta and/or the metric tensor. For example

Bµ1 = pµ1B1,

Bµ1µ2 = pµ1 pµ2B21 +gµ1µ2B22,

Cµ1 = pµ1

1 C11 + pµ1

2 C12,

Cµ1µ2 = pµ1

1 pµ2

1 C21 + pµ1

2 pµ2

2 C22 +
(

pµ1

1 pµ2

2 + pµ2

1 pµ1

2

)
C23 +gµ1µ2C24. (5.5)

One then solves for the form factors B1, B21, B22, C11, etc. by first contracting both sides with the

external momenta and the metric tensor gµν. On the left-hand side the resulting scalar products

between the loop momentum kµ and the external momenta are rewritten in terms of inverse

propagators, as for example

2p · k =
[
−(k− p)2 +m2

2

]
−
[
−k2 +m2

1

]
+
(

p2 +m2
1−m2

2

)
. (5.6)

The first two terms of the right-hand side above cancel propagators, whereas the last term does

not involve the loop momentum any more. The remaining step is to solve for the form-factors by

inverting the matrix which one obtains on the right-hand side of equation (5.5).

As an example we consider the two-point function: Contraction with pµ1
or pµ1

pµ2
and gµ1µ2

yields

p2B1 =−
1

2

((
m2

2−m2
1− p2

)
B0−A0(m1)+A0(m2)

)
,

(
p2 1

p2 D

)(
B21

B22

)
=

(
−1

2
(m2

2−m2
1− p2)B1− 1

2
A0(m2)

m2
1B0−A0(m2)

)
. (5.7)
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Solving for the form factors we obtain

B1 = − 1

2p2

((
m2

2−m2
1− p2

)
B0−A0(m1)+A0(m2)

)
,

B21 =
1

(D−1)p2

(
−D

2
(m2

2−m2
1− p2)B1−m2

1B0−
D−2

2
A0(m2)

)
,

B22 =
1

2(D−1)

(
(m2

2−m2
1− p2)B1 +2m2

1B0−A0(m2)
)
. (5.8)

Due to the matrix inversion in the last step determinants usually appear in the denominator of the

final expression. For a three-point function we would encounter the Gram determinant

detG(p1, p2) =

∣∣∣∣
−p2

1 −p1 · p2

−p1 · p2 −p2
2

∣∣∣∣ . (5.9)

One drawback of this algorithm is closely related to these determinants : In a phase space region

where p1 becomes collinear to p2, the Gram determinant will tend to zero, and the form factors

will take large values, with possible large cancellations among them. This makes it difficult to

set up a stable numerical program for automated evaluation of tensor loop integrals. Methods to

overcome this obstacle are discussed in section 5.4.

Exercise 35: Reduce the tensor integral

Aµ1µ2µ3µ4(m) = eεγE µ2ε
∫

dDk

iπD/2

kµ1 kµ2kµ3kµ4

(−k2 +m2)
(5.10)

to A0(m).

Exercise 36: Reduce

gµ1µ2
gµ3µ4

Cµ1µ2µ3µ4(p1, p2,0,0,0) = −gµ1µ2
gµ3µ4

eεγE µ2ε
∫

dDk

iπD/2

kµ1 kµ2kµ3kµ4

k2(k− p1)2(k− p1− p2)2
(5.11)

to scalar integrals.

The Passarino-Veltman algorithm is based on the observation, that for one-loop integrals a scalar

product of the loop momentum with an external momentum can be expressed as a combination

of inverse propagators and a loop-momentum independent term. This property does no longer

hold if one goes to two or more loops. If we consider fig. 2.3 and eq. (2.239), we see for example

in the double-box Feynman integral that the scalar product

−k2 · p1 (5.12)

cannot be expressed in terms of inverse propagators and a loop-momentum independent term.

In order to be able to express any scalar product involving the loop momenta and the external

momenta as a linear combination of inverse propagators and a loop-momentum independent
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term we must introduce a larger graph G̃. We may still use the Passarino-Veltman ansatz based

on Lorentz symmetry, that a tensor integral is written in terms of form factors times external

momenta and/or the metric tensor. If one now tries to solve for the form factors by contracting

with external momenta and the metric tensor, not all scalar products cancel propagators or give

loop-momentum independent terms. Inverse propagators related to the propagators in G̃, which

are not in the original graph G, may remain in the numerator. These inverse propagators in the

numerator are called irreducible scalar products. In the notation of eq. (2.150)

Iν1...νnint
(D,x1, . . . ,xNB) (5.13)

for a Feynman integral associated to the graph G̃ these irreducible scalar products correspond to

negative integer values for some ν j’s.

5.2 Reduction of higher point integrals

In this section we discuss the reduction of scalar one-loop integrals with next external legs to

a set of scalar one-, two-, three-, four- and five-point functions. By an appropriate choice of

the basis integrals for the five-point functions it can be arranged, that the five-point functions

only contribute at order O(ε) and are thus not relevant to NLO calculations, where we only need

the ε-expansion of scalar one-loop integrals up to and including O(ε0). Thus, we may reduce

any one-loop Feynman integral to scalar one-, two-, three- and four-point functions plus terms

of order O(ε) and beyond, which are not relevant to NLO calculations. This is a finite set of

one-loop Feynman integrals, which can (and has been) calculated once and for all.

The reason a scalar one-loop next-point function can be reduced to scalar one-loop Feynman

integrals with no more than five external legs is the following: We assume all external momenta to

lie in a four-dimensional space. Thus, even for next > 5, the external momenta span maximally a

space of dimension 4. The one-loop n-point functions with next ≥ 5 are always ultraviolet-finite,

but they may have infrared-divergences. Let us first assume that there are no IR-divergences.

Then the integral is finite and can be performed in four dimensions. In a space of four dimensions

we can have no more than four linearly independent vectors, therefore it comes to no surprise that

in a one-loop integral with five or more propagators, one propagator can be expressed through

the remaining ones. This is the basic idea for the reduction of the higher point scalar integrals.

For infrared-finite integrals this fact has been known for a long time [87, 88]. For infrared-

divergent integrals we have to use a regulator. With slight modifications the basic idea above

can be generalised to dimensional regularisation [89–93]. Within dimensional regularisation, the

external momenta and the loop momentum span maximally a space of dimension 5.

Let us now look at the details. We discuss the method for massless one-loop integrals. For

one-loop integrals we have next = nint. The first step is to set up an appropriate notation. In this

section we denote a scalar one-loop integral with next legs (and massless propagators) by

Inext (D) = eεγEµ2ε
∫

dDk

iπ
D
2

1

(−k2)(−(k− p1)2)...(−(k− p1− ...pnext−1)2)
. (5.14)
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In terms of our previous notation

Inext (D) =
(
µ2
)Dint

2 −next I11...1︸︷︷︸
next

(D) . (5.15)

We denote by I(i)next−1(D) the scalar one-loop integral, where the i’th propagator has been removed:

I(i)next−1 (D) =
(
µ2
)Dint

2 −(next−1)
I 1...1︸︷︷︸

i−1

0 1...1︸︷︷︸
next−i

(D) . (5.16)

Let us also introduce the sums of the external momenta:

psum
i =

i

∑
j=1

p j, 1 ≤ i ≤ next−1. (5.17)

We associate two matrices S and G to the integral in eq. (5.14). The entries of the next× next

kinematic matrix S are given by

Si j =
(

psum
i − psum

j

)2
, (5.18)

and the entries of the (next−1)× (next−1) Gram matrix are defined by

Gi j = −psum
i · psum

j . (5.19)

For the reduction one distinguishes three different cases: Scalar pentagons (i.e. scalar five-point

functions), scalar hexagons (scalar six-point functions) and scalar integrals with more than six

propagators.

Let us start with the pentagon. A five-point function in D = 4− 2ε dimensions can be ex-

pressed as a sum of four-point functions, where one propagator is removed, plus a five-point

function in 6−2ε dimensions [89]. Since the (6−2ε)-dimensional pentagon is finite and comes

with an extra factor of ε in front, it does not contribute at O(ε0). In detail we have:

Reduction of the massless five-point integral:

I5 (4−2ε) = −2εBI5 (6−2ε)−
5

∑
i=1

biI
(i)
4 (4−2ε)

= −
5

∑
i=1

biI
(i)
4 (4−2ε)+O (ε) , (5.20)

where the coefficients B and bi are obtained from the kinematic matrix Si j as follows:

bi =
5

∑
j=1

(
S−1
)

i j , B =
5

∑
i=1

bi. (5.21)
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In eq. (5.20) I5(6− 2ε) denotes the (6− 2ε)-dimensional pentagon and I(i)4 (4− 2ε) denotes

the four-point function, which is obtained from the pentagon by removing propagator i. The

proof of eq. (5.20) (as the proofs of eq. (5.22) and eq. (5.24) below) uses integration-by-parts

identities, which will be introduced in chapter 6.

The six-point function can be expressed as a sum of five-point functions [90] without any

correction of O(ε):

Reduction of the massless six-point integral:

I6 (4−2ε) = −
6

∑
i=1

biI
(i)
5 (4−2ε) . (5.22)

The coefficients bi are again related to the kinematic matrix Si j:

bi =
6

∑
j=1

(
S−1
)

i j . (5.23)

For the seven-point function and beyond we can again express the next-point function as a

sum over (next−1)-point functions [93]:

Reduction of the massless next-point integral (next ≥ 7):

Inext (4−2ε) = −
next

∑
i=1

riI
(i)
next−1 (4−2ε) , (5.24)

where the coefficients ri are defined below in eq. (5.26).

In contrast to eq. (5.22), the decomposition in eq. (5.24) is no longer unique. A possible set

of coefficients ri can be obtained from the singular value decomposition of the Gram matrix

Gi j =
4

∑
k=1

Uikwk

(
V †
)

k j
. (5.25)

as follows [94]

ri =
Vi5

W5
, 1≤ i≤ next−1, rnext =−

next−1

∑
j=1

r j, W5 =−
next−1

∑
j=1

G j jVj5. (5.26)

Digression. Singular value decomposition

Let M be a complex m×n-matrix of rank r. The singular value decomposition of M is a decom-
position of the form

M = UΣV †, (5.27)
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where U is a unitary m×m-matrix, V is a unitary n×n-matrix, V † denotes the Hermitian trans-
pose of V and Σ is a real m×n-matrix of the form

Σ =




w1
...

. . . . . . 0 . . .

wr
...

...
...

. . . 0 . . . . . . 0 . . .
...

...




, (5.28)

with wk > 0. The diagonal entries wk are called the singular values of M. If M is real, the
matrices U and V can be chosen as orthogonal matrices.

5.3 The basic one-loop integrals

With the results of the previous two sections, we may reduce any one-loop Feynman integral to

scalar one-, two-, three- and four-point functions plus terms of order O(ε) and beyond, which

are not relevant to NLO calculations. This is a finite set of one-loop Feynman integrals, which

can (and has been) calculated once and for all. We have already calculated the massive one-

loop one-point function in eq. (2.124) (the massless one-loop one-point function is zero, see

eq. (2.137)) and the massless one-loop two-point function in eq. (2.182). In the results of

eq. (2.124) and eq. (2.182) we already saw the appearance of a logarithm (ln(m2/µ2) for the

tadpole and ln(−p2/µ2) for the massless bubble). It turns out that up to order O(ε) there is just

another transcendental function, which we have to know: This is Euler’s dilogarithm. As an

example for the appearance of the dilogarithm let us discuss the one-loop three-point function

with no internal masses and the kinematic configuration

p2
1 6= 0, p2

2 6= 0, p2
3 = (p1 + p2)

2 6= 0. (5.29)

We consider the integral

I3 = eεγEµ2ε
∫

dDk

iπD/2

1

(−k2)(−(k− p1)2)(−(k− p1− p2)2)
. (5.30)

The integral is finite and can be evaluated in four dimensions. In the Feynman parameter repre-

sentation the Feynman integral is given by

I3 =

1∫

0

da1

a1∫

0

da2
1

−a2
1 p2

3−a2
2p2

2 +a1a2(p2
1− p2

2− p2
3)−a1p2

3 +a2(p2
3− p2

1)
+O(ε).

(5.31)



5.3. THE BASIC ONE-LOOP INTEGRALS 143

We follow here closely the original work of ’t Hooft and Veltman [95]. We make the change of

variables a′2 = a2−αa1 and choose α as a root of the equation

−α2 p2
2 +α

(
p2

1− p2
2− p2

3

)
− p2

3 = 0. (5.32)

With this choice we eliminate the quadratic term in a1. We then perform the a1-integration and

we end up with three integrals of the form

1∫

0

dt

t− t0

[
ln
(
at2+bt + c

)
− ln

(
at2

0 +bt0+ c
)]
. (5.33)

Factorising the arguments of the logarithms, these integrals are reduced to the type

R =

1∫

0

dt

t− t0
[ln(t− t1)− ln(t0− t1)] . (5.34)

This integral is expressed in terms of a new function, the dilogarithm, as follows:

R = Li2

(
t0

t1− t0

)
−Li2

(
t0−1

t1− t0

)
, (5.35)

provided −t1 and 1/(t0− t1) have imaginary part of opposite sign, otherwise additional loga-

rithms occur.

Digression. The dilogarithm

The dilogarithm is defined by

Li2(x) = −
1∫

0

dt
ln(1− xt)

t
=−

x∫

0

dt
ln(1− t)

t
. (5.36)

If we take the main branch of the logarithm with a cut along the negative real axis, then the
dilogarithm has a cut along the positive real axis, starting at the point x = 1. For |x| ≤ 1 the
dilogarithm has the power series expansion

Li2(x) =
∞

∑
n=1

xn

n2
. (5.37)

Some important numerical values are

Li2(0) = 0, Li2(1) =
π2

6
, Li2(−1) =−π2

12
, Li2

(
1

2

)
=

π2

12
− 1

2
(ln2)2 . (5.38)
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The dilogarithm with argument x can be related to the dilogarithms with argument (1− x) or
1/x:

Li2(x) = −Li2(1− x)+
1

6
π2− ln(x) ln(1− x),

Li2(x) = −Li2

(
1

x

)
− 1

6
π2− 1

2
(ln(−x))2 . (5.39)

Another important relation is the five-term relation:

Li2(xy) = Li2(x)+Li2(y)+Li2

(
xy− x

1− x

)
+Li2

(
xy− y

1− y

)
+

1

2
ln2

(
1− x

1− y

)
.

(5.40)

In appendix B we provide a list of all basic one-loop integrals for massless theories up to

order O(ε) and references for the basic integrals with internal masses.

5.4 Spinor techniques

The reduction methods for one-loop tensor integrals discussed in section 5.1 (and in section 4.3)

are rather general and independent of the tensor structure into which the tensor integral is con-

tracted. By taking into account information from this external tensor structure, more efficient

reduction algorithms can be derived [96–101]. These algorithms significantly soften the problem

with Gram determinants inherent in the Passarino-Veltman tensor reduction method. We will

discuss as an example a method for one-loop integrals with massless propagators. The method

is most conveniently explained within the FDH-scheme of dimensional regularisation. A generic

one-loop tensor integral of rank r is denoted by

Iµ1...µr
next

(D) = eεγEµ2ε
∫

dDk

iπ
D
2

kµ1 . . .kµr

(−k2)(−(k− p1)2)...(−(k− p1− ...pnext−1)2)
. (5.41)

Let us assume that this integral is contracted into Jµ1...µr , e.g. we are considering

Jµ1...µr I
µ1...µr
next

(D) . (5.42)

The tensor Jµ1...µr does not depend on the loop momentum k. In the FDH-scheme we can assume

without loss of generality that the tensor structure Jµ1...µr is given by

Jµ1...µr =
〈
a1−

∣∣γµ1

∣∣b1−
〉
...
〈
ar−

∣∣γµr

∣∣br−
〉
, (5.43)

where 〈ai−| and |b j−〉 are Weyl spinors of definite helicity. Spinors are reviewed in appendix A.

Therefore we consider tensor integrals of the form

Ir
next

= eεγEµ2ε
〈
a1−

∣∣γµ1

∣∣b1−
〉
...
〈
ar−

∣∣γµr

∣∣br−
〉

∫
dDk

iπ
D
2

kµ1

(4)...k
µr
(4)

(−k2)(−(k− p1)2)...(−(k− p1− ...pnext−1)2)
, (5.44)
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where kµ
(4) denotes the projection of the D dimensional vector kµ onto the four-dimensional sub-

space. The quantity
〈
a−
∣∣γµ
∣∣b−

〉
is a vector in a complex vector-space of dimension 4 and can

therefore be expressed as a linear combination of four basis vectors.

The first step for the construction of the reduction algorithm based on spinor methods is to

associate to each n-point loop integral a pair of two light-like momenta l1 and l2, which are

linear combinations of two external momenta pi and p j of the loop integral under consideration

[99]. Obviously, this construction only makes sense for three-point integrals and beyond, as for

two-point integrals there is only one independent external momentum. This is not a limitation,

tensor two-point functions can be reduced with the Passarino-Veltman technique. The only Gram

determinant occurring in this process is the determinant of the 1×1-matrix G = −p2, where p
denotes the external momentum of the two-point function. This is harmless.

For three-point functions and beyond we write

l1 =
1

1−α1α2

(
pi−α1p j

)
, l2 =

1

1−α1α2

(
−α2 pi + p j

)
, (5.45)

where α1 and α2 are two constants, which can be determined from pi and p j.

Exercise 37: Determine the constants α1 and α2 in eq. (5.45) from the requirement that l1 and l2
are light-like, i.e. l2

1 = l2
2 = 0. Distinguish the cases

(i) pi and p j are light-like.

(ii) pi is light-like, p j is not.

(iii) both pi and p j are not light-like.

In the second step we use l1 and l2 to write
〈
a−
∣∣γµ
∣∣b−

〉
as a linear combination of the four basis

vectors

〈
l1−

∣∣γµ
∣∣ l1−

〉
,
〈
l2−

∣∣γµ
∣∣ l2−

〉
,
〈
l1−

∣∣γµ
∣∣ l2−

〉
,
〈
l2−

∣∣γµ
∣∣ l1−

〉
. (5.46)

The contraction of kµ
(4) with the first or second basis vector leads to

〈
l1−

∣∣γµ
∣∣ l1−

〉
kµ
(4)

= 2kll1 =
1

1−α1α2

(
2pik−α12p jk

)
,

〈
l2−

∣∣γµ
∣∣ l2−

〉
kµ
(4) = 2kll2 =

1

1−α1α2

(
−α22pik+2p jk

)
,

(5.47)

and therefore reduces immediately the rank of the tensor integral. Repeating this procedure we

end up with integrals, where the numerator is given by products of

〈
l1−

∣∣∣/k(4)
∣∣∣ l2−

〉
and

〈
l2−

∣∣∣/k(4)
∣∣∣ l1−

〉
, (5.48)
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plus additional reduced integrals. Therefore the tensor integral is now in a standard form. In

the next step one reduces any product of factors as in eq. (5.48). For example, if in the tensor

structure both spinor types appear, we can use

〈
l1−|/k(4)|l2−

〉〈
l2−|/k(4)|l1−

〉
= (2l1k)(2l2k)− (2l1l2)

(
k(4)
)2

(5.49)

and

(
k(4)
)2

=
(

k(D)
)2

−
(

k(−2ε)
)2

. (5.50)

After repeated use of eq. (5.49) we end up with a tensor integral, where only one spinor type

appears. These tensor integrals can be reduced with formulae, which depend on the number of

external legs. These formulae are not reproduced here, but can be found in the literature [101].

After completion of this step, all tensor integrals are reduced to rank 1 integrals. Finally, the rank

1 integrals are reduced to scalar integrals. The relevant formulae for the last step depend again

on the number of external legs and can be found in the literature [101].

Therefore the only non-zero higher-dimensional integrals which occur in the Feynman gauge

result from the two-point function with a single power of k2
(−2ε) in the numerator (n = 2 and

s = 1), the three-point function with a single power of k2
(−2ε) in the numerator (n = 3 and s = 1)

and the four-point function with two powers of k2
(−2ε) in the numerator (n = 4 and s = 2). With

q j = k− psum
j we find for these cases:

eεγEµ2ε
∫

dDk

iπ
D
2

(
−k2

(−2ε)

)

(
−q2

1

)(
−q2

2

) = − p2

6
+O(ε),

eεγEµ2ε
∫

dDk

iπ
D
2

(
−k2

(−2ε)

)

(
−q2

1

)(
−q2

2

)(
−q2

3

) = −1

2
+O(ε),

eεγEµ2ε
∫

dDk

iπ
D
2

(
−k2

(−2ε)

)2

(
−q2

1

)(
−q2

2

)(
−q2

3

)(
−q2

4

) = −1

6
+O(ε). (5.51)

Contributions of this type are called rational terms (as they do not involve logarithms or dilog-

arithms at order O(ε0)).

Exercise 38: The method above does not apply to a tensor two-point function, as there is only one
linear independent external momentum. However, the tensor two-point functions is easily reduced with
standard methods to the scalar two-point function. In this exercise you are asked to work this out for the
massless tensor two-point function. The most general massless tensor two-point function is given by

Iµ1...µr ,s
2 = eεγE µ2ε

∫
dDk

iπ
D
2

(
−k2

(−2ε)

)s kµ1 ...kµr

k2(k− p)2
. (5.52)

Reduce this tensor integral to a scalar integral.
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5.5 Amplitude methods

It is the scattering amplitude Anext which enters the formula eq. (4.10) for the expectation value

of an observable. By algorithm 1 the scattering amplitude is computed through the sum of all

relevant Feynman diagrams. However, the number of Feynman diagrams growths rapidly with

the number of external particles and this approach can become inefficient in practice. Fortunately,

we have for one-loop amplitudes methods which bypass individual Feynman diagrams.

From section 5.1 and section 5.2 we know that we can reduce any one-loop tensor integral

to a set of scalar one-, two-, three-, four- and five-point functions. By an appropriate choice of

the basis integrals for the five-point functions it can be arranged, that the five-point functions

only contribute at order O(ε) and are thus not relevant to NLO calculations, where we only need

the ε-expansion of scalar one-loop integrals up to and including O(ε0). Thus, we may reduce

any one-loop Feynman integral to scalar one-, two-, three- and four-point functions plus terms of

order O(ε) and beyond, which are not relevant to NLO calculations. These scalar integrals are

known (see section 5.3), therefore only the coefficients of these integrals need to be determined.

In this section it is convenient to use the notation

I(i1...in)n = eεγEµ2ε
∫

dDk

iπ
D
2

1(
−q2

i1

)
. . .
(
−q2

in

) , (5.53)

where the superscript (i1 . . . in) indicate the propagators present in the one-loop Feynman integral.

With this notation we may write for a one-loop amplitude in a massless theory

A
(1)
next = ∑

i1<i2<i3<i4

ci1i2i3i4I(i1i2i3i4)
4 + ∑

i1<i2<i3

ci1i2i3I(i1i2i3)
3 + ∑

i1<i2

ci1i2I(i1i2)
2 +O (ε) . (5.54)

I(i1i2)
2 , I(i1i2i3)

3 and I(i1i2i3i4)
4 are the scalar bubble, triangle and box integral functions. In a massive

theory we would have in addition also scalar one-point functions. In a massless theory these

functions are zero within dimensional regularisation. Note that there are no integral functions

with more than four internal propagators. These higher-point functions can always be reduced

to the set above, as we have seen in section 5.2. The coefficients ci1i2 , ci1i2i3 and ci1i2i3i4 depend

on the external momenta and the dimensional regularisation parameter ε. All poles in the dimen-

sional regularisation parameter ε are contained in the scalar integral functions. The coefficients

ci1i2 , ci1i2i3 and ci1i2i3i4 have a Taylor expansion in ε. We write

ci1...in = c(0)i1...in
+O (ε) , (5.55)

where c(0)i1...in
is the coefficient in four space-time dimensions. We therefore have

A
(1)
next = ∑

i1<i2<i3<i4

c(0)i1i2i3i4
I(i1i2i3i4)
4 + ∑

i1<i2<i3

c(0)i1i2i3
I(i1i2i3)
3 + ∑

i1<i2

c(0)i1i2
I(i1i2)
2 +R+O (ε) ,

(5.56)

where the correction term R contains all terms up to order ε0 originating from the O(ε)-terms in

eq. (5.55) hitting a pole in ε from the scalar integral functions. It can be shown that R is of order
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ε0 and does not contain any logarithms. R is called the rational term. The set of all occurring

integral functions

{I(i1i2)
2 , I(i1i2i3)

3 , I(i1i2i3i4)
4 } (5.57)

is rather easily obtained from pinching in all possible ways internal propagators in all occurring

diagrams. We can assume that we know this set in advance. Furthermore all integral functions

in this set are known (see section 5.3). To compute the amplitude requires therefore only the

determination of the coefficients c(0)i1i2
, c(0)i1i2i3

, c(0)i1i2i3i4
and of the rational term R.

Below we discuss methods how this information can be obtained. Readers only interested

in the most practical method may directly jump to section 5.5.3, where we discuss the Ossola-

Papadopoulos-Pittau (OPP) method. We follow the historical path and discuss first the unitarity-

based method, followed by a discussion of generalised unitarity before finally arriving at the

OPP-method. We do this, because some of the ideas like generalised cuts will reappear in the

next chapter.

5.5.1 The unitarity-based method

Loop amplitudes have branch cuts. We denote the discontinuity across a branch cut in a particular

channel s by

Discs A
(l)
next = A

(l)
next (s+ iδ)−A

(l)
next (s− iδ) , (5.58)

where δ > 0 denotes an infinitesimal quantity. Please note that the discontinuity across a branch

cut is a well-defined quantity, while the imaginary part of a loop amplitude depends on several

phase conventions, like the ones used in the expressions for the polarisation factors for the ex-

ternal particles. For one-loop amplitudes, the discontinuity across a branch cut stems from the

imaginary parts of the logarithm and the dilogarithm in certain regions of phase space. We have

for example

Im ln

(−s− iδ

−t− iδ

)
= −π [θ(s)−θ(t)] ,

Im Li2

(
1− (−s− iδ)

(−t− iδ)

)
= − ln

(
1− s

t

)
Im ln

(−s− iδ

−t− iδ

)
. (5.59)

The unitarity-based method [102, 103] exploits the fact, that the discontinuities of the basic in-

tegral functions are characteristic: Knowing the discontinuity we may uniquely reconstruct the

integral function and the coefficient accompanying it. In general there will be discontinuities

corresponding to different channels (e.g. to the different possibilities to cut a one-loop diagram

into two parts). The discontinuity in one channel of a one-loop amplitude can be obtained via

unitarity from a phase space integral over two tree-level amplitudes. Let us consider a process

with next particles, which we label from 1 to next. Divide the set {1, . . . ,next} into two disjoint

sets I and J

I∪ J = {1, . . . ,next}, I∩ J = /0, (5.60)
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and consider the channel

s =

(
∑
i∈I

pi

)2

=

(
∑
j∈J

p j

)2

. (5.61)

From the unitarity of the S-matrix (hence the name unitarity-based method)

S†S = 1 (5.62)

and the Cutkosky rules [104] one arrives at

Discs A
(1)
next = ∑

λ1,λ2

∫
dDk

(2π)Di
(2πi)δ+

(
q2

1

)
(2πi)δ+

(
q2

2

)
A

(0)
|I|+2

A
(0)
|J|+2

. (5.63)

A
(0)
|I|+2

and A
(0)
|J|+2

are tree-level amplitudes appearing on the left and right side of the cut in a

given channel, as shown in the first picture of fig. 5.1. The momenta crossing the cut are q1 and

q2. We set q1 = k (setting q2 = k would equally be possible). The sub-script “+” of δ+(q2)
selects the solution of q2 = 0 with positive energy. The factors of i follow from our convention,

that iA(1)
next equals the sum of all relevant Feynman diagrams. The amplitude A

(0)
|I|+2

has |I|+ 2

external particles, the (outgoing) momenta of these particles are

q1,q2, pi, i ∈ I. (5.64)

The amplitude A
(0)
|J|+2

has |J|+2 external particles, the (outgoing) momenta of these particles are

−q1,−q2, p j, j ∈ J. (5.65)

The sum over λ1 and λ2 in eq. (5.63) is over the spins of the two particles crossing the cut. Note

that in A
(0)
|I|+2

and A
(0)
|J|+2

all external particles are on-shell, also the ones with momenta q1 and q2

(respectively (−q1) and (−q2)).

Let us denote by A
(0),off

|I|+2
and A

(0),off

|J|+2
off-shell continuations with respect to q1 and q2 of A

(0)
|I|+2

and A
(0)
|J|+2

, respectively. An off-shell continuation is neither unique nor gauge-invariant. Two

off-shell continuations of A
(0)
|I|+2

(or A
(0)
|J|+2

) may differ by terms proportional to q2
1 or q2

2. How-

ever, neither the non-uniqueness nor the gauge-dependence matter for the subsequent argument.

Lifting eq. (5.63) one obtains

A
(1)
next = ∑

λ1,λ2

∫
dDk

(2π)Di

1

q2
1

1

q2
2

A
(0),off

|I|+2
A

(0),off

|J|+2
+ cut free pieces, (5.66)

where “cut free pieces” denote contributions which do not develop an imaginary part in this

particular channel. By evaluating the cut, one determines the coefficients of the integral func-

tions, which have a discontinuity in this channel. Iterating over all possible cuts, one finds all
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Figure 5.1: Double, triple and quadruple cuts.

coefficients. One advantage of a cut-based calculation is that one starts with tree amplitudes on

both sides of the cut, which are already sums of Feynman diagrams. Therefore cancellations and

simplifications, which usually occur between various diagrams, can already be performed before

we start the calculation of the loop amplitude. The rational part R can be obtained by calculating

higher order terms in ε within the cut-based method. At one-loop order an arbitrary scale µ2ε

is introduced in order to keep the coupling dimensionless. In a massless theory the factor µ2ε

is always accompanied by some kinematical invariant s−ε for dimensional reasons. If we write

symbolically

A
(1)
next =

c2

ε2

(
s2

µ2

)−ε

+
c1

ε

(
s1

µ2

)−ε

+ c0

(
s0

µ2

)−ε

+ εR̃+O
(
ε2
)
, (5.67)

where R̃ is independent of ε and free of discontinuities, the cut-free pieces c0(s0/µ2)−ε can be

detected at order ε:

c0

(
s0

µ2

)−ε

= c0− εc0 ln

(
s0

µ2

)
+O(ε2). (5.68)

5.5.2 Generalised unitarity

The unitarity-based method allows us to bypass the set of all one-loop diagrams. We sew two

tree amplitudes together (for which very often compact expressions are known) and perform a

traditional tensor reduction on the resulting integrand.

However, we may push things even further. Apart from the two-particle cut discussed in the

previous section, one can also consider triple or quadruple cuts as shown in fig. 5.1. These more

general cuts motivate the name “generalised unitarity”. A particular nice result follows from

quadruple cuts [105]: Let us consider the coefficient c(0)i1i2i3i4
of the scalar box integral functions

I(i1i2i3i4)
4 in eq. (5.56). The quadruple cut is defined by the equations

q2
i1 = q2

i2 = q2
i3 = q2

i4 = 0, (5.69)

where q j = k− psum
j . These equations have in four space-time dimensions two solutions for k,

which we denote by k+ and k−. We also set q±j = k±− psum
j .
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Exercise 39: Consider a one-loop four-point function with external momenta p1, p2, p3, p4 and p2
1 =

p2
2 = p2

3 = p2
4 = 0. The external momenta satisfy momentum conservation p1 + p2 + p3 + p4 = 0. For

j ∈ {1,2,3,4} set q j = k− psum
j . Solve the equations for the quadruple cut

q2
1 = q2

2 = q2
3 = q2

4 = 0. (5.70)

Hint: Start from an ansatz

kµ = c
〈
a−|γµ|b−

〉
, (5.71)

with c ∈ C and a,b light-like.

The coefficient of the box integral function is proportional to a product of four tree amplitudes,

summed over the spins of the particles crossing the cuts and averaged over the two solutions of

the on-shell conditions. Let us say that the quadruple cut divides the labels {1, . . . ,next} into four

disjoint sets I1, I2, I3 and I4, corresponding to the four corners in the right picture of fig. 5.1.

Assume further that qi1 , qi2 , qi3 and qi4 are labelled such that the external momenta of the four

tree amplitudes are

A
(0)
|I1|+2

(qi1, . . . ,−qi4) , A
(0)
|I2|+2

(qi2, . . . ,−qi1) , A
(0)
|I3|+2

(qi3, . . . ,−qi2) , A
(0)
|I4|+2

(qi4, . . . ,−qi3) .

Then

c(0)i1i2i3i4
=

1

2

1

(4π)2 ∑
λ1,λ2,λ3,λ4

∑
σ=±

A
(0)
|I1|+2

(
qσ

i1, . . . ,−qσ
i4

)
A

(0)
|I2|+2

(
qσ

i2, . . . ,−qσ
i1

)

×A
(0)
|I3|+2

(
qσ

i3, . . . ,−qσ
i2

)
A

(0)
|I4|+2

(
qσ

i4, . . . ,−qσ
i3

)
. (5.72)

The factor 1/(4π)2 comes from our convention for the integral measure in dDk/πD/2 in eq. (5.53)

instead of dDk/(2π)D. The sum over λ1, . . . ,λ4 is over the spins of the particles crossing the cuts.

Exercise 40: Consider the one-loop eight-point amplitude in massless φ4 theory. Verify eq. (5.72)
for the box coefficient.

Having determined all box coefficients with quadrupole cuts, one may move on to the triangle

coefficients by considering triple cuts. The triple cut receives contributions from box integrals

and triangle integrals. As we already have determined the coefficient of all box integrals, we

may subtract out the box contributions and uniquely identify the triangle coefficients. This can

then be repeated for the bubble coefficients: Having all the coefficients of the box and triangle

integrals at hand, we consider double cuts. These cuts receive contributions from box integrals,

triangle integrals and bubble integrals. Subtracting out the contributions from the box integrals

and triangle integrals, one may extract the coefficients of the bubble integrals.
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5.5.3 The OPP method

We now discuss the method of Ossola, Papadopoulos and Pittau [106]. Let us start with a prelim-

inary remark: It is always possible to decompose a one-loop amplitude A
(1)
next into cyclic-ordered

primitive amplitudes A(1)
next :

A
(1)
next = ∑

σ∈Snext/Znext

A(1)
next (σ) . (5.73)

For non-gauge amplitudes this is a trivial statement, for gauge amplitudes the non-trivial part of

this decomposition is the fact that the primitive amplitudes A(1)
next are themselves gauge-invariant.

The cyclic order of the external legs is specified by the permutation σ ∈ Snext/Znext . Without loss

of generalisation we will consider in the following the cyclic order σ = (1,2, . . . ,next). Working

with cyclic-ordered primitive amplitudes has the advantage that only next different loop propaga-

tors may appear. For simplicity let us discuss – as before – massless theories. We may write

A(1)
next = eεγEµ2ε

∫
dDk

iπ
D
2

P(k)
next

∏
j=1

(
−q2

j

) , (5.74)

with q j = k− psum
j and psum

j = ∑
j
i=1 pi. The numerator P(k) is a polynomial in the loop momen-

tum k. The degree of this polynomial is bounded. For example, we have in gauge theories in a

renormalisable gauge

degP(k) ≤ next. (5.75)

Furthermore, P(k) can be computed easily by a tree-like calculation. Let us split the numerator

into a four-dimensional part and a remainder

P(k) = P
(

k(4)
)
+ P̃

(
k(4),k(−2ε)

)
, (5.76)

The OPP method consists in writing

P
(

k(4)
)

= ∑
i1<i2<i3<i4

[
c(0)i1i2i3i4

+ c̃i1i2i3i4

(
k(4)
)]

∏
i/∈{i1,i2,i3,i4}

[
−
(

q(4)i

)2
]

+ ∑
i1<i2<i3

[
c(0)i1i2i3

+ c̃i1i2i3

(
k(4)
)]

∏
i/∈{i1,i2,i3}

[
−
(

q(4)i

)2
]

+ ∑
i1<i2

[
c(0)i1i2

+ c̃i1i2

(
k(4)
)]

∏
i/∈{i1,i2}

[
−
(

q(4)i

)2
]
. (5.77)

The terms c̃i1i2i3i4 , c̃i1i2i3 and c̃i1i2 have the property, that they vanish after integration. Their

dependence on k(4) is known up to some yet to be determined parameters, on which these terms

depend linearly. To give an example, let’s consider c(0)i1i2i3i4
. We denote by p′1, p′2, p′3, p′4 the
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external momenta of the box function with propagators (−qi1)
2, (−qi2)

2, (−qi3)
2 and (−qi4)

2.

Then

c̃i1i2i3i4

(
k(4)
)

= C̃i1i2i3i4Tr
(
/qi4

/p
′
1/p
′
2/p
′
3
γ5

)
= 4iC̃i1i2i3i4εµνρσqµ

i4
p′1

ν p′2
ρ p′3

σ. (5.78)

It is clear that a rank one box integral with this numerator will vanish after integration: We may

choose k′= qi4 . From Passarino-Veltman reduction we know that k′µ will become proportional to

either p′1
µ, p′2

µ or p′3
µ after integration. But this vanishes when contracted into the antisymmetric

tensor. C̃i1i2i3i4 is the yet to be determined parameter.

These parameters and the constants c(0)i1i2i3i4
, c(0)i1i2i3

and c(0)i1i2
can be determined by evaluating

the left-hand side and the right-hand side of eq. (5.77) for various values of k(4). Solving this

linear system yields the coefficients c(0)i1i2i3i4
, c(0)i1i2i3

and c(0)i1i2
of the scalar integral functions. It

remains to extract the rational term R. There are two sources contributing to R and we write [107]

R = R1 +R2. (5.79)

First of all, the factors (−(q(4)i )2) in eq. (5.77) do not cancel exactly the denominators (−q2
i ).

There is a mismatch

−
(

q(4)i

)2

= −q2
i +
(

q(−2ε)
i

)2

= −q2
i +
(

k(−2ε)
)2

. (5.80)

The terms proportional to (k(−2ε))2 make up the rational term R1.

Secondly, we split in eq. (5.76) the numerator P(k) into a four-dimensional part and a re-

mainder. The remainder P̃(k(4),k(−2ε)) makes up the rational term R2.
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Chapter 6

Iterated integrals

In this chapter we introduce modern methods to tackle Feynman integrals. The main tool will

be the method of differential equations. This builds on integration-by-parts identities and dimen-

sional shift relations, which we discuss first. If the system of differential equations can be brought

into a particular simple form (the ε-form which is introduced in section 6.3.2), a solution in terms

of iterated integrals is immediate. The methods of this chapter reduce the problem of comput-

ing Feynman integrals to the problem of finding an appropriate transformation for the system

of differential equations. Algorithms to construct an appropriate transformation are discussed

in chapter 7. We will see that integration-by-parts identities allow us to express any Feynman

integral as a linear combination of basis integrals, which we call master integrals. The master

integrals span a vector space and viewing the Feynman integrals as functions of the kinematic

variables gives us a vector bundle. We discuss fibre bundles in section 6.4.

Sections 6.5 and 6.6 are devoted to cuts of Feynman integrals and singularities of Feynman

integrals, respectively.

As we may express any Feynman integral as a linear combination of master integrals, we

may ask if this vector space is equipped with an inner product. An inner product would allow us

to compute the coefficient in front of each master integral directly, bypassing the need to solve a

linear system of integration-by-parts identities. This leads us to twisted cohomology, which we

introduce in section 6.7.

6.1 Integration-by-parts

In this section we study more closely the family of Feynman integrals

Iν1...νnint
(D,x1, . . . ,xNB) = elεγE

(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

nint

∏
j=1

1(
−q2

j +m2
j

)ν j
. (6.1)

We are in particular interested in relations between members of this family, which differ by the

values of the indices (ν1, . . . ,νnint
). Integration-by-parts identities provide these relations [108,

109]. Integration-by-parts identities are based on the fact that within dimensional regularisation

155
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the integral of a total derivative vanishes

∫
dDk

iπ
D
2

∂

∂kµ [qµ · f (k)] = 0, (6.2)

i.e. there are no boundary terms. The vector q can be any linear combination of the external

momenta and the loop momentum k. Eq. (6.2) is derived as follows: Let us first assume that q
is a linear combination of the external momenta. Integrals within dimensional regularisation are

translation invariant (see eq. (2.75))

∫
dDk

iπ
D
2

f (k) =
∫

dDk

iπ
D
2

f (k+λq) . (6.3)

The right-hand side has to be independent of λ. This implies in particular that the O(λ)-term has

to vanish. From

[
d

dλ
f (k+λq)

]∣∣∣∣
λ=0

= qµ ∂

∂kµ f (k) =
∂

∂kµ [q
µ · f (k)] (6.4)

eq. (6.2) follows.

Eq. (6.2) also holds for q = k. This is the task of the next exercise:

Exercise 41: Show that eq. (6.2) holds for q = k.
Hint: Consider the scaling relation eq. (2.76).

Let us formulate the integration-by-parts identities for l-loop integrals:

Integration-by-parts identities:

Within dimensional regularisation we have for any loop momentum ki (1≤ i≤ l) and any

vector qIBP ∈ {p1, ..., pNext,k1, ...,kl}

elεγE
(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

∂

∂kµ
i

qµ
IBP

nint

∏
j=1

1(
−q2

j +m2
j

)ν j
= 0. (6.5)

Working out the derivatives leads to relations among integrals with different sets of indices

(ν1, . . . ,νnint
).

Let’s see how this works in an example: We consider the one-loop two-point function with

an equal internal mass:

Iν1ν2
(D,x) = eεγE

(
m2
)ν12−D

2

∫
dDk

iπ
D
2

1(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2

. (6.6)
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with q1 = k− p, q2 = k, ν12 = ν1 +ν2 and x = −p2/m2. We have set µ2 = m2. As vector qIBP

we may take qIBP ∈ {p,k}. Let us start with qIBP = p. We obtain

0 = eεγE
(
m2
)ν12−D

2 pµ
∫

dDk

iπ
D
2

∂

∂kµ

1(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2

= eεγE
(
m2
)ν12−D

2

∫
dDk

iπ
D
2

[
ν1

(
q2

2−q2
1− p2

)
(
−q2

1 +m2
)ν1+1 (−q2

2 +m2
)ν2

+
ν2

(
q2

2−q2
1 + p2

)
(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2+1

]

= ν1

[
Iν1ν2
− I(ν1+1)(ν2−1)+ xI(ν1+1)ν2

]
+ν2

[
I(ν1−1)(ν2+1)− Iν1ν2

− xIν1(ν2+1)

]
. (6.7)

In deriving this result we used

2p ·q1 = q2
2−q2

1− p2,

2p ·q2 = q2
2−q2

1 + p2. (6.8)

Thus we obtain a relation between integrals with different values of (ν1,ν2):

(ν1−ν2) Iν1ν2
−ν1I(ν1+1)(ν2−1)+ν2I(ν1−1)(ν2+1)+ν1xI(ν1+1)ν2

−ν2xIν1(ν2+1) = 0. (6.9)

Exercise 42: Repeat the derivation with qIBP = k and show

(D−ν1−2ν2) Iν1ν2
−ν1I(ν1+1)(ν2−1)+ν1 (2+ x) I(ν1+1)ν2

+2ν2Iν1(ν2+1) = 0. (6.10)

Instead of eq. (6.9) and eq. (6.10) we may consider two independent linear combinations, where

either the integral I(ν1+1)ν2
or the integral Iν1(ν2+1) is absent:

ν1x(4+ x) I(ν1+1)ν2
=

[2(−ν1 +ν2)+(ν1 +2ν2−D)x] Iν1ν2
+ν1 (2+ x) I(ν1+1)(ν2−1)−2ν2I(ν1−1)(ν2+1),

ν2x(4+ x) Iν1(ν2+1) =

[2(ν1−ν2)+(2ν1 +ν2−D)x] Iν1ν2
−2ν1I(ν1+1)(ν2−1)+ν2 (2+ x) I(ν1−1)(ν2+1). (6.11)

For ν1 > 0 and ν2 > 0 we may use either the first or the second equation to reduce the sum

ν1 +ν2: In both equations, the sum of the indices equals ν1 +ν2 +1 on the left-hand side, while

on the right-hand side the sum of the indices equals for all terms ν1 +ν2. If either ν1 = 0 (and

ν2 > 0) or ν2 = 0 (and ν1 > 0) we have a simpler integral: The integral reduces to a tadpole

integral. As the two internal masses are equal, we have

Iν0 = I0ν. (6.12)

Exercise 43: Derive the integration-by-parts identity for the integral

I0ν2
= eεγE

(
m2
)ν2−D

2

∫
dDk

iπ
D
2

1

(−k2 +m2)ν2
. (6.13)
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✲

✻

ν1

ν2

Figure 6.1: Integration-by-parts reduction for the one-loop two-point function: For all integrals

to the right of the vertical dashed line and indicated by a green dot, we may use the first equation

of eq. (6.11) to lower ν12, for all integrals above the horizontal dashed line and indicated by a

green dot, we may use the second equation of eq. (6.11) to lower ν12. Integrals represented by a

blue dot are reduced with eq. (6.14). The integrals with a red dot cannot be reduced to simpler

integrals.

Verify the identity with the explicit result from eq. (2.123).

In the previous exercise you were supposed to derive the identity

ν2I0(ν2+1) =

(
ν2−

D

2

)
I0ν2

. (6.14)

This identity can be used to reduce for ν2 > 0 the integral I0(ν2+1). The situation is summarised

in fig. 6.1. We may reduce with integration-by-parts identities any integral Iν1ν2
with ν1 ≥ 0,

ν2 ≥ 0 and ν1+ν2 > 0 to a linear combination of I11, I10 and I01. In the equal mass case we have

the symmetry I01 = I10, and therefore any integral Iν1ν2
with ν1 ≥ 0, ν2 ≥ 0 and ν1 +ν2 > 0 can

be reduced to a linear combination of I11 and I10. We call I11 and I10 master integrals.

Let us now return to the general case. We consider a graph G which has a Baikov repre-

sentation. This ensures that we may express any scalar product involving a loop momentum

as a linear combination of inverse propagators and loop momentum independent terms. In our

example above we needed this property in eq. (6.8). We consider integrals

Iν1...νnint
, ν j ∈ Z. (6.15)

We call integrals, where all indices satisfy ν j > 0, integrals of the top topology (or of the top

sector). Integrals, where one or more indices satisfy ν j < 1, belong to a sub-topology (or belong

to a sub-sector). This is illustrated in fig. 6.2.
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e1

e4

e2

e3

e5
ν5=0
=⇒

e1

e4

e2

e3

Figure 6.2: Integrals, where one or more indices satisfy ν j < 1, belong to a sub-topology. The

figure shows as an example the two-loop two-point integral: The case ν5 = 0 corresponds to the

sub-topology obtained by pinching the edge e5. Note that also the case ν5 < 0 corresponds to

the sub-topology shown in the right picture, in this case with an irreducible scalar product in the

numerator.

For a given set of indices (ν1, . . . ,νnint
) we define

Nprop =
nint

∑
j=1

Θ

(
ν j−

1

2

)
, Nid =

nint

∑
j=1

2 j−1Θ

(
ν j−

1

2

)
,

r =
nint

∑
j=1

ν jΘ

(
ν j−

1

2

)
, s =

nint

∑
j=1

∣∣ν j
∣∣Θ
(
−ν j +

1

2

)
. (6.16)

Θ(x) denotes the Heaviside step function. (Adding/subtracting the constant 1/2 avoids ambigu-

ities in the definition of Θ(0).) Nprop counts the number of propagators having positive indices.

Nid assigns a sector identity to the integral (a number between 0 and 2nint − 1). The variable r
counts the sum of the powers of the propagators having positive indices, the variable s does the

same thing for the propagators having negative indices. With the help of these variables we may

now define a criteria which allows us to compare two integrals and to decide which integral is

considered to be simpler. One possibility is the tuple

(
Nprop,Nid,r,s, . . .

)
, (6.17)

together with the lexicographical order. Thus integrals with a smaller number of propagators

Nprop are considered simpler. Within the group of integrals with the same number of propagators,

integrals with a smaller sector identity are considered simpler. Within one sector, one first selects

integrals with a smaller value of r as simpler, and in the case of an equal value of r, one uses as

a secondary criteria the variable s. The dots stand for further variables, which are used if two

non-identical integrals agree in the first four variables.

A second possibility is the tuple

(
Nprop,Nid,s,r, . . .

)
, (6.18)

again with the lexicographical order.

We may now write down all possible integration-by-parts identities according to eq. (6.5).

This is a system of linear equations for the Feynman integrals Iν1...νnint
. With the help of an

ordering criteria as in eq. (6.17) or in eq. (6.18) we may eliminate the more complicated integrals
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in favour of the simpler ones. This procedure is known as the Laporta algorithm [110]. At the

end of the day we are able to express most of the integrals in terms of a few remaining integrals.

The remaining integrals are called master integrals. The set of master integrals depends on the

chosen ordering criteria. It should be noted that for the ordering criteria given in eq. (6.17) and

eq. (6.18) the set of master integrals will also depend on the way we label the internal edges.

This dependence enters through the sector identity Nid, which depends on the labelling of the

internal edges. The choice of eq. (6.17) will lead to a basis of master integrals with irreducible

scalar products (i.e. with some negative indices), avoiding positive indices larger than one. Such

a basis is called an ISP-basis. On the other hand, the choice of eq. (6.18) will avoid irreducible

scalar products (i.e. negative indices) at the expense of allowing positive indices larger than one.

Such a basis is called a dot-basis.

As in the example discussed above we may supplement the integration-by-parts identities

with symmetry relations. (In the example of the one-loop two-point function with equal internal

masses we had the symmetry Iν0 = I0ν.) We denote the number of master integrals obtained by

taking integration-by-parts identities and symmetries into account by Nmaster. If we are only in-

terested in the number of unreduced integrals obtained from integration-by-parts identities alone,

we denote this number by Ncohom. In physics we are mainly interested in the master integrals,

which remain after applying integration-by-parts identities and symmetries. However, in sec-

tion 6.7 we analyse in more detail the effects of the integration-by-parts identities alone. In this

context, Ncohom is the relevant quantity.

We denote the indices of the master integrals by

ννν1 = (ν11, . . . ,ν1nint
) ,

ννν2 = (ν21, . . . ,ν2nint
) ,

. . .

νννNmaster = (νNmaster1, . . . ,νNmasternint
) . (6.19)

We define a Nmaster-dimensional vector~I by

~I =
(
Iννν1

, Iννν2
, . . . , IνννNmaster

)T
. (6.20)

For the specific example discussed in eq. (6.6) and below we have

~I =

(
I10

I11

)
(6.21)

Integration-by-parts identities and symmetries allow us to express a generic integral Iν1...νnint
as

a linear combination of the master integrals. Only the latter need to be computed. There are
public available computer programs, which perform the task of reducing Feynman integrals to

master integrals. These programs are Fire [111, 112], Reduze [113, 114] and Kira [115, 116].

The following exercise will help you to get acquainted with these programs:

Exercise 44: Consider the double-box graph G shown in fig. 2.3 and the auxiliary graph G̃ with nine
propagators shown in fig. 2.11. This exercise is about the family of Feynman integrals

Iν1ν2ν3ν4ν5ν6ν7ν8ν9
(6.22)
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with ν8,ν9 ≤ 0. Use the notation of the momenta as in fig. 2.11. Assume that all external momenta are
light-like (p2

1 = p2
2 = p2

3 = p2
4 = 0) and that all internal propagators are massless. Use one of the public

available computer programs Kira, Reduze or Fire to reduce the Feynman integral

I1111111(−1)(−1) (6.23)

to master integrals. For the choice of master integrals you may use the default ordering criteria of the
chosen computer program.

We note that integration-by-parts reduction is based only on linear algebra with rational functions

in the kinematic variables x and the dimension of space-time D. However, the simplification of

the rational functions (i.e. cancelling common factors in the numerator and in the denominator)

is actually a performance bottle-neck. For this reason, many of the programs mentioned above

employ finite field methods to improve the performance. Finite field methods are reviewed in

appendix I.

6.2 Dimensional shift relations

Given a basis of master integrals~I in D space-time dimensions and a basis of master integrals~I′

in (D+2) space-time dimensions, we may express any element of the basis~I (i.e. any component

of~I) as a linear combination of the elements of~I′ and vice versa. In dimensional regularisation

we have dim~I = dim~I′. The relation between Feynman integrals in D and (D+ 2) space-time

dimensions (or (D− 2) space-time dimensions) is known as the dimensional shift relations

[75, 76]. In this section we will derive these relations.

In section 4.3 we introduced the dimensional-shift operators D±, which act on a Feynman

integral as

D±Iν1...νnint
(D,x) = Iν1...νnint

(D±2,x) (6.24)

and the raising operators j+ (with j ∈ {1, . . . ,nint}), which act on a Feynman integral as

j+Iν1...ν j...νnint
(D,x) = ν j · Iν1...(ν j+1)...νnint

(D,x) . (6.25)

We start from the Schwinger parameter representation of the Feynman integral

Iν1...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
1

U
D
2

e−
F
U . (6.26)

In eq. (4.95) we have already seen that the operators D+ and j+ act on the Schwinger parameter



162 CHAPTER 6. ITERATED INTEGRALS

representation as

D+Iν1...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
1

U ·U D
2

e−
F
U ,

j+Iν1...ν j...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

α
νk−1
k

)
α j

U
D
2

e−
F
U . (6.27)

In order to derive the dimensional shift relations we use eq. (6.26) and expand the fraction with

U:

Iν1...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

α
νk−1
k

)
U

U ·U D
2

e−
F
U . (6.28)

The additional factor of U in the denominator shifts the space-time dimension of the Feynman

integral by two units according to the first formula of eq. (6.27) The additional factor of U
in the numerator is treated as follows: Recall that the graph polynomial U(α1, . . . ,αnint

) is a

homogeneous polynomial of degree l in the Schwinger parameters α. Furthermore, the graph

polynomial U(α1, . . . ,αnint
) is linear in each Schwinger parameter α j. We may interpret each

occurrence of a Schwinger parameter α j in the numerator as the result of applying the raising

operator j+ to the Feynman integral, according to the second formula in eq. (6.27). Thus we have

Iν1...νnint
(D) = U

(
1+, . . . ,nint

+
)

D+Iν1...νnint
(D) . (6.29)

The action of U(1+, . . . ,nint
+) on Iν1...νnint

(D) is defined in the obvious way: If U(α1,α2,α3) =
α1α2 +α2α3 +α1α3 we have

U
(
1+,2+,3+

)
I111 (D) =

(
1+2++2+3++1+3+

)
I111 (D)

= I221 (D)+ I122 (D)+ I212 (D) . (6.30)

It is also clear that the operators i+ and j+ commute

[
i+, j+

]
= 0 (6.31)

and that the operators j+ commute with D+:

[
j+,D±

]
= 0. (6.32)

We may bring in eq. (6.29) the dimensional shift operator to the other side and obtain

D−Iν1...νnint
(D) = U

(
1+, . . . ,nint

+
)

Iν1...νnint
(D) (6.33)

or

Iν1...νnint
(D−2) = U

(
1+, . . . ,nint

+
)

Iν1...νnint
(D) . (6.34)
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Let’s go back to eq. (6.29), which we may also write as

Iν1...νnint
(D) = U

(
1+, . . . ,nint

+
)

Iν1...νnint
(D+2) . (6.35)

The right-hand side consists of integrals with raised propagators in (D+ 2) space-time dimen-

sions. Let~I =(Iννν1
, . . . , IνννNmaster

)T be a basis in D space-time dimensions and~I′=(I′ννν1
, . . . , I′νννNmaster

)T

be a basis in (D+2) space-time dimensions. On the left-hand side we may consider all master

integrals from the basis~I in D dimension. For each of these Feynman integrals we may use on the

right-hand side integration-by-parts identities and express all integrals as linear combinations of

the master integrals~I′ in (D+2) dimensions. This allows us to express any master integral of the

basis~I in D dimensions as a linear combination of the master integrals~I′ in (D+2) dimensions.

Thus we find a (Nmaster×Nmaster)-matrix S

~I = S~I′. (6.36)

Within dimensional regularisation the matrix S is invertible. Inverting this matrix allows us to

express any master integral in (D+2) dimensions as a linear combination of master integrals in

D dimensions:

~I′ = S−1~I. (6.37)

Exercise 45: Consider the example of the one-loop two-point function with equal internal masses, dis-
cussed below eq. (6.6). Let

~I =

(
I10 (D,x)
I11 (D,x)

)
(6.38)

be a basis in D space-time dimensions and

~I′ =

(
I10 (D+2,x)
I11 (D+2,x)

)
(6.39)

be a basis in (D+2) space-time dimensions. Work out the 2×2-matrices S and S−1.

6.3 Differential equations

We now introduce one of the most important methods to compute Feynman integrals: The

method of differential equations [117–120]. The idea is the following: Instead of calculating

the Feynman integral directly, we first derive a differential equation of the Feynman integral

under consideration with respect to the kinematic variables. In a second step we solve this dif-

ferential equation and obtain in this way the answer for the sought-after Feynman integral. To

be more precise, we study a system of differential equations, namely the system of differential

equations for a basis of master integrals. This has the advantage that we have to consider only

first-order differential equations.

Solving a differential equation requires boundary values. As boundary value we may use the

master integrals, where one of the kinematic variables has a special value, for example zero or
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equal to another kinematic variable. The Feynman integrals for this special kinematic configu-

ration are simpler, as they depend on one kinematic variable less. We may assume that they are

already known. If not, we first solve this simpler problem first.

The power of the method of differential equations lies in the following facts: We will soon

see that it is always possible to derive the system of differential equations for a basis of master

integrals. There are no principle obstacles to do this, we only might be limited by the available

computing resources and the fact that the used algorithms are not particular efficient. We will

also see that if the system of differential equations is in a particular nice form (the ε-form), it is

always possible to solve the system of differential equations in terms of iterated integrals. Here

we assume – as remarked above – that the boundary values are known. Thus the only missing

piece is the transformation of an original system of differential equations to the nice ε-form.

In the cases where we know how to do this, this is achieved by a redefinition of the master

integrals and/or a variable transformation of the kinematic variables. We call a redefinition of

the master integrals a fibre transformation and a transformation of the kinematic variables a base

transformation. We discuss these transformations in sections 6.4.3 and 6.4.4, respectively. Let

us stress that this reduces the task of computing a Feynman integral to finding a suitable fibre

transformation and/or base transformation for the associated system of differential equations.

6.3.1 Deriving the system of differential equation

Let’s start to derive the system of differential equations. We consider a basis of master integrals

~I =
(
Iννν1

, Iννν2
, . . . , IνννNmaster

)T
, (6.40)

depending on NB kinematic variables x1,x2, . . . ,xNB . Let’s recall from section 2.5.1 that we start

with NB +1 variables of the form

−pi · p j

µ2
,

m2
i

µ2
. (6.41)

We denote these variables by x1,x2, . . . ,xNB ,xNB+1. Due to the scaling relation eq. (2.144) we may

set one of these variables to one, say xNB+1 = 1. Having done so, we usually view the Feynman

integrals as functions of x1,x2, . . . ,xNB (and D). For the moment, let’s keep the dependence on

all variables x1,x2, . . . ,xNB ,xNB+1, without setting one kinematic variable to one. The second

Symanzik polynomial F is linear in the kinematic variables x j. We may write

F (α,x) =
NB+1

∑
j=1

F ′x j
(α) · x j, (6.42)

where F ′x j
denotes the coefficient of x j. As F is linear in x j, we have

F ′x j
(α) =

∂

∂x j
F (α,x) . (6.43)
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In order to derive the differential equation we start again from the Schwinger parameter repre-

sentation

Iν1...νnint
=

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

α
νk−1
k

)
1

[U (α)]
D
2

e
−F (α,x)

U(α) . (6.44)

The only dependence on the kinematic variables is through the second Symanzik polynomial

F (α,x). We therefore find

∂

∂x j
Iν1...νnint

= − elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
F ′x j

(α)

U (α) · [U (α)]
D
2

e−
F (α,x)
U(α) (6.45)

for x j ∈ {x1, . . . ,xNB+1}. The additional factor of U(α) in the denominator is again equivalent to

shifting the space-time dimension of the Feynman integral by two units. The additional factor of

F ′x j
(α) in the numerator is a polynomial in the Schwinger parameters, equivalent to the action of

the polynomial F ′x j
(1+, . . . ,nint

+) in the raising operators on the Feynman integral. Thus

∂

∂x j
Iν1...νnint

= −F ′x j

(
1+, . . . ,nint

+
)

D+Iν1...νnint
(6.46)

for x j ∈ {x1, . . . ,xNB+1}.
If the kinematic variable x j corresponds to an internal mass, there is a slightly simpler for-

mula, which follows directly from the momentum representation. Let us assume

x j =
m2

j

µ2
. (6.47)

Let’s further assume that m j denotes the mass of the j-th internal edge, that this mass is distinct

from all other internal masses and that the kinematic configuration is defined without any refer-

ence to this mass (i.e. we exclude on-shell conditions like p2 = m2
j ). In other words, x j enters

only as the mass of the the j-th internal propagator. From

∂

∂x j

1(
−q2

j +m2
j

)ν j
= −ν j

µ2

(
−q2

j +m2
j

)ν j+1
(6.48)

we obtain in this case

∂

∂x j
Iν1...νnint

= −j+Iν1...νnint
. (6.49)

We may relax the condition that the mass of the j-th internal propagator has to be distinct from

all other internal masses. Let Sx j be the subset of {1, . . . ,nint} containing all indices of internal
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edges whose internal mass equals m j. We keep the condition, that the kinematic configuration is

defined without any reference to m2
j . Then

∂

∂x j
Iν1...νnint

= − ∑
j∈Sx j

j+Iν1...νnint
, (6.50)

which follows directly from the product rule for differentiation.

Exercise 46: Show that

NB+1

∑
j=1

x j
∂

∂x j
Iν1...νnint

=

(
lD

2
−ν

)
· Iν1...νnint

. (6.51)

Hint: Consider the Feynman parameter representation.

From eq. (6.51) we may extract the derivative with respect to xNB+1, provided we know all

derivatives with respect to x1, . . . ,xNB .

From now on we consider again the case, where we set one kinematic variable to one (i.e.

xNB+1 = 1). We view the Feynman integral Iν1...νnint
(D,x1, . . . ,xNB) as a function of D and the

NB kinematic variables x1, . . . ,xNB . The derivatives with respect to the kinematic variables are

given by eq. (6.46). The expression on the right-hand side of eq. (6.46) is a linear combination

of Feynman integrals in (D+ 2) space-time dimensions. Using integration-by-parts identities

we may reduce this expression to a linear combination of master integrals in (D+2) space-time

dimensions. Using the dimensional shift relations discussed in section 6.2 we may express each

master integral in (D+2) space-time dimensions as a linear combination of master integrals in

D space-time dimensions. Combining these two operations we may express the right-hand side

of eq. (6.46) as a linear combination of master integrals in D space-time dimensions.

Let us now specialise to the basis

~I =
(
Iννν1

, Iννν2
, . . . , IνννNmaster

)T
, (6.52)

For each Iνννi ∈ {Iννν1
, . . . , IνννNmaster

} we therefore have

∂

∂x j
Iνννi =−

Nmaster

∑
k=1

Ax j,ik Iνννk , 1 ≤ i ≤ Nmaster, 1 ≤ j ≤ NB, (6.53)

where the coefficients Ax j,ik are rational functions of D and x1, . . . ,xNB . The fact that the coef-

ficients Ax j,ik are rational functions follows from the fact that integration-by-parts identities and

dimensional shift relations involve only rational functions.

Let us make a few definitions: We use the standard notation for the total differential with

respect to the kinematic variables x1, . . . ,xNB (D is treated as a parameter)

dIνννi =
NB

∑
j=1

(
∂Iνννi

∂x j

)
dx j. (6.54)
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We denote by Ax j the (Nmaster×Nmaster)-matrix with entries Ax j,ik. We also define a matrix-valued

one-form A by

A =
NB

∑
j=1

Ax jdx j. (6.55)

We may then write the system of differential equations compactly as

(d +A)~I = 0. (6.56)

This is the sought-after system of first-order differential equations for the master integrals Iννν1
,

. . . , IνννNmaster
. This system is integrable, which puts a constraint on A. The integrability condition

reads

dA+A∧A = 0. (6.57)

Let us summarise:

System of differential equations:

The vector of master integrals~I = (Iννν1
, Iννν2

, . . . , IνννNmaster
)T satisfies the differential equation

(d +A)~I = 0, (6.58)

where d denotes the total differential with respect to the kinematic variables x1, . . . ,xNB

and A is a matrix-valued one-form, which satisfies the integrability condition

dA+A∧A = 0. (6.59)

If we write

A =
NB

∑
j=1

Ax jdx j, (6.60)

then the Ax j’s are (Nmaster×Nmaster)-matrices with entries, which are rational functions in

x1, . . . ,xNB and D. The matrix-valued one-form A is computable with the help eq. (6.46),

integration-by-parts identities and dimensional shift relations.

Example 1

Let’s look at a few examples. As our first example we consider the one-loop two-point function

with equal internal masses, discussed below eq. (6.6):

Iν1ν2
(D,x) = eεγE

(
m2
)ν12−D

2

∫
dDk

iπ
D
2

1(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2

, (6.61)
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with x =−p2/m2. As a basis of master integrals we choose

~I =

(
I10

I11

)
. (6.62)

The graph polynomials read

U = α1 +α2, F = α1α2x+(α1 +α2)
2 . (6.63)

From eq. (6.46) we have

∂

∂x
Iν1ν2

(D,x) = −1+2+D+Iν1ν2
(D,x) = −ν1ν2I(ν1+1)(ν2+1) (D+2,x) . (6.64)

Using integration-by-parts identities and dimensional shift relations we obtain

∂

∂x
I10 (D,x) = 0,

∂

∂x
I11 (D,x) = − D−2

x(4+ x)
I10 (D,x)− 4+(4−D)x

2x(4+ x)
I11 (D,x) . (6.65)

Hence

A =

(
0 0

D−2
x(4+x)

4+(4−D)x
2x(4+x)

)
dx. (6.66)

Exercise 47: The steps from eq. (6.64) to eq. (6.65) can still be carried out by hand. Fill in the missing
details.
Hint: Use eq. (6.11), eq. (6.14) and the result from exercise 45.

Example 2

As our second example we consider the one-loop four-point function shown in fig. 2.4

Iν1ν2ν3ν4
(D,x1,x2) = eεγE

(
−p2

4

)ν1234−D
2

∫
dDk

iπ
D
2

1(
−q2

1

)ν1
(
−q2

2

)ν2
(
−q2

3

)ν3
(
−q2

4

)ν4
, (6.67)

with q1 = k− p1, q2 = k− p1− p2, q3 = k− p1− p2− p3, q4 = k and vanishing internal masses.

We consider the kinematic configuration p2
1 = p2

2 = p2
3 = 0 but p2

4 6= 0. The integral depends on

two kinematic variables, which we take as

x1 =
2p1 · p2

p2
4

, x2 =
2p2 · p3

p2
4

. (6.68)

The graph polynomials are given by

U = α1 +α2 +α3 +α4, F = α2α4x1 +α1α3x2 +α3α4. (6.69)
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There are four master integral and we choose as basis

~I =




I0011

I0101

I1010

I1111


 . (6.70)

The computations to determine the differential equation are best done with the help of a computer

algebra program and we only quote the result here. One finds

A = Ax1
dx1 +Ax2

dx2, (6.71)

Ax1
=




0 0 0 0

0 D−4
2x1

0 0

0 0 0 0
2(D−3)

x1(1−x1)(1−x1−x2)
− 2(D−3)

x1(1−x1)(1−x1−x2)
− 2(D−3)

x1x2(1−x1−x2)
−2x1+(D−6)(1−x2)

2x1(1−x1−x2)


 ,

Ax2
=




0 0 0 0

0 0 0 0

0 0 −D−4
2x2

0
2(D−3)

x2(1−x2)(1−x1−x2)
− 2(D−3)

x1x2(1−x1−x2)
− 2(D−3)

x2(1−x2)(1−x1−x2)
−2x2+(D−6)(1−x1)

2x2(1−x1−x2)


 .

Exercise 48: This example depends on two kinematic variables x1 and x2, hence the integrability condi-
tion is non-trivial. Check explicitly the integrability condition

dA+A∧A = 0. (6.72)

In order to derive the differential equation, we first make a choice for the master integrals. In

this example the choice of master integrals is given by eq. (6.70). However, there is no particular

reason for this specific choice (except that it is the default choice of the computer program Kira).

In general, we may choose a set of four linear independent linear combinations of these four

master integrals with coefficients being functions of D and x. In the simplest case the coefficients

are rational functions of D and x. However, we will soon also consider the case, where the

coefficients are algebraic functions of x (e.g. expressions with square roots). The dependence on

D of the coefficients will usually remain rational. In chapter 13 we will also consider the case,

where the coefficients are transcendental functions of x.

Let us now explore this freedom. Suppose we start from the basis

~I′ =




−1
2
(D−3)(D−4) I0011

−1
2
(D−3)(D−4) I0101

−1
2
(D−3)(D−4) I1010

1
8
(D−4)2 x1x2I1111


 . (6.73)

We repeat the calculation with this basis of master integrals. Again we find a differential equation

(
d +A′

)
~I′ = 0, A′ = A′x1

dx1 +A′x2
dx2, (6.74)
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where the matrices A′x1
and A′x2

are now given by

A′x1
=

4−D

2




0 0 0 0

0 1
x1

0 0

0 0 0 0
1

x1−1
− 1

x1+x2−1
− 1

x1−1
+ 1

x1+x2−1
1

x1+x2−1
1
x1
− 1

x1+x2−1


 ,

A′x2
=

4−D
2




0 0 0 0

0 0 0 0

0 0 1
x2

0
1

x2−1
− 1

x1+x2−1
1

x1+x2−1
− 1

x2−1
+ 1

x1+x2−1
1
x2
− 1

x1+x2−1


 .

(6.75)

We observe that the only dependence on D is now through the prefactor (4−D)/2. Within

dimensional regularisation we usually set D = 4−2ε. Then

4−D

2
= ε. (6.76)

Let us further introduce five one-forms

ω1 = d ln(x1) =
dx1

x1
, ω2 = d ln(x1−1) =

dx1

x1−1
,

ω3 = d ln(x2) =
dx2

x2
, ω4 = d ln(x2−1) =

dx2

x2−1
,

ω5 = d ln(x1 + x2−1) =
dx1 +dx2

x1 + x2−1
. (6.77)

Differential one-forms as in eq. (6.77) are called dlog-forms. We may then write A′ as

A′ = ε




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


ω1 + ε




0 0 0 0

0 0 0 0

0 0 0 0

1 −1 0 0


ω2 + ε




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


ω3

+ε




0 0 0 0

0 0 0 0

0 0 0 0

1 0 −1 0


ω4 + ε




0 0 0 0

0 0 0 0

0 0 0 0

−1 1 1 −1


ω5. (6.78)

In the basis ~I′ the differential equation has a particular simple form, which we will discuss in

more detail in section 6.3.2. In particular there is a systematic (and easy) way to solve this

differential equation order-by-order in the dimensional regularisation parameter. We discuss this

in section 6.3.3

We call the one-forms ω1, ω2, ω3, ω4 and ω5 letters and the set of all independent letters the

alphabet. In this example the alphabet contains five letters. We denote the number of letters in

the alphabet by NL.
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Example 3

As third example let us consider the double-box integral discussed in exercise 44. We use the

same notation and consider

Iν1ν2ν3ν4ν5ν6ν7ν8ν9
(6.79)

with ν8,ν9 ≤ 0. We assume that all external momenta are light-like (p2
1 = p2

2 = p2
3 = p2

4 = 0) and

that all internal propagators are massless. As usual we define the Mandelstam variables by

s = (p1 + p2)
2 , t = (p2 + p3)

2 . (6.80)

We set µ2 = t and x = s/t. There are eight master integral and we choose as basis

~I =




I001110000

I100100100

I011011000

I100111000

I111100100

I101110100

I111111100

I1111111(−1)0




. (6.81)

The calculations to determine the differential equation are again best carried out with the help of
a computer program and one finds A = Axdx with

Ax =


−D−3
x 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −D−4
x 0 0 0 0 0

0 0 0 −D−4
x 0 0 0 0

0
(3D−8)(3D−10)
2(D−4)x(1+x) 0 3D−10

2x(1+x)
2x−(D−6)

2x(1+x) 0 0 0

− (D−3)(3D−8)(3D−10)

(D−4)2x2(1+x)

(D−3)(3D−8)(3D−10)

(D−4)2x(1+x)
0 0 0

x−(D−4)
x(1+x) 0 0

3(D−3)(3D−8)(3D−10)

(D−4)2x3(1+x)

3(D−3)(3D−8)(3D−10)

(D−4)2x2(1+x)
0

3(D−3)(3D−10)
(D−4)x2(1+x)

6(D−3)
x(1+x) − 3(D−4)

x2
2
x

D−4
x(1+x)

Ax,81 Ax,82 Ax,83 Ax,84 Ax,85 Ax,86 Ax,87 Ax,88




.
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The entries in the eighth row are a little bit longer and we list them separately below:

Ax,81 =
3(D−3)(3D−8)(3D−10) [(3D−14)x+2(D−5)]

2(D−4)3 x3 (1+ x)
,

Ax,82 =
3(D−3)(3D−8)(3D−10) [(3D−14)x+2(2D−9)]

2(D−4)3 x2 (1+ x)
,

Ax,83 =
4(D−3)2

(D−4)x3
,

Ax,84 =
3(D−3)(3D−10) [(3D−14)x+2(2D−9)]

2(D−4)2 x2 (1+ x)
,

Ax,85 =
3(D−3)(3D−14)

[(D−4)x
,

Ax,86 = −3 [(3D−14)x+2(2D−9)]

2x2
,

Ax,87 = −D−4

x

Ax,88 = −(3D−16)x+4(D−5)

2x(1+ x)
. (6.82)

We will always order the master integrals such that master integrals which can be obtained

through pinching (and possibly symmetry relations) from other master integrals appear before

their parent integrals. The matrices Ax j have then always a lower block triangular structure, in-

duced by the sub-sectors. In eq. (6.16) we introduced the sector identification number Nid. In the

example of the double box integral we have master integrals from seven sectors:

Nid = 28, I001110000,

Nid = 73, I100100100,

Nid = 54, I011011000,

Nid = 57, I100111000,

Nid = 79, I111100100,

Nid = 93, I101110100,

Nid = 127, I111111100, I1111111(−1)0. (6.83)

The first six sectors have one master integral per sector, while the seventh sector (sector 127) has

two master integrals.
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Example 4

As fourth and final example let us consider the two-loop sunrise integral with equal internal

masses, shown in fig. 2.16:

Iν1ν2ν3
(D,x) = e2εγE

(
m2
)ν123−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2
(
−q2

3 +m2
)ν3

,

(6.84)

with x =−p2/m2 and q1 = k1, q2 = k2−k1, q3 =−k2− p. We have set µ2 = m2. There are three

master integrals and we choose the basis

~I =




I110

I111

I211


 . (6.85)

We obtain the differential equation

(d +A)~I = 0 (6.86)

with

A =




0 0 0

0 −(D−3) −3

0 1
6
(D−3)(3D−8) 1

2
(3D−8)


 dx

x

+




0 0 0

0 0 0

−1
4
−1

8
(D−3)(3D−8) −(D−3)


 dx

x+1

+




0 0 0

0 0 0
1
4
− 1

24
(D−3)(3D−8) −(D−3)


 dx

x+9
. (6.87)

The two-loop sunrise integral with equal non-vanishing internal masses is a Feynman integral

which cannot be expressed in terms of multiple polylogarithms. We will discuss this integral in

more detail in chapter 13.

6.3.2 The ε-form of the system of differential equations

In the previous section we have seen that we can always systematically obtain the differential

equation for a set of master integrals~I:

(d +A)~I = 0. (6.88)

A is a matrix-valued one-form, which we write as

A =
NB

∑
j=1

Ax jdx j. (6.89)



174 CHAPTER 6. ITERATED INTEGRALS

The (Nmaster×Nmaster)-matrices Ax j can be computed with the help eq. (6.46), integration-by-

parts identities and dimensional shift relations. In general, the entries of Ax j are rational functions

of x1, . . . ,xNB and D.

It will be convenient to exchange the D-dependence for a dependence on the dimensional

regularisation parameter ε. We fix an even integer Dint, giving us the dimension of space-time

we are interested in and set D = Dint−2ε. Our usual interest is Dint = 4, hence

D = 4−2ε, ε =
4−D

2
. (6.90)

The entries of Ax j are then rational functions of x and ε. In eq. (6.78) we have already seen an

example where the dependence on ε is rather simple: In eq. (6.78) the only dependence on ε is

through a prefactor ε. Furthermore, the dependence on the kinematic variables x1 and x2 has also

particular features: The one-forms ω1,ω2, . . . ,ω5 have only simple poles. Thirdly, the entries of

the (4×4)-matrices multiplying ε ·ω j are integer numbers.

We say that the set of master integrals~I satisfies a differential equation in ε-form [121] if the

following conditions are met:

ε-form of the differential equation:

The differential equation

(d +A)~I = 0. (6.91)

is in ε-form, if A is of the form

A = ε
NL

∑
j=1

C j ω j, (6.92)

where

1. C j is a (Nmaster×Nmaster)-matrix, whose entries are algebraic numbers,

2. the only dependence on ε is given by the explicit prefactor,

3. the only singularities of the differential one-forms ω j are simple poles,

4. the non-zero boundary constants have uniform weight zero.

We call the ω j’s letters and NL the number of letters.

The first requirement (the entries of the matrices C j are algebraic numbers) forbids transcen-

dental numbers like π2 as entries.

The fourth requirement is a condition on the boundary constants. This is best explained by an

example. Consider the one-loop tadpole integral, given by eq. (2.123). For µ2 = m2 this integral

does not depend on any kinematic variable and can be considered in the framework of differential
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equations as a pure boundary constant. We have

I = T1 (4−2ε) = eεγEΓ(−1+ ε)

= −1

ε
−1−

(
1− 1

2
ζ2

)
ε+

(
1

3
ζ3−

1

2
ζ2−1

)
ε2 +O

(
ε3
)
. (6.93)

We assign rational numbers and more generally any algebraic expression in the kinematic vari-

ables the weight zero, π the weight 1, zeta values ζn the weight n and the dimensional regu-

larisation parameter ε the weight (−1). The weight of a product is the sum of the weights of

its factors. We say that an expression, given as a sum of terms, is of uniform weight if every

term has the same weight. With these assignments the expression in eq. (6.93) is not of uniform

weight. However, if we consider instead of I the integral I′, defined by

I′ = εT2 (4−2ε) = εT1 (2−2ε) = eεγEΓ(1+ ε)

= 1+
1

2
ζ2ε2− 1

3
ζ3ε3 +

9

16
ζ4ε4−

(
1

5
ζ5 +

1

6
ζ2ζ3

)
ε5 +O

(
ε6
)
, (6.94)

we see that I′ is of uniform weight zero. A uniform weight zero implies that the coefficient of

the ε j-term in the ε-expansion has weight j.
The differential equation with A′ given by eq. (6.78) is in ε-form.

Digression. Poles and residues of differential forms

Let us digress and discuss poles and residues of differential forms. Let X be a complex manifold
of dimension n and ω a differential k-form. ω is closed, if

dω = 0. (6.95)

ω is exact, if there is a (k−1)-form η such that

ω = dη. (6.96)

The k-th de Rham cohomology group Hk
dR(X) is the set of equivalence classes of closed k-forms

modulo exact k-forms. The group law is the addition of k-forms.
We are in particular interested in holomorphic and meromorphic k-forms on X:

ω = ∑
I

ωI (x)dxI, dxI = dxi1 ∧dxi2 ∧· · ·∧dxik . (6.97)

ω is holomorphic if all the ωI(x) are holomorphic functions, ω is meromorphic if all the ωI(x)
are meromorphic functions. Note that ω in eq. (6.97) does not contain any antiholomorphic
differentials dx̄ j.

Let Y be a complex codimension one submanifold, defined locally by an equation

Y = {x ∈ X | f (x) = 0} , (6.98)

where f is meromorphic and d f 6= 0 on Y . (Don’t worry about the poles of f , Y is defined by
the zeros of f and as we are only interested in local properties, we are essentially saying that
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f is holomorphic in a neighbourhood of f (x) = 0.) The k-form ω has a pole of order r on the
manifold Y , if r is the smallest integer such that f r ·ω is holomorphic in a neighbourhood of Y .
Let us further assume that ω is closed. We may write ω as

ω =
d f

f r ∧ψ+θ, (6.99)

where the (k−1)-form ψ is holomorphic in a neighbourhood of Y , and the k-form θ has at most
a pole of order (r−1) on Y . We may reduce poles of order r > 1 to poles of order 1 and exact
forms due to the identity

d f

f r ∧ψ+θ = d

(
− ψ

(r−1) f r−1

)
+

dψ

(r−1) f r−1
+θ. (6.100)

Thus every form ω is equivalent up to an exact form to a form ω1 with at most a simple pole on
Y . For a form ω1 with at most a simple pole on Y

ω1 =
d f

f
∧ψ1 +θ1, (6.101)

we define the Leray residue [122] of ω1 along Y by

ResY (ω1) = ψ1|Y , (6.102)

where ψ1|Y denotes the restriction of ψ1 to Y . If ω1 is equivalent to ω up to an exact form we set

ResY (ω) = ResY (ω1) . (6.103)

Since we assumed ω to be closed and having a pole (of order r) along Y , the k-form ω defines a
class [ω] ∈Hk

dR(X\Y ). It can be shown that ResY (ω) is independent of the chosen representative
and the decomposition in eq. (6.99). Furthermore, ResY (ω) is again closed. Therefore the Leray
residue defines a map

ResY : Hk
dR (X\Y )→Hk−1

dR (Y ) . (6.104)

Multivariate (Leray) residues are defined as follows: Suppose we have two codimension one
sub-varieties Y1 and Y2 defined by f1 = 0 and f2 = 0, respectively. Again we may reduce higher
poles to simple poles modulo exact forms. Let us therefore consider

ω =
d f1

f1
∧ d f2

f2
∧ψ12 +

d f1

f1
∧ψ1 +

d f2

f2
∧ψ2 +θ, (6.105)

where ψ12 is regular on Y1∩Y2, ψ j is regular on Yj and θ is regular on Y1∪Y2. One sets

ResY1,Y2
(ω) = ψ12|Y1∩Y2

. (6.106)

Note that the residue is anti-symmetric with respect to the order of the hypersurfaces:

ResY2,Y1
(ω) = −ResY1,Y2

(ω) . (6.107)
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Multivariate residues for several codimension one sub-varieties Y1, ..., Ym are defined analo-
gously.

Exercise 49: Let X = C2 and

Y = {x ∈ X |x1 + x2 = 0} . (6.108)

Compute

ResY

(
x1x2

2dx1∧dx2

x1 + x2

)
. (6.109)

There is a second definition of the Leray residue: Let us first introduce the tubular neighbour-

hood of Y : These are all points in X, with distance to Y less or equal to a small quantity δ.
Let’s denote the boundary of this tubular neighbourhood by δY . As X has real dimension 2n,
and Y has real dimension (2n−2), δY has real dimension (2n−1). δY consists of all points in
X, which are a distance δ away from Y . By construction, δY does not intersect Y . Locally, we
may choose n complex coordinates (y1, . . . ,yn−1,z) on X such that (y1, . . . ,yn−1,0)∈Y . Then for
each point (y1, . . . ,yn−1,0) ∈ Y the points (y1, . . . ,yn−1,z) ∈ δY are the ones with

|z| = δ. (6.110)

This is a circle in the complex z-plane with radius δ. Mathematically we say that the boundary
δY of the tubular neighbourhood fibres over Y with fibre S1. We may then integrate for each
y ∈ Y the differential k-form ω over S1, yielding a (k−1)-form. This gives the second definition
of the Leray residue:

ResY (ω) =
1

2πi

∫

S1

ω|δY . (6.111)

The orientation of S1 is induced by the complex structure on X. Multivariate residues are then
defined iteratively.

The two definitions of Leray’s residue generalise two expressions for the ordinary residue
known from complex analysis: Let f (z) be meromorphic function of one complex variable with a
pole of order r at z0. We may give the residue of f (z) at z0 either as

res( f ,z0) =
1

(r−1)!

(
dr−1

dzr−1
[(z− z0)

r f (z)]

)∣∣∣∣
z=z0

(6.112)

or as

res ( f ,z0) =
1

2πi

∫

γ

f (z)dz, (6.113)
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where γ denotes a small circle around z0, oriented counter-clockwise. Eq. (6.112) corresponds
to the first definition, eq. (6.113) corresponds to the second definition.

A special case of the Leray residue is the Grothendieck residue, where we consider the n-
fold residue of a n-form. Let X be a complex manifold of dimension n as above and consider n
meromorphic functions f1, f2, . . . , fn, defining

Yj =
{

x ∈ X | f j (x) = 0
}
, 1 ≤ j ≤ n. (6.114)

Assume further that the system of equations

f1 (x) = f2 (x) = . . . fn (x) = 0 (6.115)

has as solutions a finite number of isolated points x( j) = (x( j)
1 , ...,x( j)

n ), where j labels the indi-
vidual solutions. Let us further consider a function g(x), regular at the solutions x( j). We now
consider a n-form of the form

ω =
g

f1 f2 . . . fn
dx1∧dx2∧· · ·∧dxn. (6.116)

We first continue to consider the situation locally. Let x( j) be one of the solutions of eq. (6.115).
We define the local residue or Grothendieck residue [123] of ω with respect to Y1, ..., Yn at x( j)

by

ResY1,...,Yn

(
ω,x( j)

)
=

1

(2πi)n

∮

Γδ

g(x) dx1∧ ...∧dxn

f1 (x) ... fn (x)
. (6.117)

The integration in eq. (6.117) is around a small n-torus

Γδ = { (x1, ...,xn) ∈ X | | fi (x)|= δ } , (6.118)

encircling x( j) with orientation

d arg f1∧d arg f2∧ ...∧d arg fn ≥ 0. (6.119)

In order to evaluate a local residue it is advantageous to perform a change of variables

x′i = fi (x) , i = 1, ...,n. (6.120)

Let us denote the Jacobian of this transformation by

J (x) =
1

det
(

∂( f1,..., fn)
∂(x1,...,xn)

) . (6.121)

The local residue at x( j) is then given by

ResY1,...,Yn

(
ω,x( j)

)
=

1

(2πi)n

∮

Γδ

g(x) dx1∧ ...∧dxn

f1 (x) ... fn (x)
= J

(
x( j)
)

g
(

x( j)
)
. (6.122)
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This also shows that the local residue at x( j) agrees with the Leray residue at x( j).
The global residue of ω with respect to f1, ..., fn is defined as

ResY1,...,Yn (ω) = ∑
solutions j

ResY1,...,Yn

(
ω,x( j)

)
, (6.123)

where the sum is over all solutions x( j) of eq. (6.115).
Eq. (6.123) defines the global residue of a n-form ω. As this n-form is given by the meromor-

phic function g and the n meromorphic functions f1, . . . , fn as in eq. (6.116), it will be convenient
to define the global residue of the function g by

resY1,...,Yn (g) = ResY1,...,Yn (ω) . (6.124)

6.3.3 Solution in terms of iterated integrals

In this section we solve a differential equation, which is in ε-form. We show that this can be done

systematically.

We fix an even integer Dint and set D = Dint− 2ε. The main application will be Dint = 4,

hence

D = 4−2ε, ε =
4−D

2
. (6.125)

The Feynman integrals Iν1...νnint
are then functions of ε and x. We are interested in the Laurent

expansion in ε:

Iν1...νnint
(ε,x) =

∞

∑
j= jmin

I( j)
ν1...νnint

(x) · ε j. (6.126)

We would like to determine the coefficients I( j)
ν1...νnint

(x). In applications towards perturbation

theory we usually need only the first few terms of this Laurent expansion. The method discussed

here is systematic and allows us to obtain as many terms of the Laurent expansion as desired.

Let~I be a vector of Nmaster master integrals.

~I =
(
Iννν1

, Iννν2
, . . . , IνννNmaster

)T
. (6.127)

We make the following assumptions:

1. The differential equation for~I is in ε-form:

(d +A)~I = 0, A = ε
NL

∑
j=1

C j ω j. (6.128)

2. All master integrals have a Taylor expansion in ε:

Iνννi (ε,x) =
∞

∑
j=0

I( j)
νννi

(x) · ε j. (6.129)



180 CHAPTER 6. ITERATED INTEGRALS

3. We know suitable boundary values for all master integrals.

Assumption 2 may seem at first sight rather restrictive, as it forbids any pole terms in ε. However,

it isn’t. It only means that we multiplied a Feynman integral with a sufficient high power of ε,

such that the Laurent expansion starts with the ε0-term or later. We have already seen an example

in eq. (6.73): The first three master integrals I0011, I0101 and I1010 are one-loop two-point function

with vanishing internal masses. They have been calculated in eq. (2.181). For example, the

Laurent expansion for I0101 starts as

I0101 =
1

ε
+(2−L)+

(
1

2
L2−2L− π2

12
+4

)
ε

+

(
−1

6
L3 +L2−4L− 7

3
ζ3−

π2

6
+

π2

12
L+8

)
ε2 +O

(
ε3
)
, (6.130)

with L = lnx1. This integral has a pole in ε. However, in going to the ε-form for the differential

equation we defined a new master integral I′0101 = ε(1−2ε) I0101. The Laurent expansion for

I′0101 starts as

I′0101 = 1−Lε+

(
1

2
L2− π2

12

)
ε2 +

(
−1

6
L3− 7

3
ζ3 +

π2

12
L

)
ε3 +O

(
ε4
)
. (6.131)

This expansion starts at ε0.

In order to present the solution of a differential equation in ε-form, we introduce iterated

integrals. Let us start with the general definition of an iterated integrals [124]: Let X be a

n-dimensional (complex) manifold and

γ : [a,b]→ X (6.132)

a path with start point xa = γ(a) and end point xb = γ(b). Suppose further that ω1, . . . ,ωr are

differential 1-forms on X . Let us write

f j (λ)dλ = γ∗ω j (6.133)

for the pull-backs to the interval [a,b]. If

ω j =
n

∑
k=1

ω jk (x)dxk, γ(λ) =




γ1 (λ)
γ2 (λ)

...

γn (λ)


 , (6.134)

the pull-back γ∗ω j is given by

γ∗ω j =
n

∑
k=1

ω jk (γ(λ))
dγk (λ)

dλ
dλ, (6.135)
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hence

f j (λ) =
n

∑
k=1

ω jk (γ(λ))
dγk (λ)

dλ
. (6.136)

Exercise 50: Let

ω = 3dx1 +(5+ x1)dx2 + x3dx3 (6.137)

and

γ : [0,1]→ C3, γ(λ) =




λ

λ2

1+λ


 . (6.138)

Compute
∫

γ

ω. (6.139)

For λ ∈ [a,b] the r-fold iterated integral of ω1, . . . ,ωr along the path γ is defined by

Iγ (ω1, . . . ,ωr;λ) =

λ∫

a

dλ1 f1 (λ1)

λ1∫

a

dλ2 f2 (λ2)· · ·
λr−1∫

a

dλr fr (λr) . (6.140)

We call r the depth of the iterated integral. We define the 0-fold iterated integral to be

Iγ (;λ) = 1. (6.141)

We then have the recursive structure

Iγ (ω1,ω2, . . . ,ωr;λ) =

λ∫

a

dλ1 f1 (λ1) Iγ (ω2, . . . ,ωr;λ1) . (6.142)

Digression. Basic properties of iterated integrals

Let γ1 : [a,b]→ X and γ2 : [a,b]→ X be two paths with γ1(b) = γ2(a). In this case we may form
a new path by gluing the endpoint of γ1 to the starting point of γ2. The combined path starts at
γ1(a) and ends at γ2(b). In detail we define the path γ2 ◦ γ1 : [a,b]→ X to be given by

(γ2 ◦ γ1)(λ) =

{
γ1 (2λ−a) for a≤ λ≤ 1

2
(a+b) ,

γ2 (2λ−b) for 1
2
(a+b)≤ λ≤ b.

For the iterated integral along the path γ2 ◦ γ1 we have

Iγ2◦γ1
(ω1, . . . ,ωr;λ) =

r

∑
j=0

Iγ2

(
ω1, . . . ,ω j;λ

)
Iγ1

(
ω j+1, . . . ,ωr;λ

)
. (6.143)
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γ1

γ2
xa

xb

Figure 6.3: Two paths γ1 and γ2 with the same starting point xa and the same end point xb.

For a path γ : [a,b]→ X we denote by γ−1 : [a,b]→ X the reverse path given by

γ−1 (λ) = γ(a+b−λ) . (6.144)

For the iterated integral along the path γ−1 we have

Iγ−1 (ω1, . . . ,ωr;b) = (−1)r Iγ (ωr, . . . ,ω1;b) . (6.145)

Exercise 51: Prove eq. (6.143) for the case r = 2, i.e. show

Iγ2◦γ1
(ω1,ω2;λ) = Iγ1

(ω1,ω2;λ)+ Iγ2
(ω1;λ) Iγ1

(ω2;λ)+ Iγ2
(ω1,ω2;λ) . (6.146)

Exercise 52: Prove eq. (6.145).

Let us discuss the path (in-) dependence of iterated integrals. We consider two paths γ1 : [a,b]→
X and γ2 : [a,b]→ X with the same starting point and the same end point

γ1(a) = γ2(a) = xa, γ1(b) = γ2(b) = xb, (6.147)

see fig. 6.3. We call two paths γ1 and γ2 homotopic if there is a continuous map φ : [a,b]× [0,1]→
X such that

φ(λ,0) = γ1(λ), φ(λ,1) = γ2(λ) (6.148)

and φ(a,κ)= xa, φ(b,κ)= xb for all κ∈ [0,1]. This defines an equivalence relation between paths
with the same starting point and the same end point. We would like to investigate the question
under which conditions iterated integrals depend only on the equivalence class of homotopic
paths and not on a specific representative within this equivalence class. We call such iterated
integrals homotopy functionals. In general, an individual iterated integral is not a homotopy
functional. This is easily seen as follows: Consider

ω1 = dx, ω2 = dy (6.149)
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and a family of paths (κ > 0)

γκ : [0,1]→ R2,

γκ (λ) = (λ,λκ) . (6.150)

γκ defines a family of homotopic paths with starting point γκ(0) = (0,0) and end point γκ(1) =
(1,1). Members of this family are indexed by κ. Let us consider

Iγκ (ω1,ω2;1) =

1∫

0

dλ1

λ1∫

0

κλκ−1
2 dλ2 =

1

κ+1
. (6.151)

The result depends on κ and Iγκ(ω1,ω2) is therefore not a homotopy functional.
Let’s consider an iterated integral of depth r

Iγ (ω1,ω2, . . . ,ωr;λ) . (6.152)

There is a one-to-one correspondence between ordered sequences of differential one-forms ω1,
ω2, . . . ,ωr and elements in the tensor algebra (Ω(X))⊗r (where Ω(X) denotes the space of dif-
ferential forms on X) of the form

ω1⊗ω2⊗·· ·⊗ωr. (6.153)

It is customary to denote the latter as

[ω1|ω2| . . . |ωr] = ω1⊗ω2⊗·· ·⊗ωr. (6.154)

This is called the bar construction. In the tensor algebra we define

d [ω1|ω2| . . . |ωr] =
r

∑
j=1

[
ω1| . . . |ω j−1|dω j|ω j+1| . . . |ωr

]

+
r−1

∑
j=1

[
ω1| . . . |ω j−1|ω j ∧ω j+1|ω j+2| . . . |ωr

]
. (6.155)

If all our ω’s are closed, this reduces to

d [ω1|ω2| . . . |ωr] =
r−1

∑
j=1

[
ω1| . . . |ω j−1|ω j ∧ω j+1|ω j+2| . . . |ωr

]
. (6.156)

Let us now consider a linear combination of iterated integrals of depth ≤ r with constant coeffi-
cients:

I =
r

∑
j=1

∑
i1,...,i j

ci1...i jIγ

(
ωi1 , . . . ,ωi j ;λ

)
(6.157)
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and the corresponding element in the tensor algebra

B =
r

∑
j=1

∑
i1,...,i j

ci1...i j

[
ωi1| . . . |ωi j

]
. (6.158)

I is a homotopy functional if and only if [124]

dB = 0. (6.159)

This is the sought-after criteria when a linear combination of iterated integrals is path indepen-
dent. We call any B satisfying eq. (6.159) an integrable word.

We are interested in differential one-form ω j, which have simple poles. It may happen that some

ω has a simple pole at the starting point of the integration path x = xa. In the special case where

γ∗ω =
dλ

λ
, (6.160)

e.g. the pull-back has just a simple pole and no regular part, we define the iterated integral by

Iγ (ω, ...,ω;λ) =
1

r!
lnr (λ) . (6.161)

In the case, where ω has a simple pole at x = xa and a regular part, we may always decompose ω
as

ω = L+ωreg, (6.162)

with γ∗L = dλ/λ and ωreg having no pole at x = xa. In general we define the iterated integral by

eq. (6.142) and eq. (6.161). We say that the iterated integral Iγ(ω1,ω2, ...,ωr;λ) has a trailing

zero, if the last differential one-form ωr has a simple pole at x = xa.

Let us discuss a specific class of iterated integrals: We take X = C with coordinate x and

ωmpl
(
z j
)

=
dx

x− z j
. (6.163)

In this example we treat z j as a (fixed) parameter. Let γ : [0,λ]→C be the line segment from zero

along the positive real axis to y ∈ R+, e.g. γ(0) = 0 and γ(λ) = y. Let us assume that none of the

z j’s lie on the path γ. We introduce a special notation for iterated integrals build from differential

one-forms as in eq. (6.163). We set

G(z1, . . . ,zr;y) = Iγ

(
ωmpl (z0) , . . . ,ω

mpl (zr) ;λ
)
. (6.164)

The functions G(z1, . . . ,zr;y) are called multiple polylogarithms. We discuss these functions in

detail in chapter 8. The general definition of iterated integrals translates in the case of multiple
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polylogarithms to

G(0, . . . ,0︸ ︷︷ ︸
r−times

;y) =
1

r!
lnr (y) ,

G(z1,z2 . . . ,zr;y) =

y∫

0

dy1

y1− z1
G(z2 . . . ,zr;y1) . (6.165)

Let us now return to the differential equation. According to eq. (6.129), each master integral has

a Taylor expansion in ε. It is convenient to write

~I (ε,x) =
∞

∑
j=0

~I( j) (x) · ε j. (6.166)

We plug eq. (6.166) into the differential equation (6.128)

(
d + ε

NL

∑
k=1

Ck ωk

)(
∞

∑
j=0

~I( j) (x) · ε j

)
= 0, (6.167)

and compare term-by-term in the ε-expansion. We obtain

d~I(0) (x) = 0,

d~I( j) (x) = −
NL

∑
k=1

ωk Ck~I
( j−1) (x) , j ≥ 1. (6.168)

This system can easily be solved: The first equation of eq. (6.168) states that ~I(0)(x) is a con-

stant, which is determined by the boundary condition. Knowing ~I( j−1)(x) we obtain ~I( j)(x) by

integration. The integration constant is again fixed by the boundary condition. The integration

can be done in the class of iterated integrals. Each integration increases the depth of the iterated

integrals by one. At order j we obtain iterated integrals of depth≤ j. The integrability condition

eq. (6.57) ensures that the result is a homotopy functional. Thus each

I( j)
νννi

, 1≤ i≤ Nmaster (6.169)

is a path-independent linear combination of iterated integrals. Recall that I( j)
νννi

denotes the ε j-term

of the i-th master integral. The individual iterated integrals appearing in I( j)
νννi

are in general not

path independent.

Let’s look at a simple example. We consider a system with Nmaster = 1 and NB = 1, e.g. one

function I(ε,x) depending on ε and one variable x. Let us assume that the function I(ε,x) satisfies

the differential equation

(d +A) I = 0, A = −ε
dx

x−1
(6.170)
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with the boundary condition I(ε,0) = 1. Then

I(x) = 1+ εG(1;x)+ ε2G(1,1;x)+ ε3G(1,1,1;x)+ ... (6.171)

Let us also discuss a non-trivial example. We consider the one-loop four point function in

eq. (6.67) with the basis of master integrals as in eq. (6.73). In this basis the differential equation

is in ε-form and given by eq. (6.74). In this example the Feynman integrals depend on two

variables x1 and x2. Let assume that we would like to integrate the differential equation from

the start point xa = (0,0) to the point of interest xb = (x1,x2). We can do this by first integrating

from (0,0) to (x1,0) along the x1-direction, and then from (x1,0) to (x1,x2) along the x2 direction.

Doing so, we find

I′1 = B(0)
1 +B(1)

1 ε+B(2)
1 ε2 +O

(
ε3
)
, (6.172)

I′2 = B(0)
2 +

[
B(1)

2 −B(0)
2 G(0;x1)

]
ε+
[
B(2)

2 −B(1)
2 G(0;x1)+B(0)

2 G(0,0;x1)
]

ε2 +O
(
ε3
)
,

I′3 = B(0)
3 +

[
B(1)

3 −B(0)
3 G(0;x2)

]
ε+
[
B(2)

3 −B(1)
3 G(0;x2)+B(0)

3 G(0,0;x2)
]

ε2 +O
(
ε3
)
,

I′4 = B(0)
4 +

[
B(1)

4 −B(0)
4 G(0;x1)−B(0)

4 G(0;x2)+
(

B(0)
4 −B(0)

3

)
G(1;x1)

+
(

B(0)
3 −B(0)

1

)
G(1;x2)+

(
B(0)

1 −B(0)
2 −B(0)

3 +B(0)
4

)
G(1− x1;x2)

]
ε+O

(
ε2
)
.

where the B( j)
i are integration constants. The O

(
ε2
)
-term of I′4 is already rather long, therefore

we stopped for I′4 at order O
(
ε1
)
. In order to fix the integration constants B( j)

i we have to know

the integrals at one specific kinematic point. This does not have to be the starting point xa = (0,0)
of the integration. For the case at hand it is convenient to choose the point xboundary = (1,1). The

first three master integrals I′1, I′2 and I′3 are given at this kinematic point by (see eq. (2.181))

I′1 = I′2 = I′3 = eεγE
Γ(1+ ε)Γ(1− ε)2

Γ(1−2ε)
= 1− π2

12
ε2 +O

(
ε3
)
, (6.173)

yielding

B(0)
1 = B(0)

2 = B(0)
3 = 1,

B(1)
1 = B(1)

2 = B(1)
3 = 0,

B(2)
1 = B(2)

2 = B(2)
3 = −1

2
ζ2, (6.174)

with ζ2 = π2/6.

Exercise 53: Show that I′4 is given at the kinematic point (x1,x2) = (1,1) by

I′4 = eεγE
Γ(1+ ε)Γ(1− ε)2

Γ(1−2ε)

(
1−

∞

∑
k=2

ζkεk

)
. (6.175)
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Hint: Use the trick from exercise 11 and the Mellin-Barnes technique.

From eq. (6.175) we deduce

B(0)
4 = 1, B(1)

4 = 0, B(2)
4 =

1

2
ζ2, (6.176)

and obtain as final result

I′1 = 1− 1

2
ζ2ε2 +O

(
ε3
)
, (6.177)

I′2 = 1−G(0;x1)ε+

[
G(0,0;x1)−

1

2
ζ2

]
ε2 +O

(
ε3
)
,

I′3 = 1−G(0;x2)ε+

[
G(0,0;x2)−

1

2
ζ2

]
ε2 +O

(
ε3
)
,

I′4 = 1− [G(0;x1)+G(0;x2)]ε+[G(0,0;x1)+G(0,0;x2)−G(1,0;x1)−G(1,0;x2)

+G(0;x1)G(0;x2)+
1

2
ζ2

]
ε2 +O

(
ε3
)
.

Up to order O(ε2) we may express alternatively the result in terms of logarithms and diloga-

rithms:

I′1 = 1− 1

2
ζ2ε2 +O

(
ε3
)
, (6.178)

I′2 = 1− ln(x1)ε+
1

2

[
ln2 (x1)−ζ2

]
ε2 +O

(
ε3
)
,

I′3 = 1− ln(x2)ε+
1

2

[
ln2 (x1)−ζ2

]
ε2 +O

(
ε3
)
,

I′4 = 1− [ln(x1)+ ln(x2)]ε+

[
−Li2 (x1)−Li2 (x2)+

1

2
ln2 (x1)+

1

2
ln2 (x2)+ ln(x1) ln(x2)

− ln(x1) ln(1− x1)− ln(x2) ln(1− x2)+
1

2
ζ2

]
ε2 +O

(
ε3
)
.

Exercise 54: Show the equivalence of the O(ε2)-term of I′4 between eq. (6.177) and eq. (6.178).

In practical applications our main interest is I4 = I1111 and not so much I′4 = 1/2 · ε2x1x2I1111.

Inverting this relation gives us

I1111 =
2

ε2

1

x1x2
I′4. (6.179)

We have calculated I′4 as a function of ε, x1 = s/p2
4 and x2 = t/p2

4. From the scaling relation of

eq. (2.144) we may reinstate the full dependence on ε, s, t, p2
4 and µ2:

I1111

(
ε,s, t, p2

4,µ
2
)

=
2

ε2

(−p2
4

µ2

)−2−ε
1

x1x2
I′4 (ε,x1,x2)

∣∣∣∣
x1=s/p2

4,x2=t/p2
4

. (6.180)
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One may check that this agrees with eq. (B.12) given in appendix B.

Let us make a few remarks: Firstly, instead of integrating from (0,0) to (x1,0) and from

there to (x1,x2), we could have used alternatively a path from (0,0) to (0,x2) and from there to

(x1,x2). This gives the same result. In general, we are free to choose any path we like, as long as

we don’t cross any branch cuts. In the present example there are no problems with branch cuts

for real values of x1 and x2 as long as

x1 > 0, x2 > 0, x1 + x2 < 1. (6.181)

Branch cuts originate from the singularities in the differential equation. In the present example

the singularities are determined by ω1 - ω5 (defined in eq. (6.77)) and located at

x1 = 0, x1 = 1, x2 = 0, x2 = 1, x1 + x2 = 1. (6.182)

We may integrate the differential equation beyond a singularity. In this case Feynman’s iδ-

prescription tells us which branch we have to choose.

As a second remark let us notice that the multiple polylogarithms in eq. (6.175) have trailing

zeros and that the coefficients of the ε-expansion of I′2, I′3 and I′4 diverge as a power of a logarithm

in the limit x1→ 0 or x2→ 0. This may happen and there is nothing wrong with it. This was the

reason why we didn’t use (x1,x2) = (0,0) as the kinematic point to fix the integration constants.

Let’s see what happens, if we set x1 = x2 = 0 from the start and calculate these integrals within

dimensional regularisation. We denote these integrals, where we set x1 = x2 = 0 from the start

by Ĩ′2, Ĩ′3 and Ĩ′4. The first two are scaleless integrals and hence equal to zero within dimensional

regularisation (see eq. (2.137)). Also Ĩ′4 is zero due to the explicit prefactor x1x2. Thus

Ĩ′2 = 0,

Ĩ′3 = 0,

Ĩ′4 = 0. (6.183)

This seems puzzling, as eq. (6.183) is quite different from eq. (6.177). To analyse the situation,

let’s consider I′2. For x1 > 0 and ε < 0 the integral I′2 is unambiguously given by

I′2 = eεγE
Γ(1+ ε)Γ(1− ε)2

Γ(1−2ε)
x−ε

1 . (6.184)

If we first expand in ε and then take the limit x1 → 0, we find that the coefficients of the ε-

expansion are given by eq. (6.177) and that they diverge as a power of a logarithm in this limit. If

on the other hand we first take the limit x1→ 0 and then expand in ε, we recover eq. (6.183). (In

our particular example, we already obtain zero after taking the limit x1→ 0, so for the expansion

in ε there is nothing left to expand.) In other words, the expansion in ε does not commute with

the limit x1→ 0. In a nutshell, we have

lim
x→0+

lim
ε→0−

x−ε = lim
x→0+

1 = 1,

lim
ε→0−

lim
x→0+

x−ε = lim
ε→0−

0 = 0. (6.185)
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6.4 Fibre bundles

We have seen that with the help of integration-by-parts identities we may express any Feyn-

man integral Iν1...νnint
as a linear combination of Nmaster master integrals Iννν1

, Iννν2
, . . . , IνννNmaster

.

We may view the master integrals as a basis of a Nmaster-dimensional vector space. The mas-

ter integrals depend on the dimensional regularisation parameter ε and NB kinematic variables

x = (x1, . . .xNB). Let us now focus on the dependence on x. For the moment we treat ε as a (fixed)

parameter. For every value of x we have a separate vector space spanned by Iννν1
(x), . . . , IνννNmaster

(x)
The master integrals satisfy a differential equation

(d +A)~I (x) = 0, (6.186)

where~I(x) = (Iννν1
(x), . . . , IνννNmaster

(x))T .

In mathematical terms we are looking at a vector bundle of rank Nmaster over a base space

parametrised by the coordinates x. The vector bundle is equipped with a flat connection defined

locally by the matrix-valued one form A. In section 6.4.1 we introduce these terms.

We also know by now that the computation of Feynman integrals reduces to the task of finding

appropriate transformations, which bring the differential equation for the master integrals into a

ε-form. The mathematical reformulation gives us a clear picture what type of transformation we

should consider: These are transformations, which correspond to a basis change in the fibre or

transformations, which correspond to a coordinate transformation on the base manifold. These

are discussed in section 6.4.3 and section 6.4.4, respectively.

6.4.1 Mathematical background

Let us introduce the required terminology for fibre bundles. We give a concise summary with

the essential definitions. For a more detailed introduction into this topic for a readership with a

physics background we refer to the books by Nakahara [125] and Isham [126].

We start with the definition of a manifold. Let M be a topological space. The basics of topology

are summarised in appendix G.1.

An open chart on M is a pair (U,ϕ), where U is an open subset of M and ϕ is a homeomorphism

of U onto an open subset of Rn.

A differentiable manifold of dimension n is a Hausdorff space with a collection of open charts

(Uα,ϕα)α∈A such that

M1:

M =
⋃

α∈A

Uα. (6.187)

M2: For each pair α,β ∈ A the mapping ϕβ ◦ ϕ−1
α is an infinitely differentiable mapping of

ϕα

(
Uα∩Uβ

)
onto ϕβ

(
Uα∩Uβ

)
.
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A differentiable manifold is also often denoted as a C∞ manifold. As we will only be concerned

with differentiable manifolds, we will often omit the word “differentiable” and just speak about

manifolds.

The collection of open charts (Uα,ϕα)α∈A is called an atlas.

If p ∈Uα and

ϕα(p) = (x1(p), ...,xn(p)) , (6.188)

the set Uα is called the coordinate neighbourhood of p and the numbers xi(p) are called the

local coordinates of p.

Note that in each coordinate neighbourhood M looks like an open subset of Rn. But note that we

do not require that M be Rn globally.

The definition of a complex manifold requires only small modifications:

• An open chart of a complex manifold M is a pair (U,ϕ), where U is an open subset of M
and ϕ is a homeomorphism of U onto an open subset of Cn (which we may also view as

an open subset of R2n, so the real dimension of any complex manifold is even).

• Axiom (M2) in the definition above is modified as follows: We require that for each pair

α,β ∈ A the mapping ϕβ ◦ϕ−1
α : ϕα

(
Uα∩Uβ

)
→ ϕβ

(
Uα∩Uβ

)
is holomorphic.

Let us now turn to fibre bundles. A differentiable fibre bundle (E,M,F,π,G) (or simply fibre

bundle for short) consists of the following elements:

• A differentiable manifold E called the total space.

• A differentiable manifold M called the base space.

• A differentiable manifold F called the fibre.

• A surjection π : E → M called the projection. The inverse image π−1(p) = Fp is called

the fibre at p.

• A Lie group G called the structure group, which acts on F from the left.

We require that

F1: there is a set of open coverings {Ui} of M with diffeomorphisms φi : Ui×F→ π−1(Ui) such

that πφi(p, f ) = p. The map φi is called the local trivialisation, since φ−1
i maps π−1(Ui)

onto the direct product Ui×F ,

F2: if we write φi(p, f ) = φi,p( f ), the map φi,p : F → Fp is a diffeomorphism. On Ui∩U j 6= /0

we require that ti j(p) = φ−1
i,p φ j,p : F → F be an element of G, satisfying the consistency

conditions tii = id, ti j = t−1
ji , ti jt jk = tik. The {ti j} are called the transition functions.
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A local section of a fibre bundle E
π→M over U ⊂M is a smooth map σ : U→ E, which satisfies

πσ = idM. A global section of a fibre bundle E
π→M is a smooth map σ : M→ E, which satisfies

πσ = idM. The space of local sections and global sections is denoted by Γ(U,E) and Γ(M,E),
respectively.

Two important special cases of fibre bundles are vector bundles and principal bundles:

A principal bundle is a fibre bundle, whose fibre is identical with the structure group G. A

principal bundle is also often called a G-bundle over M and denoted P(M,G). P denotes the total

space.

A vector bundle is a fibre bundle, whose fibre is a vector space. The dimension r of the fi-

bre F is called the rank of the vector bundle. A vector bundle of rank 1 is called a line bundle.

A complex vector bundle of rank r is a vector space, where the fibre is Cr. Examples of vector

bundles are the tangent bundle T M and the cotangent bundle T ∗M. For the tangent bundle the

fibre at the point p ∈M is the vector space of all tangent vectors to M at p. Similar, the fibre of

the cotangent bundle at the point p ∈M is the vector space of all cotangent vectors at p.

A frame of a rank r vector bundle over U ⊂ M is an ordered set of local sections σ j : U → E
with 1≤ j ≤ r, such that σ1(p),σ2(p), . . . ,σr(p) is a basis of Fp for any p ∈U .

Let E and M be complex manifolds and π : E → M be a holomorphic surjection. E is a holo-

morphic vector bundle of rank r if the typical fibre is Cr, the structure group is G = GLr(C)
and

H1: the local trivialisation φi : Ui×Cr→ π−1(Ui) is a biholomorphism,

H2: the transition functions ti j : Ui∩U j→G = GLr(C) are holomorphic maps.

Let us now turn to connections. We start from a principal bundle P(M,G). Let u be a point in

the total space P and let Gp be the fibre at p = π(u). The vertical subspace VuP is a subspace of

the tangent space TuP, which is tangent to Gp at u. The vertical subspace VuP is isomorphic as

a vector space to the Lie algebra g of G. There is a right action of an element g ∈ G on a point

u ∈ P. Within a local trivialisation a point u in the total space is given by u = (x,g′) and the right

action by g is given by ug = (x,g′g). The right action by g maps the point u to another point ug
on the same fibre.

A connection on P(M,G) is a unique separation of the tangent space TuP into the vertical sub-

space VuP and a horizontal subspace HuP such that

C1: TuP = HuP⊕VuP

C2: a smooth vector field X on P(M,G) is separated into smooth vector fields XH ∈ HuP and

XV ∈VuP as X = XH +XV .
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C3: Let g ∈G. The horizontal subspaces HuP and HugP on the same fibre are related by a linear

map Rg∗ induced by the right action of g : HugP = Rg∗HuP. Accordingly a subspace HuP
at u generates all the horizontal subspaces on the same fibre.

A connection one-form ω∈ g⊗T ∗P, which takes values in the Lie algebra g of G, is a projection

of TuP onto the vertical component VuP ∼= g, compatible with axiom (C3) above. In detail we

require that for X ∈ TuP

CF1: ω(X) ∈ g,

CF2: ωug(Rg∗X) = g−1ωu(X)g, where Rg∗X denotes the push-forward of the tangent vector X
at the point u to the point ug by the right action of g.

The horizontal subspace HuP is defined to be the kernel of ω. Condition (CF2) may be stated

equivalently as R∗gω = Adg−1ω, with R∗gωug(X) = ωug(Rg∗X) and Adg−1ω(X) = g−1ωu(X)g we

recover (CF2).

Let U ⊂ M be an open subset of M and s : U → P a local section. We denote by A the

pull-back of ω to M:

A = s∗ω. (6.189)

Let us now consider two sections σ1 and σ2, with associated pull-backs A1 and A2. We can

always relate the two sections σ1 and σ2 by

σ1(x) = σ2(x)g(x), (6.190)

where g(x) is a x-dependent element of the Lie group G. Then we obtain for the pull-backs A1

and A2 of the connection one-form the relation

A2 = gA1g−1 +gdg−1. (6.191)

In the sequel of the book we will use the notation g(x) =U(x). Eq. (6.192) reads then

A2 = UA1U−1 +UdU−1. (6.192)

Readers familiar with gauge theories in physics will recognise that eq. (6.192) is nothing else

than a gauge transformation.

Exercise 55: Derive eq. (6.192) from eq. (6.190).

Hint: Recall that the action of the pull-back A2 on a tangent vector is defined as the action of the orig-
inal form ω on the push-forward of the tangent vector. Recall further that a tangent vector at a point x
can be given as a tangent vector to a curve through x. It is sufficient to show that the actions of A2 and
UA1U−1 +UdU−1 on an arbitrary tangent vector give the same result. In order to prove the claim you
will need in addition the defining relations for the connection one-form ω, given in (CF1) and (CF2).
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Given a principal bundle P(M,G) and a r-dimensional vector space F , on which G acts on the left

through a r-dimensional representation ρ, we may always construct the associated vector bundle

(E,M,F,π,G). The total space E is given by (P×F)/G, where points (u,v) and (u,ρ(g−1)v) are

identified. The projection π in the associated vector bundle E is given by π(u,v) = πP(u), where

πP denotes the projection of the principal bundle P. The transition functions of E are given by

ρ(ti j), where ti j denote the transition functions of P.

Conversely, a rank r vector bundle with fibre Rr or Cr induces a principal bundle with struc-

ture group GLr(R) or GLr(C), respectively. The transition functions of the induced principal

bundle are the ones of the vector bundle, and this defines the principal bundle. (In general, the

minimal information required to define a fibre bundle are M, F , G, a set of open coverings {Ui}
and the transition functions ti j.)

We continue to work in a local chart (U,ϕ). The local connection one-form A defines the

covariant derivative

DA = d +A. (6.193)

If A is a g-valued p-form and B is a g-valued q-form, the commutator of the two is defined by

[A,B] = A∧B− (−1)pqB∧A, (6.194)

the factor (−1)pq takes into account that we have to permute p differentials dxi from A past q
differentials dx j from B. If A and B are both one-forms we have

[A,B] = A∧B+B∧A =
[
Ai,B j

]
dxi∧dx j. (6.195)

In particular

A∧A =
1

2
[A,A] =

1

2

[
Ai,A j

]
dxi∧dx j. (6.196)

We define the curvature two-form of the fibre bundle by

F = DAA = dA+A∧A = dA+
1

2
[A,A] . (6.197)

The fibre bundle is flat (or pure gauge) if

F = 0. (6.198)

6.4.2 Fibre bundles in physics

Gauge theories

Let us now see where fibre bundles occur in physics. Our first example is a gauge theory with

a real scalar particle in the fundamental representation of a gauge group G. We denote the
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generators of the gauge group by T a and the coupling by g. Let us further denote by r the

dimension of the fundamental representation of G. The Lagrange density reads

L =
1

2

(
Dµ, jkφk(x)

)†
(

Dµ
jlφl(x)

)
− 1

4
Fa

µν(x)F
aµν(x) (6.199)

where the covariant derivative Dµ, jk and the field strength Fa
µν are given by

Dµ, jk = δ jk∂µ− igT a
jkAa

µ(x),

Fa
µν(x) = ∂µAa

ν(x)−∂νAa
µ(x)+g f abcAb

µ(x)A
c
ν. (6.200)

There are two fibre bundles here: a principal bundle and a vector bundle. In both cases the base

space M is given by flat Minkowski space. For simplicity let’s assume that we are not interested

in topologically non-trivial configurations (like instantons), therefore a trivial fibre bundle and a

global section are fine for us. The discussion below can easily be extended to the general case

by introducing an atlas of coordinate patches and local sections glued together in the appropriate

way. The gauge field Aa
µ defines a local connection one-form by

A = Aµ dxµ =
g

i
T aAa

µ dxµ, Aµ =
g

i
T aAa

µ. (6.201)

Let’s see what the curvature of the connection is: We have

dA = d (Aνdxν) = ∂µAνdxµ∧dxν =
1

2

(
∂µAν−∂νAµ

)
dxµ∧dxν,

A∧A = Aµdxµ∧Aνdxν =
1

2

(
AµAν−AνAµ

)
dxµ∧dxν =

1

2

[
Aµ,Aν

]
dxµ∧dxν, (6.202)

and therefore

F =
1

2

(
∂µAν−∂νAµ +

[
Aµ,Aν

])
dxµ∧dxν =

1

2
Fµνdxµ∧dxν. (6.203)

With the notation

Fµν =
g

i
T aFa

µν (6.204)

we have

F =
1

2
Fµνdxµ∧dxν =

1

2

g

i
T aFa

µνdxµ∧dxν, (6.205)

and Fa
µν is given by eq. (6.200). Thus we see that a gauge field is equivalent to the pull-back of

the connection one-form of a principal bundle.

The real scalar field φk(x) (with 1≤ k ≤ r) we may view as a section in a vector bundle with

fibre Rr.
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Feynman integrals

Our main interest are Feynman integrals. In section 2.5.1 we discussed the variables on which

a Feynman integral Iν1...νnint
depends. These were the dimension of space-time D (or alterna-

tively the dimensional regularisation parameter ε) and NB +1 dimensionless kinematic variables

x1, . . . ,xNB+1 of the form

−pi · p j

µ2
or

m2
i

µ2
. (6.206)

Due to the scaling relation in eq. (2.144) we may set without loss of information one kinematic

variable to one, leaving NB non-trivial kinematic variables. That’s the way we usually approach

the problem from the physics side: We prefer dimensionless quantities and the arbitrary scale µ
can be related to the renormalisation scale introduced in eq. (4.64).

If we approach the problem from the mathematical side we may view the situation as a

complex vector bundle over a base space, which is parametrised by the kinematic variables x. As

we are mainly interested in the local properties and not the global properties, we may view the

base space as an open subset U of CPNB . The open subset U is defined by the requirement that

the master integrals are single-valued and non-degenerate on U . To get there let’s go one step

back to eq. (2.138) and start from NB +1 dimensionfull variables X1, . . . ,XNB+1 of the form

−pi · p j or m2
i (6.207)

of mass dimension 2 and an arbitrary scale µ2, again of mass dimension 2. Assume that one

particular variable X j is not equal to zero. Let us now make the choice µ2 = X j. Again, no

information is lost: µ2 enters only as a trivial prefactor in eq. (2.138), and once we know the

integral for one particular choice of µ2, we recover the integral for any other choice of µ2 from

a scaling relation derived from eq. (2.138). Once we made the choice µ2 = X j, our integral

depends on D (or ε) and X1, . . . ,XNB+1. The dependence on D (or ε) will play no further role in

the discussion below and we focus on the dependence on the variables X1, . . . ,XNB+1. If we scale

all variables X1, . . . ,XNB+1 by a factor λ we now have

Ichart j
ν1...νnint

(λX1, . . . ,λXNB+1) = Ichart j
ν1...νnint

(X1, . . . ,XNB+1) . (6.208)

The superscript chart j indicates that we assumed X j 6= 0 and made the choice µ2 = X j. Thus the

Feynman integral Ichart j
ν1...νnint

is invariant under a simultaneous scaling of all variables X1, . . . ,XNB+1

and defines therefore a (in general multi-valued) function on the chart X j 6= 0 of CPNB . We have

Ichart j
ν1...νnint

(
X1, . . . ,X j−1,X j,X j+1, . . . ,XNB+1

)
= Ichart j

ν1...νnint

(
x1, . . . ,x j−1,1,x j+1, . . . ,xNB+1

)

(6.209)

with xi = Xi/X j. Since we made the choice µ2 = X j we have xi = Xi/µ2. This shows the equiva-

lence of this approach with the previous one and with the implicit assumption that in the previous

approach we always set xNB+1 to one we have

Iν1...νnint
(x1, . . . ,xNB) = Ichart NB+1

ν1...νnint
(x1, . . . ,xNB ,1) . (6.210)
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We may take

[X1 : X2 : · · · : XNB+1] (6.211)

as homogeneous coordinates on CPNB . Feynman integrals are in general multivalued function of

the kinematic variables. A simple toy example follows directly from eq. (6.184)

Ichart 2 (X1,X2) =

(
X1

X2

)−ε

, I (x1) = Ichart 2 (x1,1) = x−ε
1 , (6.212)

where we ignored an x-independent prefactor not relevant to the discussion here. Ichart 2(X1,X2)
clearly satisfies eq. (6.208) and defines a multi-valued function on CP1. The multi-valuedness

arises as follows: Consider the chart X2 = 1 of CP1 with coordinate x1. If we go anti-clockwise

around the origin x1 = 0, I(x1) changes by a multiplicative prefactor

e−2πiε, (6.213)

which follows from

x−ε
1 = e−ε lnx1 (6.214)

and the multi-valuedness of the logarithm. In order to get a single-valued function we restrict to

an open subset, where we choose a branch of the logarithm which allows us to view I(x1) as a

single-valued function. In this example we may choose the open subset as

U2 = { x1 ∈ C | x1 /∈ R≤0 } . (6.215)

Let us now return to the general case. Let U be an open subset of CPNB , where the Feynman

integrals are single-valued and where the master integrals are non-degenerate. We set U j to be

the intersection of U with the set of points of CPNB for which X j 6= 0:

U j = U ∩
{
[X1 : · · · : XNB+1] ∈ CPNB | X j 6= 0

}
. (6.216)

Eq. (6.209) defines then Ichart j
ν1...νnint

as a single-valued function on U j. An analogous definition

applies to Ichart i
ν1...νnint

for Ui. Let us now assume Xi 6= 0, X j 6= 0 and Ui∩U j 6= 0. We have

Ichart i
ν1...νnint

(
X1, . . . ,Xi, . . . ,X j, . . . ,XNB+1

)
=

(
Xi

X j

)ν− lD
2

Ichart j
ν1...νnint

(
X1, . . . ,Xi, . . . ,X j, . . . ,XNB+1

)
.

(6.217)

For the transition function we have

ti j =

(
Xi

X j

)ν− lD
2

. (6.218)
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Thus an individual Feynman integral Iν1...νnint
defines a complex line bundle over U . A set of

Nmaster master integrals defines a complex vector bundle of rank Nmaster over U .

On U each master integral Iννν1
, . . . , IνννNmaster

defines a local section. It may happen that for

specific values of x some master integrals degenerate and become linearly dependent.

An example is given by the one-loop two-point function with two unequal internal masses.

For m2
1 6= m2

2 we have three master integrals, which may be taken as I11, I10 and I01. For m2
1 = m2

2

the two master integrals I10 and I01 degenerate and are equal to each other (see the discussion in

section 6.1). For m2
1 = m2

2 we only have two master integrals, which may be taken as I11 and I10.

We say that the set of master integrals are ramified at a point x if the set of master integrals is

linearly dependent for the value x. We excluded those points from the definition of U . Thus, the

set of all master integrals defines a frame on U . This says that on U the Nmaster master integrals

are linearly independent. The vector bundle is equipped with a connection. The local connec-

tion one-form is given by the matrix-valued one-form A appearing in the differential equation

eq. (6.58).

Usually our primary interest is not the global structure, but only a single chart, which we

may take as UNB+1. The reason is the following: The chart UNB+1 covers all cases except the

ones with XNB+1 = 0. The case XNB+1 = 0 has one kinematic variable less and can be considered

as simpler. With these remarks we take in the sequel the base space M to be UNB+1. UNB+1 is

homeomorphic to an open subset of CNB .

In a mathematical language we are considering a local system on UNB+1 with the correspond-

ing Gauß-Manin connection given by ∇ = d +A.

Digression. Local systems and the Gauß-Manin connection

Let M be a topological space. By a local system one understands either:

1. a vector bundle π : E→M with parallel transport, i.e. for each homotopy class of paths in
M there is a vector space isomorphism between the fibres. The vector space isomorphisms
are compatible with the composition of paths.

2. if M is a differentiable manifold, a vector bundle π : E → M with a flat connection ∇ =
d +A. The connection is flat if dA+A∧A = 0. ∇ is called the Gauß-Manin connection.

3. a locally constant sheaf of vector spaces on M. (Appendix G gives a definition of sheaves.)

The three definitions are equivalent (of course, for definition 2 we have to assume that M is
differentiable).

6.4.3 Fibre transformations

We have learned that in Feynman integral computations we are considering a vector bundle over a

base space M, which is parametrised by the kinematic variables x1, . . . ,xNB . The master integrals

Iννν1
(x), . . . , IνννNmaster

(x) can be viewed as local sections, and for each x they define a basis of the



198 CHAPTER 6. ITERATED INTEGRALS

vector space in the fibre. The master integrals~I = (Iννν1
, Iννν2

, . . . , IνννNmaster
)T satisfy the differential

equation

(d +A)~I = 0. (6.219)

The matrix-valued one-form A gives the local connection one-form. The integrability condition

in eq. (6.57) says that the connection is flat:

dA+A∧A = 0. (6.220)

Let us now turn back to more practical questions: We would like to transform a given differential

equation (not necessarily in ε-form) to the ε-form. In order to achieve this goal, we first have to

understand what transformations can be done. The first transformation, which we discuss in this

section, is a change of the master integrals. This amounts to changing the sections and the frame

of the vector bundle. We consider the transformation

~I′ (ε,x) = U (ε,x)~I (ε,x) , (6.221)

where U(ε,x) is an invertible (Nmaster×Nmaster)-matrix, which may depend on ε and x. Let’s

work out the differential equation satisfies by the new master integrals. We have

~I = U−1~I′ (6.222)

and

d~I = d
(

U−1~I′
)

= U−1d~I′+
(
dU−1

)
~I′. (6.223)

Thus

d~I′ = Ud~I−
(
UdU−1

)
~I′ = −UA~I−

(
UdU−1

)
~I′ = −

(
UAU−1+UdU−1

)
~I′. (6.224)

In summary we have

Fibre transformation:

Let~I = (Iννν1
, . . . , IνννNmaster

)T be a set of master integrals satisfying the differential equation

(d +A)~I = 0. (6.225)

If we change the master integrals according to

~I′ = U~I, (6.226)

where U is an invertible (Nmaster×Nmaster)-matrix, which may depend on ε and x, the new

master integrals satisfy the differential equation

(
d +A′

)
~I′ = 0, (6.227)

where A′ is related to A by

A′ = UAU−1+UdU−1. (6.228)
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We have already seen in example 2 in section 6.3.1 that a suitable fibre transformation may

bring the differential equation into an ε-form. Eq. (6.73) may also be written as

~I′ = U~I, (6.229)

with

U (ε,x1,x2) =




ε(1−2ε) 0 0 0

0 ε(1−2ε) 0 0

0 0 ε(1−2ε) 0

0 0 0 1
2
ε2x1x2


 . (6.230)

Let us also consider example 3 from section 6.3.1. This is the family of the two-loop double box

integral with eight master integrals, given by eq. (6.81). We consider the transformation

~I′ = U~I, (6.231)

where the (8×8)-matrix U is given by

U (ε,x) = (6.232)


g1(ε)
x 0 0 0 0 0 0 0

0 g1 (ε) 0 0 0 0 0 0

0 0 ε2 (1−2ε)2 0 0 0 0 0

0 0 0 g2 (ε) 0 0 0 0

0 0 0 g2 (ε) 6ε3 (1−2ε)x 0 0 0

0 0 0 0 0 3ε4 (1+ x) 0 0

0 0 0 0 0 0 ε4x2 0

−g1 (ε) −g1 (ε)x 0 g2 (ε)x 6ε3 (1−2ε)x2 6ε4x(1+ x) 0 2ε4x2




,

with

g1 (ε) = −3ε(1−2ε)(1−3ε)(2−3ε) ,

g2 (ε) = −3ε2 (1−2ε)(1−3ε) . (6.233)

This transforms the differential equation into ε-form. We have

A′ = ε

(
C0

dx

x
+C−1

dx

x+1

)
, (6.234)

with

C0 =




2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 1 1 0 0 0

1 −1 0 0 0 2 0 0

0 0 0 0 0 0 0 −1

0 0 −4 0 0 0 4 4




, C−1 =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 2 0 −1 −1 0 0 0

0 0 0 0 0 −2 0 0

−2 −2 0 0 2 4 0 1

2 −2 0 2 0 4 0 −1




.
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As our last example let’s consider example 1 from section 6.3.1. This is the family of the

one-loop two-point function with equal internal masses. You might be tempted to consider this

example to be the easiest example among the three examples discussed in section 6.3.1, but we

will soon see that this example requires an additional transformation not discussed so far. We

start from the master integrals~I = (I10, I11)
T and the differential equation (see eq. (6.66))

(d +A)~I = 0, A =

(
0 0

1−ε
2x − 1−ε

2(x+4)
1
2x − 1−2ε

2(x+4)

)
dx. (6.235)

Let’s first see if we can transform the differential equation by a fibre transformation such that

ε only appears as a prefactor. You are welcomed to play around and to convince yourself that

there is no transformation rational in x and ε, which achieves that. However, if we allow the

transformation to be algebraic, we may achieve this goal. Let’s consider the transformation

~I′ = U~I, U =

(
2ε(1− ε) 0

2ε(1− ε)
√

x
4+x 2ε(1−2ε)

√
x

4+x

)
. (6.236)

For the transformed system we find

(
d +A′

)
~I′ = 0, A′ = ε

(
0 0

− dx√
x(4+x)

dx
4+x

)
. (6.237)

We have achieved that ε only appears as a prefactor, however the condition that the only singu-

larities are simple poles is not met: The differential one-form

dx√
x(4+ x)

(6.238)

has square root singularities at x = 0 and x = −4. In the next section we will learn how to

transform these away. As a side remark let us note that we may force eq. (6.238) into a dlog-

form:

dx√
x(4+ x)

= d ln
(

2+ x+
√

x(4+ x)
)
. (6.239)

We see that in this case the argument of the logarithm is no longer a polynomial, but an algebraic

function of x.

6.4.4 Base transformations

In this section we consider coordinate transformation on the base manifold. Whereas the fibre

transformations discussed in the previous section are like gauge transformation in gauge theories,

the coordinate transformations on the base manifold discussed in this section are like coordinate

transformation in general relativity.
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On the base manifold M we perform a change of coordinates: We go from old coordinates

x1, . . . ,xNB to new coordinates x′1, . . . ,x
′
NB

. Let’s assume that the new coordinates are given in

terms of the old coordinates as

x′i = fi (x) , 1≤ i≤ NB. (6.240)

If the matrix-valued differential one-form is written in terms of the old coordinates as

A =
NB

∑
i=1

Aidxi, (6.241)

and in terms of the new coordinates as

A =
NB

∑
i=1

A′idx′i, (6.242)

then A′i and A j are related by

A′i =
NB

∑
j

A j
∂x j

∂x′i
. (6.243)

Base transformation:

Let~I = (Iννν1
, . . . , IνννNmaster

)T be a set of master integrals satisfying the differential equation

(d +A)~I = 0, A =
NB

∑
i=1

Aidxi, (6.244)

If we change the coordinates on the base manifold M according to

x′i = fi (x) , 1≤ i≤ NB, (6.245)

and write A in terms of the new coordinates as

A =
NB

∑
i=1

A′idx′i, (6.246)

then A′i and A j are related by

A′i =
NB

∑
j

A j
∂x j

∂x′i
. (6.247)

Let see how this works in an example: We continue with example 1 from section 6.3.1. In

the basis~I′ we had

(
d +A′

)
~I′ = 0, A′ = ε

(
0 0

− dx√
x(4+x)

dx
4+x

)
. (6.248)
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Let’s define x′ by

x =
(1− x′)2

x′
. (6.249)

The inverse relation reads

x′ =
1

2

(
2+ x−

√
x(4+ x)

)
, (6.250)

where we made a choice for the sign of the square root. We have

∂x

∂x′
= −

(
1− x′2

)

x′2
(6.251)

and

dx√
x(4+ x)

= −dx′

x′
,

dx

4+ x
=

2dx′

x′+1
− dx′

x′
. (6.252)

Thus in term of the new variable x′ we have

A′ = ε

(
0 0

dx′
x′

2dx′
x′+1
− dx′

x′

)
. (6.253)

The differential equation is now in ε-form: The dimensional regularisation parameter occurs only

as a prefactor and the only singularities of A′ are simple poles. For the case at hand, A′ has simple

poles at x′ = 0 and x′ =−1.

6.5 Cuts of Feynman integrals

Up to now we focused entirely on Feynman integrals, given in the momentum representation by

Iν1...νnint
(D,x1, . . . ,xNB) = elεγE

(
µ2
)ν− lD

2

∫ l

∏
r=1

dDkr

iπ
D
2

nint

∏
j=1

1(
−q2

j +m2
j

)ν j
. (6.254)

The integration contour is along the real axes with deformations into the complex domain dictated

by Feynman’s iδ-prescription. The Baikov representation of the Feynman integral reads

Iν1...νn (D,x1, . . . ,xNB) = Cpre

∫

C

dNV z [B (z)]
D−l−e−1

2

NV

∏
s=1

z−νs
s , (6.255)

where the prefactor Cpre is given by

Cpre =
elεγE

(
µ2
)ν− lD

2 [detG(p1, ..., pe)]
−D+e+1

2

π
1
2 (NV−l) (detC)

l
∏
j=1

Γ
(

D−e+1− j
2

) . (6.256)
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B(z) denotes the Baikov polynomial and the Baikov variables are given by z j =−q2
j +m2

j . The

domain of integration C is defined by eq. (2.233) and eq. (2.234).

In this section we enlarge the set of integrals we are interested in and include integrals, which

have the same integrands as in eq. (6.255), but are integrated over a different domain. The new

integration domains are not completely arbitrary, but should satisfy the following requirements:

1. Integration-by-parts identities still hold.

2. The variation of the integral with respect to the kinematic variables comes entirely from

the integrand.

3. The symmetries among the integrals are respected.

Condition 1 says that in the language of differential forms

∫

C

dξ =
∫

∂C

ξ = 0, (6.257)

either because C is a cycle and therefore ∂C = 0 or because ξ vanishes on ∂C . Condition 2 is

best explained with an example. Consider

ω =
x

z− x
dz (6.258)

and C a circle around z = x of radius δ oriented anti-clockwise. Then

I =

∫

C

ω = 2πix, and
d

dx
I = 2πi. (6.259)

On the other hand, we have

d

dx
ω =

dz

z− x
− x

(
d

dz

1

(z− x)

)
dz, (6.260)

and

∫

C

dz

z− x
= 2πi, −x

∫

C

(
d

dz

1

(z− x)

)
dz = 0, (6.261)

in agreement with our previous result. Although the integration contour moves with x (it is a

circle of radius δ around z = x), in a small neighbourhood of x = x0 (say of radius δ′ ≪ δ)

we may deform the integration contour to a constant integration contour (for example for x ∈
[x0− δ′,x0 + δ′] we may deform the integration contour to a circle around z = x0 of radius δ,

independently of x). Hence, the derivative of the integral is calculated from the derivative of the

integrand.

Also condition 3 is best explained by an example: For the one-loop two-point function with

equal internal masses we have the symmetry Iν1ν2
= Iν2ν1

. Changing the integration contour may
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break this symmetry. This can be restored by considering a suitable symmetrised contour. We

will require condition 3 in this section, but we will dispense ourselves from condition 3 in the

next section.

Let us now consider a set of Feynman master integrals~I, satisfying the differential equation

(d +A)~I = 0. (6.262)

We now consider a set of new integrals, where the original integration contour C is replaced by

a new integration contour C ′, which satisfies conditions 1-3. Let us denote the new integrals by
~I′. Conditions 1-3 are sufficient to show that the new integrals ~I′ satisfy the same differential

equation as the old integrals~I [127]:

(d+A)~I′ = 0. (6.263)

The proof is rather simple: The differential equations rely only on the forms of the integrands

(which are the same for~I and~I′) and the properties given by conditions 1-3.

Let us now come to the topic of this section: Feynman integrals with cuts. We define a cut

Feynman integral as a special case of the general situation discussed above. Let us consider the

case, where we cut the internal edge e j. We define the Feynman integral with the internal edge

e j cut to be given by the Baikov representation, where the domain of integration C is replaced by

a modified domain of integration C ′ [31, 128, 129]. The modified domain C ′ consists of a small

anti-clockwise circle around z j = 0 in the complex z j-plane. In all other variables the domain of

integration is given by equations similar to eq. (2.233) and eq. (2.234), with B replaced by

B j
(
z1, . . . ,z j−1,z j+1, . . . ,zNV

)
= B

(
z1, . . . ,z j−1,0,z j+1, . . . ,zNV

)
, (6.264)

or shortly

B j = B|z j=0 . (6.265)

This is just the intersection of the original integration domain C with the hyperplane z j = 0.

Thus we see that the cut integral is given by an integrand, which is (2πi) times the residue at

z j = 0 of the original integrand, integrated over the remaining variables. We draw a cut graph as

shown in fig. 6.4.

The name “cut Feynman integral” stems from the fact that if a propagator occurs only to

power one, cutting this propagators corresponds in the momentum representation to the replace-

ment

1

−q2
j +m2

j

→ 2πi δ
(
−q2

j +m2
j

)
. (6.266)

The δ-distribution forces the propagator on-shell. It is easily seen that for the case where a

propagator occurs only to power one eq. (6.266) is equivalent to taking the residue. In the Baikov

variables eq. (6.266) reads

1

z j
→ 2πi δ

(
z j
)
. (6.267)
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e3

e2

e1 e4

Figure 6.4: A Feynman graph with a cut. The edge e2 is cut.

We have for a small anti-clockwise circle γ j around z j = 0 and f (z j) regular at z j = 0:

2πi
∫

dz j f
(
z j
)

δ
(
z j
)
= 2πi f (0) = 2πi res

(
f
(
z j
)

z j
,z j = 0

)
=

∮

γ j

dz j
f
(
z j
)

z j
. (6.268)

Of course we may iterate the procedure and take multiple cuts. Of particular importance is the

maximal cut, where we take for a Feynman integral Iν1...νnint
the cut for all edges e j for which

ν j > 0.

Let’s look at an example: We consider the one-loop two-point function with equal internal

masses discussed as example 1 in section 6.3.1. With x =−p2/m2 and µ2 = m2 = 1 the Baikov

polynomial is given by

B (z1,z2) = −1

4

[
(z1− z2)

2−2x(z1 + z2)+ x(4+ x)
]
, (6.269)

and the Baikov representation of I11 is given by

I11 =
eεγEx−

D−2
2

2
√

πΓ
(

D−1
2

)
∫

C

d2z [B (z1,z2)]
D−3

2
1

z1z2
. (6.270)

The cut of edge e1 is given by

Cute1
I11 = (2πi)

eεγEx−
D−2

2

2
√

πΓ
(

D−1
2

)
∫

C ′

dz2 [B (0,z2)]
D−3

2
1

z2
. (6.271)

We have

B (0,z2) = −1

4

[
z2−

(
x−2
√
−x
)][

z2−
(
x+2
√
−x
)]
. (6.272)

Let assume for the moment that x <−4. Then the integration domain C ′ is from (x−2
√
−x) to

(x+2
√
−x) and 0 /∈ [x−2

√
−x,x+2

√
−x]. If x 6<−4 we may first pretend that x <−4, perform

the integration and then continue analytically to the desired value of x.
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In a similar way, the cut of the edge e2 is given by

Cute2
I11 = (2πi)

eεγEx−
D−2

2

2
√

πΓ
(

D−1
2

)
∫

C ′′

dz1 [B (z1,0)]
D−3

2
1

z1
. (6.273)

Cutting the edges e1 and e2 gives the maximal cut. We have

MaxCut I11 = Cute1,e2
I11 = (2πi)2 eεγEx−

D−2
2

2
√

πΓ
(

D−1
2

) [B (0,0)]
D−3

2

= (2πi)2 eεγEx−
D−2

2

2
√

πΓ
(

D−1
2

)
(
−1

4
x(4+ x)

)D−3
2

. (6.274)

In D = 2−2ε dimensions we have to leading order in the ε-expansion

MaxCut I11 (2−2ε) = − 4π√
−x(4+ x)

+O (ε) . (6.275)

In eq. (6.236) we found a fibre transformation, which puts the differential equation into a form,

where the dimensional regularisation parameter ε appears only as a prefactor. The new master

integral in the top sector was

I′2 = 2ε

√
x

4+ x
[(1− ε) I10 (4−2ε)+(1−2ε) I11 (4−2ε)] . (6.276)

With the help of the dimensional shift relations (see also exercise 45), we may rewrite this ex-

pression as

I′2 = −ε
√

x(4+ x)I11 (2−2ε) . (6.277)

We see that up to a constant prefactor I′2 is I11 (2−2ε) divided by the leading term in the ε-

expansion of its maximal cut:

I′2 =
4πε√
−1

I11 (2−2ε)

MaxCut I11 (2)
. (6.278)

The cut of the edge e j of a Feynman integral where the corresponding propagator occurs to a

higher power (i.e. ν j > 1) is obtained by first expanding the integrand of the Baikov representa-

tion as a Laurent series in the corresponding Baikov variable and by determining the residue as

the coefficient of the 1/z j-term. For example

Cute1
I21 = (2πi)

eεγEx−
D−2

2

2
√

πΓ
(

D−3
2

)
∫

C ′

dz2 [B (0,z2)]
D−5

2
B ′ (0,z2)

z2
, (6.279)

with

B ′ (0,z2) =
∂

∂z1
B (z1,z2)

∣∣∣∣
z1=0

=
1

2
(z2 + x) . (6.280)
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Figure 6.5: The maximal cut of the double box graph.

The cut of the edge e j of a Feynman integral where the corresponding propagator occurs to power

ν j ≤ 0 is zero, as there is no residue in this variable. For example

Cute1
I01 = Cute1

I(−1)1 = 0. (6.281)

This reveals the power of considering cuts: A Feynman integral with ν j ≤ 0 corresponds to a

sub-topology, where the edge e j is pinched. The corresponding cut integral is zero. Let us now

consider the differential equation for a set of master integrals~I. Replacing the original integra-

tion contour by a contour with a cut in the edge e j has the effect of setting all sub-topologies with

edge e j pinched to zero. The resulting differential equation is simpler. In particular, the maximal

cut will set all sub-topologies to zero.

Exercise 56: Work out the maximal cut of the double box integral I111111100 shown in fig. 6.5. Use the
notation as in example 2 in section 6.3.1. To work out the maximal cut it is simpler to use the loop-by-loop
approach as discussed in section 2.5.5.

6.6 Singularities of Feynman integrals

In this section we discuss singularities of Feynman integrals. There are two aspects to it. First

there may be singularities, which occur for any values of the kinematic variables. These are the

ultraviolet or infrared divergences of Feynman integrals. Secondly, there may be singulari-

ties, which only occur for specific values of the kinematic variables. These are called Landau

singularities. A classic textbook on this subject is [130].

The singularities of Feynman integrals are most easily discussed within the Feynman param-

eter representation. We denote the kinematic variables by (x1, . . . ,xNB). We let U be an open

subset of CPNB such that

(x1, . . . ,xNB) ∈ U ⊂ CPNB. (6.282)

The Feynman parameters [a1 : · · · : anint
] denote a point in CPnint−1

[a1 : · · · : anint
] ∈ CPnint−1. (6.283)
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Let us first discuss ultraviolet and infrared singularities. These manifest themselves as poles in

the dimensional regularisation parameter ε after integration. Let us assume that U is a subset of

the Euclidean region, hence x j ≥ 0. This assumption will simplify the discussion below.

From the Feynman parameter integral in eq. (2.170) we see that there are three possibilities

how poles in ε can arise: First of all the Gamma-function Γ(ν− lD/2) of the prefactor can give

rise to a (single) pole if the argument of this function is close to zero or to a negative integer

value. This divergence is called the overall ultraviolet divergence.

Secondly, we consider the polynomial U. Depending on the exponent ν−(l+1)D/2 of U the

vanishing of the polynomial U in some part of the integration region can lead to poles in ε after

integration. As mentioned in section 2.5.2, each term of the expanded form of the polynomial U
has coefficient +1, therefore U can only vanish if some of the Feynman parameters are equal to

zero. In other words, U is non-zero (and positive) inside the integration region, but may vanish

on the boundary of the integration region. Poles in ε resulting from the vanishing of U are related

to ultraviolet sub-divergences.

Thirdly, we consider the polynomial F . In the Euclidean region the polynomial F is also

non-zero (and positive) inside the integration region. Therefore if all kinematic variables are

within the Euclidean region the polynomial F can only vanish on the boundary of the integration

region, similar to what has been observed for the the polynomial U. Depending on the exponent

ν− lD/2 of F the vanishing of the polynomial F on the boundary of the integration region may

lead to poles in ε after integration. These poles are related to infrared divergences.

Let us now turn to Landau singularities. We consider a Feynman integral as a function of the

kinematic variables. We no longer impose any restrictions (like for example within the Euclidean

region) on the kinematic variables. In particular, the kinematic variables are now allowed to lie

in the physical region. Landau’s equations give a necessary condition for a singularity to occur

in the Feynman integral as we vary the kinematic variables.

The Feynman integral I as given in eq. (2.170) depends through the polynomial F on the

kinematic variables x j. As we no longer restrict the kinematic variables x j to the Euclidean

region, the region where the polynomial F vanishes is no longer restricted to the boundary of

the Feynman parameter integration region and we may encounter zeros of the polynomial F
inside the integration region for specific values of the kinematic variables. The vanishing of F
may in turn result in singularities after integration for specific values of the kinematic variables.

These singularities are called Landau singularities. Necessary conditions for the occurrence of a

Landau singularity are given as follows: A Landau singularity may occur if there exists a subset

S of {1, . . . ,nint} such that

ai = 0 for i ∈ S

and
∂

∂a j
F = 0 for j ∈ {1, ...,nint}\S. (6.284)

The equations 6.284 are called Landau equations.

Exercise 57: Show that the Landau equations imply F = 0.
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The case corresponding to S = /0 is called the leading Landau singularity, and cases corre-

sponding to S 6= /0 are called non-leading Landau singularities. It is sufficient to focus on

the leading Landau singularity, since a non-leading singularity is the leading Landau singular-

ity of a sub-graph of G obtained by contracting the propagators corresponding to the Feynman

parameters ai with i ∈ S.

Let us now consider the leading Landau singularity of a graph G with next external lines. We

set

A = CPnint−1\V (a1 · . . . ·anint
U) , (6.285)

where

V ( f ) =
{

a ∈ CPnint−1 | f (a) = 0
}
. (6.286)

This takes out the regions in Feynman parameter space where we may have sub-leading Landau

singularities or ultraviolet sub-divergences. Note that if we restrict the Feynman parameters to

RPnint−1
≥0 we already know that the first graph polynomial can only vanish on the boundary, hence

V (U)∩RPnint−1
≥0 ⊂ V (a1 · . . . ·anint

)∩RPnint−1
≥0 . (6.287)

Let us consider

Y =

{
(a,x) ∈ A×U | ∂

∂a j
F = 0, j = 1, . . . ,nint

}
(6.288)

together with the projection

π : Y →U,

(a,x)→ x. (6.289)

The Landau discriminant DLandau is defined as the Zariski closure

DLandau = π(Y ) ⊂ U. (6.290)

Essentially, this corresponds to all points x∈U , where the equations ∂F /∂a j = 0 have a solution

in the space A. A computer program to compute the Landau discriminant is described in [131].

Let us look at a simple example. We consider the one-loop two-point Feynman integral with

equal internal masses in D = 4− 2ε space-time dimensions (example 1 in section 6.3.1). This

integral is given by

I11 (D,x) = eεγE
(
m2
)ε

∫
dDk

iπ
D
2

1

(−k2 +m2)(−(k− p)2 +m2)
, (6.291)

where we set µ2 = m2 and x =−p2/m2. The second graph polynomial is given by

F = a1a2x+(a1 +a2)
2 . (6.292)
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The Landau equations for the leading Landau singularities are

a2x+2(a1 +a2) = 0, a1x+2(a1 +a2) = 0. (6.293)

These equations have a solution with a1 6= 0 and a2 6= 0 for x ∈ {−4,0}, hence

DLandau = {−4,0} . (6.294)

The Feynman parameter representation for this integral reads

I11 (4−2ε,x) = eεγEΓ(ε)

1∫

0

da1 [1+a1 (1−a1)x]−ε . (6.295)

Working out this integral we find

I11 (4−2ε,x) =
1

ε
+2+

√
4+ x

x
ln

√
4+ x−√x√
4+ x+

√
x
+O(ε). (6.296)

The 1/ε-term corresponds to an ultraviolet divergence. As a function of x the Feynman integral

has a Landau singularity at x =−4 (corresponding to p2 = 4m2). Note that the Feynman integral

is finite at x = 0 and we see that Landau’s equations give only a necessary condition for a Landau

singularity, but not a sufficient condition. The Landau singularity at x = −4 is called a normal

threshold singularity. The normal threshold manifests itself as a branch point in the complex

x-plane.

Exercise 58: Work out the Landau discriminant for the double box graph discussed in exercise 44.

6.7 Twisted cohomology

We have seen that we can express any Feynman integral Iν1...νnint
from a family of Feynman inte-

grals as a linear combination of master integrals Iννν1
, . . . , IνννNmaster

. The coefficients can be obtained

by solving a linear system of equations. The equations themselves are symmetry relations and

integration-by-parts identities. The system of linear equations can systematically be solved with

the help of the Laporta algorithm. There is no principal problem in obtaining the coefficients,

after all this is just linear algebra. However, there is a practical problem: Feynman integrals for

cutting-edge precision calculations often lead to linear systems which barely can be treated with

current computing resources.

We are therefore interested in alternative and more efficient methods to compute the coef-

ficients. We have seen that the master integrals span a vector space and any Feynman integral

from the family of Feynman integrals which we are investigating corresponds to a specific vector

in this vector space. Writing this Feynman integral as a linear combination of master integrals is

nothing else than expressing an arbitrary vector as a linear combination of basis vectors. Finding

the coefficients is particular easy if the vector space is equipped with an inner product.
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This leads directly to the question: Is there an inner product on the vector space of Feynman

integrals? We will see in this section that the answer is almost yes, however we will not work with

Feynman integrals, but with the integrands of Feynman integrals. As discussed in section 6.1,

the difference is that for Feynman integrals we take integration-by-parts identities and symmetry

relations into account, while for the integrands of Feynman integrals we only take integration-

by-parts identities into account. We denote the number of master integrals obtained by taking

integration-by-parts identities and symmetries into account by Nmaster. If we are only interested in

the number of unreduced integrals obtained from integration-by-parts identities alone, we denote

this number by Ncohom. The simplest example is the one-loop two-point function with equal

internal masses, where we have the symmetry Iν0 = I0ν. In this case Nmaster = 2, but Ncohom = 3.

The integrands of the two tadpole integrals I10 and I01 differ, but yield the same result after

integration.

In this section we focus on the integrands of Feynman integrals, therefore Ncohom is the rele-

vant quantity. The mathematical setting is called twisted de Rham cohomology, which we now

introduce.

Textbooks on twisted de Rham cohomology are the books by Yoshida [132] and Aomoto and

Kita [133]. The application towards Feynman integrals started with [134, 135]. Many examples

are provided in [135, 136]. Review articles on this subject are [137, 138].

6.7.1 Twisted cocycles

We start from the n-dimensional complex space Cn and a divisor D, on which we will allow

singularities. Instead of Cn we will later also consider other spaces like CPn. For our purpose

it is sufficient to think of the divisor D as a union of hypersurfaces, where each hypersurface is

defined by a polynomial equation. In detail, consider m polynomial equations

pi(z1, . . . ,zn) = 0, 1≤ i≤ m, (6.297)

with pi ∈ F [z1, . . . ,zn], where F is a field, typically Q or Q(x1, . . . ,xm) (the field of rational func-

tions in x1, . . . ,xm with rational coefficients). Each polynomial equation defines a hypersurface

Di = {(z1, . . . ,zn) ∈ Cn|pi (z1, . . . ,zn) = 0}, (6.298)

and D is the union of the m hypersurfaces:

D =
m⋃

i=1

Di. (6.299)

We consider rational differential n-forms ϕ in the variables z = (z1, . . . ,zn), which are holomor-

phic on Cn−D. The rational n-forms ϕ are of the form

ϕ =
q

pn1

1 . . . pnm
m

dzn∧· · ·∧dz1, q ∈ F [z1, . . . ,zn] , ni ∈ N0. (6.300)
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Using the reversed wedge product dzn∧ · · ·∧dz1 instead of the standard order dz1∧ · · ·∧dzn is

at this stage just a convention. q(z1, . . . ,zn) is a polynomial and the only singularities of ϕ in Cn

are on D.

In cohomology theory we call the differential n-form ϕ a cocycle. It is closed on Cn−D,

since it is a holomorphic n-form: Obviously we have for 1≤ j ≤ n

(
∂

∂z̄ j

q

pn1

1 . . . pnm
m

)
dz̄ j ∧dzn∧· · ·∧dz1 = 0, (6.301)

since the derivative in the bracket vanishes, but also

(
∂

∂z j

q

pn1

1 . . . pnm
m

)
dz j ∧dzn∧· · ·∧dz1 = 0, (6.302)

since the wedge product contains dz j ∧dz j.

Let C be a n-dimensional integration cycle (i.e. an integration domain with no boundary

∂C = 0). We may now consider the integral

〈ϕ|C 〉 =

∫

C

ϕ. (6.303)

This is a pairing between a cycle and a cocycle. The quantity 〈ϕ|C 〉 will not change if we add to

ϕ the exterior derivative of a (n−1)-form ξ:

ϕ → ϕ+dξ. (6.304)

Due to ∂C = 0 and Stokes’ theorem

∫

C

dξ =
∫

∂C

ξ = 0, (6.305)

we have

〈ϕ+dξ|C 〉 = 〈ϕ|C 〉 . (6.306)

We call two n-forms ϕ and ϕ′ equivalent, if they differ by the exterior derivative of a (n−1)-form

ξ as in eq. (6.304):

ϕ′ ∼ ϕ ⇔ ϕ′ = ϕ+dξ. (6.307)

The set of equivalence classes defines the (untwisted) de Rham cohomology group Hn.

Let us now introduce the twist: For m complex numbers γ = (γ1, . . . ,γm) we set

u =
m

∏
i=1

pγi
i . (6.308)
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Since the exponents γi of the polynomials pi are allowed to be complex numbers, u is in general

a multi-valued function on Cn−D. It will be convenient to define

ω = d lnu =
m

∑
i=1

γid ln pi =
n

∑
j=1

ω jdz j. (6.309)

Let us fix a branch of u. We then consider the integral

〈ϕ|C 〉ω =

∫

C

u ϕ. (6.310)

C is again an integration cycle. We may allow C to have a boundary contained in the divisor D:

∂C ⊂ D. The integral remains well defined, if we assume that Re(γi) is sufficiently large, such

that uϕ vanishes on D. It is not too difficult to see that now the integral remains invariant under

ϕ → ϕ+∇ωξ, (6.311)

where we introduced the covariant derivative ∇ω = d +ω. In fact we have
∫

C

u∇ωξ =
∫

C

[udξ+u(d lnu)ξ] =
∫

C

d (uξ) =
∫

∂C

uξ = 0. (6.312)

Introducing the twist amounts to going from the normal derivative d in eq. (6.304) to the covariant

derivative ∇ω = d +ω in eq. (6.311). The invariance under eq. (6.311) motivates the definition

of equivalence classes of n-forms ϕ: Two n-forms ϕ′ and ϕ are called equivalent, if they differ

by a covariant derivative

ϕ′ ∼ ϕ ⇔ ϕ′ = ϕ+∇ωξ (6.313)

for some (n− 1)-form ξ. We denote the equivalence classes by 〈ϕ|. Being n-forms, each ϕ is

closed with respect to ∇ω and the equivalence classes define the twisted cohomology group Hn
ω:

〈ϕ| ∈ Hn
ω. (6.314)

Exercise 59: Show that for ϕ as in eq. (6.300) and ω as in eq. (6.309) the differential n-form ϕ is closed
with respect to ∇ω:

∇ωϕ = 0. (6.315)

The dual twisted cohomology group is given by

(Hn
ω)
∗ = Hn

−ω. (6.316)

Elements of (Hn
ω)
∗ are denoted by |ϕ〉. We have

∣∣ϕ′
〉
= |ϕ〉 ⇔ ϕ′ = ϕ+∇−ωξ (6.317)
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for some (n−1)-form ξ. A representative of a dual cohomology class is of the form

ϕ =
q

pn1
1 . . . pnm

m
dz1∧· · ·∧dzn, q ∈ F [z1, . . . ,zn] , ni ∈ N0. (6.318)

It will be convenient to use here the order dz1∧· · ·∧dzn in the wedge product.

Digression. Divisors

In the one-dimensional case the concept of a divisor originates from describing the set of zeros
and the set of poles of a rational function. The concept of a divisor can be generalised to higher-
dimensional algebraic varieties. Two different generalisations are in common use: Weil divisors
and Cartier divisors. They agree on non-singular varieties.

Let us start from the one-dimensional case: We consider divisors in the complex plane. Codi-
mension one sub-varieties are zero-dimensional (i.e. points).

Let U be a connected open sub-set of C. A divisor is a function

D : U → Z, (6.319)

which takes non-zero values D(z) 6= 0 at most on a discrete set Σ ⊂U. We write a divisor as a
formal linear combination

D = ∑
z∈U

D(z) · z (6.320)

Note that the symbol · in eq. (6.320) is a convention for writing a divisor and has nothing to do
with ordinary multiplication. The degree of a divisor is the sum of its coefficients:

deg(D) = ∑
z∈U

D(z). (6.321)

A divisor is called effective, if all coefficients are non-negative:

D(z) ≥ 0, ∀z ∈U. (6.322)

In this case we also write

D ≥ 0. (6.323)

The divisors form an Abelian group, denoted by Div(U). The zero divisor is given by D(z) = 0

for all z, the addition is defined by

D1 +D2 = ∑
z∈U

(D1(z)+D2(z)) · z. (6.324)

Let us now consider the field of meromorphic functions K(U) on U. We denote by K∗(U) the set
of meromorphic functions on U without the function f (z) = 0. Every f ∈ K∗(U) has a Laurent
series

f (z) =
∞

∑
j= j0

a j · (z− z0)
j

(6.325)



6.7. TWISTED COHOMOLOGY 215

around z0, starting with j0. If f (z0) is finite and non-zero, we have j0 = 0. If f (z0) = 0, then j0
gives the order of the zero. If f (z0) has a pole at z = z0, then (− j0) denotes the order of the pole.
A divisor D f is defined by

D f (z0) = j0. (6.326)

A divisor D is called principal divisor, if there is f ∈ K∗(U) such that D = D f . We have

D f g = D f +Dg, D 1
f

= −D f , (6.327)

and therefore the map

K∗ (U) → Div(U) ,

f → D f , (6.328)

is a group homomorphism. On C we have the following statements:

1. If D ∈ Div(U), then there exists a f ∈ K∗(U) such that D = D f .

2. If f ,g ∈ K∗(U) with D f = Dg, then h = f/g is a holomorphic function with h(z) 6= 0 for
all z.

The first statement says, that on C every divisor is a principal divisor. This is true for C, but not
for compact Riemann surfaces. The generalisation is given by the Riemann-Roch theorem.

Weil divisor: We have defined a divisor in the complex plane as a linear combination of points
(i.e. codimension one sub-varieties) with integer coefficients. A Weil divisor is the generalisation
of this idea of codimension one sub-varieties in higher dimensions

We follow the book of Griffiths and Harris [123]. Let X be a complex manifold (or algebraic
variety) of dimension n, not necessarily compact.

A Weil divisor is a locally finite linear combination with integral coefficients of irreducible
sub-varieties of codimension one. We write

D = ∑ni ·Vi, (6.329)

with ni ∈ Z and Vi irreducible sub-varieties of dimension (n−1). Locally finite means that for
any p ∈M there exists a neighbourhood of p meeting only a finite number of the Vi’s appearing
in D.

Cartier divisor: We have seen that in the complex plane every divisor is a principal divi-
sor and that the associated function f ∈ K∗(U) is determined up to a multiple of a holomorphic
function, everywhere non-zero. A Cartier divisor is a generalisation of this idea. For readers
familiar with sheaves we give the definition of a Cartier divisor below. A definition of sheaves is
given in appendix G.
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Let X be a complex manifold (or algebraic variety) of dimension n, not necessarily compact.
Further, denote by O the sheaf of holomorphic functions on X and by M the sheaf of meromor-
phic functions on X. Let O∗ denote the sheaf of holomorphic functions which are nowhere zero
on X and let M ∗ denote the sheaf of meromorphic functions on X without the zero function. The
quotient sheaf D = M ∗/O∗ is called the sheaf of divisors and a section of D is called Cartier
divisor. The set of all sections Γ(X ,D) forms an Abelian group.

6.7.2 Intersection numbers

There is a non-degenerate bilinear pairing between a cohomology class 〈ϕL| and a dual coho-

mology class |ϕR〉, given by the intersection number

〈ϕL |ϕR〉ω . (6.330)

ϕL and ϕR are representatives of the cohomology classes 〈ϕL| and |ϕR〉, respectively. ϕL and ϕR

are differential n-forms as in eq. (6.300) and eq. (6.318), respectively. It will be convenient to

define ϕ̂L and ϕ̂R to be the functions obtained by stripping dzn∧· · ·∧dz1 and dz1∧· · ·∧dzn off,

respectively:

ϕL = ϕ̂L dzn∧· · ·∧dz1, ϕR = ϕ̂R dz1∧· · ·∧dzn. (6.331)

The intersection number is defined by [133, 139]

〈ϕL |ϕR〉ω =
1

(2πi)n

∫
ιω (ϕL)∧ϕR =

1

(2πi)n

∫
ϕL∧ ι−ω (ϕR) , (6.332)

where ιω maps ϕL to a differential form in the same cohomology class as ϕL but with compact

support. Similarly, ι−ω maps ϕR to a differential form in the same cohomology class as ϕR but

with compact support. That is to say, that ιω(ϕL) and ι−ω(ϕR) vanish in a tubular neighbour-

hood of D (and at infinity). Although we started from differential forms ϕL and ϕR which are

holomorphic on Cn−D, the compactly supported versions ιω(ϕL) and ι−ω(ϕR) are no longer

holomorphic on Cn−D.

Please note that the pairing 〈ϕ|C 〉ω between an integrand and an integration contour denotes

the integral defined in eq. (6.310), while the pairing 〈ϕL|ϕR〉ω between an integrand and a dual

integrand denotes the intersection number defined in eq. (6.332).

In order to see how ιω(ϕL) (or ι−ω(ϕR)) is constructed, let’s consider CP1−D [140]. The

divisor is a set of points D = {z1, . . . ,zm}. Let’s assume that none of these points is at infinity.

Around a point z j we consider two small discs Vj and U j, both centred at z j and such that the

radius of Vj is smaller than the radius of U j. This is shown in fig. 6.6. We assume that the U j’s

do not overlap. We introduce non-holomorphic functions h j(z, z̄) equal to 1 on Vj, equal to 0

outside U j and interpolating smoothly in the region U j−Vj. As ϕL and ιω(ϕL) are in the same

cohomology class, they differ by a covariant derivative:

ϕL− ιω (ϕL) = ∇ωξ. (6.333)
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✲

✻

Re(z)

Im(z)

z1
V1

U1

z2
V2

U2

z3
V3

U3

Figure 6.6: The construction of the differential form with compact support in the one-

dimensional case. The divisor is given by the union of three points: D = {z1}∪ {z2}∪ {z3}.
Vj and U j are small discs around z j with Vj ⊂U j.

Let ψL, j be a solution of

∇ωψL, j = ϕL (6.334)

on U j\{z j}. We set

ξ =
m

∑
j=1

h jψL, j. (6.335)

By construction, ιω(ϕL) is in the same cohomology class as ϕL. Let’s verify that ιω(ϕL) has

compact support. We show that ιω(ϕL) vanishes on Vi. We have

ιω (ϕL) = ϕL−∇ωξ = ϕL−
m

∑
j=1

∇ω

(
h jψL, j

)

= ϕL−
m

∑
j=1

h j∇ωψL, j−
m

∑
j=1

(
dh j
)

ψL, j

= ϕL−
m

∑
j=1

h jϕL−
m

∑
j=1

(
dh j
)

ψL, j. (6.336)

On Vi we have hi = 1 and h j = 0 for j 6= i. Furthermore we have on Vi that the derivative of all

functions h j vanishes: dh j = 0 for all j. Thus we find on Vi

ιω (ϕL) = ϕL−hiϕL = ϕL−ϕL = 0. (6.337)
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Let us now turn to the intersection number for the case CP1−D. We have

〈ϕL |ϕR〉ω =
1

2πi

∫
ιω (ϕL)∧ϕR =

1

2πi

∫ [
ϕL−

m

∑
j=1

h jϕL−
m

∑
j=1

(
dh j
)

ψL, j

]
∧ϕR

= − 1

2πi

m

∑
j=1

∫ (
dh j
)

ψL, j ∧ϕR. (6.338)

The first two terms yield dz∧dz, only the last term yields a non-vanishing wedge product dz∧dz̄.

As dh j is non-zero only on U j−Vj we obtain

〈ϕL |ϕR〉ω = − 1

2πi

m

∑
j=1

∫

U j−V j

(
dh j
)

ψL, j ∧ϕR

= − 1

2πi

m

∑
j=1

∫

U j−V j

[
d
(
h jψL, jϕR

)
−h j

(
dψL, j

)
∧ϕR−h jψL, jdϕR

]

= − 1

2πi

m

∑
j=1

∫

U j−V j

d
(
h jψL, jϕR

)
. (6.339)

In the second line the last two terms yield a vanishing contribution, again due to dz∧dz = 0. We

may now use Stokes’ theorem and obtain

〈ϕL |ϕR〉ω =
1

2πi

m

∑
j=1

∫

∂V j

ψL, jϕR =
m

∑
j=1

ResD j

(
ψL, jϕR

)
, (6.340)

where we used that h j = 0 on ∂U j and h j = 1 on ∂Vj.

Alternatively, we could have used ι−ω(ϕR). Let ψR, j be a solution of

∇−ωψR, j = ϕR (6.341)

on U j\{z j}. Then

〈ϕL |ϕR〉ω =
1

2πi

∫
ϕL∧ ι−ω (ϕR)

= − 1

2πi

m

∑
j=1

∫

∂V j

ϕLψR, j = −
m

∑
j=1

ResD j

(
ϕLψR, j

)
. (6.342)

Computing the intersection number through the definition in eq. (6.332) is not the most practical

way. In section 6.7.3 we will learn more efficient methods.

Let’s consider an example: We take n = 1 and we consider p1(z) = z, p2(z) = 1−z. Thus we

have D1 = {0} and D2 = {1}. We consider

u(z) = zγ1 (1− z)γ2 . (6.343)



6.7. TWISTED COHOMOLOGY 219

The one-form ω is then given by

ω = γ1
dz

z
− γ2

dz

1− z
. (6.344)

Let us further consider

ϕL =
dz

z1+n1 (1− z)1+n2
, ϕR =

dz

z1+n3 (1− z)1+n4
, n1,n2,n3,n4 ∈ Z. (6.345)

Around z = 0 let ψL,1 be a solution of

∇ωψL,1 = ϕL. (6.346)

For ψL,1 we make the ansatz

ψL,1 =
∞

∑
j=−n1

a jz
j. (6.347)

Eq. (6.346) becomes

(
d

dz
+

γ1

z
− γ2

1− z

) ∞

∑
j=−n1

a jz
j =

1

z1+n1 (1− z)1+n2
. (6.348)

This equation can be solved recursively for the unknown coefficients a j, starting with

a−n1
=

1

γ1−n1
. (6.349)

In a similar way, we let ψL,2 be a solution of

∇ωψL,2 = ϕL. (6.350)

around z = 1. We make the ansatz

ψL,2 =
∞

∑
j=−n2

b j (1− z) j
(6.351)

and determine the coefficients b j recursively. The intersection number 〈ϕL|ϕR〉ω is then obtained

with the help of eq. (6.340) as

〈ϕL |ϕR〉ω = ResD1
(ψL,1ϕR)+ResD2

(ψL,2ϕR) . (6.352)

We obtain

〈ϕL |ϕR〉ω =
(γ1 + γ2)

γ1γ2

Γ(1− γ1)Γ(1− γ2)

Γ(1− γ1− γ2)

Γ(1+ γ1)Γ(1+ γ2)

Γ(1+ γ1 + γ2)

Γ(1+n1 +n2− γ1− γ2)

Γ(1+n1− γ1)Γ(1+n2− γ2)

Γ(1+n3 +n4 + γ1 + γ2)

Γ(1+n3 + γ1)Γ(1+n4 + γ2)
. (6.353)
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Exercise 60: Proof eq. (6.353) for the special case n1 = n2 = n3 = n4 = 0.

Under certain assumptions it can be shown [133, 141–143] that the twisted cohomology groups

Hk
ω vanish for k 6= n, thus Hn

ω is the only interesting twisted cohomology group. We denote the

dimensions of the twisted cohomology groups by

ν = dimHn
ω = dim(Hn

ω)
∗ . (6.354)

Let 〈e j| with 1 ≤ j ≤ ν be a basis of Hn
ω and let |h j〉 with 1 ≤ j ≤ ν be a basis of (Hn

ω)
∗. We

denote the (ν×ν)-dimensional intersection matrix by C. The entries are given by

C jk =
〈
e j
∣∣ hk〉 . (6.355)

The matrix C is invertible. Given a basis 〈e j| of Hn
ω we say that a basis |d j〉 of (Hn

ω)
∗ is the dual

basis with respect to 〈e j| if
〈
e j
∣∣ dk〉 = δ jk. (6.356)

Starting from an arbitrary basis |h j〉 of (Hn
ω)
∗ we may always construct the dual basis 〈e j| of Hn

ω

with respect to 〈e j|. The dual basis is given by

∣∣d j
〉

= |hk〉
(
C−1

)
k j . (6.357)

The dimension of the twisted cohomology groups is related to the number of critical points

of f = ln(u). We have

f = ln(u) =
m

∑
i=1

γi ln(pi) . (6.358)

A point z is called a critical point if

d f |z = 0. (6.359)

A critical point z is called a non-degenerate critical point if the Hessian matrix is invertible, i.e.

det

(
∂2 f

∂zi∂z j

)∣∣∣∣
z

6= 0. (6.360)

A critical point z is called a proper critical point if

z /∈ D. (6.361)

By the definition of ω in eq. (6.309) we have d f = ω. Assuming that all critical points are proper

and non-degenerate we have [29, 135]

dimHn
ω = (# solutions of ω = 0 on Cn−D) . (6.362)
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Usually it is not an issue to find a basis. For completeness, we give here a systematic algorithm

to construct a basis for Hn
ω and (Hn

ω)
∗ for the case where all critical points are proper and non-

degenerate. We write

ω =
n

∑
j=1

ω jdz j, ω j =
Pj

Q j
, Pj,Q j ∈ F [z1, . . . ,zn] , gcd

(
Pj,Q j

)
= 1. (6.363)

We consider the ideal

In = 〈P1, . . . ,Pn〉 ⊂ F [z1, . . . ,zn] . (6.364)

In the case where all critical points are proper and non-degenerate we have

dimHn
ω = dim(F [z1, . . . ,zn]/In) . (6.365)

Let G1, . . . ,Gr be a Gröbner basis of In with respect to some term order <:

In = 〈G1, . . . ,Gr〉 . (6.366)

For a basis 〈e j| of Hn
ω we write as in eq. (6.331)

e j = ê j dzn∧· · ·∧dz1. (6.367)

Similarly, we write for a basis |h j〉 of (Hn
ω)
∗

h j = ĥ j dz1∧· · ·∧dzn. (6.368)

Then ê j and ĥ j are given by all monomials

n

∏
k=1

zνk
k , νk ∈ N0 (6.369)

which are not divisible by any leading term of the Gröbner basis:

lt
(
G j
)
6 |

n

∏
k=1

zνk
k ∀ 0 ≤ j ≤ r. (6.370)

Here, lt denotes the leading term of a polynomial with respect to the chosen term order. In

general, 〈e j| and |h j〉 defined in this way will not be dual to each other.

Let’s look at an example. We consider a case with two variables z1 and z2 (i.e. n = 2) and

three polynomials (i.e. m = 3)

p1 = z1, p2 = z2, p3 = z2
2−4z3

1 +11z1−7. (6.371)

We set

u = (p1 p2 p3)
γ . (6.372)
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The differential one-form ω reads

ω = γ
z2

2−16z3
1 +22z1−7

p1 p3
dz1 + γ

3z2
2−4z3

1 +11z1−7

p2 p3
dz2. (6.373)

We therefore have to consider the ideal

I2 =
〈
z2

2−16z3
1 +22z1−7,3z2

2−4z3
1 +11z1−7

〉
. (6.374)

A Gröbner basis with respect to the graded reverse lexicographic order is given by

I2 =
〈
11z2

2 +22z1−21,44z3
1−55z1 +14

〉
. (6.375)

The leading terms of the elements of the Gröbner basis are 11z2
2 and 44z3

1. A basis 〈e j| of H2
ω

with e j = ê jdz2∧dz1 is therefore given by

ê j ∈
{

1,z1,z2,z1z2,z
2
1,z

2
1z2

}
. (6.376)

Similarly, a basis |h j〉 of (Hn
ω)
∗ with h j = ĥ jdz1∧dz2 is given by

ĥ j ∈
{

1,z1,z2,z1z2,z
2
1,z

2
1z2

}
. (6.377)

Digression. Gröbner bases

Gröbner bases are useful in many situation. The most prominent application of Gröbner bases
is probably the simplification of a polynomial with respect to polynomial siderelations. A good
introduction to Gröbner bases is the book by Adams and Loustaunau [144].

Assume that we have a (possibly rather long) expression f , which is a polynomial in several
variables x1, . . . , xk. In addition we have several siderelations of the form

s j(x1, . . . ,xk) = 0, 1≤ j ≤ r, (6.378)

which are also polynomials in x1, . . . , xk. A standard task is now to simplify f with respect to the
siderelations s j, e.g. to rewrite f in the form

f = a1s1 + · · ·+arsr +g, (6.379)

where g is “simpler” than f The precise meaning of “simpler” requires the introduction of an
order relation on the multivariate polynomials. As an example let us consider the expressions

f1 = x+2y3, f2 = x2, (6.380)

which we would like to simplify with respect to the siderelations

s1 = x2 +2xy,

s2 = xy+2y3−1. (6.381)
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As an order relation we may choose lexicographic ordering, e.g. x is “more complicated” as
y, and x2 is “more complicated” than x. This definition will be made more precise below. A
naive approach would now take each siderelation, determine its “most complicated” element,
and replace each occurrence of this element in the expression f by the more simpler terms of the
siderelation. As an example let us consider for this approach the simplification of f2 with respect
to the siderelations s1 and s2:

f2 = x2 = s1−2xy = s1−2ys2 +4y4−2y, (6.382)

and f2 would simplify to 4y4− 2y. In addition, since f1 does not contain x2 nor xy, the naive
approach would not simplify f1 at all. However, this is not the complete story, since if s1 and s2

are siderelations, any linear combination of those is again a valid siderelation. In particular,

s3 = ys1− xs2 = x (6.383)

is a siderelation which can be deduced from s1 and s2. This implies that f2 simplifies to 0

with respect to the siderelations s1 and s2. Clearly, some systematic approach is needed. The
appropriate tools are ideals in rings, and Gröbner bases for these ideals.
We consider multivariate polynomials in the ring R[x1, . . . ,xk]. Each element can be written as a
sum of monomials of the form

cxm1
1 . . .xmk

k . (6.384)

We define the lexicographic order of these terms by

cxm1

1 . . .xmk
k > c′x

m′1
1 . . .x

m′k
k , (6.385)

if the leftmost non-zero entry in (m1−m′1, . . . ,mk−m′k) is positive. With this ordering we can
write any element f ∈ R[x1, . . . ,xk] as

f =
n

∑
i=0

hi (6.386)

where the hi are monomials and hi+1 > hi with respect to the lexicographic order. The term hn is
called the leading term and denoted lt( f ) = hn.

Let B = {b1, . . . ,br} ⊂ R[x1, . . . ,xk] be a (finite) set of polynomials. The set

〈B〉= 〈b1, . . . ,br〉 =

{
r

∑
i=1

aibi

∣∣∣∣∣ai ∈ R[x1, . . . ,xk]

}
(6.387)

is called the ideal generated by the set B. The set B is also called a basis for this ideal. (In
general, given a ring R and a subset I ⊂ R, I is called an ideal if a+ b ∈ I for all a,b,∈ I and
ra ∈ I for all a ∈ I and r ∈ R. Note the condition for the multiplication: The multiplication has
to be closed with respect to elements from R and not just I.)
Suppose that we have an ideal I and a finite subset H ⊂ I. We denote by lt(H) the set of leading
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terms of H and, correspondingly by lt(I) the set of leading terms of I. Now suppose that the ideal
generated by lt(H) is identical with the one generated by lt(I), e.g. lt(H) is a basis for 〈lt(I)〉.
Then a mathematical theorem guarantees that H is also a basis for I, e.g.

〈lt(H)〉= 〈lt(I)〉 ⇒ 〈H〉= I (6.388)

However, the converse is in general not true, e.g. if H is a basis for I this does not imply that
lt(H) is a basis for 〈lt(I)〉. A further theorem (due to Hilbert) states however that there exists a
subset G⊂ I such that

〈G〉= I and 〈lt(G)〉= 〈lt(I)〉, (6.389)

e.g. G is a basis for I and lt(G) is a basis for 〈lt(I)〉. Such a set G is called a Gröbner basis for
I. Buchberger [145] gave an algorithm to compute G, which nowadays is implemented in many
computer algebra systems.

The importance of Gröbner bases for simplifications stems from the following theorem: Let
G be a Gröbner basis for an ideal I ⊂ R[x1, . . . ,xk] and f ∈ R[x1, . . . ,xk]. Then there is a unique
polynomial g ∈ R[x1, . . . ,xk] with

f −g ∈ I (6.390)

and no term of g is divisible by any monomial in lt(G).
In plain text: f is an expression which we would like to simplify according to the siderelations de-
fined by I. This ideal is originally given by a set of polynomials {s1, . . . ,sr} and the siderelations
are supposed to be of the form si = 0. From this set of siderelations a Gröbner basis {b1, . . . ,br′}
for this ideal is calculated. This is the natural basis for simplifying the expression f . The result
is the expression g, from which the “most complicated” terms of G have been eliminated, e.g.
the terms lt(G). The precise meaning of “most complicated” terms depends on the definition of
the order relation.
In our example, {s1,s2} is not a Gröbner basis for 〈s1,s2〉, since lt(s1) = x2 and lt(s2) = xy and

lt(ys1− xs2) = x /∈ 〈lt(s1), lt(s2)〉. (6.391)

A Gröbner basis for 〈s1,s2〉 is given by
{

x,2y3−1
}
. (6.392)

With b1 = x and b2 = 2y3−1 as a Gröbner basis, f1 and f2 can be simplified as follows:

f1 = b1 +b2 +1,

f2 = xb1 +0, (6.393)

e.g. f1 simplifies to 1 and f2 simplifies to 0.
We are not forced to use the lexicographic order introduced above. We may use any term

order. A term order is a total order (this means that between two quantities exactly one of the
relations <, = or > must be true) on the monomials cxm1

1 . . .xmk
k which satisfies
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1. xm1
1 . . .xmk

k > 1 for (m1, . . . ,mk) 6= (0, . . . ,0).

2. xm1

1 . . .xmk
k > x

m′1
1 . . .x

m′k
k implies

(
xm1

1 . . .xmk
k

)(
x

m′′1
1 . . .x

m′′k
k

)
>

(
x

m′1
1 . . .x

m′k
k

)(
x

m′′1
1 . . .x

m′′k
k

)
(6.394)

for any monomial x
m′′1
1 . . .x

m′′k
k .

Apart from the lexicographic order introduced above other popular choices for a term order are
the degree lexicographic order and the degree reverse lexicographic order. The degree lexico-

graphic order (or graded lexicographic order) is defined as follows: We have

(
xm1

1 . . .xmk
k

)
>

(
x

m′1
1 . . .x

m′k
k

)
(6.395)

if either

k

∑
j=1

m j >
k

∑
j=1

m′j,

or in the case that the total degrees are equal

k

∑
j=1

m j =
k

∑
j=1

m′j and the leftmost non-zero entry in (m1−m′1, . . . ,mk−m′k) is positive,

The degree reverse lexicographic order (or graded reverse lexicographic order) is defined as
follows: We have

(
xm1

1 . . .xmk
k

)
>

(
x

m′1
1 . . .x

m′k
k

)
(6.396)

if either

k

∑
j=1

m j >
k

∑
j=1

m′j,

or in the case that the total degrees are equal

k

∑
j=1

m j =
k

∑
j=1

m′j and the rightmost non-zero entry in (m1−m′1, . . . ,mk−m′k) is negative.

Exercise 61: Consider the monomials

p1 = x2
1x2x3, p2 = x1x3

2. (6.397)

Order the two monomials with respect to the degree lexicographic order and the degree reverse lexico-
graphic order (assuming x1 > x2 > x3).
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The critical points of

f = ln(u) =
m

∑
i=1

γi ln(pi) (6.398)

allow us to construct a basis |C j〉 of the twisted homology groups Hω
n as well: We first fix a

branch of u. As before we assume that all critical points are proper and non-degenerate. For

simplicity let us further assume that γi ∈ R<0 and γi /∈ Z. We split f into the real part and the

imaginary part:

f (z) =
m

∑
i=1

γi ln |pi (z)|+ i
m

∑
i=1

γi arg(pi (z)) . (6.399)

We denote the real part by h(z) and the imaginary part by φ(z). Thus

h(z) =
m

∑
i=1

γi ln |pi (z)| , φ(z) =
m

∑
i=1

γi arg (pi (z)) . (6.400)

The value of φ at a critical points z( j)
crit is called a critical phase and denoted by

φ( j) = φ
(

z( j)
crit

)
. (6.401)

Since we assumed that all critical points are non-degenerate it follows that h is a Morse function.

We will now consider the gradient flow equations for h. If we temporarily introduce (2n) real

coordinates x1, . . . ,xn,y1, . . . ,yn such that z j = x j + iy j, the gradient flow equations read

dx j

dλ
= − ∂h

∂x j
,

dy j

dλ
= − ∂h

∂y j
. (6.402)

Changing back to complex coordinates, we may write the gradient flow equations as

dz j

dλ
= −2

∂h

∂z̄ j
. (6.403)

The gradient flow equations define curves in Cn−D. We denote by C j the union of curves with

lim
λ→−∞

z(λ) = z( j)
crit, (6.404)

and by D j the union of curves with

lim
λ→∞

z(λ) = z( j)
crit. (6.405)

C j and D j are called Lefschetz thimbles. The curves which make up D j start at a point z ∈ D,

where h(z) is plus infinity and approach the critical point z( j)
crit for λ→∞. The curves which make
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up C j end at points where |z| = ∞ and where h(z) is minus infinity. Tracing back these curves

one reaches the critical point z( j)
crit for λ→ −∞. Let us reformulate this slightly: The critical

point z( j)
crit is a saddle point of h(z). The Lefschetz thimble D j is the union of all trajectories,

which descend by the steepest descent towards z( j)
crit. The Lefschetz thimble C j is the union of all

trajectories, which descend from z( j)
crit by the steepest descent to minus infinity. Of interest to us

are the Lefschetz thimbles C j. Due to the Cauchy-Riemann equations the phase φ(z) is constant

on a Lefschetz thimbles. If all critical phases φ( j) are pairwise distinct, it follows that for i 6= j
the Lefschetz thimbles Ci and C j do not intersect.

The real dimension of C j equals the Morse index of the critical point z( j)
crit. For the application

towards Feynman integrals we may assume that all critical points have Morse index n. Then C j

has real dimension n and defines a representative for |C j〉.
In summary, each critical point z( j)

crit defines a Lefschetz thimble C j. The set of all Lefschetz

thimbles satisfying eq. (6.404) defines a basis |C j〉 of Hω
n .

Let us look at an example. We take n= 1 (one complex variable z) and m= 1 (one polynomial

p(z)). We discuss

p(z) = z3 + z2 + z+1. (6.406)

We take γ =− 1
10

. Therefore

u(z) = [p(z)]−
1

10 , f (z) = ln(u(z)) = − 1

10
ln(p(z)) . (6.407)

The divisor D is given by the roots of the polynomial p(z):

D = {−1, i,−i} . (6.408)

We call the three roots “singular points” and denote them by z(1)sing =−1, z(2)sing = i, and z(3)sing =−i.
We have

p′ (z) = 3z2 +2z+1. (6.409)

The critical points are given by the roots of p′(z), hence we have two critical points z(1)crit and z(2)crit.

Therefore

critical points =
{

z(1)crit,z
(2)
crit

}
=

{
−1

3
+

i

3

√
2,−1

3
− i

3

√
2,

}
. (6.410)

The Morse function is given by

h(x,y) = −γ ln |p(x+ iy)|

= − 1

10
ln

∣∣∣x6 +3x4y2 +3x2y4 + y6 +2x5 +4x3y2 +2xy4 +3x4 +2x2y2− y4

+4x3−4xy2 +3x2− y2 +2x+1
∣∣ . (6.411)

The left picture of fig. 6.7 shows the location of the singular points and the location of the critical

points. Fig. 6.8 shows a plot of the Morse function h. The right picture of fig. 6.7 shows a sketch

of the Lefschetz thimbles C1, C2, D1 and D2.
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x

y

z
(1)
sing

z
(2)
sing

z
(3)
sing

z
(1)
crit

z
(2)
crit

x

y
C1

C2

D1

D2

Figure 6.7: The left picture shows the location of the singular points z(1)sing, z(2)sing and z(3)sing (red

points) and the location of the critical points z(1)crit and z(2)crit (blue points). The right picture shows

a sketch of the Lefschetz thimbles C1 and C2 (green) as well as the Lefschetz thimbles D1 and

D2 (orange).

2− 1.5− 1− 0.5− 0 0.5 1 1.5−
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0
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Figure 6.8: The Morse function h(x,y) plotted in the range x ∈ [−2,1] and y ∈ [−1.5,1.5]. The

Morse function h tends to +∞ at the three singular points z(1)sing =−1, z(2)sing = i and z(3)sing =−i.
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Digression. Morse theory

Morse theory studies the critical points of a real function [146]. There is also a complex ana-
logue, called Picard–Lefschetz theory.

Let M be a compact manifold and f : M→ R a smooth real valued function on M. Coordi-
nates on M are denoted by x1, . . . ,xn.

A critical point of f is a point x ∈M, where all partial derivatives vanish

∂ f

∂x1
= . . . =

∂ f

∂xn
= 0, (6.412)

or d f = 0 in short. A critical point x is called non-degenerate, if

det

(
∂2 f

∂xi∂x j

)
6= 0. (6.413)

Let x(0) be a non-degenerate critical point. In a neighbourhood of x(0) we may choose a coordi-
nate system (x′1, . . . ,x

′
n) such that

f = f
(

x(0)
)
− x′21 −·· ·− x′2λ + x′2λ+1 + · · ·+ x′2n +O

(
x′3
)
, (6.414)

i.e. there are λ downward directions and (n−λ) upward directions. As x(0) is assumed to be
a non-degenerate critical point there are no flat directions. This implies that a non-degenerate
critical point is isolated. The number λ of downward directions is called the Morse index of the
critical point. We denote the number of critical points with Morse index λ by Cλ. The function f
is called a Morse function if all critical points of f are non-degenerate. Morse theory relates the
number of critical points to the topology of M. The relation is provided by the Morse inequalities.
The Morse inequalities for a Morse function f read

λ

∑
k=0

(−1)λ−k
dimHk (M) ≤

λ

∑
k=0

(−1)λ−k Ck. (6.415)

The Euler characteristic of M is defined by

χ(M) =
n

∑
k=0

(−1)k
dimHk (M) . (6.416)

The Morse inequalities imply

χ(M) =
n

∑
k=0

(−1)kCk. (6.417)

Exercise 62: Assume Cλ+1 =Cλ−1 = 0. Show that this implies

dimHλ+1 (M) = 0, dimHλ (M) = Cλ, dimHλ−1 (M) = 0. (6.418)

Exercise 63: Derive eq. (6.417) from eq. (6.415).
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6.7.3 Computation of intersection numbers

As the integral appearing in eq. (6.332) in the definition of the intersection number of twisted

cocycles is not the most practical way to compute intersection numbers, let us now turn to a more

efficient method to compute intersection numbers. With a few technical assumptions, outlined

in [135, 147, 148] we may compute multivariate intersection numbers in n variables z1, . . .zn

recursively by splitting the problem into the computation of an intersection number in (n− 1)
variables z1, . . . ,zn−1 and the computation of a (generalised) intersection number in the variable

zn. By recursion, we therefore have to compute only (generalised) intersection numbers in a

single variable zi. This reduces the multivariate problem to an univariate problem.

Let us comment on the word “generalised” intersection number: We only need to discuss the

univariate case. Consider two cohomology classes 〈ϕL| and |ϕR〉. Representatives ϕL and ϕR for

the two cohomology classes 〈ϕL| and |ϕR〉 are in the univariate case differential one-forms and

of the form as in eq. (6.300) or eq. (6.318). We may view the representatives ϕL and ϕR, the

cohomology classes 〈ϕL| and |ϕR〉, and the twist ω as scalar quantities.

Consider now a vector of ν differential one-forms ϕL, j in the variable z, where j runs from

1 to ν. Similar, consider for the dual space a ν-dimensional vector ϕR, j and generalise ω to a

(ν×ν)-dimensional matrix Ω. The equivalence classes 〈ϕL, j| and |ϕR, j〉 are now defined by

ϕ′L, j = ϕL, j +∂zξ j +ξiΩi j and ϕ′R, j = ϕR, j +∂zξ j−Ω jiξi, (6.419)

for some zero-forms ξ j (i.e. functions). Readers familiar with gauge theories will certainly

recognise that the generalisation is exactly the same step as going from an Abelian gauge theory

(like QED) to a non-Abelian gauge theory (like QCD).

Let us now set up the notation for the recursive structure. We fix an ordered sequence

(zσ1
, . . . ,zσn), indicating that we first integrate out zσ1

, then zσ2
, etc.. Without loss of generality

we will always consider the order (z1, . . . ,zn), unless indicated otherwise.

For i = 0, . . . ,n we consider a fibration Ei : Cn → Bi with total space Cn, fibre Vi = Ci

parametrised by the coordinates (z1, . . . ,zi) and base Bi = Cn−i parametrised by the coordinates

(zi+1, . . . ,zn). The covariant derivative splits as

∇ω = ∇
(i),F
ω +∇

(i),B
ω , (6.420)

with

∇
(i),F
ω =

i

∑
j=1

dz j

(
∂

∂z j
+ω j

)
, ∇

(i),B
ω =

n

∑
j=i+1

dz j

(
∂

∂z j
+ω j

)
. (6.421)

One sets

ω(i) =
i

∑
j=1

ω jdz j. (6.422)

Clearly, for i = n we have

ω(n) = ω, ∇
(n),F
ω = ∇ω. (6.423)
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We may now study for each i the twisted cohomology group in the fibre, defined by replacing

ω with ω(i). The additional variables (zi+1, . . . ,zn) are treated as parameters, that is to say we

consider all polynomials as polynomials with coefficients in F̃= F(zi+1, . . . ,zn). For each i only

the i-th cohomology group is of interest and for simplicity we write

H(i)
ω = H i

ω(i),
(

H(i)
ω

)∗
=
(

H i
ω(i)

)∗
. (6.424)

We denote the dimensions of the twisted cohomology groups by

νi = dimH(i)
ω = dim

(
H(i)

ω

)∗
. (6.425)

Let 〈e(i)j | with 1≤ j≤ νi be a basis of H(i)
ω and let |h(i)j 〉 with 1≤ j ≤ νi be a basis of (H(i)

ω )∗. We

denote the (νi×νi)-dimensional intersection matrix by Ci. The entries are given by

(Ci) jk =
〈

e(i)j

∣∣∣ h(i)k

〉
. (6.426)

The matrix Ci is invertible. We denote by |d(i)
j 〉 with 1 ≤ j ≤ νi the dual basis with respect to

〈e(i)j |. From eq. (6.357) the dual basis is given by

∣∣∣d(i)
j

〉
=

∣∣∣h(i)k

〉(
C−1

i

)
k j
, (6.427)

and satisfies
〈

e(i)j

∣∣∣ d(i)
k

〉
= δ jk. (6.428)

The essential step in the recursive approach is to expand the twisted cohomology class 〈ϕ(n)
L | ∈

H(n)
ω in the basis of H(n−1)

ω

〈
ϕ
(n)
L

∣∣∣ =
νn−1

∑
j=1

〈
ϕ
(n)
L, j

∣∣∣∧
〈

e(n−1)
j

∣∣∣ , (6.429)

and to expand |ϕ(n)
R 〉 ∈ (H(n)

ω )∗ in the dual basis of (H(n−1)
ω )∗:

∣∣∣ϕ(n)
R

〉
=

νn−1

∑
j=1

∣∣∣d(n−1)
j

〉
∧
∣∣∣ϕ(n)

R, j

〉
. (6.430)

Classes in H(n−1)
ω are represented by rational functions in z1, . . . ,zn times dzn−1∧· · · ∧dz1. The

coefficients 〈ϕ(n)
L, j| and |ϕ(n)

R, j〉 are one-forms proportional to dzn and independent of z1, . . . ,zn−1.

They are given by

〈
ϕ
(n)
L, j

∣∣∣ =
〈

ϕ
(n)
L

∣∣∣d(n−1)
j

〉
,

∣∣∣ϕ(n)
R, j

〉
=
〈

e(n−1)
j

∣∣∣ϕ(n)
R

〉
. (6.431)
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The coefficients 〈ϕ(n)
L, j| and |ϕ(n)

R, j〉 are obtained by computing only intersection numbers in (n−1)
variables. This is compatible with the recursive approach. It also shows that the coefficients do

not depend on the variables (z1, . . . ,zn−1), as these variables are integrated out. Let us define a

(νn−1×νn−1)-matrix Ω(n) by

Ω
(n)
i j =

〈
(∂zn +ωn)e(n−1)

i

∣∣∣ d(n−1)
j

〉
= −

〈
e(n−1)

i

∣∣∣ (∂zn−ωn)d(n−1)
j

〉
. (6.432)

The invariance of the original class 〈ϕL| under a transformation as in eq. (6.311) translates into

the invariance of the vector of coefficients 〈ϕL, j| as in eq. (6.419).

The algorithm for computing a multivariate intersection number consists of three steps:

1. Recursive approach: The algorithm integrates out one variable at a time. This part has

been outlined above. It has the advantage to reduce a multivariate problem to a univariate

problem.

2. Reduction to simple poles: In general we deal in cohomology with equivalence classes. We

may replace a representative of an equivalence class with higher poles with an equivalent

representative with only simple poles. This is similar to integration-by-part reduction.

However, let us stress that the involved systems of linear equations are usually significantly

smaller compared to standard integration-by-part reduction.

3. Evaluation of the intersection number as a global residue. Having reduced our objects

to simple poles we may use a mathematical theorem which states that in this case the

intersection number equals a global residue. The theorem does not hold for higher poles,

therefore step 2 is required. The global residue is easily computed and does not involve

algebraic extensions like square roots.

Let us now fill in the technical details: We would like to compute the intersection number

〈
ϕ
(n)
L

∣∣∣ ϕ
(n)
R

〉
ω
, (6.433)

where ϕ
(n)
L and ϕ

(n)
R are differential n-forms in the variables z1, . . . ,zn. Expanding 〈ϕ(n)

L | as in

eq. (6.429), |ϕ(n)
R 〉 as in eq. (6.429) and using the fact that 〈e(n−1)

j | and |d(n−1)
j 〉 are dual bases of

H(n−1)
ω and (H(n−1)

ω )∗, respectively, reduces the problem to

〈
ϕ
(n)
L

∣∣∣ ϕ
(n)
R

〉
ω

=
νn−1

∑
j=1

〈
ϕ
(n)
L, j

∣∣∣ϕ(n)
R, j

〉
Ω
. (6.434)

The right-hand side is an univariate generalised intersection number in the variable zn.

In the next step we reduce the vector of coefficients 〈ϕ(n)
L, j| and |ϕ(n)

R, j〉 to a form where only

simple poles in the variable zn occur. A rational function in the variable zn

r (zn) =
P(zn)

Q(zn)
, P,Q ∈ F [zn] gcd(P,Q) = 1, (6.435)
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has only simple poles if degP < degQ and if in the partial fraction decomposition each irre-

ducible polynomial in the denominator occurs only to power 1. The condition degP < degQ
ensures that there are no higher poles at infinity.

It is sufficient to discuss the reduction to simple poles for a ν-dimensional vector ϕ̂ j (1≤ j ≤
ν) which transforms as

ϕ̂ j → ϕ̂ j +
(
δ jk∂zn +Ω jk

)
ξk. (6.436)

The reduction of 〈ϕ(n)
L, j| is then achieved by setting Ω = (Ω(n))T , the reduction of |ϕ(n)

R, j〉 is

achieved by setting Ω =−Ω(n). In both case we have ν = νn−1.

We first treat poles at infinity: Assume that Ω has only simple poles and that the vector ϕ̂ j

has a pole of order o > 1 at infinity. A transformation as in eq. (6.436) with the seed

ξ j (zn) = c jz
o−1
n , c j ∈ F (6.437)

reduces the order of the pole at infinity, provided the linear system obtained from the condition

that the ν equations

ϕ̂ j +
(
δ jk∂zn +Ω jk

)
ξk (6.438)

have only poles of order (o−1) at infinity yield a solution for the ν coefficients c j. Furthermore,

this gauge transformation does not introduce higher poles elsewhere.

The procedure is only slightly more complicated for higher poles at finite points. Assume that

Ω has only simple poles. Let q∈F[zn] be an irreducible polynomial appearing in the denominator

of the partial fraction decomposition of the ϕ̂ j’s at worst to the power o. A transformation as in

eq. (6.436) with the seed

ξ j (zn) =
1

qo−1

deg(q)−1

∑
k=0

c j,k zk
n, c j,k ∈ F. (6.439)

reduces the order, provided the linear system obtained from the condition that in the partial

fraction decomposition of

ϕ̂ j +
(
δ jk∂zn +Ω jk

)
ξk (6.440)

terms of the form zk
n/qo are absent (with 0≤ k ≤ deg(q)−1) yield a solution for the (ν ·deg(q))

coefficients c j,k. Furthermore, this gauge transformation does not introduce higher poles else-

where.

In the third step we relate the intersection number to a global residue. Let’s assume that Ω(n),

〈ϕ(n)
L, j| and |ϕ(n)

R, j〉 have at most only simple poles in zn. Define two polynomials P and Q by

det
(

Ω(n)
)

=
P

Q
, P,Q ∈ F [zn] , gcd(P,Q) = 1, (6.441)
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and denote by adj Ω(n) the adjoint matrix of Ω(n). This matrix satisfies

Ω(n) ·
(

adj Ω(n)
)

=
(

adj Ω(n)
)
·Ω(n) = det

(
Ω(n)

)
·1. (6.442)

Let further

Y = { zn ∈ C | P(zn) = 0 } . (6.443)

Then

〈ϕL| ϕR〉ω = −resY

(
Q ϕ̂L,i

(
adj Ω(n)

)
i j

ϕ̂R, j

)
. (6.444)

Digression. Computation of a global residue

Consider n meromorphic functions f1, f2, . . . , fn of n variables x1, . . . ,xn and assume that the
system of equations

f1 (x) = f2 (x) = . . . fn (x) = 0 (6.445)

has as solutions a finite number of isolated points x( j) = (x( j)
1 , ...,x( j)

n ), where j labels the indi-
vidual solutions. Denote by

Yj =
{

x ∈ Ĉn| f j (x) = 0
}
, 1 ≤ j ≤ n, (6.446)

with Ĉ= C∪{∞}. In eq. (6.124) we defined the global residue

resY1,...,Yn (g) (6.447)

of a meromorphic function g, regular at the solutions x( j), as a sum over the local residues at the
solutions x( j). Let us now assume that g is a rational function. The local residues may involve
algebraic extensions (i.e. roots), however the global residue does not. We may compute the
global residue without the need to introduce algebraic extensions as follows:

Consider the ring R =C[x1, ...,xn] and the ideal I = 〈 f1, . . . , fn〉. The zero locus of f1 = · · ·=
fn = 0 is a zero-dimensional variety. It follows that the quotient ring R/I is a finite-dimensional
C-vector space. Let {ei} be a basis of this vector space and let P1,P2 ∈ R/I be two polynomials
(i.e. vectors) in this vector space. A theorem of algebraic geometry states that the global residue
defines a symmetric non-degenerate inner product [123]:

〈P1,P2〉 = resY1,...,Yn ( P1 ·P2) . (6.448)

Since the inner product is non-degenerate there exists a dual basis {di} with the property
〈
ei,d j

〉
= δi j. (6.449)

To compute the global residue of a polynomial P(z) we therefore obtain the following method:
We express P in the basis {ei} and 1 in the dual basis {di}:

P = ∑
i

αiei, 1 = ∑
i

βidi, αi,βi ∈ C. (6.450)
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We then have

resY1,...,Yn ( P ) = resY1,...,Yn ( P ·1 ) = ∑
i

∑
j

αiβ j
〈
ei,d j

〉
= ∑

i
αiβi. (6.451)

Given a basis {ei} and the associated dual basis {di}, eq. (6.451) allows us to compute the
global residue of a polynomial P without knowing the solutions x( j). Eq. (6.451) simplifies, if the
dual basis contains a constant polynomial di0 = c. We then have

resY1,...,Yn ( P ) =
αi0

c
. (6.452)

We would like to compute the global residue of the rational function g. Eq. (6.451) is not yet
directly applicable to our problem, since g(x) is a rational function, not a polynomial. We write
g(x) = P(x)/Q(x). We may assume that { f1, ..., fn,Q} have no common zeros, since we assumed
that g is regular on the solutions x( j). Hilbert’s Nullstellensatz guarantees then that there exist
polynomials p1, ..., pn, Q̃ ∈ R, such that

p1 f1 + · · ·+ pn fn + Q̃Q = 1. (6.453)

We call Q̃ the polynomial inverse of Q with respect to 〈 f1, . . . , fn〉. For the global residue we have

resY1,...,Yn ( g ) = resY1,...,Yn

(
P
Q

)
= resY1,...,Yn

(
PQ̃
)
. (6.454)

Note PQ̃ is a polynomial. We have therefore reduced the case of a rational function g(x) to the
polynomial case P(x)Q̃(x).

The above calculations can be carried out with the help of a Gröbner basis for the ideal
I [149, 150].

Let us apply these ideas to the computation of the global residue in eq. (6.444). As we are

in the univariate case, the calculation simplifies significantly. We have to compute the global

residue of a rational function in zn. Let us write

Pg

Qg
= Q ϕ̂L,i

(
adj Ω(n)

)
i j

ϕ̂R, j, Pg,Qg ∈ F[zn]. (6.455)

We may assume gcd(P,Qg) = gcd(Pg,Qg) = 1. Let ν = degP and let Q̃g be the polynomial

inverse of Qg with respect to the ideal 〈P〉. Then

resY

(
Pg

Qg

)
=

aν

cν
, (6.456)

where aν is the coefficient of zν−1 in the reduction of PgQ̃g modulus P and cν is the coefficient

of zν of P.
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6.7.4 Inner product for Feynman integrals

Let us now make contact with Feynman integrals [134–137, 151–155]. From section 2.5.5 we

recall the Baikov representation:

Iν1...νn = C
∫

C

dNV z [B (z)]
D−l−e−1

2

NV

∏
s=1

z−νs
s . (6.457)

C is a prefactor (given in eq. (2.235)) and not relevant for the further discussion. B(z) denotes the

Baikov polynomial. It is obtained from a Gram determinant. The domain of integration is such

that the Baikov polynomial vanishes on the boundary of the integration region. We note that the

indices νs enter only the last factor. Eq. (6.457) is an integral of the form as in eq. (6.310) with

ϕ =

(
NV

∏
s=1

z−νs
s

)
dNV z (6.458)

and

u = [B (z)]
D−l−e−1

2 , ω = d lnu. (6.459)

As the Baikov polynomial vanishes on the boundary of the integration region, the Feynman

integral is invariant under

ϕ → ϕ+∇ωξ (6.460)

for any (NV −1)-form ξ and we may group the integrands of the Feynman integrals Iν1...νn corre-

sponding to different sets of indices ν1, . . . ,νn into cohomology classes. The number of indepen-

dent cohomology classes in HNV
ω is finite, and we may express any ϕ as a linear combination of a

basis of HNV
ω . Let 〈e j| be a basis of HNV

ω and |d j〉 a basis of the dual cohomology group (HNV
ω )∗,

chosen such that

〈
ei|d j

〉
ω

= δi j. (6.461)

We then have

〈ϕ| = ∑
j

c j
〈
e j
∣∣ , (6.462)

where the coefficients are given by the intersection numbers

c j =
〈
ϕ|d j

〉
ω
. (6.463)

This provides an alternative to integration-by-parts reduction.

Note that the dimension of HNV
ω can be larger than the number of master integrals, as the latter

takes symmetries of integrals into account, while the former operates on integrands. This is most

easily explained by the simplest example, the one-loop two-point function with two equal internal
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masses. This system has two master integrals. A standard choice is I11 and I10. By symmetry,

the integral I01 is identical to I10. At the level of the integrands we have dimH2
ω = 3. A basis for

H2
ω is given by 〈ϕ11|, 〈ϕ10|, 〈ϕ01| with

ϕν1ν2
=

dz2∧dz1

zν1

1 zν2

2

. (6.464)

The 2-forms ϕ10 and ϕ01

ϕ10 = −dz1

z1
∧dz2, ϕ01 = −dz1∧

dz2

z2
. (6.465)

are not identical (but of course one is obtained from the other up to a sign through the substitution

z1↔ z2), only the integrals as in eq. (6.310) give identical results.

Let us now illustrate the technique of intersection numbers by an example. We consider the

double-box integral discussed as example 3 in section 6.3.1. As a basis of master integrals we

take the eight master integrals given in eq. (6.81). Suppose we would like to express the integral

I1111111(−2)0 as a linear combination of the master integrals:

I1111111(−2)0 =
8

∑
j=1

c jIννν j , (6.466)

with Iννν j denoting the master integrals in the order as they appear in eq. (6.81), e.g. Iννν7
= I111111100

and Iννν8
= I1111111(−1)0 . Let’s compute the coefficients c7 and c8 from intersection numbers. This

can be done on the maximal cut, as

MaxCut I1111111(−2)0 = c7MaxCut Iννν7
+ c8MaxCut Iννν8

, (6.467)

with the same coefficients c7 and c8 as in eq. (6.466). For simplicity we set µ2 = 1. A Baikov

representation of MaxCut I1111111ν0 is

MaxCut I1111111ν0 = C
∫

C

dz8 z−1−2ε
8 (t− z8)

−1−ε (s+ t− z8)
ε z−ν

8 . (6.468)

This form of the Baikov representation is obtained within the loop-by-loop approach by first

considering the loop with loop momentum k2 and then the remaining loop with loop momentum

k1. The prefactor C and the integration contour C are not particularly relevant. The multi-valued

function u is given by

u = C z−1−2ε
8 (t− z8)

−1−ε (s+ t− z8)
ε , (6.469)

the rational one-form ϕν (recall that the index ν in I1111111ν0 is an integer) by

ϕν = z−ν
8 dz8. (6.470)
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The one-form ω is therefore given by

ω = d lnu =

[
−1+2ε

z8
− 1+ ε

z8− t
+

ε

z8− s− t

]
dz8. (6.471)

The equation ω = 0 leads to a quadratic equation for z8, which has two solutions. We therefore

have

dimH1
ω = 2. (6.472)

This is consistent with the fact that there are two master integrals (Iννν7
and Iννν8

) in this sector. The

ϕ’s corresponding to Iννν7
and Iννν8

give us immediately a basis of H1
ω:

e1 = 1 ·dz8, e2 = z8 ·dz8. (6.473)

We then compute the dual basis. We start from an arbitrary basis of (H1
ω)
∗, which we take to be

h1 = 1 ·dz8, h2 = z8 ·dz8, (6.474)

compute the intersection matrix between (〈e1|,〈e2|) and (|h1〉, |h2〉) and obtain the dual basis

according to eq. (6.357). We find

d1 =

[
(1+ ε)(2+ ε)(2z8− s−2t)

(1+2ε)s(s+ t)2
− 3(2z8− s−2t)

4(1+2ε)st2
− 4(s+ t)z8

(1+ ε)s2t2
+

2(2+ ε)z8

st (s+ t)

+
4(t− z1)

s2t
+

9(3+2ε)z8

2st2
− 27(1+2ε)

4t2
− (11+30ε)

2st

]
dz8,

d2 =

[
3(2z8− s−2t)

2(1+2ε) t2 (s+ t)2
− (5+2ε)(2z8− t)

2st (s+ t)2
+

2(2+ ε)

st (s+ t)
− 6εz8

st2 (s+ t)
− (3+7ε)z8

(1+ ε)s2t2

+
11z8

s2t (s+ t)
+

9ε

st2
− 4

s2t
+

3

2st2

]
dz8. (6.475)

We would like to find the coefficients c7 and c8 in the reduction of I1111111(−2)0 to master inte-

grals. The integral MaxCut I1111111(−2)0 corresponds to

ϕ(−2) = z2
8 ·dz8. (6.476)

c7 and c8 are then given by the intersection numbers

c7 =
〈
ϕ(−2)|d1

〉
ω

=
2εt (s+ t)

1−2ε
,

c8 =
〈
ϕ(−2)|d2

〉
ω

=
(1−4ε) t−3εs

1−2ε
. (6.477)

This agrees with the result obtained from integration-by-parts reduction (compare with exer-

cise 44).



Chapter 7

Transformations of differential equations

In chapter 6 we learned that the computation of Feynman integrals can be reduced to finding

appropriate fibre transformations (see section 6.4.3) and base transformations (see section 6.4.4).

However, up to now we didn’t discuss methods how to find these fibre and base transformations.

Currently, there is no known method how to do this in full generality. In this chapter we in-

troduce methods, which allow us to construct the required fibre or base transformation in special

cases. We focus in this chapter mainly on rational and algebraic transformations. This covers

many Feynman integrals, which evaluate to multiple polylogarithms. But there are also Feyn-

man integrals, where the required transformations involve transcendental functions. We discuss

an example for this case in chapter 13.

7.1 Fibre transformations

We denote by~I = (Iννν1
, . . . , IνννNmaster

)T a set of master integrals satisfying the differential equation

(d +A)~I = 0. (7.1)

A fibre transformations, given by an (Nmaster×Nmaster)-matrix U(ε,x), redefines the set of master

integrals as

~I′ = U~I, (7.2)

and transforms the differential equation to

(
d +A′

)
~I′ = 0, (7.3)

where A′ is related to A by

A′ = UAU−1+UdU−1. (7.4)

The goal is to find a transformation U(ε,x), such that the dependence on ε of A′ is only through

an explicit prefactor ε as in eq. (6.92).

239
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In the following subsections we discuss a variety of methods: We start with block de-

composition in subsection 7.1.1. This allows us to reduce the original problem involving a

(Nmaster×Nmaster)-matrix A to matrices of smaller size. In addition we derive a differential

equation for the transformation we are seeking. In subsection 7.1.2 we reduce a multivariate

problem depending on NB kinematic variables x1, . . . ,xNB to an univariate problem depending

only on a single kinematic variable x. Obviously, some information is lost in this reduction, but

the solution of the simpler univariate problem can be useful to find a solution for the multivariate

problem. The next three subsections deal with univariate problems: In subsection 7.1.3 we con-

vert a system of Nmaster first-order differential equations to a higher-order differential equation

for one selected master integral. The order of this differential equation is at most Nmaster. The

differential operator of this differential equation is called the Picard-Fuchs operator. We then

study the factorisation properties of the Picard-Fuchs operator when the parameter D denoting

the number of space-time dimensions is an (even) integer. In subsection 7.1.4 we study the Mag-

nus expansion. This is particularly useful if the matrix A is linear in ε, i.e. A = A(0)+ εA(1) with

A(0) and A(1) being independent of ε. In subsection 7.1.5 we discuss Moser’s algorithm. This

algorithm is at the core of several computer programs for finding an appropriate fibre transforma-

tion. In subsection 7.1.6 we return from the univariate case to the (general) multivariate case. We

discuss the Leinartas decomposition, which can be thought of as a generalisation of partial frac-

tion decomposition from the univariate case to the multivariate case. Finally, subsection 7.1.7 is

devoted to maximal cuts and constant leading singularities. This method allows us often to make

an educated guess for a suitable fibre transformation.

7.1.1 Block decomposition

We start with an elementary method [156]: We may order the set of master integrals

~I = (Iννν1
, . . . , IνννNmaster

)T (7.5)

such that Iννν1
is the simplest integral and IνννNmaster

the most complicated integral. We may do this

with an order criteria as in eq. (6.17) or eq. (6.18). Doing so, the matrix A has a lower block-

triangular structure. To give an example, consider the situation with three sectors. Suppose that

the simplest sector has one master integral, the next sector two master integrals and the most

complicated sector one master integral. The matrix A has then the structure

A =




A1 0 0 0

0
A3 A2

0

A6 A5 A4


 , (7.6)

where only the coloured entries are non-zero. The blocks on the diagonal, A1, A2 and A4 have

the size (1×1),(2×2) and (1×1), respectively.

In order to find the fibre transformation which transforms the system to an ε-form we may

split the problem into smaller tasks and first find transformations, which transform a specific

block into an ε-form. For the example in eq. (7.6) we may do this in the order A1, A2, A3, A4, A5
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and A6. This has the advantage that for most blocks we may work with matrices of smaller size.

The size of the matrices required for the individual blocks are

A1 : 1×1

A2 : 2×2

A3 : 3×3

A4 : 1×1

A5 : 3×3

A6 : 4×4

(7.7)

For example, if ~I = (Iννν1
, Iννν2

, Iννν3
, Iννν4

,) the (3× 3)-system for the block A5 is obtained by using

Iννν2
, Iννν3

, Iννν4
and setting Iννν1

to zero. Only for the last block (A6) we need a (4×4)-system. We do

this bottom-up: We first put the block A1 into an ε-form, then block A2, etc.. In this approach

we may assume as we try to find a transformation for block Ai that all blocks A j with j < i have

already been put into an ε-form.

There are two types of blocks: Blocks on the diagonal (A1, A2 and A4 in the example above)

and off-diagonal blocks (A3, A5 and A6 in the example above). Let’s see how a fibre transforma-

tion acts on these blocks. It is sufficient to discuss the case, where A is of the form

A =




A1 0 0

A3 A2 0

A6 A5 A4


 (7.8)

and to consider the transformation of the blocks A2 (a diagonal block) and A3 (an off-diagonal

block). We assume that block A1 is already in ε-form, and the sought-after transformation should

preserve block A1. The blocks A4, A5 and A6 will be dealt with in a later step. The transformation

for the blocks A2 and A3 is allowed to modify these blocks.

Let’s start with block A2. We consider a transformation of the form

U =




1 0 0

0 U2 0

0 0 1


 , U−1 =




1 0 0

0 U−1
2 0

0 0 1


 . (7.9)

The transformed A′ is given by

A′ =




A1 0 0

U2A3 U2A2U−1
2 +U2dU−1

2 0

A6 A5U−1
2 A4


 . (7.10)

Suppose the block A2 contains an unwanted term F and a remainder R:

A2 = F +R. (7.11)

The term F can be removed by a fibre transformation of the form as in eq. (7.9) with U2 given as

a solution of the differential equation

dU−1
2 = −FU−1

2 . (7.12)
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We consider a simple example: Assume that we have only one kinematic variable x1 (e.g. NB = 1)

and that A2 is of size (1×1) and given by

A2 =

(
1

x−1
+

2ε

x−1

)
dx. (7.13)

We would like to remove the first term F = dx/(x− 1) by a fibre transformation. We have to

solve the differential equation

d

dx
U−1

2 +
1

x−1
U−1

2 = 0. (7.14)

A solution is easily found and given by

U−1
2 =

C

x−1
, U2 = C−1 (x−1) . (7.15)

The integration constant C is of no particular relevance, as it corresponds to multiplying a master

integral with a constant prefactor. We may set C = 1 and U2 = x−1 is the sought-after transfor-

mation.

Let us stay with one kinematic variable and A2 of size (1× 1). Let us now consider F =
f (x)dx and assume that f (x) is a rational function in x. We have to solve the differential equation

[
d

dx
+ f (x)

]
U−1

2 = 0. (7.16)

A solution is easily found and given by

U−1
2 = exp


−

x∫

x0

dx′ f
(
x′
)

 , U2 = exp




x∫

x0

dx′ f
(
x′
)

 . (7.17)

By using partial fraction decomposition we may write f (x) as a sum of a polynomial, terms with

simple poles and terms with higher poles. We have with a suitable choice for the integration

constant

f (x) = cnxn, U2 (x) = exp

(
cnxn+1

n+1

)
,

f (x) =
r0

x− z
, U2 (x) = (x− z)r0 ,

f (x) =
dn

(x− z)n , U2 (x) = exp

(
− dn

(n−1)(x− z)n−1

)
. (7.18)

A first-order differential equation as in eq. (7.16) is said to be in Fuchsian form, if f (x) is a

rational function in x and if in the partial fraction decomposition of f polynomial terms and

higher poles are absent (i.e. f has only simple poles). From eq. (7.18) we see that simple poles
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with integer residues can be removed from a (1× 1)-block on the diagonal by a rational fibre

transformation. If the residue is not an integer the fibre transformation is algebraic.

Let us now consider block A3. At this stage we would like to preserve the blocks A1 and A2.

We consider a transformation of the form

U =




1 0 0

U3 1 0

0 0 1


 , U−1 =




1 0 0

−U3 1 0

0 0 1


 . (7.19)

The transformed A′ is given by

A′ =




A1 0 0

A3−A2U3 +U3A1−dU3 A2 0

A6−A5U3 A5 A4


 . (7.20)

Suppose the block A3 contains an unwanted term F and a remainder R:

A3 = F +R. (7.21)

The term F can be removed by a fibre transformation of the form as in eq. (7.19) with U3 given

as a solution of the differential equation

dU3 +A2U3−U3A1 = F. (7.22)

Let us also consider an example here. We again consider the case of one kinematic variable x
(e.g. NB = 1). We further assume that A1 and A2 are both blocks of size (1×1). Then A3 is also

a block of size (1×1). Assume that A1 and A2 are already in ε-form and given by

A1 =
εdx

x−1
, A2 =

2εdx

x−1
. (7.23)

Assume further that F is given by

F =
dx

(x−1)2
. (7.24)

We have to solve the differential equation

[
d

dx
+

ε

x−1

]
U3 =

1

(x−1)2
. (7.25)

A solution is given by

U3 =
1

(1− ε)(1− x)
. (7.26)
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7.1.2 Reduction to an univariate problem

In general our Feynman integrals depend on NB kinematic variables x1, . . . ,xNB . If NB > 1 we are

considering a multivariate problem, if NB = 1 we are considering an univariate problem. Clearly,

an univariate problem is simpler than a multivariate problem.

To any multivariate problem we may associate an univariate problem as follows [157]: Let

α = [α1 : ... : αNB] ∈ CPNB−1 be a point in projective space. Without loss of generality we work

in the chart αNB = 1. We consider a path γα : [0,1]→ Cn, indexed by α and parametrised by a

variable λ. Explicitly, we have

x j (λ) = α jλ, 1≤ j ≤ NB. (7.27)

We then view the master integrals as functions of λ. In other words, we look at the variation of

the master integrals in the direction specified by α. Consider now a set of master integrals~I with

differential equation

(d +A)~I = 0, A =
NB

∑
j=1

Ax jdx j. (7.28)

For the derivative with respect to λ we have

(
d

dλ
+Bλ

)
~I = 0, Bλ =

NB

∑
j=1

α jAx j . (7.29)

B is a (Nmaster×Nmaster)-matrix, whose entries are functions. Eq. (7.29) is now an univariate prob-

lem in the variable λ. This problem depends on the additional parameters α= [α1 : · · · : αNB−1 : 1]
specifying the direction of the path in eq. (7.27). We may now try to find with univariate methods

a fibre transformation, which transforms eq. (7.29) into an ε-form. Let’s denote this transforma-

tion by V :

~I′ = V~I. (7.30)

V is a function of λ and the parameters α:

V = V (α1, ...,αNB−1,λ) . (7.31)

We recall that we work in the chart αNB = 1. We may now try to lift the transformation V to the

original kinematic space with coordinates x1, . . . ,xNB . Let us set

U = V

(
x1

xNB

, ...,
xNB−1

xNB

,xNB

)
. (7.32)

U defines a transformation in terms of the original variables x1, ..., xNB .

It is important to note that there is no guarantee that the transformation U puts the original

system in eq. (7.28) into an ε-form, even if the transformation V puts the system in eq. (7.29)
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into an ε-form. The reason is that going from the original system in eq. (7.28) to the simpler

univariate system in eq. (7.29) we threw away information, which we cannot recover by lifting

the solution of the univariate system to the multivariate system. The information we threw away

is not so easy to spot, after all we kept the dependence on all directions in the kinematic space

by introducing the parameters α. The information we threw away comes from the specific paths

we consider in eq. (7.27): We only consider lines through the origin. Therefore, there might be

terms in the original A, which map to zero in Bλ for the class of paths considered in eq. (7.27).

These terms are derivatives of functions being constant on lines through the origin. An example

is given by

d lnZ (x1, ...,xNB) , (7.33)

where Z(x1, ...,xNB) is a rational function in (x1, ...,xNB) and homogeneous of degree zero in

(x1, ...,xNB).
Nevertheless, it can be a promising strategy to first solve the simpler univariate problem and

to remove then any offending terms of the form as in eq. (7.33) by a subsequent transformation,

which usually is rather easy to find.

Exercise 64: Let Nmaster = 1, NB = 2 and

A = d ln

(
x1

x1 + x2

)
. (7.34)

Show that Bλ, defined as in eq. (7.29), equals zero.

7.1.3 Picard-Fuchs operators

In this section and the two following sections we investigate differential equations for Feynman

integrals, which only depend on one kinematic variable x. Thus we consider the case NB = 1.

In the previous section we have seen that we may reduce a multivariate problem to an univariate

problem, solve the latter first and finally lift the result to the multivariate case. Let us therefore

consider a set of master integrals~I = (Iννν1
, . . . , IνννNmaster

)T satisfying the differential equation

(
d

dx
+Ax

)
~I = 0. (7.35)

This is a system of Nmaster coupled first-order differential equations.

In this section we derive a single differential equation, usually of higher order, for one Feyn-

man integral I [157, 158]. Let I be one of the master integrals {Iννν1
, . . . , IνννNmaster

}. Eq. (7.35)

allows us to express the k-th derivative of I with respect to x as a linear combination of the

original master integrals. We now determine the largest number r, such that the matrix which

expresses

I,
d

dx
I, . . . ,

(
d

dx

)r−1

I (7.36)
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in terms of the original set {Iννν1
, . . . , IνννNmaster

} has full rank. Obviously, we have r ≤ Nmaster. In

the case r < Nmaster we complement the set I,(d/dx)I, . . .,(d/dx)r−1I by (Nmaster− r) elements

Iνννσr+1
, . . . , IνννσNmaster

∈ {Iννν1
, . . . , IνννNmaster

} such that the transformation matrix has rank Nmaster. The

elements Iνννσr+1
, . . . , IνννσNmaster

must exist, since we assumed that the set {Iννν1
, . . . , IνννNmaster

} forms a

basis of master integrals. The basis

I,
d
dx

I, . . . ,

(
d
dx

)r−1

I, Iνννσr+1
, . . . , IνννσNmaster

(7.37)

decouples the system into a block of size r, which is closed under differentiation and a remaining

sector of size (Nmaster− r).
We recall that r is the largest number such that I,(d/dx)I, ...,(d/dx)r−1I are independent. It

follows that (d/dx)rI can be written as a linear combination of I,(d/dx)I, ...,(d/dx)r−1I. This

defines the Picard-Fuchs operator Lr for the master integral I:

LrI = 0, Lr =
r

∑
k=0

Rk
dk

dxk , (7.38)

where the coefficients Rk are rational functions in x and we use the normalisation Rr = 1, hence

Lr =
dr

dxr +
r−1

∑
k=0

Rk
dk

dxk
. (7.39)

The Picard-Fuchs operator Lr = Lr(D,x,d/dx) depends on D, x and d/dx. The Picard-Fuchs

operator Lr is called Fuchsian, if Rk has maximally poles of order r−k (including possible poles

at infinity). The Picard-Fuchs operator is a differential operator, which annihilates the Feynman

integral I. The Picard-Fuchs operator is easily obtained by a transformation to the basis given in

eq. (7.37). In this basis the upper-left r× r-block of the transformed matrix A′x has the form




0 −1 ... 0 0

...
0 0 ... 0 −1

R0 R1 ... Rr−2 Rr−1


 , (7.40)

and the coefficients Rk of the Picard-Fuchs operator can easily be read off.

Let us look at a few examples. We start with example 1 from section 6.3.1 and work out the

Picard-Fuchs operator for the one-loop two-point integral I11. The transformation matrix from

the basis~I = (I10, I11)
T to the basis~I′ = (I11,(d/dx)I11)

T is

(
I11

d
dxI11

)
=

(
0 1

− D−2
x(4+x) −

4+(4−D)x
2x(4+x)

)(
I10

I11

)
. (7.41)

Note that the second line of eq. (7.41) is given as the negative of the second line of eq. (6.66). In

the basis~I′ the differential equation reads

(
d +A′

)
~I′ = 0, (7.42)



7.1. FIBRE TRANSFORMATIONS 247

with

A′ =

(
0 −1

− D−4
2x(4+x)

12+(8−D)x
2x(4+x)

)
dx. (7.43)

From eq. (7.43) we may now read off the Picard-Fuchs operator for the integral I11:

[
d2

dx2
+

12+(8−D)x
2x(4+ x)

d
dx
− D−4

2x(4+ x)

]
I11 = 0. (7.44)

In this case the Picard-Fuchs operator is a second-order differential operator. In this example it is

a particular simple differential operator, as it factorises for any D into two first-order differential

operators:

d2

dx2
+

12+(8−D)x
2x(4+ x)

d
dx
− D−4

2x(4+ x)
=

(
d
dx

+
1

x
+

1

4+ x

)(
d
dx

+
1

2x
− D−3

2(4+ x)

)
.

(7.45)

Let’s now look at a second example: We consider the double box integral discussed as example

3 in section 6.3.1. Proceeding along the same lines, we work out the Picard-Fuchs operator for

the integral I111111100. This is now a differential operator of order eight, which factorises for any

D as

L1,1 L3
2,1 L3,1 L4,1 L5,2 I111111100 = 0, (7.46)

with

L1,1 =
d

dx
+

7

x
+

3

x+1
,

L2,1 =
d

dx
− D−10

x
+

3

x+1
,

L3,1 =
d
dx
− D−8

x
+

D−2

x+1
,

L4,1 =
d

dx
− D−10

2x
+

D−2

2(x+1)
,

L5,2 =
d2

dx2
+

(
−2D−13

x
+

D−2

2(x+1)

)
d

dx
+

(D−6)(D−6−3x)

x2 (x+1)
. (7.47)

For systems with a larger number of master integrals the calculation of the full Picard-Fuchs

operators becomes soon impractical. However, the essential information can already be extracted

from the Picard-Fuchs operator for the maximal cut. Let us therefore consider the maximal cut

for the double box integral. We set

~J =

(
J1

J2

)
=

(
MaxCut I111111100

MaxCut I1111111(−1)0

)
(7.48)
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The differential equation for ~J reads

(d+A)~J = 0, (7.49)

with A given by the lower-right (2×2)-block of eq. (6.82):

A =

(
2
x

D−4
x(1+x)

−D−4
x − (3D−16)x+4(D−5)

2x(1+x)

)
dx. (7.50)

One obtains for the Picard-Fuchs operator for J1 = MaxCut I111111100 the second-order differen-

tial operator L5,2 defined in eq. (7.47):

L5,2 J1 = 0. (7.51)

For generic D, the second-order differential operator L5,2 does not factor into two first-order dif-

ferential operators. However, if D equals an even integer, the second-order differential operator

L5,2(D,x,d/dx) factorises, for example [157–159]

L5,2

(
4,x,

d

dx

)
=

(
d

dx
+

3

x
+

1

x+1

)(
d

dx
+

2

x

)
,

L5,2

(
6,x,

d

dx

)
=

(
d

dx
+

1

x
+

2

x+1

)
d

dx
. (7.52)

As our last example we look at the two-loop sunrise integral with equal internal masses, discussed

as example 4 in section 6.3.1. We consider the Picard-Fuchs operator for MaxCut I111. This is a

second-order differential operator

L2 =
d2

dx2
+

(
D

2x
− D−3

x+1
− D−3

x+9

)
d

dx
+(D−3)

(
−D+4

18x
+

D

8(x+1)
− 5D−16

72(x+9)

)

(7.53)

which annihilates the integral MaxCut I111:

L2 MaxCut I111 = 0. (7.54)

This differential operator does not factorise for generic D, and remains irreducible in even integer

dimensions. In two space-time dimensions L2 reads

L2

(
2,x,

d

dx

)
=

d2

dx2
+

(
1

x
+

1

x+1
+

1

x+9

)
d

dx
+

1

3x
− 1

4(x+1)
− 1

12(x+9)
. (7.55)

As already mentioned, L2(2,x,d/dx) does not factorise as a differential operator, i.e. L2 is an

irreducible differential operator. In chapter 13 we will see that L2(2,x,d/dx) is also the Picard-

Fuchs operator of a family of elliptic curves, parametrised by the variable x. We will also see

in chapter 13 that I111 cannot be expressed in terms of multiple polylogarithms. The appearance

of an irreducible differential operator of order greater than one in the factorisation of the Picard-

Fuchs operator in even integer space-time dimensions is an indication that the Feynman integral

cannot be expressed in terms of multiple polylogarithms.
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Digression. The Frobenius method

Let us consider the differential equation

LrI = 0, Lr =
r

∑
k=0

Pk (x)
dk

dxk
, (7.56)

where the coefficients Pk(x) are polynomials in x. This form is equivalent to eq. (7.38). We
obtain eq. (7.56) by multiplying eq. (7.38) with the least common multiple of all denominators.
We assume that eq. (7.56) is a Fuchsian differential equation. The zeros of Pr(x) (and possibly
the point x = ∞) are the singular points of the differential equation.

The Frobenius method allows us to construct r independent solutions around a point x0 ∈ C
in the form of power series. The power series converge up to the next nearest singularity. Without
loss of generality we assume x0 = 0. A variable transformation x′ = x− x0 (or x′ = 1/x for the
point x0 = ∞) will transform to the case x0 = 0.

Let us introduce the Euler operator θ defined by

θ = x
d
dx

. (7.57)

We may rewrite the differential operator Lr in terms of the Euler operator:

Lr =
r

∑
k=0

Qk (x)θk. (7.58)

The conversion between the two forms can be done with the help of

dk

dxk
= x−k

k−1

∏
j=0

(θ− j) , θk =
k

∑
j=1

S (k, j)x j d j

dx j , (7.59)

where S(n,k) denotes the Stirling numbers of the second kind:

S (n,k) =
1

k!

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n . (7.60)

Exercise 65: Prove the two relations in eq. (7.59).

After possibly multiplying by an appropriate power of x we arrive at

L̃r =
r

∑
k=0

Q̃k (x)θk, (7.61)

where the coefficients Q̃k(x) are again polynomials in x.

Exercise 66: Rewrite

L2 = x(x+1)(x+9)
d2

dx2
+
(
3x2 +20x+9

) d

dx
+ x+3 (7.62)
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in Euler operators. (This is the differential operator of eq. (7.55) multiplied with x(x+1)(x+9)).

Let us now discuss how the solutions are constructed [160]. We consider the indicial equa-

tion

r

∑
k=0

Q̃k (0)αk = 0. (7.63)

This is a polynomial equation of degree r in the variable α The r solutions for α are called the
indicials or local exponents at x0 = 0. We denote them by α1, . . . ,αr.

Let us first assume that αi−α j /∈ Z for i 6= j. Then the r independent solutions are given by
the power series

xαi
∞

∑
j=0

ci, jx
j, ci,0 = 1, 1 ≤ i ≤ r. (7.64)

The coefficients ci, j for j > 0 can be computed recursively by plugging the ansatz into the differ-
ential equation. Note that the fact that αi is a root of the indicial equation ensures that

L̃rx
αi = 0. (7.65)

The condition αi−α j /∈ Z ensures that

L̃rx
αi+ j 6= 0, j ∈ N. (7.66)

Let us now relax the condition αi−α j /∈ Z. We now allow that a root αi occurs with multiplicity
λi, but we maintain to condition αi−α j /∈ Z for i 6= j. Let t denote the number of distinct roots.
We have

λ1 + · · ·+λt = r. (7.67)

The solutions are now spanned by series of the form

xαi
b

∑
k=0

1

(b− k)!
ln(b−k) (x)

∞

∑
j=0

ci, j,kx j, (7.68)

where b ∈ {0,1, . . . ,λi−1} and ci,0,k = δk0.

Exercise 67: Consider

L̃ = (θ−α)λ . (7.69)

Show that the solution space is spanned by

xα, xα ln(x) , . . . ,
xα lnλ−1 (x)

(λ−1)!
. (7.70)
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In the general case we allow αi−α j ∈ Z. Suppose that the indicials αi and α j have multiplici-
ties λi and λ j, respectively. Assume further that αi−α j ∈ Z and Re(αi)> Re(α j). We start with
λi solutions of the form as in eq. (7.68). These are supplemented by λ j solutions starting with the
power xα j . Up to the power xαi−1 these solutions follow the pattern of eq. (7.68). Starting from
the power xαi we have to allow logarithms up to the power (λi +λ j−1). The following exercise
illustrates this:

Exercise 68: Consider the differential operators

L̃a = (θ−1) (θ− x) ,

L̃b = (θ− x) (θ−1) . (7.71)

Construct for both operators two independent solutions around x0 = 0.

Let x1, . . . ,xs be the set of the singular points of the r-th order differential equation, including

possibly the point at infinity. We denote the indicials at the j-th singular point by α
( j)
1 , . . . ,α

( j)
s .

The Riemann P-symbol can be viewed as a (r×s)-matrix, which collects the information on the
indicials at all singular points:

P




α
(1)
1 α

(2)
1 . . . α

(s)
1

...
...

...

α
(1)
r α

(2)
r . . . α

(s)
r


 . (7.72)

The Fuchsian relation states that the sum of all indicials equals

r

∑
i=1

s

∑
j=1

α
( j)
i =

1

2
(s−2)(r−1)r. (7.73)

A singular point x j, where the indicial equation takes the form

(α−α0)
r = 0, (7.74)

e.g. where there is only one indicial α0 with multiplicity r is called a point of maximal unipotent

monodromy. A basis of solutions around this point is called a Frobenius basis.

7.1.4 Magnus expansion

Let us again consider the univariate problem

(
d

dx
+Ax

)
~I = 0. (7.75)
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A solution to this differential equation with boundary value ~I0 at x = 0 is given by the infinite

series

~I (x) =


1−

x∫

0

dx1Ax (x1)+

x∫

0

dx1Ax (x1)

x1∫

0

dx2Ax (x2)

−
x∫

0

dx1Ax (x1)

x1∫

0

dx2Ax (x2)

x2∫

0

dx3Ax (x3)+ . . .


~I0. (7.76)

The individual terms of this infinite series are iterated integrals. If we introduce the path order-

ing operator P by

P (A(x1)A(x2) . . .A(xn)) = A(xσ1
)A(xσ2

) . . .A(xσn) , (7.77)

where σ is the permutation of {1, . . . ,n} such that

xσ1
> xσ2

> .. . > xσn , (7.78)

we may write eq. (7.76) as

~I (x) = P exp


−

x∫

0

dx1Ax (x1)


~I0. (7.79)

Exercise 69: Show the equivalence of eq. (7.79) with eq. (7.76).

The infinite series in eq. (7.76) is in general not yet particular useful, as there is no trunca-

tion criteria. If the differential equation is in ε-form, then there is a clear truncation criteria:

We truncate to the desired order in ε and the solution coincides with the solution discussed in

section 6.3.3.

But let’s go on with our formal investigations: If there is only one master integral (Nmaster =
1), Ax(x1) is a (1× 1)-matrix and the path ordering can be ignored, as (1× 1)-matrices always

commute. In this case the solution is simply

I (x) = exp


−

x∫

0

dx1Ax (x1)


 I0. (7.80)

Let us return to the general case, where Ax is a (Nmaster×Nmaster)-matrix. Let us now insist that

we write the solution for eq. (7.75) in the form of an exponential as in eq. (7.80) as opposed to

the form of a path-ordered exponential (as in eq. (7.79)). Thus we write

~I (x) = exp(Ω(x))~I0. (7.81)
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Ω(x) is in general again given by an infinite series, called the Magnus series [161, 162]. That’s

the price we have to pay in order to write the solution in terms of an ordinary exponential. We

write

Ω(x) =
∞

∑
n=1

Ωn (x) . (7.82)

The first few terms are

Ω1 (x) = −
x∫

0

dx1Ax (x1) , (7.83)

Ω2 (x) =
1

2

x∫

0

dx1

x1∫

0

dx2 [Ax (x1) ,Ax (x2)] ,

Ω3 (x) = −1

6

x∫

0

dx1

x1∫

0

dx2

x2∫

0

dx3 ([Ax (x1) , [Ax (x2) ,Ax (x3)]]+ [[Ax (x1) ,Ax (x2)] ,Ax (x3)]) .

The higher terms Ωn(x) (with n≥ 2) correct for the fact that in general Ax(x1) and Ax(x2) don’t

commute. In general, Ω1(x) is given by eq. (7.83) and Ωn(x) is given for n≥ 2 by

Ωn (x) =
n−1

∑
j=1

B j

j!

x∫

0

dx1S( j)
n (x1) , (7.84)

where B j denote the j-th Bernoulli number, defined by

x

ex−1
=

∞

∑
j=0

B j

j!
x j, (7.85)

and the S( j)
n are defined recursively by

S(1)n (x) = [Ax (x) ,Ωn−1 (x)] ,

S( j)
n (x) =

n− j

∑
k=1

[
Ωk (x) ,S

( j−1)
n−k (x)

]
, 2 ≤ j ≤ n−1. (7.86)

The Magnus expansion is useful when the Magnus series in eq. (7.82) terminates. This is for

example the case, whenever Ax(x) is a diagonal matrix (in which case Ωn = 0 for n ≥ 2) or a

nilpotent matrix. Let us consider the case where Ax can be decomposed into a diagonal matrix

Dx and a nilpotent matrix Nx:

Ax = Dx +Nx. (7.87)

We write

Ω [Ax] (x) (7.88)
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for the Magnus series of Ax(x). For a diagonal matrix Dx we have

Ω [Dx] (x) = −
x∫

0

dx1Dx (x1) . (7.89)

We set

N′x = e−Ω[Dx]NxeΩ[Dx]. (7.90)

Since we assumed that Nx is nilpotent, the matrix N′x is nilpotent as well. Therefore the Magnus

series Ω[N′x] terminates. A solution of the differential equation

(
d

dx
+Dx +Nx

)
~I = 0 (7.91)

with boundary value~I0 at x = 0 is given by

~I (x) = eΩ[Dx](x) eΩ[N′x](x)~I0. (7.92)

Exercise 70: Prove eq. (7.92).

As an application consider the case where Ax is linear in the dimensional regularisation parameter

ε. We write

Ax = A(0)
x + εA(1)

x , (7.93)

where A(0)
x and A(1)

x are independent of ε. Set

~I′ = U~I, U = e−Ω[A
(0)
x ](x). (7.94)

The matrix U is independent of ε as well. The differential equation

(
d
dx

+A(0)
x + εA(1)

x

)
~I = 0 (7.95)

transforms under eq. (7.94) into

(
d

dx
+ εUA(1)

x U−1

)
~I′ = 0 (7.96)

The only dependence on ε is now given by the explicit prefactor in eq. (7.96).

Exercise 71: Show that the transformation in eq. (7.94) transforms the differential equation eq. (7.95)
into eq. (7.96).



7.1. FIBRE TRANSFORMATIONS 255

As an example let us consider the one-loop two-point function with equal internal masses dis-

cussed in example 1 in section 6.3.1. The differential equation in D = 4−2ε space-time dimen-

sions is linear in ε and reads
(

d

dx
+A(0)

x + εA(1)
x

)(
I10

I11

)
= 0 (7.97)

with

A(0)
x =

(
0 0
2

x(4+x)
2

x(4+x)

)
, A(1)

x =

(
0 0

− 2
x(4+x)

1
4+x

)
. (7.98)

We may write A(0)
x as a sum of a diagonal matrix and a nilpotent matrix:

A(0)
x = D(0)

x +N(0)
x =

(
0 0

0 2
x(4+x)

)
+

(
0 0
2

x(4+x) 0

)
. (7.99)

The matrix A(0)
x has a singular point at x = 0. For the iterated integrals we take as lower boundary

x0. In the end we take the limit x0→ 0 and discard any logarithmic divergent terms lnk(x0). With

this prescription we obtain

e−Ω[D
(0)
x ](x) =

(
1 0

0
√

x
4+x

)
, (7.100)

and for N(0)
x
′ = e−Ω[D

(0)
x ](x)N(0)

x eΩ[D
(0)
x ](x)

e−Ω[N
(0)
x
′](x) =

(
1 0√

x
4+x 1

)
. (7.101)

Thus

U = e−Ω[A(0)
x ](x) = e−Ω[N(0)

x
′](x)e−Ω[D(0)

x ](x) =

(
1 0√

x
4+x

√
x

4+x

)
(7.102)

equals up to a prefactor 2ε(1− ε) the transformation matrix given in eq. (6.236). (The prefactor

2ε(1−ε) comes from the requirement that the non-zero boundary constants have uniform weight

zero.)

7.1.5 Moser’s algorithm

We stay with the univariate problem

(
d

dx
+Ax

)
~I = 0. (7.103)
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Suppose that there exists a rational fibre transformation, which brings the differential equation

into ε-form. Moser’s algorithm [163–165] allows us to systematically construct such a transfor-

mation. This algorithm has been implemented in several computer programs [166–168].

In this section we will always take the complex numbers as ground field. This is an alge-

braically closed field. In particular, any polynomial p(x) ∈ C[x] factorises into linear factors.

The entries of Ax are rational functions of the kinematic variable x (and the dimensional

regularisation parameter ε). Let us denote by S = {x1,x2, . . .} the set of points, where Ax is

singular, including possibly the point at infinity and by S′ the set of singular points excluding the

point at infinity (i.e. the set of finite singular points).

Using partial fraction decomposition in x we may write Ax as

Ax =
o∞−2

∑
j=0

M∞, j+2 (ε)x j + ∑
xi∈S′

oxi

∑
j=1

Mxi, j (ε)
1

(x− xi)
j . (7.104)

The entries of the (Nmaster×Nmaster)-matrices M∞, j(ε) and Mxi, j(ε) are rational functions in ε.

oxi denotes the order of the pole at xi.

We say that the differential equation in eq. (7.103) is in Fuchsian form, if Ax has only simple

poles. In this case, Ax can be written as

Ax = ∑
xi∈S′

Mxi,1 (ε)
1

(x− xi)
. (7.105)

We call Mxi,1(ε) the matrix residue at x = xi.

Exercise 72: Assume that Ax is in Fuchsian form (i.e. of the form as in eq. (7.105)). Show that the
matrix residue at x = ∞ is given by

M∞,1 (ε) = − ∑
xi∈S′

Mxi,1 (ε) . (7.106)

Moser’s algorithm proceeds in three steps: In the first step one reduces Ax to a Fuchsian form.

In the second step we treat ε as an infinitesimal quantity and transform the eigenvalues of the

matrices Mxi,1(ε) into the interval [−1
2
, 1

2
[. If all eigenvalues are proportional to ε, the algorithm

succeeds and one may factor out in a third step ε as a prefactor.

Digression. Jordan normal form and generalised eigenvectors

We review a view basic facts from linear algebra. A quadratic matrix A ∈M(n× n,C) may or
may not be diagonalisable. However, the matrix can always be put into the Jordan normal form,
e.g. there exists an invertible matrix Q ∈ GL(n,C) such that

A = QJQ−1 (7.107)

and J is in the Jordan normal form. The Jordan normal form consists of Jordan block matrices
on the diagonal

J =




J1

. . .
Jr


 , (7.108)
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and the Jordan block matrices Ji’s are of the form

Ji =




λi 1

λi
. . .
. . . 1

λi


 . (7.109)

Note that the same eigenvalue λi may occur in different Jordan blocks. The Jordan normal form is
unique up to permutations of the Jordan blocks. The number of times the eigenvalue λi appears
on the diagonal in eq. (7.108) is called the algebraic multiplicity of the eigenvalue λi. The
number of Jordan blocks corresponding to the eigenvalue λi is called the geometric multiplicity

of the eigenvalue λi. A right eigenvector~vR to the matrix A for the eigenvalue λi satisfies

(A−λi1) ·~vR = 0. (7.110)

A right generalised eigenvector~vR to the matrix A for the eigenvalue λi satisfies

(A−λi1)
r ·~vR = 0. (7.111)

To each Jordan block of size (r×r) there corresponds a set of r (right) generalised eigenvectors.
A left eigenvector~vT

L to the matrix A for the eigenvalue λi satisfies

~vT
L · (A−λi1) = 0, or

(
AT −λi1

)
·~vL = 0. (7.112)

Similar, a left generalised eigenvector~vT
L to the matrix A for the eigenvalue λi satisfies

~vT
L · (A−λi1)

r = 0, or
(
AT −λi1

)r ·~vL = 0. (7.113)

For non-diagonalisable matrices we have to distinguish between left and right eigenvectors as
the following example shows: Consider

A =




λ 1 0

0 λ 1

0 0 λ


 . (7.114)

The right eigenvectors are spanned by

~vR =




1

0

0


 , (7.115)

while the left eigenvectors are spanned by

~vT
L =

(
0 0 1

)
. (7.116)
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Let us now look at the technical details of Moser’s algorithm. In the first step we reduce Ax to

a Fuchsian form. The strategy is to remove successively for each singular point xi ∈ S the highest

pole until only simple poles are left. A necessary condition for the existence of a fibre transfor-

mation which removes the highest pole at xi ∈ S is that the matrix Mxi,oxi
(ε) is nilpotent [163]. In

the applications towards Feynman integrals this is usually the case and no counter-examples are

known. Very often higher poles in Feynman integral calculations can be removed by a suitable

ansatz. This is usually the most efficient way. There is also a systematic algorithm based on bal-

ance transformations, with projectors constructed from generalised eigenvectors [164, 169, 170].

The balance transformations are discussed below. This algorithm removes all higher poles and

introduces at worst a spurious singularity with a simple pole at a regular point. The spurious

singularity is then removed in the second step.

Let us now assume that Ax is in Fuchsian form:

Ax = ∑
xi∈S′

Mxi,1 (ε)
1

(x− xi)
. (7.117)

We treat the dimensional regularisation parameter ε as an infinitesimal quantity. We now look

at the eigenvalues and the (left and right) eigenvectors of the matrices Mx1,1 and Mx2,1, where

x1,x2 ∈ S. Let x1 ∈ S be a singular point such that Mx1,1 has an eigenvalue λ1 ≥ 1
2
. Let ~vR,x1

be

a right eigenvector of Mx1,1 to the eigenvalue λ1. Similar, let x2 ∈ S (with x2 6= x1) be a singular

point such that Mx2,1 has an eigenvalue λ2 < −1
2
. Let ~vT

L,x2
be a left eigenvector of Mx2,1 to the

eigenvalue λ2. Assume further that

~vT
L,x2
·~vR,x1

6= 0. (7.118)

We define a (Nmaster×Nmaster)-matrix P by

P =
~vR,x1

~vT
L,x2(

~vT
L,x2
·~vR,x1

) . (7.119)

We denote the (Nmaster×Nmaster)-unit matrix by 1.

Exercise 73: Show that P and 1−P are projectors, i.e.

P2 = P, (1−P)2 = 1−P. (7.120)

Show further
[
(1−P)+

x− x2

x− x1

P

][
(1−P)+

x− x1

x− x2

P

]
= 1. (7.121)

We define a fibre transformation, called a balance transformation, by

Ubalance (x1,x2,P) =





(1−P)+ x−x1
x−x2

P, x1,x2 6= ∞,

(1−P)− 1
x−x2

P, x1 = ∞,

(1−P)− (x− x1)P, x2 = ∞.

(7.122)
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The inverse transformation is then given by

[
Ubalance (x1,x2,P)

]−1

=





(1−P)+ x−x2
x−x1

P, x1,x2 6= ∞,

(1−P)− (x− x2)P, x1 = ∞,

(1−P)− 1
x−x1

P, x2 = ∞.
(7.123)

The balance transformation lowers the eigenvalue at x1 by one unit and raises the eigenvalue at

x2 by one unit. By a sequence of balance transformations we may try to make all eigenvalues

proportional to ε or reduce them to zero. This may fail for several reasons. One reason can be

that some eigenvalue is of the form “half-integer plus ε”. As we only shift the eigenvalues by

units of one, we can never make this eigenvalue proportional to ε. Another reason can be that

there are unbalanced eigenvalues, but the scalar product between the corresponding eigenvectors

is zero:

~vT
L,x2
·~vR,x1

= 0. (7.124)

However, if we succeed we may construct a rational fibre transformation which puts the differ-

ential equation into ε-form.

In the third step we factor out ε. At this stage we may assume that Ax is in Fuchsian form as

in eq. (7.117) and that all eigenvalues of the matrices Mxi,1(ε) are proportional to ε or are zero.

We seek an x-independent fibre transformation U , which transforms the differential equation into

the ε-form. Let V (ε) be such a transformation. This transformation must fulfil

V (ε)
Mxi,1 (ε)

ε
V (ε)−1 = Nxi, ∀ xi ∈ S′, (7.125)

where the Nxi’s are x- and ε-independent (Nmaster×Nmaster)-matrices. We don’t know the matrix

V (ε) nor do we know matrices Nxi . However, the right-hand side of eq. (7.125) is independent of

ε. This implies that

V (ε)
Mxi,1 (ε)

ε
V (ε)−1 = V

(
ε′
)Mxi,1 (ε

′)
ε′

V
(
ε′
)−1

(7.126)

for any ε′ and all xi ∈ S′. Let us now set

U
(
ε,ε′
)

= V
(
ε′
)−1

V (ε) . (7.127)

We may re-write eq. (7.126) as

U
(
ε,ε′
)Mxi,1 (ε)

ε
=

Mxi,1 (ε
′)

ε′
U
(
ε,ε′
)
, ∀ xi ∈ S′, (7.128)

Eq. (7.128) yield N2
master · |S′| linear equations for N2

master unknowns (i.e. the entries of U(ε,ε′)).
This system can be solved with standard tools from linear algebra. This yields the sought-after

transformation U(ε,ε′), which factors out (for any choice of ε′) the dimensional regularisation

parameter ε. We may then set ε′ to any suitable value.
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Let us look at an example. We consider again the maximal cut of the double box integral (see

eq. (7.48)-eq. (7.50)). With

~J =

(
J1

J2

)
=

(
MaxCut I111111100

MaxCut I1111111(−1)0

)
(7.129)

the matrix A of the differential equation (d +A)~J = 0 is given by

A =

(
2 −2ε
2ε 2+4ε

)
dx

x
+

(
0 2ε
0 −ε

)
dx

x+1
. (7.130)

The singular points are S = {0,−1,∞}. The residues are

M0,1 =

(
2 −2ε
2ε 2+4ε

)
, M−1,1 =

(
0 2ε
0 −ε

)
, M∞,1 =

(
−2 0

−2ε −2−3ε

)
, (7.131)

We may read off M0,1 and M−1,1 directly from eq. (7.130). The residue at infinity is given by

M∞,1 = −M0,1−M−1,1 (see exercise 72). The matrix M0,1 has only the eigenvalue 2+2ε with

multiplicity 2. The corresponding right eigenspace is one-dimensional and spanned by (1,−1)T .

The matrix M−1,1 has the eigenvalues 0 and−ε. These are already as they should be. The matrix

M∞,1 has the eigenvalues −2 and −2−3ε. The left eigenspace for the eigenvalue −2 is spanned

by (1,0), the left eigenspace for the eigenvalue −2− 3ε is spanned by (2,3). We may balance

the eigenvalue 2+2ε at x = 0 against one of the eigenvalues at x = ∞. Let us pick the eigenvalue

−2 at x = ∞. Thus we choose

~vR,0 =

(
1

−1

)
, ~vL,∞ =

(
1

0

)
. (7.132)

The projector P reads then

P =

(
1 0

−1 0

)
(7.133)

and the balance transformation reads

U1 = Ubalance (0,∞,P) =

(
−x 0

x+1 1

)
. (7.134)

This gives

~J′ = U1
~J,

(
d +A′

)
~J′ = 0, A′ = M′0,1

dx

x
+M−1,1

dx

x+1
(7.135)

with

M′0,1 =

(
1+2ε 0

1+ ε 2+2ε

)
, M−1,1 =

(
0 2ε
0 −ε

)
, M∞,1 =

(
−1−2ε −2ε
−1− ε −2− ε

)
.
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The situation has improved: M′0,1 has now the eigenvalues 1+2ε and 2+2ε, the matrix M′∞,1 has

now the eigenvalues −1 and −2−3ε. We may iterated this procedure. With

U = U4U3U2U1, ~J′′ = U~J,
(
d +A′′

)
~J′′ = 0, (7.136)

and

U2 =

(
− x−2ε

1+2ε
2ε(1+x)

(1+ε)(1+2ε)
(1+ε)(1+x)

1+2ε
1−2xε
1+2ε

)
,

U3 =

(
1−2εx
1+2ε − 2ε(1+x)

(1+ε)(1+2ε)

− (1+ε)(1+x)
1+2ε − x−2ε

1+2ε

)
,

U4 =

(
1 0

−(1+ x) −x

)
(7.137)

we arrive at

A′′ = ε

(
0 −2

2 4

)
dx

x
+ ε

(
0 2

0 −1

)
dx

x+1
. (7.138)

A′′ is now already in ε-form and there is nothing to be done in the third step.

Let us now look at the limitations of Moser’s algorithm: We first consider the one-loop two-

point function with equal internal masses (example 1 in section 6.3.1). We already know from

section 6.4.3 that in the transformation to the ε-form square roots appear (see eq. (6.236)). We

expect that there is no rational fibre transformation, which brings the differential equation into

the ε-form. Let’s see where Moser’s algorithm fails: The differential equation in eq. (6.235) is

already in Fuchsian form, so we may start directly with step 2 of Moser’s algorithm. We write

the quantity A appearing in eq. (6.235) as

A = M0,1
dx

x
+M−4,1

dx

x+4
(7.139)

with

M0,1 =

(
0 0

1−ε
2

1
2

)
, M−4,1 =

(
0 0

−1−ε
2
−1

2
+ ε

)
, M∞,1 =

(
0 0

0 −ε

)
. (7.140)

The matrix M0,1 has the eigenvalues 0 and 1
2
, the matrix M−4,1 has the eigenvalues 0 and−1

2
+ε.

As we can only shift eigenvalues by units of 1 with Moser’s algorithm, there is no way to balance

them such that they become zero or proportional to ε.

A a second counter example we look at the two-loop sunrise integral with equal internal

masses (example 4 in section 6.3.1). We look at the maximal cut in D = 2−2ε dimensions. With

~J =

(
I111 (2−2ε)
I211 (2−2ε)

)
, (d +A)~J = 0, M0,1

dx

x
+M−1,1

dx

x+1
+M−9,1

dx

x+9
(7.141)
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we have

M0,1 =

(
1+2ε −3

1
3
(1+2ε)(1+3ε) −1−3ε

)
, M−1,1 =

(
0 0

−1
4
(1+2ε)(1+3ε) 1+2ε

)
,

M−9,1 =

(
0 0

− 1
12
(1+2ε)(1+3ε) 1+2ε

)
, M∞,1 =

(
−1−2ε 3

0 −1− ε

)
. (7.142)

We do not expect that this differential equation can be put into an ε-form with a rational transfor-

mation. We will discuss this example in more detail in the context of elliptic curves in chapter 13.

Let’s see where Moser’s algorithm fails: We find for the eigenvalues

Eigenvalues(M0,1) = {0,−ε} ,
Eigenvalues(M−1,1) = {0,1+2ε} ,
Eigenvalues(M−9,1) = {0,1+2ε} ,
Eigenvalues(M∞,1) = {−1− ε,−1−2ε} . (7.143)

For example, we may balance the eigenvalue 1+2ε of M−1,1 against one of the eigenvalues of

M∞,1. In the next step we would like to balance the eigenvalue 1+2ε of M−9,1 against the other

eigenvalue of M∞,1. However, we discover that in this case the corresponding eigenspaces are

orthogonal, i.e.

~vT
L,∞ ·~vR,−9 = 0, (7.144)

which prohibits the definition of the projector in eq. (7.119). This observation is independent of

the choices we made for the first balance transformation.

7.1.6 Leinartas decomposition

Up to now we showed in section 7.1.2 how to reduce a multivariate problem to a univariate

problem. In sections. 7.1.3-7.1.5 we treated the univariate case. Of course, once the univariate

case is solved, we have to lift the result to the multivariate case.

In this section we start to treat the multivariate case directly. The first challenge we have to

face is how to represent a rational function. In the univariate case we may use partial fractioning:

Let p(x),q(x) ∈ C[x] and assume that q(x) factorises as

q(x) = c
r

∏
j=1

(
x− x j

)o j . (7.145)

We set further o∞ = 2+deg p−degq. The quantity o∞ denotes the order of the pole at infinity.

Using partial fraction decomposition we may write the rational function p(x)/q(x) as

p(x)
q(x)

=
o∞−2

∑
j=0

a jx
j +

r

∑
j=1

o j

∑
k=1

b j,k(
x− x j

)k . (7.146)
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If deg p < degq the polynomial part is absent.

Extending partial fractioning iteratively to the multivariate case may introduce spurious poles

and may lead to infinite loops. Consider as an example the rational function

f (x1,x2) =
1

(x1 + x2)(x1− x2)
. (7.147)

Partial fractioning with respect to x1 leads to

f (x1,x2) =
1

2x2 (x1− x2)
− 1

2x2 (x1 + x2)
. (7.148)

This introduces the spurious singularity x2 = 0. A subsequent partial fraction decomposition

with respect to x2 leads to

f (x1,x2) =
1

2x1 (x1 + x2)
+

1

2x1 (x1− x2)
. (7.149)

This step introduces the spurious singularity x1 = 0 and spoils the partial fractioning with respect

to x1.

In the multivariate case we may use the Leinartas decomposition [171]. Let F be a field and F
the algebraic closure. We start with polynomials p,q∈F[x1, . . . ,xn] in n variables x=(x1, . . . ,xn).
A rational function is a quotient of two polynomials:

f (x) =
p(x)

q(x)
. (7.150)

Let’s assume that we know the factorisation of the denominator polynomial into irreducible poly-

nomials:

q(x) =
r

∏
j=1

(
q j (x)

)o j . (7.151)

For each irreducible polynomial q j(x) we denote the corresponding algebraic variety by

Vj =
{

x ∈ F
n | q j (x) = 0

}
. (7.152)

Let S be a subset of {1, . . . ,r}. We say that the polynomials q j(x), j ∈ S have no common zero,

if

⋂
j∈S

Vj = /0. (7.153)

In this case Hilbert’s Nullstellensatz guarantees that there are polynomials h1(x), . . . ,hr(x) ∈
F[x] such that

r

∑
j=1

h j (x)q j (x) = 1. (7.154)
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Eq. (7.154) is called a Nullstellensatz certificate. An algorithm to compute the polynomials

h1(x), . . . ,hr(x) is reviewed in appendix H.2. If the denominator of our rational function contains

a set of irreducible polynomials, which do not share a common zero, we may insert the left-hand

side of eq. (7.154) in the numerator and cancel in each term the common factor q j(x) in the

numerator and the denominator.

To give an example consider

f1 (x) =
1

x1x2 (x1 + x2−1)
. (7.155)

The polynomials q1 = x1, q2 = x2 and q3 = x1+x2−1 do not share a common zero and we have

q1 +q2−q3 = 1. (7.156)

Thus

f1 (x) =
1

x2 (x1 + x2−1)
+

1

x1 (x1 + x2−1)
− 1

x1x2
. (7.157)

The polynomials in the denominators of the individual terms in eq. (7.157) have common zeros,

hence a further reduction with the help of Hilbert’s Nullstellensatz is not possible.

We say that a set of polynomials q1(x), . . . ,qr(x) is algebraically independent if there exists

no non-zero polynomial a in r variables with coefficients in F such that

a(q1, . . . ,qr) = 0 (7.158)

in F[x], otherwise the set of polynomials q1(x), . . . ,qr(x) is called algebraically dependent and

the polynomial a is called an annihilator. If q1, . . . ,qr are algebraically dependent, then also

qb1
1 , . . . ,qbr

r with b j ∈ N are algebraically dependent. A set of r polynomials q1, . . . ,qr is always

algebraically dependent if r > n, where n denotes the number of variables x1, . . . ,xn.

In appendix H.3 we review an algorithm which allows us to decide if a given set of polyno-

mials is algebraically dependent, and in the case it is, computes an annihilating polynomial.

We may then reduce the denominators further, until the polynomials in the denominator are

algebraically independent. This is done as follows: Let us introduce a multi-index notation:

xb =
n

∏
j=1

x
b j
j , qν =

r

∏
j=1

q
ν j
j . (7.159)

Let’s assume that q1, . . . ,qr are algebraically dependent and that the denominator of the rational

function is given by

q =
r

∏
j=1

q
o j
j . (7.160)

We set Q j = q
o j
j . Then also Q1, . . . ,Qr are algebraically dependent and with the notation above

we write the annihilating polynomial as

a(Q1, . . . ,Qr) = ∑
ν∈I

cνQν. (7.161)
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Let ν(0) be an r-tuple (ν
(0)
1 , . . . ,ν

(0)
r ) with the smallest degree

degν(0) =
r

∑
j=1

ν
(0)
j . (7.162)

Then

1 = ∑
ν∈I\{ν(0)}

cν

cν(0)
Qν−ν(0). (7.163)

As ν(0) is an r-tuple with smallest norm, in each term at least one Q j in Qν−ν(0) has a positive ex-

ponent and removes the corresponding Q j from the denominator. As a result, each term will have

fewer polynomials in the denominator and repeating this procedure we arrive at denominators,

which are algebraically independent.

Let look at an example:

f1 (x) =
1

x1x2 (x1 + x2)
. (7.164)

The polynomials q1 = x1, q2 = x2 and q3 = x1 + x2 share a common zero (x1 = x2 = 0), so a

decomposition with Hilbert’s Nullstellensatz is not possible. However, they are algebraically

dependent. An annihilating polynomial is given by

a(q1,q2,q3) = q1 +q2−q3. (7.165)

The three terms (q1, q2 and (−q3)) all are of degree one. Let’s pick the last one. We have

1 =
q1

q3
+

q2

q3
(7.166)

and

f1 (x) =
1

x2 (x1 + x2)
2
+

1

x1 (x1 + x2)
2
. (7.167)

Note that the decomposition is not unique, we may picked q1 or q2 as the term cν(0)q
ν(0). Note also

that the decomposition may increase the power of the remaining polynomials in the denominator.

Putting Hilbert’s Nullstellensatz decomposition and the decomposition based on algebraic

dependence together, we arrive at the Leinartas decomposition:
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Leinartas decomposition: A rational function

f =
p

q
, q =

r

∏
j=1

q
o j
j , p,q ∈ F [x1, . . . ,xn] (7.168)

may be written as

f = ∑
S

ps

∏
j∈S

q
b j
j

, (7.169)

where the sum is over subsets S of {1, . . . ,r} such that the polynomials q j, j ∈ S have a

common zero and are algebraically independent.

Applications towards Feynman integrals have been considered in [172–174].

7.1.7 Maximal cuts and constant leading singularities

The study of the maximal cuts is one of the most efficient ways of finding an appropriate fi-

bre transformation, in particular if the Feynman integrals evaluate to multiple polylogarithms.

Suppose somebody gives us a transformation matrix U

~I′ = U~I. (7.170)

Then it is easy to check if this fibre transformation transforms the differential equation to an

ε-form. We simply calculate

A′ = UAU−1+UdU−1 (7.171)

and check if A′ is in ε-form. The problem is only to come up initially with the concrete form

of the transformation matrix U . This is a situation where a heuristic method may work well:

Guessing a suitable U may outperform any systematic algorithm to construct the matrix U .

For the technique discussed below we will focus on the diagonal blocks (e.g. the blocks A1,

A2 and A4 in eq. (7.6)). The study of the maximal cut allows us to obtain the transformation

matrix for this diagonal block up to an ε-dependent prefactor (i.e. the unknown prefactor may

depend on ε, but not on the kinematic variables x).

A diagonal block corresponds to the maximal cut of a particular sector [127]. Let us denote

the number of master integrals for this sector by Nsector and the integrands of the master integrals

by ϕ1, . . . ,ϕsector. The number Nsector equals the dimension of the diagonal block. As before,

we denote by Nprop the number of propagators having positive indices. Let’s consider a Baikov

representation for these integrals. The number of Baikov variables is denoted by NV . For the

maximal cut we take a Nprop-fold residue. This leaves us with

NV −Nprop (7.172)
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integrations for the maximal cut integrals. We now choose Nsector independent integration do-

mains for the remaining integrations. We denote these integration domains each combined with

the Nprop-fold residue integration domain by C1, . . . ,Csector. Thus, C j defines an NV -dimensional

integration domain. The integration domains are independent, if the Nsector×Nsector-matrix with

entries

〈
ϕi|C j

〉
=

∫

C j

ϕi (7.173)

has full rank. We are interested in choosing the integration domains C j as simple as possible.

Particular simple integration domains are products of circles around singular points. These cor-

respond to additional residue calculations.

Having fixed Nsector independent integration domains, we then look for Nsector integrands

ϕ′1, . . . ,ϕ
′
sector such that the first term in the Laurent expansion in the dimensional regularisation

parameter ε of

〈
ϕ′i|C j

〉
=

∫

C j

ϕ′i (7.174)

is a constant (i.e. independent of the kinematic variables x) of weight zero for all j. More

precisely, let jmin be defined by

jmin = min
j

(
ldegree

(〈
ϕ′i|C j

〉
,ε
))

, (7.175)

where ldegree denotes the low degree of a Laurent series. Note that jmin = jmin(i) depends on

i, two integrands ϕ′i1 and ϕ′i2 may have jmin(i1) 6= jmin(i2). We require that for all j the term of

order ε jmin is a constant of weight zero:

coeff
(〈

ϕ′i|C j
〉
,ε jmin

)
· ε jmin = constant of weight zero, (7.176)

where coeff( f ,ε j) denotes the coefficient of ε j in the Laurent expansion of f around ε = 0.

The weight counting is as follows: We define the weight of rational numbers to be zero. The

transcendental constant π has weight one, the dimensional regularisation parameter ε has weight

(−1). The weight of a product is the sum of the weights of its factors.

Let us denote by CMaxCut the integration domain for the original maximal cut. If ϕ′ satisfies

eq. (7.176), we say that

MaxCut I =

∫

CMaxCut

ϕ′ (7.177)

has constant leading singularities.

There is no principal obstruction for restricting us to a diagonal block. In theory at least we

could consider the full system of Nmaster master integrals. Let C denote the original integration
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domain for the Nmaster master integrals and let C1, . . . ,CNmaster denote a set of Nmaster independent

integration domains. If ϕ′ satisfies the condition of eq. (7.176) for C1, . . . ,CNmaster , we say that

I =
∫

C

ϕ′ (7.178)

has constant leading singularities [175, 176].

Integrals with constant leading singularities are a guess for a basis of master integrals, which

puts the differential equation into an ε-form. In practice we will be using the requirement of

eq. (7.176). We mention that the requirement of eq. (7.176) is not a necessary requirement

for transforming the differential equation into an ε-form. We will see in chapter 13 an explicit

example, which does not satisfy eq. (7.176) but nevertheless puts the differential equation into

an ε-form.

Let us now look at an example. We consider the two-loop double box integral (example 3 in

section 6.3.1). This is a system with eight master integrals. Suppose we already found suitable

master integrals, which puts the sub-system of the first six master integrals into an ε-form. A

possible choice can be read off from eq. (6.232):

I′ννν1
=

g1 (ε)

x
I001110000,

I′ννν2
= g1 (ε) I100100100,

I′ννν3
= ε2 (1−2ε)2 I011011000,

I′ννν4
= g2 (ε) I100111000

I′ννν5
= 6ε3 (1−2ε) I111100100 +g2 (ε) I100111000,

I′ννν6
= 3ε4 (1+ x) I101110100, (7.179)

where g1(ε) and g2(ε) have been defined in eq. (6.233). Thus we are left with finding a fibre

transformation, which transforms the last sector, consisting of the two master integrals I111111100

and I1111111(−1)0 into an ε-form. We consider the maximal cut of this sector for the integrals

I1111111ν0 (see eq. (6.468)). With µ2 = t we have

MaxCut I1111111ν0 =

(2πi)7 24ε (s+ t)ε t3+ν+3ε

4π3
(
Γ
(

1
2
− ε
))2

s2+2ε

∫

CMaxCut

dz8 z−1−2ε
8 (t− z8)

−1−ε (s+ t− z8)
ε z−ν

8 . (7.180)

We now choose two independent integration domains:

C1 : small circle around z8 = 0 for the z8-integration,

C2 : small circle around z8 = t for the z8-integration. (7.181)

We set

ϕν =
24ε (s+ t)ε t3+ν+3ε

4π3
(
Γ
(

1
2
− ε
))2

s2+2ε
z−1−2ε

8 (t− z8)
−1−ε (s+ t− z8)

ε z−ν
8 d8z. (7.182)
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With x = s/t we have

〈ϕ0|C1〉 =
64π4

x2
+O (ε) , 〈ϕ0|C2〉 = −

64π4

x2
+O (ε) . (7.183)

The integral

MaxCut I111111100 = 〈ϕ0|CMaxCut〉 (7.184)

does not have constant leading singularities, but it is easy to fix this issue: We multiply the

integrand by x2. If in addition we multiply by ε4, the leading singularities are constants of weight

zero. Strictly speaking we can only infer from the first term of the ε-expansion of 〈ϕ0|C j〉 that

we should multiply by an ε-dependent prefactor, whose ε-expansion starts at ε4. In this example

we can verify a posteriori that ε4 is the correct ε-dependent prefactor. We now set

ϕ′0 = ε4x2ϕ0. (7.185)

Then

〈
ϕ′0|C1

〉
= 64π4ε4 +O

(
ε5
)
,

〈
ϕ′0|C2

〉
= −64π4ε4 +O

(
ε5
)
. (7.186)

Thus

MaxCut
(
ε4x2I111111100

)
=

〈
ϕ′0|CMaxCut

〉
(7.187)

has constant leading singularities.

As this sector has two master integrals, we need a second master integral. We consider ϕ−1

and compute the leading singularities. We obtain

〈ϕ−1|C1〉 = 0+O (ε) , 〈ϕ−1|C2〉 = −
64π4

x2
+O (ε) . (7.188)

It follows that

MaxCut
(
2ε4x2I1111111(−1)0

)
=

〈
2ε4x2ϕ−1|CMaxCut

〉
(7.189)

has constant leading singularities. Including a prefactor of 2 or not is irrelevant at this stage. We

included it to be consistent with eq. (6.232).

It is easily verified, that the two master integrals

ε4x2I111111100 and 2ε4x2I1111111(−1)0 (7.190)

put the 2× 2-diagonal block for this sector into an ε-form. It remains to treat the off-diagonal

block with entries Ai, j, i ∈ {7,8}, j ∈ {1,2,3,4,5,6}. This is most easily done with the methods

of section 7.1.1 (see eqs. (7.19)-(7.22)). One finds

I′ννν7
= ε4x2I111111100,

I′ννν8
= 2ε4x2I1111111(−1)0 + x

[
2I′ννν6

+ I′ννν5
+ I′ννν4

− I′ννν2
− I′ννν1

]
. (7.191)
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7.2 Base transformations

Let us now discuss base transformations. We assume that through an appropriate fibre transfor-

mation we transformed the differential equation

(d +A)~I = 0 (7.192)

into the form

A = ε
NL

∑
j=1

C j ω j, (7.193)

where the C j’s are (Nmaster×Nmaster)-matrices, whose entries are algebraic numbers and the ω j’s

are dlog-forms

ω j = d ln f j, (7.194)

with the f j’s being algebraic functions of the kinematic variables x. Eq. (6.237) is an example.

In this example the differential one-form

d ln
(

2+ x+
√

x(4+ x)
)

(7.195)

appears. We would like to find a base transformation, which transforms all f j’s to rational

functions of the new kinematic variables x′. If we achieve this, we may express the Feynman

integrals~I in terms of multiple polylogarithms.

For the example in eq. (7.195) we have already seen in section 6.4.4 that the substitution

x =
(1− x′)2

x′
(7.196)

rationalises the argument of the logarithm

ln
(

2+ x+
√

x(4+ x)
)

= ln

(
2

x′

)
. (7.197)

We look for a systematic way to find such a transformation.

7.2.1 Mathematical set up

Assume that we have n kinematic variables x1, . . . ,xn. (In this section we write for simplicity

n = NB.) Consider a polynomial

f (x1, . . . ,xn) ∈ C [x1, . . . ,xn] . (7.198)

We are interested in

√
f (x1, . . . ,xn) (7.199)
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and we seek a change of variables from x1, . . . ,xn to x′1, . . . ,x
′
n such that eq. (7.199) becomes a

rational function in the new variables x′1, . . . ,x
′
n.

We first introduce a few concept from algebraic geometry. An affine hypersurface V is the

zero set V ( f ) of a polynomial f ∈ C[x1, . . . ,xn] in n variables, embedded in Cn:

V ( f ) ⊂ Cn. (7.200)

The degree d of the hypersurface is the degree of the defining polynomial f .

Besides affine hypersurfaces we will also deal with projective hypersurfaces. These are

defined by homogeneous polynomials. A polynomial F ∈ C[x0, . . . ,xn] in (n + 1) variables

x0, . . . ,xn is called homogeneous of degree d if all its terms have the same degree d. In par-

ticular, a degree-d homogeneous polynomial satisfies

F (λx0, . . . ,λxn) = λdF (x0, . . . ,xn) , λ ∈ C. (7.201)

Note that if a point (x0, . . . ,xn) ∈ Cn+1 is a zero of a homogeneous polynomial F , then every

point (λx0, . . . ,λxn) is a zero of F . Thus, the zero set of F is a union of complex lines through

the origin in Cn+1. A projective hypersurface is the set of zeros of a homogeneous polynomial

F ∈ C[x0, . . . ,xn], embedded in CPn:

V (F) ⊂ CPn. (7.202)

The projective closure of an affine hypersurface V ( f ) ⊂ Cn is the projective hypersurface V =
V (F) ⊂ CPn, where F is the homogenisation of f . We can homogenise a degree-d polynomial

f in n variables x1, . . . ,xn to turn it into a degree-d homogeneous polynomial F in n+1 variables

x0,x1, . . . ,xn in the following way: decompose f into the sum of its homogeneous components

of various degrees, f = g0 + · · ·+ gd , where gi has degree i. Note that some g j’s may be zero,

but gd 6= 0. We have g j ∈ C[x1, . . . ,xn]. The homogenisation F of f is defined by

F = xd
0g0 + xd−1

0 g1 + · · ·+ x0gd−1 +gd ∈ C[x0,x1, . . . ,xn]. (7.203)

We call x0 the homogenising variable. Note that the restriction of F to the plane x0 = 1 gives the

original polynomial f .

As an example, consider the affine parabola V (y− x2) ⊂ C2. The homogenisation of f =
y− x2 ∈ C[x,y] is

F = zy− x2 ∈ C [x,y,z] . (7.204)

The projective closure V =V (F)⊂ CP2 consists of all points in CP2, which correspond to lines

in C3 that connect the points on the original parabola in the plane z = 1 with the origin plus

the line x = z = 0, i.e., the y-axis. The latter line corresponds to the “infinitely distant point”

[0 : 1 : 0] ∈ CP2.

If V ( f ) is a hypersurface, affine or projective, a point p∈V is said to be of multiplicity o∈N
if all partial derivatives of order < o vanish at p

∂i1+...+in f

∂xi1
1 · · ·∂xin

n
(p) = 0 with i1 + · · ·+ in < o (7.205)
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Figure 7.1: The nodal cubic defined by y2− x3− x2 = 0.

and if there exists at least one non-vanishing o-th partial derivative

∂i1+···+in f

∂xi1
1 · · ·∂xin

n
(p) 6= 0 with i1 + · · ·+ in = o. (7.206)

We write multp(V ) = o. Points of multiplicity 1 are called regular points, points of multiplicity

o > 1 are called singular points of V .

As an example of an (affine) variety with a singular point consider the nodal cubic V ( f )∈C2

defined by f = y2− x3− x2. The curve is shown in fig. 7.1. The point p = (0,0) is a singular

point of multiplicity o = 2: One easily verifies

f (p) =
∂ f

∂x
(p) =

∂ f

∂y
(p) = 0,

∂2 f

∂x2
(p) 6= 0. (7.207)

If d denotes the degree of a given hypersurface, we will be particularly interested in the points of

multiplicity d−1.

To a square root we associate a hypersurface as follows: Consider a square root
√

p/q of a

rational function, where p,q ∈ C[x1, . . . ,xn] are polynomials. We introduce a new variable r and

set r =
√

p/q. After squaring and clearing the denominator we obtain qr2 = p. Thus we define

f = q · r2− p ∈ C [r,x1, . . . ,xn] (7.208)

and call V ( f ) the associated hypersurface. Note that we can also associate a hypersurface to

more general algebraic functions such as roots of degree greater than 2 or nested roots. For

example, V (r3− x3− x2) is associated to
3
√

x3 + x2 and

V ((r2− x2)2− x4− y3) is associated to

√
x2 +

√
x4 + y3. (7.209)

7.2.2 Rationalisation algorithms

Let us start with an example: We consider the square root
√

1− x2 and we look for an appropriate

transformation ϕx : x′ 7→ ϕx(x′) that turns

√
1− (ϕx(x′))

2
(7.210)
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Q

R

P

Figure 7.2: Parametrising the circle by a 1-parameter family of lines.

into a rational function of x′. One easily checks that the parametrisation

ϕx(x
′) =

1− x′2

1+ x′2
(7.211)

solves the problem, leading to

√
1− (ϕx(x′))

2 =
2x′

1+ x′2
. (7.212)

There is a systematic way to construct ϕx. We start with the associated hypersurface: We intro-

duce a new variable y, set y =
√

1− x2 and arrive after squaring at the defining equation for the

associated hypersurface

x2 + y2−1 = 0. (7.213)

This equation describes the unit circle. We see that asking for a rational change of variables

ϕx(x′) which rationalises the square root y =
√

1− x2 is the same as asking for rational functions

(ϕx(x′),ϕy(x′)) which parametrise the unit circle. If one can find such rational functions, one

would call the circle a rational algebraic hypersurface. For the square root
√

1− x2, the solu-

tion to the rationalisation problem is known since 1500 BC [177]: Consider a fixed point P on

the circle and a variable point Q moving on a line not passing through P (see fig. 7.2). Then look

at the second point of intersection R of the line PQ with the circle. We observe that, if Q traces

its line, then R traces the circle. If we take the point P to be (−1,0) and assume Q to move along

the y-axis, i.e., Q = (0,x′), then the defining equation of the line PQ is given by y = x′(1+ x)
from which we find the parametrisation

R(x′) = (ϕx(x
′),ϕy(x

′)) =

(
1− x′2

1+ x′2
,

2x′

1+ x′2

)
(7.214)

of the unit circle by a short calculation: simply determine the intersection points of the line

PQ : y = x′(1+ x) and the circle x2 + y2 = 1. The first point of intersection is P, the second one
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yields R(x′). Note that, to calculate the expression for R(x′), one solely needs rational operations

(addition, subtraction, multiplication, division) on polynomial expressions with coefficients in

Q. This is precisely the reason why the above method returns a rational function of x′.
We ensure rational coefficients by choosing P to be a point with all coordinate entries lying in

Q. In principle, nothing prevents us from taking P /∈Q2, e.g., choosing P =
(
− 1√

2
,− 1√

2

)
as the

starting point of our construction. Still, the method would return a rational function. However,

the coefficients of this rational function would no longer be rational, but rather contain factors of√
2.

This construction generalises to hypersurfaces of degree d, whenever the hypersurface pos-

sesses a point of multiplicity (d− 1): A generic line through this point will intersect the hy-

persurface at one other point and provide a rational parametrisation of the hypersurface. If we

consider affine hypersurfaces, it is not necessary that the affine hypersurface possesses a point of

multiplicity (d−1), it suffices if the projective closure possesses a point of multiplicity (d−1).
In other words, the point of multiplicity (d− 1) may be a point at infinity. This leads to the

following algorithm:

Algorithm 2. Rationalisation of an irreducible degree-d hypersurface V defined by f
whose projective closure V has at least one point of multiplicity d−1.

1. Choose a point p0 with multp0
(V ) = d−1.

2. If p0 is not at infinity, go on with step 3. and finish with step 4. If on the other hand
p0 is at infinity, consider another affine chart V ′ of the projective closure V in which
p0 is not at infinity, continue with steps 3., 4., and finish with step 5.

3. With p0 = (a0, . . . ,an), compute

g(r,x1, . . . ,xn) = f (r+a0,x1 +a1, . . . ,xn +an) (7.215)

and write

g(r,x1, . . . ,xn) = gd(r,x1, . . . ,xn)+gd−1(r,x1, . . . ,xn), (7.216)

where gd and gd−1 are homogeneous components of degree d and d−1.

4. Return

ϕr(x
′
0, . . . ,x

′
n) =−x′0

gd−1(x′0,x
′
1, . . . ,x

′
n)

gd(x′0,x
′
1, . . . ,x

′
n)

+a0,

ϕx1
(x′0, . . . ,x

′
n) =−x′1

gd−1(x′0,x
′
1, . . . ,x

′
n)

gd(x′0,x
′
1, . . . ,x

′
n)

+a1,

...

ϕxn(x
′
0, . . . ,x

′
n) =−x′n

gd−1(x′0,x
′
1, . . . ,x

′
n)

gd(x′0,x
′
1, . . . ,x

′
n)

+an,

(7.217)

where one sets for a single i ∈ {0, . . . ,n} the corresponding variable x′i = 1.
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5. Change coordinates to switch from V ′ to the original affine chart V .

As an example let us consider our original problem
√

x(4+ x). The associated hypersurface

V ( f ) is defined by

f (r,x) = r2− x(4+ x) . (7.218)

f is of degree 2, thus we a need a point p0 of multiplicity 1, i.e. a regular point. It is easily

checked that p0 = (r,x) = (0,0) is a regular point, as

∂ f
∂x

(p) 6= 0. (7.219)

We then have

g2 (r,x) = r2− x2, g1 (r,x) = −4x. (7.220)

The rationalisation algorithm with x′0 = 1 gives

ϕr =
4x′1(

1− x′1
2
) , ϕx =

4x′1
2

(
1− x′1

2
) . (7.221)

This is already a valid rationalisation:

x =
4x′1

2

(
1− x′1

2
) ,

√
x(4+ x) =

4x′1(
1− x′1

2
) . (7.222)

We recover the rationalisation of eq. (6.249) through the substitution

x′1 =
1− x′

1+ x′
, x′ =

1− x′1
1+ x′1

. (7.223)

A slightly more general example is the square root of a quadratic polynomial in one variable
√

(x−a) (x−b), with a 6= b (7.224)

and where we treat a and b as constants. The associated hypersurface is now defined by

f = r2− (x−a)(x−b) . (7.225)

This is again a hypersurface of degree two and a point of multiplicity 1 is given by p0 = (r,x) =
(0,a). We find

g2 (r,x) = r2− x2, g1 (r,x) = (b−a)x. (7.226)

Thus

x = −(b−a)
x′1

2

(
1− x′1

2
) +a =

a−bx′1
2

1− x′1
2

(7.227)
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is a rationalisation of the square root in eq. (7.224). Alternatively, we may additionally perform

the substitution of eq. (7.223). This gives another rationalisation

x =
(a−b)

4x′

(
1+2

(a+b)

(a−b)
x′+ x′2

)
. (7.228)

Exercise 74: Consider the square roots

r1 =
√

x(4+ x) and r2 =
√

x(36+ x). (7.229)

Find a transformation, which simultaneously rationalises r1 and r2.

The above algorithm relies on the existence of a point of multiplicity (d− 1). The following

theorem allows us under certain conditions to obtain the rationalisation of a degree d hypersur-

face from the rationalisation of a hypersurface of lower degree. To state the theorem, we first

have to introduce the concept of k-homogenisation. This is a generalisation of the homogeni-

sation introduced in eq. (7.203). Let f ∈ C[x1, . . . ,xn] be a polynomial of degree d and write

f = g0 + · · ·+gd , where gi is homogeneous of degree i. Let k be a positive integer with k ≥ d.

The k-homogenisation of f is the degree-k homogeneous polynomial

F = xk
0g0 + xk−1

0 g1 + · · ·+ xk−(d−1)
0 gd−1 + xk−d

0 gd ∈ C[x0,x1, . . . ,xn]. (7.230)

In other words, the k-homogenisation of f is xk−d
0 times the usual homogenisation of f . To give

an example, the 4-homogenisation of the polynomial f (x1,x2) = x1x2 is given by F(x0,x1,x2) =
x2

0x1x2.

Theorem 7. (F-decomposition theorem): Let V =V (r2− f 2
d
2

+4 f d
2+1

f d
2−1

) be the hypersurface

associated to
√

f 2
d
2

−4 f d
2+1

f d
2−1

, (7.231)

where each fk ∈ C[x1, . . . ,xn] is a polynomial of degree deg( fk) ≤ k. Then V has a rational
parametrisation if W = V (Fd

2+1
+ Fd

2
+ Fd

2−1
) has a rational parametrisation with Fk being

the k-homogenization of fk using the same homogenising variable for each of the three ho-
mogenisations. The rational parametrisation of V is obtained from the rational parametrisation
(ϕW

x0
,ϕW

x1
, . . . ,ϕW

xn
) of W by

ϕV
r = 2 ·ϕW

x0
· f d

2+1

(
ϕW

x1
/ϕW

x0
, . . . ,ϕW

xn
/ϕW

x0

)
+ f d

2

(
ϕW

x1
/ϕW

x0
, . . . ,ϕW

xn
/ϕW

x0

)
,

ϕV
x1
=

ϕW
x1

ϕW
x0

,

...

ϕV
xn
=

ϕW
xn

ϕW
x0

.

(7.232)
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The proof of this theorem can be found in [178]. The following example illustrates many of

the facets discussed so far. Consider the square root
√

x4 + y3. (7.233)

The associated affine hypersurface V ( f ) is defined by f = r2−x4−y3. Because V has degree 4,

we need to find a point p with multp(V ) = 3 to apply the rationalisation algorithm. Computing

the partial derivatives of the homogenisation F of f , however, we see that V does not have a point

of multiplicity 3 — not even at infinity.

We, therefore, use the F-decomposition: as a first step, we rewrite the square root as

√
x4 + y3 =

√
f 2
2 −4 f3 f1 (7.234)

with

f1(x,y) = −1

4
, f2(x,y) = x2, f3(x,y) = y3, (7.235)

and k-homogenisations

F1(x,y,z) = −1

4
z, F2(x,y,z) = x2, F3(x,y,z) = y3. (7.236)

According to the theorem, V has a rational parametrisation if the hypersurface

W = V (F1 +F2 +F3) = V
(
− z

4
+ x2 + y3

)
(7.237)

has a rational parametrisation. W is an affine hypersurface of degree 3. We apply algorithm 2

to W . Because deg(W ) = 3, we need to find a point of multiplicity 2. Looking at the partial

derivatives of F1 +F2 +F3, we see that W does not have such a point. There is, however, a point

of multiplicity 2 at infinity. We see this by considering the projective closure

W = V
(
v2F1 + vF2 +F3

)
. (7.238)

This projective hypersurface has a single point of multiplicity 2, namely

p0 = [x0 : y0 : z0 : v0] = [0 : 0 : 1 : 0]. (7.239)

Viewed from the affine chart W , p0 is at infinity, because v0 is zero. Therefore, we have to

consider a different affine chart W ′ of W in which p0 is not at infinity. In this particular example,

we only have one choice, namely to consider the chart where z = 1. Switching from W to W ′

corresponds to the map

[x : y : z : v] 7→
(
x′,y′,v′

)
= (x/z,y/z,v/z) . (7.240)

Under this mapping, p0 ∈W is send to p′0 = (0,0,0) ∈W ′. The affine hypersurface W ′ is given

by

W ′ = V

(
−1

4

(
v′
)2

+ v′
(
x′
)2

+
(
y′
)3

)
. (7.241)
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Set

g(x′,y′,v′) = −1

4

(
v′+0

)2
+
(
v′+0

)(
x′+0

)2
+
(
y′+0

)3

= g3(x
′,y′,v′)+g2(x

′,y′,v′), (7.242)

where

g3(x
′,y′,v′) = v′

(
x′
)2

+
(
y′
)3

and g2(x
′,y′,v′) = −1

4

(
v′
)2
. (7.243)

A rational parametrisation of W ′ is then given by

φx′(t1, t2) = −g2(1, t1, t2)

g3(1, t1, t2)
=

t2
2

4(t3
1 + t2)

,

φy′(t1, t2) = −t1
g2(1, t1, t2)

g3(1, t1, t2)
=

t1t2
2

4(t3
1 + t2)

,

φv′(t1, t2) = −t2
g3(1, t1, t2)

g4(1, t1, t2)
=

t3
2

4(t3
1 + t2)

. (7.244)

We then translate the rational parametrisation for W ′ to a rational parametrisation for W . To do

this, we solve

φx′ =
φx

φz
, φy′ =

φy

φz
, and φv′ =

φv

φz
(7.245)

for φx, φy, and φz while putting φv = 1. In this way, we obtain a rational parametrisation of W as

φW
x (t1, t2) =

1

t2
, φW

y (t1, t2) =
t1
t2
, φW

z (t1, t2) =
4(t3

1 + t2)

t3
2

. (7.246)

In the last step we use the F-decomposition theorem to obtain the change of variables that ratio-

nalises
√

x4 + y3:

φV
x (t1, t2) =

φW
x (t1, t2)

φW
z (t1, t2)

=
t2
2

4(t3
1 + t2)

, φV
y (t1, t2) =

φW
y (t1, t2)

φW
z (t1, t2)

=
t1t2

2

4(t3
1 + t2)

. (7.247)

We may verify that eq. (7.247) rationalises the original square root:

√
(φV

x (t1, t2))
4 +
(
φV

y (t1, t2)
)3

=
t3
2(2t3

1 + t2)

16(t3
1 + t2)2

. (7.248)

An implementation of these algorithms has been given in [179].
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7.2.3 Theorems on rationalisations

It is useful to know theorems, which allow us to decide if a given hypersurface has a rational

parametrisation or not. Proofs of the theorems stated below can be found in [180]. We start with

a simple theorem:

Theorem 8. Let r =
√

p/q be the square root of a ratio of two polynomials p,q ∈ C[x1, . . . ,xn]
and q non-zero. Write p ·q = f h2, where f is square free. Then r is rationalisable if and only if√

f is.

First of all, this theorem reduces the rationalisation of a square of a rational function to the

problem of the rationalisation of a square root of a polynomial. Secondly, it states that for the

rationalisation of a square root of a polynomial only the square free part is relevant. Square

factors are not relevant.

Theorem 9. Let f ∈ C[x1, . . . ,xn] be a non-constant square free polynomial of degree d and
denote by F ∈ C[x0,x1, . . . ,xn] the homogenisation of f . We have:

1. If d is even,
√

f is rationalisable if and only if
√

F is.

2. If d is odd,
√

f is rationalisable if and only if
√

x0F is.

We may unify the two cases of even degree and odd degree as follows: Define h = ⌈d/2⌉ by

the ceiling function of d/2. For example, for d = 4 we have h = 2 and for d = 3 we have h = 2.

Denote by F̃ the (2h)-homogenisation of f . If d is even, this is the usual d-homogenisation

of f , if d is odd it is the (d + 1)-homogenisation of f . The theorem above states that
√

f is

rationalisable if and only if
√

F̃ is.

Let us now look at square roots in one variable. We have:

Theorem 10. Let f ∈ C[x] be a square free polynomial of degree d in one variable. Then
√

f is
rationalisable if and only if d ≤ 2.

For f ∈ C[x] as above let V be the affine curve in C2 defined by y2− f (x) = 0 and V its pro-

jective closure in CP2. The above theorem is equivalent to the statement that
√

f is rationalisable

if and only if V has geometric genus zero.

Similar theorems for cases with more variables are more difficult to state and to obtain. Al-

ready for the case of square roots in two variables we first need to introduce a few technicalities:

Let F be a field. In chapter 2 we introduced the projective space Pn (F) as the set of points in

Fn+1\{0} modulo the equivalence relation

(x0,x1, ...,xn)∼ (y0,y1, ...,yn) ⇔ ∃ λ 6= 0 : (x0,x1, ...,xn) = (λy0,λy1, ...,λyn) . (7.249)

The weighted projective space Pn
w0,...,wn

(F) with weights (w0,w1, . . . ,wn) is the set of points in

Fn+1\{0} modulo the equivalence relation

(x0,x1, ...,xn)∼ (y0,y1, ...,yn) ⇔ ∃ λ 6= 0 : (x0,x1, ...,xn) = (λw0y0,λ
w1y1, ...,λ

wnyn) . (7.250)
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We are mainly concerned with the case F= C. We write

CPn
w0,...,wn

= Pn
w0,...,wn

(C) . (7.251)

Let f ∈ C[x1, . . . ,xn] be a non-constant square free polynomial of degree d and set h = ⌈d/2⌉
as above. We consider the weighted projective space CPn+1

1,1,...,1,h with homogeneous coordi-

nates (x0,x1, . . . ,xn,r). The coordinates x0,x1, . . . ,xn have weight one, while the coordinate r has

weight h. x0 is the homogenising coordinate, r names the square root. Denote by

F(x0,x1, . . . ,xn) ∈ C[x0,x1, . . . ,xn] (7.252)

the (2h)-homogenisation of f . We associate to
√

f a hypersurface W in the weighted projective

space CPn+1
1,1,...,1,h. The hypersurface W is defined by

r2−F (x0,x1, . . . ,xn) = 0. (7.253)

(It is worth thinking about the differences in the definition of V and W : In defining V we start

from
√

f and first consider the affine hypersurface r2− f (x1, . . . ,xn) ∈ Cn+1. We then take the

d-homogenisation. This gives a projective hypersurface in CPn+1. In defining w we again start

from
√

f but first consider the (2h)-homogenisation F(x0,x1, . . . ,xn) ∈ C[x0,x1, . . . ,xn]. In the

second step we add the variable r naming the root and consider the hypersurface defined by

r2−F(x0, . . . ,xn). This is a hypersurface in the weighted projective space CPn+1
1,1,...,1,h.) One can

show that the hypersurface W is birationally equivalent to the hypersurface V defined previously.

Some theorems can be formulated more elegantly by referring to W instead of V .

We also need the concept of simple singularities. We denote by C[[x1, . . . ,xn]] the ring of

formal power series in x1, . . . ,xn. Let f1, f2 ∈ C[x1, . . . ,xn] be two polynomials and assume that

both V ( f1) and V ( f2) have a singular point at the origin. We say that these two singularities

are of the same type if the two quotient rings C[[x1, . . . ,xn]]/〈 f1〉 and C[[x1, . . . ,xn]]/〈 f2〉 are

isomorphic. We call C[[x1, . . . ,xn]]/〈 fi〉 the associated quotient ring of V ( fi).
Let f ∈ C[x1, . . . ,xn] be a polynomial and assume that affine hypersurface V ( f ) has a sin-

gular point at the origin of Cn. We say that the origin is a simple singularity (or ADE singu-

larity or Du Val singularity), if the associated quotient ring is isomorphic to a quotient ring

C[[x1, . . . ,xn]]/〈g〉, where g is a polynomial from the following list:

Ak : x2
1 + xk+1

2 +X , k ≥ 1,

Dk :
(

x2
1 + xk−2

2

)
x2 +X , k ≥ 4,

E6 : x3
1 + x4

2 +X ,

E7 : x1

(
x2

1 + x3
2

)
+X ,

E8 : x3
1 + x5

2 +X , (7.254)

with

X = x2
3 + · · ·+ x2

n. (7.255)
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The type of a singularity is invariant under linear coordinate transformations, hence we may

always translate any singular point to the origin.

With these preparations we may now state the theorem on the rationalisation of square roots

in two variables:

Theorem 11. Let f ∈ C[x1,x2] be a square free polynomial of degree d in two variable and
assume that the hypersurface W ∈ CPn+1

1,1,...,1,h has at most ADE-singularities. Then
√

f is ratio-
nalisable if and only if d ≤ 4.

We close this section with a theorem on multiple square roots:

Theorem 12. Let f1, . . . , fr ∈ C[x1, . . . ,xn]. If the set of roots {√ f1, . . . ,
√

fr} is simultaneously
rationalisable, then for every non-empty subset J ⊆ {1, . . . ,r} the square root

√
∏
j∈J

f j (7.256)

is rationalisable.

The main application of this theorem is to prove that a certain set of square root cannot be

rationalised simultaneously by showing that a specific product as in eq. (7.256) is not rationalis-

able.
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Chapter 8

Multiple polylogarithms

In chapter 6 we already encountered multiple polylogarithms. Multiple polylogarithms are an

important class of functions in the context of Feynman integrals. In this chapter we study them

in more detail.

There are two frequently used notations for multiple polylogarithms, either G(z1, . . . ,zr;y)
(which we already introduced in section 6.3.3) or Lim1...mk(x1, . . . ,xk). The former is directly

related to the iterated integral representation, while the latter is related to the nested sum repre-

sentation. This reveals already the fact, that multiple polylogarithms may either be defined in

terms of iterated integrals or nested sums. We will study both cases.

Each of the two representations gives rise to a product: A shuffle product in the case of the

iterated integral representation and a quasi-shuffle product in the case of the nested sum represen-

tation. This turns the vector space spanned by the multiple polylogarithms into an algebra. This

is actually a Hopf algebra. We will discuss the coalgebra properties in more detail in chapter 11.

Multiple polylogarithms are generalisations of the logarithms and it comes to no surprise that

these functions have branch cuts. We will study the monodromy around a branch point.

In the last two sections of this chapter we study fibration bases and linearly reducible Feyn-

man integrals. The linearly reducible Feynman integrals have the property that they evaluate to

multiple polylogarithms. They can be computed efficiently from the Feynman parameter repre-

sentation.

Multiple polylogarithms surfaced in the work of Kummer [181–183], Poincaré [184] and

Lappo-Danilevsky [185]. Modern references are Goncharov [186,187] and Borwein et al. [188].

An introductory survey article can be found in [189].

8.1 The integral representation

In section 6.3.3 we introduced multiple polylogarithms as a special case of iterated integrals. Let

us recall the definition: If all z’s are equal to zero, we define G(z1, . . . ,zr;y) by

G(0, . . . ,0︸ ︷︷ ︸
r−times

;y) =
1

r!
lnr (y) . (8.1)

283
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This definition includes as a trivial case

G(;y) = 1. (8.2)

If at least one variable z is not equal to zero we define recursively

G(z1,z2 . . . ,zr;y) =

y∫

0

dy1

y1− z1
G(z2 . . . ,zr;y1) . (8.3)

We have for example

G(0;y) = ln(y) , G(z;y) = ln

(
z− y

z

)
. (8.4)

If one further defines g(z;y) = 1/(y− z), then one has

d
dy

G(z1, . . . ,zr;y) = g(z1;y)G(z2, . . . ,zr;y) (8.5)

and if at least one variable z is not equal to zero

G(z1,z2, . . . ,zr;y) =

y∫

0

dt g(z1; t)G(z2, . . . ,zr; t). (8.6)

The function G(z1, . . . ,zr;y) is said to have a trailing zero, if zr = 0. We will soon see that

with the help of the shuffle product we can always remove trailing zeros. Let us therefore focus

on multiple polylogarithms G(z1, . . . ,zr;y) without trailing zeros (i.e. zr 6= 0). For zr 6= 0 the

recursive definition translates to

G(z1, . . . ,zr;y) =

y∫

0

dt1
t1− z1

t1∫

0

dt2
t2− z2

. . .

tr−1∫

0

dtr
tr− zr

. (8.7)

The number r is referred to as the depth of the integral representation. In the case of multiple

polylogarithms the number r is also referred to as the weight of the multiple polylogarithm. The

differential of G(z1, . . . ,zr;y) is

dG(z1, . . . ,zr;y) =
r

∑
j=1

G(z1, . . . , ẑ j, . . . ,zr;y)
[
d ln
(
z j−1− z j

)
−d ln

(
z j+1− z j

)]
, (8.8)

where we set z0 = y and zr+1 = 0. A hat indicates that the corresponding variable is omitted. In

addition one uses the convention that for z j+1 = z j the one-form d ln(z j+1− z j) equals zero. The

proof of eq. (8.8) is based on the identity

∂

∂z
1

t− z
= − ∂

∂t
1

t− z
(8.9)
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and partial integration.

For zr 6= 0 we also have the scaling relation

G(z1, . . . ,zr;y) = G(xz1, . . . ,xzr;xy) , zr ∈ C\{0}, x ∈ C\{0}. (8.10)

This allows us to scale the variable y to one:

G(z1, . . . ,zr;y) = G

(
z1

y
, . . . ,

zr

y
;1

)
, zr ∈ C\{0}, y ∈ C\{0}. (8.11)

Note that the scaling relation does not hold for multiple polylogarithms with trailing zeros. We

have for example

G(0;xy) = ln(xy) = ln(x)+ ln(y) 6= ln(y) = G(0;y) . (8.12)

In order to relate the integral representation of the multiple polylogarithms to the sum repre-

sentation of the multiple polylogarithms it is convenient to introduce the following short-hand

notation:

Gm1...mk(z1, . . . ,zk;y) = G(0, . . . ,0︸ ︷︷ ︸
m1−1

,z1, . . . ,zk−1,0, . . . ,0︸ ︷︷ ︸
mk−1

,zk;y) (8.13)

Here, all z j for j = 1, . . . ,k are assumed to be non-zero. For example,

G12(z1,z2;y) = G(z1,0,z2;y). (8.14)

The multiply polylogarithm Gm1...mk(z1, . . . ,zk;y) has weight m1 + · · ·+mk.

8.2 The sum representation

The multiple polylogarithms have also a sum representation. The standard notation for the sum

representation is Lim1...mk(x1, . . . ,xk). The sum representation is defined by

Lim1...mk(x1, . . . ,xk) =
∞

∑
n1>n2>...>nk>0

xn1

1

n1
m1

. . .
xnk

k

nk
mk
. (8.15)

The sum converges for

∣∣x1x2 . . .x j
∣∣≤ 1 for all j ∈ {1, . . . ,k} and (m1,x1) 6= (1,1). (8.16)

In the following we will always assume that the arguments x j are such that eq. (8.16) is satisfied.

The number k in the definition of the sum representation is referred to as the depth of the sum

representation of the multiple polylogarithm. The number m1+ · · ·+mk is referred to the weight

of the multiple polylogarithm. Note that for the sum representation of multiple polylogarithms
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the weight and the depth of the sum representation are in general not equal. Eq. (8.15) is a nested

sum, which we may also write as

Lim1...mk(x1, . . . ,xk) =
∞

∑
n1=1

xn1
1

nm1
1

n1−1

∑
n2=1

xn2
2

nm2
2

. . .
nk−2−1

∑
nk−1=1

xnk−1

k−1

nmk−1

k−1

nk−1−1

∑
nk=1

xnk
k

nmk
k

, (8.17)

with the convention that

b

∑
n=a

f (n) = 0, for b < a. (8.18)

The relation between the sum representation in eq. (8.15) and the integral representation in

eq. (8.13) is given by

Lim1...mk(x1, . . . ,xk) = (−1)kGm1...mk

(
1

x1
,

1

x1x2
, . . . ,

1

x1 . . .xk
;1

)
, (8.19)

and

Gm1...mk(z1 . . . ,zk;y) = (−1)k Lim1...mk

(
y

z1
,
z1

z2
, . . . ,

zk−1

zk

)
. (8.20)

Exercise 75: Prove eq. (8.19).

The multiple polylogarithms include several special cases. The classical polylogarithms are

defined by

Lim(x) =
∞

∑
n=1

xn

nm (8.21)

and are the special case of depth one. The most prominent examples are

Li1(x) =
∞

∑
i1=1

xi1

i1
=− ln(1− x), Li2(x) =

∞

∑
i1=1

xi1

i21
. (8.22)

Nielsen’s generalised polylogarithms Sn,p(x) are defined by [190]

Sn,p(x) = Li(n+1)1...1(x,1, . . . ,1︸ ︷︷ ︸
p−1

), (8.23)

Multiple polylogarithms with x2 = x3 = . . . = xk = 1 are a subset of the harmonic polyloga-

rithms Hm1,...,mk(x) [191, 192]

Hm1...mk(x) = Lim1...mk(x,1, . . . ,1︸ ︷︷ ︸
k−1

). (8.24)
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If one restricts in the integral representation G(z1, . . . ,zr;y) the possible values of z j’s to zero

and the n-th roots of unity, one arrives at the n-th cyclotomic harmonic polylogarithms [193].

The harmonic polylogarithms in eq. (8.24) are just the first cyclotomic harmonic polylogarithms,

corresponding to z j ∈ {0,1}. The word “harmonic polylogarithms” is used as a synonym for the

second cyclotomic harmonic polylogarithms, i.e. multiple polylogarithms with z j ∈ {−1,0,1}.
The values of the multiple polylogarithms at x1 = . . . = xk = 1 are known as multiple ζ-

values:

ζm1m2...mk = Lim1m2...mk(1,1, . . . ,1) =
∞

∑
n1>n2>···>nk>0

1

nm1

1

1

nm2

2

. . .
1

nmk
k

, m1 6= 1. (8.25)

Digression. The Clausen and Glaisher functions

As an excursion let us turn to the Clausen and Glaisher functions. These are related to linear
combinations of classical polylogarithms.

The Clausen function is defined by

Cln(θ) =





Im Lin
(
eiθ
)
= 1

2i

[
Lin
(
eiθ
)
−Lin

(
e−iθ

)]
, n even,

Re Lin
(
eiθ
)
= 1

2

[
Lin
(
eiθ
)
+Lin

(
e−iθ

)]
, n odd,

(8.26)

the Glaisher function is defined by

Gln(θ) =





Re Lin
(
eiθ
)
= 1

2

[
Lin
(
eiθ
)
+Lin

(
e−iθ

)]
, n even,

Im Lin
(
eiθ
)
= 1

2i

[
Lin
(
eiθ
)
−Lin

(
e−iθ

)]
, n odd.

(8.27)

From the definition it is clear that these functions are periodic with period 2π:

Cln(θ+2π) = Cln(θ), Gln(θ+2π) = Gln(θ). (8.28)

For l ∈ N0 we have

Li2l

(
eiθ
)

= Gl2l(θ)+ iCl2l(θ), Li2l+1

(
eiθ
)

= Cl2l+1(θ)+ iGl2l+1(θ). (8.29)

It is worth knowing the special value

Cl2

(π

2

)
= G, (8.30)

where Catalan’s constant G is given by

G =
∞

∑
n=0

(−1)n

(2n+1)2
(8.31)

It is also worth noting that the Glaisher functions Gln(θ) are polynomials in θ of degree n. In
detail we have

Gln(θ) =

{
−1

2
(2πi)n

n!
Bn
(

θ
2π

)
, n even,

− 1
2i

(2πi)n

n!
Bn
(

θ
2π

)
, n odd,

(8.32)



288 CHAPTER 8. MULTIPLE POLYLOGARITHMS

where Bn(x) is the n’th Bernoulli polynomial defined by

text

et −1
=

∞

∑
n=0

Bn (x)

n!
tn. (8.33)

We return to the multiple polylogarithms. The differential of Lim1...mk(x1, . . . ,xk) with respect

to the variables x1, . . . ,xk is

dLim1...mk(x1, . . . ,xk) =
k

∑
j=1

Lim1...m j−1(m j−1)m j+1...mk
(x1, . . . ,xk) ·d ln(x j). (8.34)

This follows easily from

d

(
x

n j
j

n
m j
j

)
= n j

x
n j−1

j

n
m j
j

dx j =
x

n j
j

n
m j−1

j

dx j

x j
=

x
n j
j

n
m j−1

j

d ln(x j). (8.35)

If an index m j equals one, we obtain in the differential an index with the value zero. These

multiple polylogarithms can be reduced. We have

Li0(x1) =
x1

1− x1
(8.36)

and

Lim1...mi−10mi+1...mk(x1, . . . ,xi−1,xi,xi+1, . . . ,xk) =

Li0(xi)Lim1...mi−1mi+1...mk(x1, . . . ,xi−1,xi+1, . . . ,xk)

−
k

∑
j=i+1

Lim1...mi−1mi+1...m j0m j+1...mk(x1, . . . ,xi−1,xi+1, . . . ,x j,xi,x j+1, . . . ,xk)

−
k

∑
j=i+1

Lim1...mi−1mi+1...m j...mk(x1, . . . ,xi−1,xi+1, . . . ,xi · x j, . . . ,xk)

− [1+Li0(xi)]Lim1...mi−1mi+1...mk(x1, . . . ,xi−1 · xi,xi+1, . . . ,xk). (8.37)

If i = 1 the last term is absent. Eq. (8.37) allows us to shift recursively the zero index to the last

position. If the zero index is in the last position, the sums from (i+ 1)to k are empty and the

recursion terminates. We will prove eq. (8.37) in exercise 82 in chapter 9, once we learned about

the quasi-shuffle product and Z-sums.

8.3 The shuffle product

In this section we introduce the shuffle product for multiple polylogarithms. The shuffle product

is associated with the iterated integral representation. It is not specific to multiple polylogarithms,

but holds for any iterated integral.
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We start with the definition of a shuffle algebra. Consider a finite set of objects, which we

will call letters. We denote the letters by l1, l2, . . . , and the set of all letters the alphabet

A = {l1, l2, . . .}. A word is an ordered sequence of letters:

w = l1l2...lk. (8.38)

The word of length zero is denoted by e. Let F be a field and consider the vector space of words

over F. We may turn this vector space into an algebra by supplying a product for words. We say

that a permutation σ is a shuffle of (1,2, ...,k) and of (k+1, ...,r), if in

(σ(1),σ(2), . . . ,σ(r)) (8.39)

the relative order of 1,2, ...,k and of k+1, ...,r is preserved. Thus (1,3,2) is a shuffle of (1,2)
and (3), while (2,1,3) is not. The shuffle product of two words is defined by

l1l2 . . . lk� lk+1 . . . lr = ∑
shuffles σ

lσ(1)lσ(2)...lσ(r), (8.40)

where the sum runs over all permutations σ which are shuffles of (1, . . . ,k) and (k+ 1, . . . ,r),
i.e. which preserve the relative order of 1,2, ...,k and of k+1, ...,r. This product turns the vector

space of words into a shuffle algebra A .

The name “shuffle algebra” is related to the analogy of shuffling cards: If a deck of cards

is split into two parts and then shuffled, the relative order within the two individual parts is

conserved. A shuffle algebra is also known under the name “mould symmetral” [194].

The empty word e is the unit in this algebra:

e�w = w� e = w. (8.41)

A recursive definition of the shuffle product is given by

l1l2...lk� lk+1...lr = l1 (l2...lk� lk+1...lr)+ lk+1 (l1l2...lk� lk+2...lr) , (8.42)

where concatenation of letters is extended on the vector space of words by linearity:

l (c1w1 + c2w2) = c1lw1 + c2lw2, c1,c2 ∈ F, l ∈ A, w1,w2 ∈ A . (8.43)

Of course, concatenation of words would also define a product on the vector space of words, but

this is not the product we are interested in. The shuffle product is commutative

w1�w2 = w2�w1, (8.44)

while the concatenation product is non-commutative. A few examples are

l1l2� l3 = l1l2l3 + l1l3l2 + l3l1l2,

l1l2� l2 = 2l1l2l2 + l2l1l2,

l1l2� l3l4 = l1l2l3l4 + l1l3l2l4 + l3l1l2l4 + l1l3l4l2 + l3l1l4l2 + l3l4l1l2. (8.45)
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✲
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✲
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Figure 8.1: Shuffle algebra from the integral representation: The shuffle product follows from

replacing the integral over the square by an integral over the lower triangle and an integral over

the upper triangle.

The shuffle algebra (with the shuffle product as product) is generated by the Lyndon words [195].

If one introduces a lexicographic ordering on the letters of the alphabet A, a Lyndon word is

defined by the property w < v for any sub-words u and v such that w = uv. To give an example,

consider the alphabet A = {l1, l2} with l1 < l2. The words

w1 = l1l1l2, w2 = l1l1l2l1l2l2 (8.46)

are Lyndon words, while w3 = l1l2l1 is not. The word w3 may be written as w3 = uv with u= l1l2,

v = l1 and v < w3.

Exercise 76: Consider the alphabet A = {l1, l2} with l1 < l2. Write down all Lyndon words of depth
≤ 3.

Let us now make the connection to multiple polylogarithms G(z1, . . . ,zr;y). We take the z j’s

as letters. The alphabet A is given by the distinct z j’s. A multiple polylogarithm G(z1, . . . ,zr;y)
is therefore specified by a word w = z1z2 . . .zr (i.e. an ordered sequence) and a value y. The

non-trivial statement is the shuffle product for multiple polylogarithms:

G(z1,z2, ...,zk;y) ·G(zk+1, ...,zr;y) = ∑
shuffles σ

G(zσ(1),zσ(2), ...,zσ(r);y), (8.47)

where the sum runs over all permutations σ which are shuffles of (1, . . . ,k) and (k+ 1, . . . ,r),
i.e. which preserve the relative order of 1,2, ...,k and of k+1, ...,r. An simple example for the

shuffle product of two multiple polylogarithms is given by

G(z1;y) ·G(z2;y) = G(z1,z2;y)+G(z2,z1;y). (8.48)

The proof that the integral representation of the multiple polylogarithms fulfils the shuffle product

formula in eq. (8.47) is sketched for the example in eq. (8.48) in fig. (8.1) and can easily be

extended to multiple polylogarithms of higher depth by recursively replacing the two outermost

integrations by integrations over the upper and lower triangle.

It is clear that the proof does not depend on the specific form of the integrands of the iterated

integral, only the iterated structure is relevant. This implies that the shuffle product is not spe-

cific to the iterated integral representation of multiple polylogarithms, but holds for any iterated

integral of the form as in eq. (6.140).
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A non-trivial example for the shuffle product of two multiple polylogarithms is given by

G(z1,z2;y) ·G(z3;y) = G(z1,z2,z3;y)+G(z1,z3,z2;y)+G(z3,z1,z2;y). (8.49)

For fixed y we may view the multiple polylogarithm G(z1, . . . ,zr;y) as a function

G : Cr →C,

(z1, . . . ,zr) → G(z1, . . . ,zr;y). (8.50)

By linearity this extends to a map from the vector space of words A to the complex numbers C

G : A → C, (8.51)

e.g. for w1 = z1 . . .zk, w2 = zk+1 . . .zr and c1,c2 ∈ C the map is given by

G(c1w1 + c2w2) = c1G(w1)+ c2G(w2)

= c1G(z1, . . . ,zk;y)+ c2G(zk+1, . . . ,zr;y). (8.52)

Eq. (8.47) says that this map is an algebra homomorphism, i.e.

G(w1�w2) = G(w1) ·G(w2) . (8.53)

We may use the shuffle product to remove trailing zeros: We say that a multiple polylogarithm

of the form

G(z1, . . . ,z j,0, . . . ,0︸ ︷︷ ︸
r− j

;y) (8.54)

with z j 6= 0 has (r− j) trailing zeroes. Multiple polylogarithms with trailing zeroes do not have

a Taylor expansion in y around y = 0, but logarithmic singularities at y = 0. In removing the

trailing zeroes, one explicitly separates these logarithmic terms, such that the rest has a regular

expansion around y = 0. The starting point is the shuffle relation

G(0;y)G(z1, . . . ,z j,0, . . . ,0︸ ︷︷ ︸
r− j−1

;y) = (8.55)

(r− j)G(z1, . . . ,z j,0, . . . ,0︸ ︷︷ ︸
r− j

;y)+ ∑
(s1...s j)=(z1...z j−1)�(0)

G(s1, . . . ,s j,z j,0, . . . ,0︸ ︷︷ ︸
r− j−1

;y).

Solving this equation for G(z1, . . . ,z j,0, . . . ,0;y) yields

G(z1, . . . ,z j,0, . . . ,0︸ ︷︷ ︸
r− j

;y) = (8.56)

1

r− j


G(0;y)G(z1, . . . ,z j,0, . . . ,0︸ ︷︷ ︸

r− j−1

;y)− ∑
(s1...s j)=(z1...z j−1)�(0)

G(s1, . . . ,s j,z j,0, . . . ,0︸ ︷︷ ︸
r− j−1

;y)


 .
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In the first term, one logarithm has been explicitly factored out:

G(0;y) = lny. (8.57)

All remaining terms have at most (r− j−1) trailing zeroes. Using recursion, we may therefore

eliminate all trailing zeroes. Let’s consider an example: Let’s assume z1 6= 0. We have

G(z1,0;y) = G(0;y)G(z1;y)−G(0,z1;y)

= ln(y)G(z1;y)−G(0,z1;y) . (8.58)

Both G(z1;y) and G(0,z1;y) are free of trailing zeros.

Exercise 77: Express the product

G2 (z;y) ·G3 (z;y) (8.59)

as a linear combination of multiple polylogarithms.

8.4 The quasi-shuffle product

In the previous section we have seen that the iterated integral representation induces the shuffle

product for multiple polylogarithms. In this section we work out the analogy based on the nested

sum representation for multiple polylogarithms. We will see that the nested sum representation

induces a quasi-shuffle product. Again, it is not specific to multiple polylogarithms, but holds

for any nested sum.

We start by considering a generalisation of shuffle algebras. Assume that on the alphabet A
of letters we have an additional operation

◦ : A×A→ A,

(l1, l2)→ l1 ◦ l2, (8.60)

which is commutative and associative. Then we can define a new product �q of words recur-

sively through

l1l2...lk �q lk+1...lr = l1
(
l2...lk �q lk+1...lr

)
+ lk+1

(
l1l2...lk �q lk+2...lr

)

+(l1 ◦ lk+1)
(
l2...lk �q lk+2...lr

)
(8.61)

together with

e �q w = w �q e = w. (8.62)

This product is a generalisation of the shuffle product and differs from the recursive definition

of the shuffle product in eq. (8.42) through the extra term in the last line. This modified product

is known under the names quasi-shuffle product [196], mixable shuffle product [197], stuffle
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product [188] or mould symmetrel [194]. This product turns the vector space of words into a

quasi-shuffle algebra Aq.

We have for example

l1l2 �q l3 = l1l2l3 + l1l3l2 + l3l1l2 + l1l23 + l13l2, (8.63)

with l13 = l1 ◦ l3 and l23 = l2 ◦ l3.

The quasi-shuffle algebra (with the quasi-shuffle product as product) is generated as an al-

gebra by the Lyndon words [195]. This is not too surprising: We already know that the shuffle

algebra is generated by the Lyndon words. Furthermore, the quasi-shuffle product differs from

the shuffle product only by terms of lower depth.

Let us now make the connection to multiple polylogarithms Lim1...mk(x1, . . . ,xk). As letters we

now take pairs l j = (m j,x j). A multiple polylogarithms Lim1...mk(x1, . . . ,xk) is uniquely specified

by a word w = l1l2 . . . lk in these letters. We define the additional operation in eq. (8.60) by

(m1,x1)◦ (m2,x2) = (m1 +m2;x1x2) , (8.64)

i.e. the first entries are added, while the second entries are multiplied. We may view the multiple

polylogarithm Lim1...mk(x1, . . . ,xk) as a function

Li : Nk×Ck →C,

(m1, . . . ,mk,x1, . . . ,xk) → Lim1...mk(x1, . . . ,xk). (8.65)

Again, we may extend this by linearity to a map from the vector space of words Aq to the complex

numbers C

Li : Aq → C, (8.66)

e.g. for w1 = l1 . . . lk, w2 = lk+1 . . . lr, l j = (m j,z j) and c1,c2 ∈ C we have

Li(c1w1 + c2w2) = c1Li(w1)+ c2Li(w2)

= c1Lim1...mk(x1, . . . ,xk)+ c2Limk+1...mr(xk+1, . . . ,xr). (8.67)

This map is again an algebra homomorphism, i.e.

Li
(
w1�q w2

)
= Li(w1) ·Li(w2) . (8.68)

A simple example for the quasi-shuffle product is given by

Lim1
(x1)Lim2

(x2) = Lim1,m2
(x1,x2)+Lim2,m1

(x2,x1)+Lim1+m2
(x1x2). (8.69)

The proof that the sum representation of the multiple polylogarithms fulfils the quasi-shuffle

product formula in eq. (8.68) is sketched for the example in eq. (8.69) in fig. (8.2) and can easily

be extended to multiple polylogarithms of higher depth by recursively replacing the two outer-

most summations by summations over the upper triangle, the lower triangle, and the diagonal.
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Figure 8.2: Quasi-shuffle algebra from the sum representation: The quasi-shuffle product follows

from replacing the sum over the square by a sum over the lower triangle, a sum over the upper

triangle, and a sum over the diagonal.
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=
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+
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x2x3 +

x1x3
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Figure 8.3: Pictorial representation of the quasi-shuffle multiplication law. The first three terms

on the right-hand side correspond to the ordinary shuffle product, whereas the two last terms are

the additional “stuffle”-terms.

Let us provide one further example for the quasi-shuffle product. Working out the recursive

definition of the quasi-shuffle product we obtain

Lim1m2
(x1,x2) ·Lim3

(x3) =

= Lim1m2m3
(x1,x2,x3)+Lim1m3m2

(x1,x3,x2)+Lim3m1m2
(x3,x1,x2)

+Lim1(m2+m3)(x1,x2x3)+Li(m1+m3)m2
(x1x3,x2) (8.70)

This is shown pictorially in fig. (8.3). The first three terms correspond to the ordinary shuffle

product, whereas the two last terms are the additional “stuffle”-terms. In fig. (8.3) we show only

the x-variables, which are multiplied in the stuffle-terms. Not shown in fig. (8.3) are the indices

m j, which are added in the stuffle-terms.

Exercise 78: Work out the quasi-shuffle product

Lim1m2
(x1,x2) ·Lim3m4

(x3,x4). (8.71)

8.5 Double-shuffle relations

We recall that we may denote multiple polylogarithms either as G(z1, . . . ,zr;y) (the notation for

the integral representation) or as Lim1...mk(x1, . . . ,xk) (the notation for the sum representation).
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The conversion between these two notations is given by eq. (8.19) and eq. (8.20).

We have seen that shuffle product associated with the integral representation gives relations

among the multiple polylogarithms. In the notation of section 8.3 we have for fixed y and w1 =
z1 . . .zk, w2 = zk+1 . . .zr

G(w1�w2) = G(w1) ·G(w2) . (8.72)

At the same time the quasi-shuffle product associated with the sum representation provides an-

other set of relations among the multiple polylogarithms. In the notation of section 8.4 we have

for l j = (m j,x j) and w1 = l1 . . . lk, w2 = lk+1 . . . lr,

Li
(
w1�q w2

)
= Li(w1) ·Li(w2) . (8.73)

The union of the relations given by eq. (8.72) and eq. (8.73) are called the double-shuffle rela-

tions.

Multiple zeta values are special values of multiple polylogarithms and as such also have a

sum representation and an integral representation:

ζm1...mk = Lim1...mk (1, . . . ,1) , m1 6= 1.

= (−1)k Gm1...mk (1, . . . ,1;1) . (8.74)

Hence we have double-shuffle relations for multiple zeta values. Using these, we may for exam-

ple derive

ζ31 =
1

4
ζ4. (8.75)

This follows easily from the shuffle relation

ζ2
2 = [−G(0,1;1)]2 = 2G(0,1,0,1;1)+4G(0,0,1,1;1) = 2ζ22 +4ζ31 (8.76)

and the quasi-shuffle relation

ζ2
2 = [Li2 (1)]

2 = 2Li22 (1,1)+Li4 (1) = 2ζ22 +ζ4. (8.77)

As a second example consider the relation

ζ21 = ζ3. (8.78)

This relation is due to Euler. We may derive this relation from the double-shuffle relations in a

way similar to what we did above, but we have to be careful since the Riemann zeta function

ζ(s) diverges at s = 1 (i.e. ζ1 does not exist). To do it properly, we are going to use regularised

(quasi-) shuffle relations. Let

L = − lnλ = Li1 (1−λ) = −G(1;1−λ) . (8.79)
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L is well-defined for λ > 0, but diverges logarithmically for λ→ 0. From the quasi-shuffle

product we have

L ·ζ2 = Li1 (1−λ) ·Li2 (1) = Li12 (1−λ,1)+Li21 (1,1−λ)+Li3 (1−λ) . (8.80)

For the shuffle product we consider

−L ·G(0,1;1−λ) = G(1;1−λ) ·G(0,1;1−λ)

= G(1,0,1;1−λ)+2G(0,1,1;1−λ) . (8.81)

Expressed in the Li-notation eq. (8.81) reads

L ·Li2 (1−λ) = Li12 (1−λ,1)+2Li21 (1−λ,1) . (8.82)

We now subtract eq. (8.80) from eq.(8.82). This yields

L · [Li2 (1−λ)−ζ2] = 2Li21 (1−λ,1)−Li21 (1,1−λ)−Li3 (1−λ) . (8.83)

It is easy to see that Li2 (1−λ)−ζ2 = O (λ) and therefore

lim
λ→0
{− lnλ · [Li2 (1−λ)−ζ2]} = 0. (8.84)

On the right-hand side all terms are finite and we have

lim
λ→0

[2Li21 (1−λ,1)−Li21 (1,1−λ)−Li3 (1−λ)] = ζ21−ζ3, (8.85)

yielding ζ21 = ζ3. The relations in eq. (8.80) or eq. (8.81) are examples of regularised (quasi-)

shuffle relations.

Exercise 79: Use the (regularised) double-shuffle relations to show

ζ2
2 =

5

2
ζ4. (8.86)

From eq. (5.38) we know that

ζ2 = Li2 (1) =
π2

6
. (8.87)

The above exercise shows that

ζ4 =
π4

90
. (8.88)

In general, the even zeta values are powers of π:

ζn = − Bn

2n!
(2πi)n , n = 2,4,6,8, . . . , (8.89)

where Bn are the Bernoulli numbers defined in eq. (7.85).

A database of relations among multiple zeta values can be found at [198, 199].
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8.6 Monodromy

In order to motivate the study of monodromies, let us first consider the logarithm ln(x) for a

complex variable x. The logarithm is singular for x = 0, therefore we consider the logarithm

on the punctured complex plane C\{0}. It is well-known that the logarithm is a multi-valued

function on C\{0}. This is easily seen as follows: By the definition of the logarithm, y = ln(x)
is a number, which fulfils

ey = x. (8.90)

Now let y be a number, which fulfils eq. (8.90). Then

y+2πin, n ∈ Z (8.91)

fulfils eq. (8.90) as well. We may turn the logarithm into a single-valued function by viewing the

logarithm as a function on a covering space of C\{0}, or by restricting the logarithm to an open

subset of C\{0}, for example C\R≤0. The restriction of the logarithm to an open subset U of

C\{0} such that ln(x) is single-valued on U is called a branch of the logarithm.

Let us now patch together branches of the logarithm, such that we may analytically continue

ln(x) counter clockwise around x0 = 0. After analytically continuing ln(x) around a small loop

counter clockwise around x0 = 0 we do not recover ln(x) but obtain ln(x)+ 2πi. This is called

the monodromy.

In order to prepare for the discussion of the monodromy of the multiple polylogarithms, let

us be more explicit. We consider the analytic continuation of f (x) = ln(x) around a small counter

clockwise loop around x0 = 0. We parametrise the loop by

xε (t) = x0 + εe2πit , (8.92)

with t ∈ [0,1]. We have

ln(xε (1))− ln(xε (0)) = 2πi. (8.93)

We denote by Mx0
f (x) the analytic continuation of f (x) around x0. Thus

M0 ln(x) = ln(x)+2πi. (8.94)

Let us now turn to the classical polylogarithms. We first consider

Li1(x) = − ln (1− x) =

x∫

0

dt

1− t
. (8.95)

Li1(x) has a branch cut along the positive real axis starting at x = 1. Here we find

M1Li1 (x) = Li1 (x)−2πi. (8.96)
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The classical polylogarithms are given by

Lin (x) =
∞

∑
j=1

x j

jn =

x∫

0

dt

t
Lin−1 (t) . (8.97)

Lin (x) is analytic at x0 = 0, therefore

M0Lin (x) = Lin (x) . (8.98)

For the monodromy around x1 = 1 one finds

M1Lin (x) = Lin (x)−2πi
lnn−1 (x)

(n−1)!
. (8.99)

Eq. (8.99) is proven by induction [200]: We may write

Lin (x) =

1−ε∫

0

dt

t
Lin−1 (t)+

x∫

1−ε

dt

t
Lin−1 (t) , (8.100)

by splitting the integration path into a piece from 0 to 1−ε, followed by second piece from 1−ε
to x. The path does not encircle the point x = 1. Let’s work out M1Lin (x). As Lin (x) is given

by an integral from 0 to x, we obtain M1Lin (x) by using an integration path which encircles the

point x = 1. We may deform this path into a path, which we split into three pieces: A first piece

from 0 to 1− ε as above, followed by second piece given by a small circle counter clockwise

around x = 1 and finally a third piece from 1−ε to x. For the integrand of the third piece we have

to use the formula after analytically continuing around a small loop around x = 1. This formula

is given by the induction hypothesis. We obtain

M1Lin (x)−Lin (x) = lim
ε→0



∮

dx′

x′
Lin−1

(
x′
)
− 2πi

(n−2)!

x∫

1−ε

dt

t
lnn−2 (t)


 . (8.101)

The first integral is around

x′(t) = 1− εe2πit , t ∈ [0,1], (8.102)

and corresponds to the second piece (a small circle counter clockwise around x = 1) mentioned

above. This integral vanishes for ε→ 0. For n > 2 this follows from the fact that Lin−1(x) is

bounded in a neighbourhood of x = 1. For n = 2 we have to consider

lim
ε→0

∮
dx′

x′
Li1
(
x′
)

= lim
ε→0



2πiε

1∫

0

dt
e2πit

1− εe2πit [ln(ε)+2πit]



= 0. (8.103)
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The second integral in eq. (8.101) is along the path 1− ε to x and corresponds to the difference

of the integrands

M1Lin−1 (x)−Lin−1 (x) . (8.104)

We may use the induction hypothesis for this difference. With

x∫

1−ε

dt
t

lnn−2 (t) =
lnn−1(t)

n−1

∣∣∣∣
x

1−ε

(8.105)

the claim follows:

M1Lin (x) = Lin (x)−2πi
lnn−1 (x)
(n−1)!

. (8.106)

Exercise 80: Let

f0 (x) =
1

r!
lnr (x) , f1 (x) =

(−1)r

r!
lnr (1− x) . (8.107)

Determine

M0 f0 (x) , M0 f1 (x) , M1 f0 (x) , M1 f1 (x) . (8.108)

The monodromy of the multiple polylogarithms can be worked out along the same lines. This

is most conveniently done by using the integral representation G(z1, . . . ,zr;y). We consider the

case where we analytically continue y around a point z. We assume (z1, . . . ,zr) 6= (0, . . . ,0), as

the case (z1, . . . ,zr) = (0, . . . ,0) follows from exercise 80. We then have

MzG(z1, . . . ,zr;y)−G(z1, . . . ,zr;y) = (8.109)

lim
ε→0




∮

dy′

y′− z1
G
(
z2, . . . ,zr;y′

)
+

y∫

z+ε

dy′

y′− z1

[
MzG

(
z2, . . . ,zr;y′

)
−G

(
z2, . . . ,zr;y′

)]


 .

The first integral is around

y′(t) = z+ εe2πit , t ∈ [0,1]. (8.110)

For z 6= z1 the first integral does not contribute, for the same reasons as above: For z 6= z1 we

obtain from the Jacobian an explicit prefactor ε, which in the limit ε→ 0 kills any logarithmic

singularity which might arise from G(z2, . . . ,zr;y).
For z = z1 the first integral equals

∮
dy′

y′− z1
G
(
z2, . . . ,zr;y′

)
= 2πi

1∫

0

dtG
(
z2, . . . ,zr;z1 + ε2πit) . (8.111)

Eq. (8.109) allows us to compute the monodromy of the multiple polylogarithms.

Exercise 81: Compute the monodromy of G(1,1;y) around y = 1.
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8.7 The Drinfeld associator

In this section we study the Knizhnik-Zamolodchikov equation [201] and the Drinfeld associator

[202]. Both topics are related to the first cyclotomic harmonic polylogarithms (i.e. multiple

polylogarithms, where all z j’s are from the set z j ∈ {0,1}). It is common practice to use the

notation

H (z1, . . . ,zr;x) = (−1)n1 G(z1, . . . ,zr;x) , z j ∈ {0,1}, (8.112)

and n1 is the number of times the value 1 occurs in the sequence z1, . . . ,zr. We call the functions

H(z1, . . . ,zr;x) harmonic polylogarithms for short. We also use for harmonic polylogarithms

without trailing zeros the notation

Hm1...mk (x) = (−1)k Gm1...mk (1, . . . ,1;x) . (8.113)

If we write out Hm1...mk (x) in the long form H (z1, . . . ,zr;x), the sequence of z j’s so obtained

contains exactly k times the letter 1. From eq. (8.24) we have

Hm1...mk(x) = Lim1...mk(x,1, ...,1︸ ︷︷ ︸
k−1

). (8.114)

We denote by A = {0,1} the alphabet corresponding to eq. (8.112). As in section 8.3 and sec-

tion 8.4 it is also convenient to denote alternatively harmonic polylogarithms with words. A

word w = l1l2...lr with letters from the alphabet A = {0,1} defines a harmonic polylogarithm as

follows:

H (w;x) = H (l1, . . . , lr;x) . (8.115)

In the discussion above we introduced the harmonic polylogarithms as a special cases of the

multiple polylogarithms. We may also define them from scratch. We introduce two differential

one-forms

ω0 (x) =
dx

x
, ω1 (x) =

dx

1− x
. (8.116)

A word w = l1l2 . . . lr defines a harmonic polylogarithm as follows: For the empty word e we set

H (e;x) = 1. (8.117)

For a word consisting only of zeros (l1 = l2 = · · ·= lr = 0) we set

H (0r;x) =
1

r!
lnr (x) . (8.118)

For all other words we define

H (l,w;x) =

x∫

0

ωl (t)H (w; t) . (8.119)

Note that we have for all words w not of the form 0r

lim
x→0

H (w;x) = 0. (8.120)
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Digression. Harmonic polylogarithms up to weight 3

It is convenient to know explicit expressions of harmonic polylogarithms of low weight. We list
here the explicit expressions for the harmonic polylogarithms up to weight 3. The tables can be
found in [203]. At weight 1 we have

H (0;x) = ln(x) ,

H (1;x) = − ln(1− x) . (8.121)

At weight 2 we have

H (0,0;x) =
1

2
ln2 (x) ,

H (0,1;x) = Li2 (x) ,

H (1,0;x) = − ln(x) ln(1− x)−Li2 (x) ,

H (1,1;x) =
1

2
ln2 (1− x) . (8.122)

At weight 3 we have

H (0,0,0;x) =
1

6
ln3 (x) ,

H (0,0,1;x) = Li3 (x) ,

H (0,1,0;x) = ln(x)Li2 (x)−2Li3 (x) ,

H (0,1,1;x) = ζ3 + ln(1− x)ζ2− ln(1− x)Li2 (x)−
1

2
ln(x) ln2 (1− x)−Li3 (1− x) ,

H (1,0,0;x) = −1

2
ln2 (x) ln(1− x)− ln(x)Li2 (x)+Li3 (x) ,

H (1,0,1;x) = −2ζ3−2ln(1− x)ζ2 + ln(1− x)Li2 (x)+ ln(x) ln2 (1− x)+2Li3 (1− x) ,

H (1,1,0;x) = ζ3 + ln(1− x)ζ2−Li3 (1− x) ,

H (1,1,1;x) = −1

6
ln3 (1− x) . (8.123)

Let e0 and e1 be two non-commutative variables. (We may think of e0 and e1 as two gener-

ators of a Lie algebra or as two (N×N)-matrices.) Strings of e0 and e1 are denoted by ew, for

example

e0101 = e0e1e0e1. (8.124)

With these preparations, we may now state the Knizhnik-Zamolodchikov equation.
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The Knizhnik-Zamolodchikov equation:

d

dx
L(x) =

(
e0

x
+

e1

1− x

)
L(x) . (8.125)

This equation is solved by

L(x) = ∑
w

H (w;x)ew, (8.126)

where the sum runs over all words, which can be formed from the alphabet A = {0,1}.
The sum includes the empty word.

Proof: We have

L(x) = 1+∑
w

H (0,w;x)e0w +∑
w

H (1,w;x)e1w (8.127)

and therefore

d

dx
L(x) = ∑

w

H (w;x)

x
e0w +∑

w

H (w;x)

1− x
e1w =

(
e0

x
+

e1

1− x

)
∑
w

H (w;x)ew. (8.128)

Digression. Relation to physics:
The Knizhnik-Zamolodchikov equation is not too far away from physics. To see this, consider
again the two-loop double box Feynman integral discussed as example 3 in section 6.3.1. In
section 6.4.3 we have shown that a fibre transformation puts the differential equation into ε-
form. Setting x′ =−x we obtain from eq. (6.234):

d

dx′
~I′ (x) =

(
−εC0

x′
+

εC−1

1− x′

)
~I′ (x) , (8.129)

where the (8× 8)-matrices C0 and C−1 have been given immediately after eq. (6.234). Setting
e0 =−εC0 and e1 = εC−1 gives the relation to eq. (8.125). Note that with the choice e0 =−εC0

and e1 = εC−1 the solution L(x) of eq. (8.125) is a (8×8)-matrix, while~I′ is a vector of dimension
8. In order to obtain a vector-valued solution from the Knizhnik-Zamolodchikov equation, we
may always multiply eq. (8.125) by a constant vector~I′0 from the right.

Let us return to the general case. L(x) has for x→ 0+ the asymptotic value

L(x) = ee0 lnx +O
(√

x
)
. (8.130)

The exponential term ee0 lnx is related to the words consisting of zeros only:

ee0 lnx =
∞

∑
n=0

lnn (x)

n!
en

0 =
∞

∑
n=0

H (0n;x)e0n . (8.131)
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We further have

H (1n;x) = (−1)n lnn (1− x)

n!
(8.132)

and therefore

∞

∑
n=0

H (1n;x)e1n = e−e1 ln(1−x). (8.133)

For the first terms of L(x) we have

L(x) = 1+H (0;x)e0 +H (1;x)e1

+H (0,0;x)e2
0 +H (0,1;x)e0e1 +H (1,0;x)e1e0 +H (1,1;x)e2

1 + ... (8.134)

We define the regularised boundary values by

C0 = lim
x→0

e−e0 lnxL(x) , C1 = lim
x→1

ee1 ln(1−x)L(x) . (8.135)

The first few terms of C0 and C1 are

C0 = lim
x→0

{
1+H (1;x)e1 +H (1,0;x) [e1,e0]+H (1,1;x)e2

1

+H (1,0,0;x)(e0 [e0,e1]+ [e1,e0]e0)+H (1,0,1;x) [e1,e0]e1 +H (1,1,0;x)
[
e2

1,e0

]

+H (1,1,1;x)e3
1 + ...

}

= 1,

C1 = lim
x→1

{
1+H (0;x)e0 +H (0,0;x)e2

0 +H (0,1;x) [e0,e1]

+H (0,0,0;x)e3
0 +H (0,0,1;x)

[
e2

0,e1

]
+H (0,1,0;x) [e0,e1]e0

+H (0,1,1;x)([e0,e1]e1 + e1 [e1,e0])+ ...}
= 1+ζ2 [e0,e1]+ζ3 [e0− e1, [e0,e1]]+ ... (8.136)

C0 = 1 follows from eq. (8.120). C1 and C0 are related by the Drinfeld associator

C1 = Φ(e0,e1)C0. (8.137)

The associator is given by

Φ(e0,e1) = ∑
w

ζ(w)ew, (8.138)

where ζ(w) denotes a multiple zeta value in the expanded notation. We set

ζ(e) = 1, ζ(0) = 0, ζ(1) = 0. (8.139)

The relation with the standard notation ζn1...nk is given for n1 ≥ 2 by

ζ
(
0n1−1,1, ...,0nk−1,1

)
= ζn1...nk . (8.140)



304 CHAPTER 8. MULTIPLE POLYLOGARITHMS

Furthermore we have the shuffle relation

ζ(w1)ζ(w2) = ζ(w1�w2) . (8.141)

Up to weight 3 we therefore have

Φ(e0,e1) = 1+ζ(0,0)e2
0 +ζ(0,1)e0e1 +ζ(1,0)e1e0 +ζ(1,1)e1e1

+ζ(0,0,0)e3
0 +ζ(0,0,1)e2

0e1 +ζ(0,1,0)e0e1e0 +ζ(0,1,1)e0e2
1

+ζ(1,0,0)e1e2
0 +ζ(1,0,1)e1e0e1 +ζ(1,1,0)e2

1e0 +ζ(1,1,1)e3
1 + ...

= 1+ζ2 [e0,e1]+ζ3 [e0− e1, [e0,e1]]+ ... (8.142)

Here we used

ζ(0,0) =
1

2
ζ(0)2 = 0,

ζ(1,1) =
1

2
ζ(1)2 = 0,

ζ(1,0) = ζ(0)ζ(1)−ζ(0,1) = −ζ(0,1), (8.143)

and similar relations at weight 3.

With the help of the Drinfeld associator we may give the monodromy of L(x) (and hence the

monodromy of the harmonic polylogarithms) in a compact form as

M0L(x) = L(x)e2πie0,

M1L(x) = L(x)Φ−1e−2πie1Φ. (8.144)

With

Φ−1 = 1−ζ2 [e0,e1]−ζ3 [e0− e1, [e0,e1]]+ ... (8.145)

we find

M1L(x) = 1+H (0;x)e0 +[H (1;x)−2πi]e1 +H (0,0;x)e2
0 +[H (0,1;x)−2πiH (0;x)]e0e1

+H (1,0;x)e1e0 +

[
H (1,1;x)−2πiH (1;x)+

1

2
(2πi)2

]
e2

1 + ... (8.146)

Taking the coefficient of a particular word in e0 and e1 on the left-hand side and on the right-

hand side, we obtain the monodromy of the harmonic polylogarithms. For example, taking the

coefficient of e2
1 we find

M1H (1,1;x) = H (1,1;x)−2πiH (1;x)+
1

2
(2πi)2 , (8.147)

in agreement with exercise 81.
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8.8 Fibration bases

Let’s look at

f1 (x) = G(1,0;x) ,

f2 (x) = −G(0,1;x)+ ln(x) ln(1− x) (8.148)

and

g1 (x,y) = G(0,0;1− x)−G(0;1− x)G(0;1− y)+G(0,0;1− y)−G(0,1;x)−G(0,1;y) ,

g2 (x,y) = G(0,1− x;xy− x)+G(0,1− y;xy− y)−G(0,1;xy) . (8.149)

A priori it is not obvious that f1(x) = f2(x) and g1(x,y) = g2(x,y). An attentive reader might

notice, that a proof of f1(x) = f2(x) can be reduced to a shuffle relation, while a proof of

g1(x,y) = g2(x,y) can be reduced to the five-term relation for the dilogarithm of eq. (5.40).

Here we are interested in the more general situation: Given two expressions in multiple polylog-

arithms, can be prove or disprove that they are equal?

In order to prove f1(x) = f2(x) we may use the fact that two functions of a variable x are

equal, if their derivatives with respect to x are equal and the two functions agree at one point.

Thus instead of showing f1(x) = f2(x) we may show

f ′1(x) = f ′2(x) and f1(0) = f2(0). (8.150)

This is simpler, as the derivatives are of lower weight

f ′1 (x) =
ln(x)

x−1
, f ′2 (x) = − ln(1− x)

x
+

ln(1− x)

x
+

ln(x)

x−1
=

ln(x)

x−1
(8.151)

and the equation f1(0) = f2(0) has one variable less. For the case at hand we have

f1 (0) = f2 (0) = 0, (8.152)

where we used

lim
x→0

(x · ln(x)) = 0. (8.153)

If f1(x) and f2(x) are of higher weight we may iterate this process.

Once we have the derivatives, we may integrate back:

f j (x) = f j (0)+

x∫

0

dx̃ f ′j (x̃) , j ∈ {1,2}. (8.154)

This puts f j(x) into a standardised form:

f1 (x) = G(1,0;x) , f2 (x) = G(1,0;x) . (8.155)
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A comparison of f1(x) and f2(x) is now straightforward.

We may tackle the proof of g1(x,y) = g2(x,y) in a similar way: We show for example

∂

∂y
g1 (x,y) =

∂

∂y
g2 (x,y) (8.156)

and

g1 (x,0) = g2 (x,0) . (8.157)

Note that we have to show g1(x,0) = g2(x,0) for all points on the line y = 0. For the case at hand

we find

g1 (x,y) = g2 (x,y) =
1

y−1
[G(1;y)−G(1;x)]− 1

y
G(1;y) (8.158)

and

g1 (x,0) = g2 (x,0) = −G(0,1;x)+G(1,1;x) . (8.159)

Integrating back gives

g j (x,y) = g j (x,0)+

y∫

0

dỹ

(
∂

∂ỹ
g j (x, ỹ)

)
, j ∈ {1,2}. (8.160)

Thus

g j (x,y) = −G(0,1;x)+G(1,1;x)−G(1;x)G(1;y)+G(1,1;y)−G(0,1;y) (8.161)

and a comparison of g1(x,y) and g2(x,y) is now straightforward.

Let us now formulate this in generality [204]:

Fibration basis:

We consider n variables x1, . . . ,xn and let A = {l1, l2, . . .} be a set of rational functions

in the variables x1, . . . ,xn. We call A an alphabet and denote words by w = l1l2 . . . lr.
We further denote a multiple polylogarithm by G(w;z) = G(l1, . . . , lr;z). Consider now

G(w;1). We may write G(w;1) as

G(w;1) = ∑
j

c j G
(
w1, j;x1

)
. . .G

(
wn−1, j;xn−1

)
G
(
wn, j;xn

)
, (8.162)

where wi, j is a word from an alphabet Ai. The letters in the alphabet Ai are algebraic

functions in the variables x1, . . . ,xi−1. The important point here is that the letters in Ai no

longer depend on the variables xi, . . . ,xn. The c j are constants with respect to x1, . . . ,xn.

A multiple polylogarithm written as in the right-hand side of eq. (8.162) is said to be

expressed in the fibration basis with respect to the order [x1, . . . ,xn]. The expression on the

right-hand side of eq. (8.162) depends on the order of the variables x1, . . . ,xn.
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Please note that although we start with the alphabet A with letters which are rational functions

of the variables x1, . . . ,xn, the letters of the alphabets Ai are in general algebraic functions of the

variables x1, . . . ,xi−1. This can be seen from the following simple example, where the algebraic

function
√

x1 appears. We assume x1,x2 > 0 and x2
2 > x1.

G

(
x2

2

x1
;1

)
= ln

(
x2

2− x1

x2
2

)

= G(
√

x1;x2)+G(−√x1;x2)−2G(0;x2)+G(0;x1)− iπ. (8.163)

This example also shows a second important point: For x1,x2 > 0 and x2
2 > x1 the function

G(x2
2/x1;1) gives a real number and there are no singularities on the integration path from 0 to

1. On the other hand we have
√

x1 < x2 and there is for the function G(
√

x1;x2) a singularity on

the integration path, resulting in a branch cut on the real x2-axis starting at x2 =
√

x1. We have

to specify how this singularity is avoided. A standard mathematical convention is that a function

with a branch cut starting at a finite point and extending to infinity is taken to be continuous

as the cut is approached coming around the finite endpoint of the cut in a counter clockwise

direction [205]. For the case at hand this amounts to deforming the integration contour into the

lower complex plane. Therefore, the function G(
√

x1;x2) has an imaginary part for x2 >
√

x1.

This imaginary part is compensated by the term (−iπ) and the full result is real.

8.9 Linearly reducible Feynman integrals

In this section we study an algorithm, which allows us for a special class of Feynman integrals

to perform all integrations in the Feynman parameter representation [49, 206]. The class of

Feynman integrals we would like to consider must satisfy two conditions:

1. The integrand of the Feynman parameter representation is integrable in an integer dimen-

sion Dint.

2. The integrand is linearly reducible for at least one ordering σ of the Feynman parameters

aσ1
, . . . ,aσnint

.

The first condition allows us to expand the integrand in the dimensional regularisation parameter

ε:

[U (a)]ν−
(l+1)D

2 = [U (a)]ν−
(l+1)Dint

2

∞

∑
j=0

(l+1) j ε j

j!
[ln(U)] j ,

[F (a)]
lD
2 −ν = [F (a)]

lDint
2 −ν

∞

∑
j=0

(−l) j ε j

j!
[ln(F )] j . (8.164)

The second condition will be explained below.
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Let’s consider the order a1, . . . ,anint
, corresponding to the case where we first integrate over

anint
, then a(nint−1) until a1. It is convenient to use the Cheng-Wu theorem with the delta distribu-

tion δ(1−anint
). The Feynman integral we are interested in is

I =
elεγEΓ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

∞∫

0

da1· · ·
∞∫

0

danint
δ(1−anint

) ·R ·G. (8.165)

where

R =

(
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)Dint
2

[F (a)]ν−
lDint

2

,

G =

[
∞

∑
j1=0

(l +1) j1 ε j1

j1!
[ln(U)] j1

][
∞

∑
j2=0

(−l) j2 ε j2

j2!
[ln(F )] j2

]
. (8.166)

R is a rational function in the Feynman parameters, while the function G contains logarithms. The

function G has an ε-expansion and we may consider each term in the ε-expansion separately.

Let’s consider the integration order a1, . . . ,anint
, i.e. we integrate over anint

first and a1 last.

The integrand for the integration over a j is then a function of a1, . . . ,a j. At this stage the variables

a j+1, . . . ,anint
have already been integrated out. We say that the integrand is linearly reducible

at stage j, if the integrand at stage j can be written as a sum of terms, where each term is a

product of a rational function and a multiple polylogarithm subject to the conditions that the

denominator of the rational function factorises into linear factors with respect to a j and the

multiple polylogarithm can be cast into a form, where a j appears only as upper integration limit

and nowhere else. We say that the integrand is linearly reducible for the order 1, . . . ,nint, if it

is linearly reducible at all stages j.
Note that also the condition on the multiple polylogarithm is non-trivial: If the letters of the

multiple polylogarithm depend algebraically on a j, but not rationally, eq. (8.162) does not apply.

The two conditions are tailored such that all integrations may be performed within the class

of multiple polylogarithms. The essential integration is

∞∫

0

da j

a j− l1
G
(
l2, . . . , lr;a j

)
= G

(
l1, l2, . . . , lr;a j

)∣∣∞
0
, (8.167)

where l1, l2, . . . , lr may depend on a1, . . . ,a j−1, but not on a j. The condition on the rational

function ensures that we may use partial fractioning:

R = P+∑
i

∑
n

ci,n(
a j− li

)n , (8.168)

where P is a polynomial in a j. Any terms, which are not simple poles can be reduced by partial
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integration:

Λ∫

0

da j an
jG
(
w;a j

)
=

1

n+1


an+1

j G
(
w;a j

)∣∣∣
Λ

0
−

Λ∫

0

da j an+1
j

∂

∂a j
G
(
w;a j

)

 ,

Λ∫

0

da j
G
(
w;a j

)
(
a j− l

)n+1
= −1

n


G

(
w;a j

)
(
a j− l

)n

∣∣∣∣∣

Λ

0

−
Λ∫

0

da j(
a j− l

)n
∂

∂a j
G
(
w;a j

)

 . (8.169)

Let’s look at an example: We consider the graph shown in fig. 3.3 with vanishing internal masses.

We are interested in I11111 in D = 4 space-time dimensions. This integral is finite and we may

calculate it without regularisation. We choose the integration order a3,a4,a5,a1,a2. We have

I11111

(
4,
−p2

µ2

)
=

∫

a j≥0

d5a
δ(1−a2)

UF
(8.170)

with

U = (a1 +a4)(a3+a5)+(a1+a3 +a4 +a5)a2,

F = [(a1 +a5)(a3 +a4)a2 +a1a4(a3 +a5)+a3a5(a1 +a4)]

(−p2

µ2

)
. (8.171)

We set µ2 =−p2. Thus we have

I11111 (4,1) =

∞∫

0

da3

∞∫

0

da4

∞∫

0

da5

∞∫

0

da1
1

U1F1

U1 = (a1 +a4)(a3 +a5)+a1 +a3 +a4 +a5,

F1 = (a1 +a5)(a3 +a4)+a1a4(a3+a5)+a3a5(a1 +a4). (8.172)

Partial fractioning with respect to a1 and integration in a1 yields

∞∫

0

da1
1

U1F1
=

1

[a3 +a4 +(a3 +a5)a4]
2
[ln(a3 +a4 +a5 +a3a4 +a4a5)+ ln(a3 +a4 +a3a4 +a3a5 +a4a5)

− ln(1+a3 +a5)− ln(a3 +a4 +a3a4)− ln(a5)] . (8.173)

We then continue with the integration in a5, followed by the integration in a4 and the final inte-

gration in a3. The final result is

I11111 (4,1) = 6ζ3. (8.174)
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1 5

4 3

2

6

Figure 8.4: The graph G̃ obtained from the two-loop two-point function by closing the two

external edges.

It might seem that the integration algorithm for linearly reducible Feynman integrals applies only

to a very narrow set of Feynman integrals (the ones satisfying the two conditions mentioned at

the beginning of this section). However, this set is larger than one might naively expect. Let’s

focus on the first non-trivial integration (in the example above this corresponds to the integration

in a1). Consider for j 6= 2 the partial fraction decomposition in a j of 1/(U(G)F0(G)) (the fact

that we set one Feynman parameter to one does not affect the argument). For U(G) and F0(G)
we may use the recursion formulae from eq. (3.58). We thus have

1(
U
(
G/e j

)
+U

(
G− e j

)
a j
)(

F0

(
G/e j

)
+F0

(
G− e j

)
a j
) =

1

U
(
G− e j

)
F0

(
G/e j

)
−U

(
G/e j

)
F0

(
G− e j

)
[

U
(
G− e j

)

U
(
G/e j

)
+U

(
G− e j

)
a j

− F0

(
G− e j

)

F0

(
G/e j

)
+F0

(
G− e j

)
a j

]
. (8.175)

U
(
G/e j

)
, U
(
G− e j

)
, F0

(
G/e j

)
and F0

(
G− e j

)
are linear in the remaining Feynman param-

eters. We then expect that

U
(
G− e j

)
F0

(
G/e j

)
−U

(
G/e j

)
F0

(
G− e j

)
(8.176)

is quadratic in the remaining Feynman parameters. However, in the example above we saw that

this combination factorises as

[a3 +a4 +(a3 +a5)a4]
2

(8.177)

and each factor is again linear in each of the remaining integration variables. This is no accident:

Consider the graph G̃ obtained from G by closing the two external edges. This gives a three-loop

vacuum graph with six edges, as shown in fig. 8.4. It is not too difficult to show that for µ2 =−p2

and vanishing internal masses

U
(
G̃
)

= F0 (G)+a6U (G) . (8.178)
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Hence

U (G) = U
(
G̃− e6

)
, F0 (G) = U

(
G̃/e6

)
(8.179)

and

U
(
G− e j

)
F0

(
G/e j

)
−U

(
G/e j

)
F0

(
G− e j

)
=

U
(
G̃− e j− e6

)
U
(
G̃/e j/e6

)
−U

(
G̃/e j− e6

)
U
(
G̃/e6− e j

)
. (8.180)

For j 6= 2 the edges e j and e6 share one common vertex and the factorisation of the expression

follows then from Dodgson’s identity eq. (3.77):

U
(
G− e j

)
F0

(
G/e j

)
−U

(
G/e j

)
F0

(
G− e j

)
=

(
∆1

a ja6

)2

, (8.181)

where ∆1 is defined in eq. (3.78).

The computer program HyperInt implements the algorithm for linearly reducible Feynman

integrals [206]. Extensions of the algorithm are discussed in [207–209].
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Chapter 9

Nested sums

In chapters 6 and 7 we developed the method of differential equations for the computation of

Feynman integrals. An essential part of this method was the reduction to master integrals. Only

the master integrals need to be calculated, all other Feynman integrals may expressed as a linear

combination of the master integrals.

However, the reduction to master integrals through integration-by-parts identities is very of-

ten the most CPU-time consuming part of an calculation and we are interested in alternatives.

Turning the argument around that any Feynman integral from a family of Feynman integrals can

be written as a linear combination of master integrals, shows that all Feynman integrals in this

family will involve the same final functions (namely the union of all functions appearing in the

master integrals). We now look for algorithms for the computation of Feynman integrals, which

can be applied to all members of a family of Feynman integrals and give the result directly,

bypassing the need for a reduction to master integrals.

Furthermore, there are Feynman integrals which do not depend on any kinematic variable

(e.g. NB = 0). A non-trivial example is given by the massless two-loop two-point function

discussed as an example in section 8.9. These Feynman integrals cannot be treated directly with

the method of differential equations.

Often it is possible to express a Feynman integral with arbitrary values of the space-time

dimension D and the powers of the propagators ν1, . . . ,νnint
in terms of generalisations of hyper-

geometric functions. In order to arrive at such a representation one may use the Mellin-Barnes

representation, close the integration contour and sum up the residues as discussed in section 2.5.6.

In this way one obtains the sum representation of a transcendental function.

For a particular member of the family of Feynman integrals we then specialise the indices

ν1, . . . ,νnint
to the desired integers and D to Dint− 2ε. We then have to compute the Laurent

expansion in ε. We will discuss algorithms for this task in section 9.1.

There are some well-known generalisations of hypergeometric functions: Appell functions,

Lauricella functions, Horn functions and A-hypergeometric functions (also known as GKZ hy-

pergeometric functions), etc.. We collect useful information on the first three classes of functions

in appendix C. In section 9.2 we discuss A-hypergeometric functions. A-hypergeometric func-

tions are defined as solutions of a system of partial differential equations, known as a GKZ

system. We may view any Feynman integral as a special case of an A-hypergeometric function.

313
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At the same time, a GKZ system is holonomic, i.e. the solution space is finite dimensional.

9.1 Expansion of special transcendental functions

Let us start from two examples to motivate the content of this section. The first example is the

one-loop triangle graph shown in fig. 2.8. We are now interested in the case where all internal

masses are zero and for the kinematic configuration p2
2 = 0, but p2

1 6= 0 and p2
3 6= 0. The inte-

gral depends then on one kinematic variable, which we take as x = p2
1/p2

3. From the Feynman

parameter representation we obtain with µ2 =−p2
3, νi j = νi +ν j and νi jk = νi +ν j +νk

Iν1ν2ν3
= eεγE

∫
dDk

iπ
D
2

1

(−q2
1)

ν1

1

(−q2
2)

ν2

1

(−q2
3)

ν3

= eεγE
Γ(ν123− D

2
)

Γ(ν1)Γ(ν2)Γ(ν3)

1∫

0

da aν2−1(1−a)ν3−1

×
1∫

0

db b
D
2−ν23−1(1−b)

D
2−ν1−1 [1−a(1− x)]

D
2−ν123

= eεγE
Γ(D

2
−ν1)Γ(

D
2
−ν23)

Γ(ν1)Γ(ν2)Γ(D−ν123)

∞

∑
n=0

Γ(n+ν2)Γ(n− D
2
+ν123)

Γ(n+1)Γ(n+ν23)
(1− x)n . (9.1)

As a second example we consider the two-loop two-point graph already discussed in section 8.9

and shown in fig. 3.3 with vanishing internal masses and µ2 = −p2. Using the Mellin-Barnes

representation one arrives at the following representation: To present the result after all residues

have been taken in a compact form, we introduce two functions F± with ten arguments each:

F±(a1,a2,a3,a4;b1,b2,b3;c1,c2,c3) =
∞

∑
n=0

∞

∑
j=0

(−1)n+ j

n! j!
(9.2)

Γ(∓n− j−a1)Γ(±n+ j+a2)Γ(±n+ j+a3)

Γ(±n+ j+a4)

Γ(∓n∓b1)Γ(n+b2)

Γ(∓n∓b3)

Γ(− j− c1)Γ( j+ c2)

Γ(− j− c3)
,

together with two operators Ld and Rd acting on the arguments as follows:

LdF±(a1,a2,a3,a4;b1,b2,b3;c1,c2,c3) =

F±(a1+d,a2 +d,a3 +d,a4 +d;b1 +2d,b2 +d,b3 +d;c1,c2,c3),

RdF±(a1,a2,a3,a4;b1,b2,b3;c1,c2,c3) =

F±(a1+d,a2 +d,a3 +d,a4 +d;b1,b2,b3;c1 +2d,c2 +d,c3 +d). (9.3)
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Then [210]

Iν1ν2ν3ν4ν5
= c
(

1+L D
2−ν23

+R D
2−ν25

+L D
2−ν23

R D
2−ν25

)
(9.4)

F+

(
D

2
−ν14,ν235−

D

2
,ν5,D−ν14;ν23−

D

2
,
D

2
−ν4,−ν4;ν25−

D

2
,
D

2
−ν1,−ν1

)

+c
(

1+R D
2−ν25

)

F−

(
−ν1,

D

2
−ν14,D−ν1234,

D

2
−ν1;ν12345−D,ν124−

D

2
,
D

2
;ν25−

D

2
,
D

2
−ν1,−ν1

)
.

Here, 1 denotes the identity operator with a trivial action on the arguments of the functions F±
and the prefactor c is given by

c =
e2εγE

Γ(ν2)Γ(ν3)Γ(ν5)Γ(D−ν235)
. (9.5)

In both example we obtained for arbitrary indices ν1,ν2, . . . (multiple) sums. The task is then

to expand all terms in the dimensional regularisation parameter ε and to re-express the resulting

multiple sums in terms of known functions. If this can be done we bypass integration-by-parts

reduction. It depends on the form of the multiple sums if this can be done systematically. The

following types of multiple sums occur often and can be evaluated systematically if all an, a′n,

bn, b′n, cn and c′n are of the form

p+qε with p ∈ Z and q ∈ C (9.6)

(the typical case is q ∈ Z as well) [211]:

Type A:

∞

∑
i=0

Γ(i+a1)

Γ(i+a′1)
...

Γ(i+ak)

Γ(i+a′k)
xi (9.7)

Up to prefactors the hypergeometric functions J+1FJ fall into this class.

Type B:

∞

∑
i=0

∞

∑
j=0

Γ(i+a1)

Γ(i+a′1)
...

Γ(i+ak)

Γ(i+a′k)
Γ( j+b1)

Γ( j+b′1)
...

Γ( j+bl)

Γ( j+b′l)
Γ(i+ j+ c1)

Γ(i+ j+ c′1)
...

Γ(i+ j+ cm)

Γ(i+ j+ c′m)
xiy j (9.8)

An example for a function of this type is given by the first Appell function F1.

Type C:

∞

∑
i=0

∞

∑
j=0

(
i+ j

j

)
Γ(i+a1)

Γ(i+a′1)
...

Γ(i+ak)

Γ(i+a′k)
Γ(i+ j+ c1)

Γ(i+ j+ c′1)
...

Γ(i+ j+ cm)

Γ(i+ j+ c′m)
xiy j (9.9)
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Here, an example is given by the Kampé de Fériet function S1.

Type D:

∞

∑
i=0

∞

∑
j=0

(
i+ j

j

)
Γ(i+a1)

Γ(i+a′1)
...

Γ(i+ak)

Γ(i+a′k)
Γ( j+b1)

Γ( j+b′1)
...

Γ( j+bl)

Γ( j+b′l)
Γ(i+ j+ c1)

Γ(i+ j+ c′1)
...

Γ(i+ j+ cm)

Γ(i+ j+ c′m)
xiy j

(9.10)

An example for a function of this type is the second Appell function F2.

Note that in these examples there are always as many Gamma functions in the numerator

as in the denominator. The task is now to expand these functions systematically into a Laurent

series in ε. We start with the formula for the expansion of the gamma function Γ(n+ ε) with

n ∈ N:

Γ(n+ ε) = (9.11)

Γ(1+ ε)Γ(n)
[
1+ εZ1(n−1)+ ε2Z11(n−1)+ ε3Z111(n−1)+ · · ·+ εn−1Z11...1(n−1)

]
,

where Zm1...mk(n) denotes a Euler-Zagier sum defined by

Zm1...mk(n) = ∑
n≥i1>i2>...>ik>0

1

i1m1
. . .

1

ikmk
. (9.12)

This motivates the following definition of a special form of nested sums, called ZZZ-sums:

Zm1...mk(x1, . . . ,xk;n) = ∑
n≥i1>i2>...>ik>0

xi1
1

i1m1
. . .

xik
k

ikmk
. (9.13)

k is called the depth of the Z-sum and w = m1 + · · ·+mk is called the weight. If the sums go to

infinity (n = ∞) the Z-sums are multiple polylogarithms:

Zm1...mk(x1, . . . ,xk;∞) = Lim1...mk(x1, . . . ,xk). (9.14)

For x1 = · · ·= xk = 1 the definition reduces to the Euler-Zagier sums:

Zm1...mk(1, . . . ,1;n) = Zm1...mk(n). (9.15)

For n = ∞ and x1 = · · ·= xk = 1 the sum is a multiple ζ-value:

Zm1...mk(1, . . . ,1;∞) = ζm1...mk . (9.16)

The usefulness of the Z-sums lies in the fact, that they interpolate between multiple polyloga-

rithms and Euler-Zagier sums. For fixed n the Z-sums form a quasi-shuffle algebra in the same

way as multiple polylogarithms do. The letters are pairs l j = (m j,x j). On the alphabet of letter

we have an additional operation “◦” defined by

(m1,x1)◦ (m2,x2) = (m1 +m2;x1x2) . (9.17)
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This is exactly the same operation as in eq. (8.64). On the vector space of words Aq we have a

map

Zn : Aq → C, (9.18)

which sends the word w = l1 . . . lr with l j = (m j,x j) to Zm1...mr(x1, . . . ,xr,n). This map is an

algebra homomorphism, i.e.

Zn
(
w1�q w2

)
= Zn (w1) ·Zn (w2) , (9.19)

where�q denotes the quasi-shuffle product introduced in section 8.4. Thus we have for example

Zm1
(x1;n)Zm2

(x2;n) = Zm1m2
(x1,x2;n)+Zm2m1

(x2,x1;n)+Zm1+m2
(x1x2;n). (9.20)

Exercise 82: Prove eq. (8.37) from chapter 8.

In addition to Z-sums, it is sometimes useful to introduce as well S-sums. A SSS-sum is defined by

Sm1...mk(x1, . . . ,xk;n) = ∑
n≥i1≥i2≥...≥ik≥1

xi1
1

i1m1
. . .

xik
k

ikmk
. (9.21)

The S-sums reduce for x1 = · · ·= xk = 1 to harmonic sums [212]:

Sm1...mk(1, . . . ,1;n) = Sm1...mk(n). (9.22)

The S-sums are closely related to the Z-sums, the difference being the upper summation boundary

for the nested sums: (i−1) for Z-sums, i for S-sums. The introduction of S-sums is redundant,

since S-sums can be expressed in terms of Z-sums and vice versa. It is however convenient to

introduce both Z-sums and S-sums, since some properties are more naturally expressed in terms

of Z-sums while others are more naturally expressed in terms of S-sums. An algorithm for the

conversion from Z-sums to S-sums and vice versa can be found in [211].

The quasi-shuffle product of eq. (9.19) is the essential ingredient to expand functions of type

A as in eq. (9.7) in a small parameter. As a simple example let us consider the function

∞

∑
i=0

Γ(i+a1+ t1ε)Γ(i+a2+ t2ε)

Γ(i+1)Γ(i+a3+ t3ε)
xi. (9.23)

Here a1, a2 and a3 are assumed to be integers. Up to prefactors the expression in eq. (9.23) is a

hypergeometric function 2F1. We are interested in the Laurent expansion of the function above

in the small parameter ε.

Using Γ(x+ 1) = xΓ(x), partial fractioning and an adjustment of the summation index one

can transform eq. (9.23) into terms of the form

∞

∑
i=1

Γ(i+ t1ε)Γ(i+ t2ε)

Γ(i)Γ(i+ t3ε)

xi

im
, (9.24)
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where m is an integer. Now using eq. (9.11) one obtains

Γ(1+ ε)
∞

∑
i=1

(1+ εt1Z1(i−1)+ . . .)(1+ εt2Z1(i−1)+ . . .)

(1+ εt3Z1(i−1)+ . . .)

xi

im
. (9.25)

Inverting the power series in the denominator and truncating in ε one obtains in each order in ε
terms of the form

∞

∑
i=1

xi

im0
Zm1...mk(i−1) Zm′1...m

′
l
(i−1) Zm′′1 ...m

′′
n
(i−1). (9.26)

Using the quasi-shuffle product for Z-sums the three Euler-Zagier sums can be reduced to single

Euler-Zagier sums and one finally arrives at terms of the form

∞

∑
i=1

xi

im0
Zm1...mk(i−1), (9.27)

which are special cases of multiple polylogarithms, called harmonic polylogarithms Hm0m1...mk(x).
This completes the algorithm for the expansion in ε for sums of the form as in eq. (9.23), and

more generally any sum of type A as in eq. (9.7).

Let us now consider expressions of the form

xn
0

nm0
Zm1...mk(x1, . . . ,xk;n), (9.28)

e.g. Z-sums multiplied by a letter. Then the following convolution product

n−1

∑
i=1

xi

im0
Zm1...(x1, . . . ; i−1)

yn−i

(n− i)m′0
Zm′1...

(x′1, . . . ;n− i−1) (9.29)

can again be expressed by partial fractioning and relabellings of summation indices in terms of

expressions of the form (9.28). An example is

n−1

∑
i=1

xi

i
Z1(i−1)

yn−i

(n− i)
Z1(n− i−1) = (9.30)

xn

n

[
Z111

(
y

x
,
x

y
,
y

x
;n−1

)
+Z111

(
y

x
,1,

x

y
;n−1

)
+Z111

(
1,

y

x
,1;n−1

)]
+(x↔ y) .

Combing this algorithm with the previous algorithms allows to expand any sum of type B as in

eq. (9.8).

In addition there is for terms of the form as in eq. (9.28) a conjugation, e.g. sums of the form

−
n

∑
i=1

(
n
i

)
(−1)i xi

im0
Sm1...(x1, . . . ; i) (9.31)
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can also be reduced to terms of the form (9.28). Although one can easily convert between the

notations for S-sums and Z-sums, expressions involving a conjugation tend to be shorter when

expressed in terms of S-sums. The name conjugation stems from the following fact: To any func-

tion f (n) of an integer variable n one can define a conjugated function C ∗ f (n) as the following

sum

C ∗ f (n) =
n

∑
i=1

(
n
i

)
(−1)i f (i). (9.32)

Then conjugation satisfies the following two properties:

C ∗1 = 1,

C ∗C ∗ f (n) = f (n). (9.33)

An example for a sum involving a conjugation is

−
n

∑
i=1

(
n
i

)
(−1)i xi

i
S1(i) = S11

(
1− x,

1

1− x
;n

)
−S11 (1− x,1;n) . (9.34)

Conjugation in combination with the previous algorithms allow us to expand all functions of type

C as in eq. (9.9).

Finally there is the combination of conjugation and convolution, e.g. sums of the form

−
n−1

∑
i=1

(
n
i

)
(−1)i xi

im0
Sm1...(x1, . . . ; i)

yn−i

(n− i)m′0
Sm′1...

(x′1, . . . ;n− i) (9.35)

can also be reduced to terms of the form (9.28). An example is given by

−
n−1

∑
i=1

(
n
i

)
(−1)i S1(x; i) S1(y;n− i) =

1

n

{
S1(y;n)+(1− x)n

[
S1

(
x

x−1
;n

)
−S1

(
x− y

x−1
;n

)]}

+
(−1)n

n

{
S1(x;n)+(1− y)n

[
S1

(
y

y−1
;n

)
−S1

(
y− x

y−1
;n

)]}
.

(9.36)

This allows us to expand functions of type D as in eq. (9.10). There are computer packages

implementing the algorithms for the expansion of sums of type A-D [213–216].

Exercise 83: Consider I111 from eq. (9.1) with µ2 = −p2
3 and x = p2

1/p2
3 in D = 4− 2ε space-time

dimensions:

I111 = eεγE
Γ(−ε)Γ(1− ε)

Γ(1−2ε)

∞

∑
n=0

Γ(n+1+ ε)

Γ(n+2)
(1− x)n . (9.37)
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Expand the sum in ε and give the first two terms of the ε-expansion for the full expression.

Up to now we assumed through eq. (9.6) that the Gamma functions are expanded around an

integer value. The extension to rational numbers is straightforward for sums of type A and B if

the Gamma functions always occur in ratios of the form

Γ(n+a− p
q +bε)

Γ(n+ c− p
q +dε)

, (9.38)

where the same rational number p/q ∈Q occurs in the numerator and in the denominator [217].

The generalisation of eq. (9.11) reads

Γ

(
n+1− p

q
+ ε

)
=

Γ
(

1− p
q + ε

)
Γ
(

n+1− p
q

)

Γ
(

1− p
q

) (9.39)

×exp

(
−1

q

q−1

∑
l=0

(
rl

q

)p ∞

∑
k=1

εk (−q)k

k
Zk(r

l
q;q ·n)

)

and introduces the q-th roots of unity

rp
q = exp

(
2πip

q

)
. (9.40)

With the help of the q-th roots of unity we may express any Z-sum Zm1...(x1, . . . ;n) as a combi-

nation of Z-sums Zm′1...
(x′1, . . . ;q ·n), where the summation goes now up to q ·n.

9.2 GKZ hypergeometric functions

In this section we show that a Feynman integral can be viewed as a special case of a Gelfand-

Kapranov-Zelevinsky (GKZ) hypergeometric function. GKZ hypergeometric functions are so-

lutions to a system of partial differential equations, called a GKZ system. In order to present

GKZ hypergeometric functions we may either use a geometric language or an algebraic lan-

guage. In both cases we need some preparation. In preparation for the geometric setting we

introduce polytopes in section 9.2.1 and in preparation for the algebraic setting we introduce D-

modules in section 9.2.2. GKZ systems and GKZ hypergeometric functions are then introduced

in section 9.2.3. The application towards Feynman integrals is discussed in section 9.2.5. More

information on polytopes can be found in the books by Zieger [218] and by De Loera, Rambau

and Santos [219]. Further information on D-modules can be found in the books by Björk [220],

by Coutinho [221] and by Saito, Sturmfels and Takayama [222]. An introduction into the topic

of GKZ hypergeometric structures can be found in the lecture notes by Stienstra [223] and by

Cattani [224]. Additional background on GKZ hypergeometric functions can be found in the

book by Gelfand, Kapranov and Zelevinsky [225].
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x1

x2

x1

x2

x1

x2

Figure 9.1: The left picture shows the polytope in R2 defined by the points a1 = (1,1)T , a2 =
(1,2)T , a3 = (2,2)T , a4 = (3,1)T . The middle picture shows the cone defined by these points.

The right picture shows the Minkowski sum of the polytope and the cone.

In this section it is convenient to use multi-index notation: For x = (x1, . . . ,xn) and α =
(α1, . . . ,αn) we set

xα = xα1
1 . . .xαn

n . (9.41)

We denote by (Rn)∗ the dual space of Rn, i.e. the space of linear functionals ϕ : Rn → R. We

may view a ∈ Rn as a column vector (or as a ket vector) and b ∈ (Rn)∗ as a row vector (or as a

bra vector). The row vector b defines a linear functional by

ϕb : a→ b ·a. (9.42)

9.2.1 Polytopes

Let A = {a1, . . . ,an} ⊂ Rd be a non-empty finite set of points in Rd . The convex hull of these

points defines a polytope, denoted by conv(A). In a formula

conv(A) =

{
α1a1 + · · ·+αnan|α j ≥ 0,

n

∑
j=1

α j = 1

}
. (9.43)

A cone is defined by

cone(A) =
{

α1a1 + · · ·+αnan|α j ≥ 0
}
. (9.44)

We define the cone of an empty set to be the set containing the origin, i.e. cone({}) = {0}. Every

cone contains the origin. Given two sets P,Q⊆ Rd their Minkowski sum is defined to be

P+Q = {a+b|a ∈ P,b ∈ Q} . (9.45)

Fig. 9.1 shows an example for a polytope and a cone. The figure shows also the Minkowski sum

of the polytope and the cone.

A polyhedron P is the Minkowski sum of a polytope conv(A) and a cone cone(B):

P = conv(A)+ cone(B). (9.46)
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A hyperplane in Rd divides the space into two halfspaces. Let a ∈ Rd , b ∈ (Rd)∗ and c ∈ R. A

hyperplane is given by

{
x ∈ Rd | b ·a = c

}
. (9.47)

The two closed halfspace are

{
x ∈ Rd | b ·a≥ c

}
and

{
x ∈ Rd | b ·a≤ c

}
. (9.48)

This can be used to give alternative definitions: We may define a polyhedron as an intersection

of finitely many closed halfspaces and a polytope as a bounded polyhedron. A cone is the inter-

section of finitely many closed halfspaces, where all hyperplanes defining the halfspaces contain

the origin. The lineality space of a cone is the largest linear subspace contained in the cone. A

cone is called pointed, if its lineality space is {0}. Let us illustrate the last two definitions by an

example: The cone in R2 generated by

(
1

0

)
,

(
0

1

)
(9.49)

is pointed. It corresponds to the first quadrant and {0} is the largest linear subspace. On the other

hand, the cone in R2 generated by

(
1

0

)
,

(
0

1

)
,

(
−1

−1

)
(9.50)

is not pointed. Any point of R2 belongs to the cone and hence the largest linear subspace is R2.

Consider now a hyperplane such that all points of a polytope / cone / polyhedron lie in one

closed halfspace (this includes the points on the hypersurface). A face is the intersection of a

polytope / cone / polyhedron with such a hyperplane. Faces of dimension zero are called vertices

and faces of dimension dim(P)−1 are called facets. A face F with dim(F) < dim(P) is called

a proper face.

The dimension of a polytope P = conv(A) is the dimension of its convex hull. Let P be a

k-dimensional polytope. We define the normalised volume vol0(P) of P as

vol0 (P) = k!vol(P) , (9.51)

where vol(P) denotes the standard (Euclidean) volume.

Exercise 84: Consider the k-dimensional standard simplex in Rk+1. This is the polytope with ver-
tices given by the (k+1) standard unit vectors e j ∈ Rk+1. Show that the standard simplex has Euclidean
volume 1/k! and therefore the normalised volume 1.

Let σ be a k-dimensional simplex in Rk+1, defined by (k+1) points A = {a1, . . . ,ak+1} ∈ Rk+1.
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By abuse of notation, we also denote by A the (k+1)×(k+1)-matrix, whose columns are given

by a1, . . . ,ak+1. Then

vol0 (σ) = |detA| . (9.52)

A triangulation of a polytope P = conv(A)⊂ Rd is a set of simplices {σ1, . . . ,σr} with vertices

from the set A = {a1, . . . ,an} such that all faces of a simplex are contained in this set, the union

of all simplices is the full polytope and the intersection of two distinct simplices is a proper face

of the two, possibly empty.

A triangulation {σ1, . . . ,σr} of a polytope P = conv(A) = conv(a1, . . . ,an) ⊂ Rd is called

regular, if there exists a height vector h ∈Rn, such that for every simplex σi of this triangulation

there exists a vector ri ∈ Rd satisfying

ri ·a j = h j a j ∈ σi,

ri ·a j < h j a j /∈ σi. (9.53)

These equations say that if we consider points ã1, . . . , ãn ∈ Rd+1 obtained from a1, . . . ,an ∈ Rd

by adjoining the height as last coordinate

ã j =




a1 j
...

ad j

h j


 , (9.54)

the resulting geometrical object obtained from lifting the triangulation to Rd+1 is convex. As an

example consider the six points in R1:

a1 = (1) , a2 = (2) , a3 = (3) , a4 = (4) , a5 = (5) , a6 = (6) , (9.55)

and the triangulation

{σ12,σ23,σ34,σ45,σ56,σ1,σ2,σ3,σ4,σ5,σ6} , (9.56)

where σi j denotes the 1-dimensional simplex defined by ai and a j, and σ j denotes the 0-dimensional

simplex defined by a j. The triangulation in eq. (9.56) is regular. A height vector is given by

h = (3,1,0,0,1,3)T , (9.57)

see fig. 9.2.

As an example for a non-regular triangulations consider the six points

A =








4

0

0


 ,




0

4

0


 ,




0

0

4


 ,




2

1

1


 ,




1

2

1


 ,




1

1

2





 (9.58)
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a1 a2 a3 a4 a5 a6

ã1

ã2
ã3 ã4

ã5

ã6

Figure 9.2: The triangulation of (a1,a2,a3,a4,a5,a6) in R1 and the lift (ã1, ã2, ã3, ã4, ã5, ã6) to

R2. The lift is convex.

Figure 9.3: The left picture shows a regular triangulation of the polytope P, the right picture

shows a non-regular triangulation of the polytope P.
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in R3. These points lie in a plane with normal vector n = (1,1,1). The polytope P = conv(A)
is two-dimensional. Fig. 9.3 shows a regular triangulation of P (left picture) and a non-regular

triangulation of P (right picture). The right picture of fig. 9.3 is the standard example for a non-

regular triangulation.

Exercise 85: Show that the left picture of fig. 9.3 defines a regular triangulation.

Exercise 86: Show that the right picture of fig. 9.3 defines a non-regular triangulation.

A regular triangulation {σ1, . . . ,σr}where all simplices have normalised volume one (vol0(σ j)=
1) is called a unimodular triangulation.

A fan in Rd is a finite set of cones

F = {C1,C2, . . . ,Cr} (9.59)

such that

1. Every face of a cone in F is also a cone in F .

2. The intersection of any two cones in F is a face of both

The fan is called complete, if the union of all cones in F equals Rd:

C1∪C2∪· · ·∪Cr = Rd. (9.60)

A fan is called rational, if all the cones in the fan are given by inequalities with rational coeffi-

cients.

Consider now a polytope P ∈ Rd and let F be a face of P. The normal cone NF(P) of a face

F is a cone in the dual space (Rd)∗ defined by

NF(P) =

{
b ∈ (Rd)∗ | F ⊆

{
x ∈ P | b · x = max

y∈P
(b · y)

}}
. (9.61)

The collection of the normal cones NF(P) for the faces F of a polytope P forms a complete fan

in (Rd)∗. This fan is called the normal fan of P and denoted by N(P). An example is shown in

fig. 9.4.

As before consider a non-empty set of n points A = {a1, . . . ,an} ⊂ Rd . The convex hull of

these points defines a polytope P = conv(A), see eq. (9.43). The polytope P is also called the

primary polytope of A. For any regular triangulation T = {σ1,σ2, . . .} of P we define a point

qT ∈ Rn with coordinates q1T , . . . ,qnT by

q jT = ∑
σ∈T,a j∈vertices(σ)

vol0 (σ) . (9.62)

Let S be the set {qT1
,qT2

, . . .} ⊂ Rn obtained from all regular triangulations Ti of P. The sec-

ondary polytope Σ(A) of A is defined to be

Σ(A) = conv(S) ⊂ Rn. (9.63)
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x1

x2

b1

b2

Figure 9.4: The left picture shows the polytope in R2 defined by the points a1 = (1,1)T , a2 =
(1,2)T , a3 = (2,2)T , a4 = (3,1)T . The right picture shows the normal fan of the polytope.

The normal fan of the secondary polytope Σ(A) is called the secondary fan N(Σ(A)).
Given a multivariate polynomial f in d variables x1, . . . ,xd , written in multi-index notation

(e.g. xa j = x
a j1
1 . . .x

a jd

d ) as

f (x) =
n

∑
j=1

ca jx
a j , ca j 6= 0, (9.64)

the Newton polytope ∆ f of f is defined by

∆ f = conv({a1, . . . ,an}) . (9.65)

We denote by V f the hypersurface defined by f :

V f =
{

x ∈ Cd | f (x) = 0
}
. (9.66)

The amoeba A f of V f is defined as

A f =
{
(ln |x1|, . . . , ln |xd|) ∈ Rd | x ∈ V f

}
, (9.67)

the coamoeba A ′f of V f is defined as

A ′f =
{
(arg(x1), . . . ,arg(xd)) ∈ Rd | x ∈ V f

}
. (9.68)

9.2.2 D-modules

Let F be a field of characteristic zero and n ∈ N. The ring of differential operators ∂1, . . . ,∂n

(where ∂ j = ∂/∂x j) with coefficients in the polynomial ring F[x1, . . . ,xn] is called the Weyl alge-

bra An in n variables. The Weyl algebra is generated by

x1, . . . ,xn,∂1, . . . ,∂n (9.69)

subject to the commutation relation

[∂i,xi] = 1, 1≤ i≤ n. (9.70)
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All other commutation relations are trivial. With the multi-index notation

xα = xα1
1 . . .xαn

n , ∂α = ∂α1
1 . . .∂αn

n (9.71)

any P ∈ An can be written uniquely as

P = ∑
α,β

cαβ xα ∂β, cαβ ∈ F. (9.72)

We call P written in the form as in eq. (9.72) a normal ordered expression. Let ξ1, . . . ,ξn be

commutative variables. It is often useful to replace ∂ j → ξ j. From eq. (9.72) we see that if we

view An and F [x1, . . . ,xn,ξ1, . . . ,ξn] as vector spaces over F there is a vector space isomorphism

between

P(x,∂) = ∑
α,β

cαβ xα ∂β and P(x,ξ) = ∑
α,β

cαβ xα ξβ. (9.73)

Note that this is not an algebra homomorphism.

Let D be a ring of differential operators. A DDD-module is a left module over the ring D. If we

take D = An, examples for D-modules are the polynomial ring F[x1, . . . ,xn] or the field of rational

functions F(x1, . . . ,xn).
Let us now consider a system of linear partial differential equations, given by differential

operators P1, . . . ,Pr ∈ An:

Pj f (x1, . . . ,xn) = 0. (9.74)

These define an ideal I = 〈P1, . . . ,Pr〉 in the Weyl algebra An, as

QPj f (x1, . . . ,xn) = 0, for any Q ∈ An. (9.75)

A vector (v,w) = (v1, . . . ,vn,w1, . . . ,wn) =∈ Z2n is called a weight vector for the Weyl algebra

An if

v j +w j ≥ 0, 1 ≤ j ≤ n. (9.76)

The order of a monomial xα∂β with respect to the weight vector (v,w) is

ord(v,w)

(
xα∂β

)
= v1α1 + · · ·+ vnαn +w1β1 + · · ·+wnβn (9.77)

and we define the order of a differential operator P ∈ An as the maximum of the orders of the in-

dividual monomials when P is written in normal form. A weight vector (v,w) induces a filtration

F (v,w)
k (An) =

{
P ∈ An | ord(v,w) (P) ≤ k

}
(9.78)

The associated graded ring is

gr(v,w) (An) =
⊕
k∈Z

gr
(v,w)
k (An) , gr

(v,w)
k (An) = F(v,w)

k (An)/F(v,w)
k−1 (An) . (9.79)
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We may think of gr(v,w)(An) as the algebra generated by x1, . . . ,xn and for 1≤ j ≤ n either ∂ j or

ξ j according to

v j +w j = 0 : ∂ j,

v j +w j > 0 : ξ j. (9.80)

The non-trivial commutation relations are the ones given in eq. (9.70). If v j +w j > 0 the com-

mutator [∂ j,x j] is of lower weight and we may replace ∂ j with commutative variable ξ. Only for

v j +w j = 0 we have to keep track of order.

Let P ∈ An and assume that P is written in normal form as in eq. (9.72). We set o =
ord(v,w)(P). The initial form in(v,w)(P) of P with respect to the weight vector (v,w) is defined to

be

in(v,w) (P) = ∑
α,β

αv+βw=o

cαβ xα ∏
v j+w j>0

ξ
β j
j ∏

v j+w j=0

∂
β j
j . (9.81)

In other words: We take only the terms of order o and make the replacement ∂ j→ ξ j, whenever

v j +w j > 0.

Consider an ideal I = 〈P1, . . . ,Pr〉 ⊂ An. Then

〈 in(v,w) (P) | P ∈ I 〉 (9.82)

is an ideal in the associated graded ring gr(v,w)(An), called the initial ideal of I with respect to

the weight vector (v,w).
Let us now consider the weight vector

(000,111) = (0, . . . ,0︸ ︷︷ ︸
n

,1, . . . ,1︸ ︷︷ ︸
n

). (9.83)

For this weight vector the associated graded ring gr(000,111)(An) of the Weyl algebra An is the com-

mutative ring F[x1, . . . ,xn,ξ1, . . . ,ξn]. Let I be an ideal in the Weyl algebra An. We define the

characteristic ideal of I to be the initial ideal

in(000,111) (I) (9.84)

with respect to the weight vector (000,111). The characteristic variety ch(I) is the zero set of

in(000,111) (I) in the affine space of dimension 2n with coordinates x1, . . . ,xn,ξ1, . . . ,ξn.

We say that the ideal I is holonomic if the characteristic ideal in(000,111)(I) of I has dimension

n. Let us denote by F(x) = F(x1, . . . ,xn) the field of rational functions in x = (x1, . . . ,xn). The

holonomic rank of I is the dimension of the vector space F(x)[ξ]/(F(x)[ξ] · in(000,111)(I)):

rank(I) = dim
(
F(x)[ξ] /

(
F(x)[ξ] · in(000,111)(I)

) )
. (9.85)

An important theorem states that if I is holonomic, than rank(I) is finite.
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Let us now consider the weight vector (−w,w) with w∈Zn. Consider an ideal I = 〈P1, . . . ,Pr〉⊂
An. The ideal

in(−w,w) (I) = 〈 in(−w,w) (P) | P ∈ I 〉 (9.86)

is called a Gröbner deformation of I. We define the Euler operators θ j by

θ j = x j
∂

∂x j
. (9.87)

Let us denote by Ân = F(x) ·An, i.e. the ring of differential operators ∂1, . . . ,∂n with coefficients

being rational functions of x1, . . . ,xn. To spell out the difference between An and Ân: In the Weyl

algebra the coefficients are polynomials in x1, . . . ,xn, in Ân the coefficients are allowed to be

rational functions in x1, . . . ,xn. Given an ideal I ⊂ An we denote in a similar way by Î the ideal

F(x) · I. We further denote by F[θ] = F[θ1, . . . ,θn] the (commutative) ring of the Euler operators.

We may now define the indicial ideal indw(I) of I ⊂ An relative to the weight w ∈ Zn: It is given

by

indw (I) = în(−w,w) (I) ∩ F [θ] . (9.88)

9.2.3 GKZ systems

A GKZ hypergeometric system [226,227] or A-hypergeometric system is defined by a vector

c ∈ Ck+1 and an n-element subset

A = {a1, . . . ,an} ⊂ Zk+1, (9.89)

which satisfies the two conditions

1. A generates Zk+1 as an Abelian group. (9.90)

2. There exists a group homomorphism h : Zk+1→ Z such that h(a) = 1 for all a ∈ A .

We must have n > k, otherwise the elements of A cannot generate Zk+1. The second condition

is equivalent to the statement that all elements a ∈ A lie in a hyperplane. We may think of A as

a (k+1)×n-matrix with integer entries and where the columns are given by the a j’s.

We denote by L⊂ Zn the lattice of relations in A :

L = { (l1, . . . , ln) ∈ Zn | l1a1 + · · ·+ lnan = 0 } . (9.91)
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GKZ hypergeometric system:

The GKZ hypergeometric system associated with A and c is the following system of dif-

ferential equations for a function φ of n variables x1, . . . ,xn: For every (l1, . . . , ln) ∈ L one

differential equation

[
∏
l j>0

(
∂

∂x j

)l j

−∏
l j<0

(
∂

∂x j

)−l j
]

φ = 0, (9.92)

and (k+1) differential equations

[
n

∑
j=1

a jx j
∂

∂x j
− c

]
φ = 0. (9.93)

The differential equations in eq. (9.92) are called the toric differential equations, the ones

in eq. (9.93) are called the homogeneity equations. We may write the system of differential

equations in a slightly modified way: Let l ∈ L and write

l = u− v, with u,v ∈ Nn
0. (9.94)

Thus u contains all positive entries of l, while v is the negative of the negative entries of l. The

condition l1a1 + · · ·+ lnan = 0 is equivalent to

Au = Av. (9.95)

Then eq. (9.92) is equivalent to

(∂u−∂v)φ = 0 (9.96)

for any pair u,v ∈ Nn
0 with Au = Av.

Let us denote the vector of Euler operators by

θθθ = (θ1, . . . ,θn)
T =

(
x1

∂

∂x1
, . . . ,xn

∂

∂xn

)T

. (9.97)

Then eq. (9.93) is equivalent to

(Aθθθ− c)φ = 0. (9.98)

Let γ ∈ Cn. We define the ΓΓΓ-series associated with L and γ by

φL,γ (x1, . . . ,xn) = ∑
(l1,...,ln)∈L

n

∏
j=1

x
l j+γ j
j

Γ
(
l j + γ j +1

) . (9.99)
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a1

a2

a3

Figure 9.5: The set A = {a1,a2,a3} ∈Z2. The vectors a1 and a2 generate Z2. Viewed as points,

a1, a2 and a3 lie in the hyperplane indicated by the dashed line.

The Γ-series is in its domain of convergence a solution of the GKZ system associated to A and

c =
n

∑
j=1

a jγ j. (9.100)

Recall that c ∈ Ck+1, γ ∈ Cn and A ∈M(k+1,n,Z). Alternatively we may write eq. (9.100) as

c = Aγ. (9.101)

Let’s look at a simple example: We take k = 2 and n = 3. For the set A we choose

A =

{(
1

0

)
,

(
0

1

)
,

(
−1

2

)}
. (9.102)

This set spans Z2 (the first two elements already span Z2) and the three points lie in a hyperplane,

as shown in fig. 9.5. The lattice of relations is generated by (1,−2,1), e.g.

L =
{
(l,−2l, l) ∈ Z3|l ∈ Z

}
. (9.103)

The Γ-series associated to A and γ is

φL,γ (x1,x2,x3) = ∑
l∈Z

xl+γ1

1

Γ(l + γ1 +1)

x−2l+γ2

2

Γ(−2l+ γ2 +1)

xl+γ3

3

Γ(l + γ3 +1)
. (9.104)
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In general, we are interested in the space of local solutions of a GKZ hypergeometric system.

Let us denote by ∆A the polytope in Rk+1 defined by A = (a1, . . . ,an). If c is generic and ∆A

admits a unimodular triangulation, than the dimension of the solution space is is given by

vol0 (∆A) . (9.105)

We may describe the solution space either in a geometrical language, using polytopes, or in an

algebraic language, using D-modules. Let’s start with the geometrical picture:

The key player in the geometrical picture is the secondary fan N(Σ(A)) of A . Let C be

a maximal cone of the secondary fan N(Σ(A)). Such a maximal cone corresponds to a regular

triangulation of the primary polytope ∆A . Let us denote by TC the list of subsets of {1, . . . ,n} such

that each subset denotes the indices of the vertices of the maximal simplices in this triangulation.

For example, if {a1,a4,a5,a7} are the vertices of a maximal simplex in the regular triangulation,

we would include in TC the subset {1,4,5,7}. Let us now consider vectors γ ∈ Cn such that

c = Aγ,

∃ J ∈ TC such that γ j ∈ Z≤0 for j /∈ J. (9.106)

The first condition is the same as in eq. (9.101). We call γ and γ′ equivalent, if they only differ

by l ∈ L:

γ∼ γ′ ⇔ γ− γ′ ∈ L. (9.107)

Given a maximal cone C of the secondary fan and a vector c ∈ Ck+1 we say that the vector c is

C-resonant if the number of equivalence classes of solutions of eq. (9.106) is less than vol0(∆A).
If c is not C-resonant, we say that c is generic.

We may now describe the solution space: We start in a geometric language. Let’s assume

that the primary polytope ∆A admits a unimodular triangulation. Let C be a maximal cone of

the secondary fan N(Σ(A)) and assume that c is generic. Then there are vol0(∆A) inequivalent

solutions of eq. (9.106) and the corresponding Γ-series are linearly independent and span the

solution space of the GKZ hypergeometric system.

Alternatively, we may give a description in algebraic terms: We first note that the differential

equations of eq. (9.92) and eq. (9.92) generate an ideal I in the Weyl algebra An. For the solution

of the GKZ system one constructs a basis of logarithmic series. A logarithmic series is a series

of the form (in multi-index notation)

∑
α∈A

∑
β∈B

cαβxα (ln(x))β , (ln(x))β = (ln(x1))
β1 . . .(ln(xn))

βn , (9.108)

where A⊂Cn is a discrete set and B⊂ {0, . . . ,bmax}n for some bmax ∈N0. Given a weight vector

w ∈ Zn we may define a partial order on the terms of a logarithmic series by

xα (ln(x))β > xα′ (ln(x))β′ ⇔ Re (w ·α) > Re
(
w ·α′

)
. (9.109)

This partial order can be refined to a total order by using the lexicographic order to break ties.

This total order is denoted by >w. The initial term of a logarithmic series is the minimal term
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with respect to the total order >w. For a generic weight vector w a basis of solutions of the GKZ

system consists of logarithmic series, such that for each logarithmic series the exponent α of the

initial term

xα (ln(x))β
(9.110)

is a root of the indicial ideal indw(I), i.e. α∈V (indw(I)). Moreover, for a given root α the number

of logarithmic series in the basis with initial term as in eq. (9.110) equals the multiplicity of the

root α in V (indw(I)). The initial terms of these logarithmic series differ in β. Starting from the

initial term, it is possible to construct the full logarithmic series. For an algorithm we refer to the

book by Saito, Sturmfels and Takayama [222].

9.2.4 Euler-Mellin integrals

Euler-Mellin integrals are examples of A-hypergeometric functions [228]. In order to define

Euler-Mellin integrals we start with a function p(z,x) = p(z1, . . . ,zk,x1, . . . ,xn) of the form

p(z1, . . . ,zk,x1, . . . ,xn) =
n

∑
j=1

x j z
a1 j
1 . . .z

ak j

k , ai j ∈ Z. (9.111)

We call a function of this type a Laurent polynomial. Note that the exponents ai j are allowed

to be negative integers. If for all exponents ai j we have ai j ∈ N0, then the function p(z,x) is a

polynomial in z and x. Note further that p(z,x) is linear in each x j and that there are as many x j’s

as there are monomials in the sum in eq. (9.111).

Let us now consider a GKZ hypergeometric system with

A =




1 1 . . . 1

a11 a12 . . . a1n

. . . . . .
ak1 ak2 . . . akn


 , c =




−ν0

−ν1

. . .
−νk


 . (9.112)

A is a (k+1)×n-matrix, c is a vector in Ck+1. A defines a Laurent polynomial p(x,z) through

eq. (9.111). We then consider integrals of the form

∫

C

dkz

(
k

∏
j=1

z
ν j−1

j

)
[p(z,x)]−ν0 , (9.113)

where C is a cycle. An integral of the form as in eq. (9.113) is called an Euler-Mellin integral.

We may extent the definition of Euler-Mellin integrals to integrals involving m Laurent poly-

nomials p1(z,x), . . . , pm(z,x) as follows: We start from a GKZ hypergeometric system of the
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form

A =




1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 1 . . . 1

a111 . . . a11n1
a211 . . . a21n2

. . . am11 . . . am1nm

. . . . . . . . . . . . . . . . . .
a1k1 . . . a1kn1

a2k1 . . . a2kn2
. . . amk1 . . . amknm




, c =




−µ1

−µ2

. . .
−µm

−ν1

. . .
−νk




.

(9.114)

We set n = n1 + · · ·+nm. A is a (k+m)×n-matrix, c is a vector in C k+m. A defines m Laurent

polynomials p1(z,x), . . . , pm(z,x) as follows: We set

pi (z,x) =
ni

∑
j=1

xn1+···+ni−1+ j z
ai1 j
1 . . .z

aik j

k . (9.115)

p1(z,x) depends on the first n1 variables x1, . . . ,xn1
, p2(z,x) on the next n2 variables xn1+1, . . . ,xn1+n2

etc.. The associated Euler-Mellin integral is

∫

C

dkz

(
k

∏
j=1

z
ν j−1

j

)(
m

∏
i=1

[pi (z,x)]
−µi

)
. (9.116)

9.2.5 Feynman integrals as GKZ hypergeometric functions

Let us now consider a Feynman integral Iν1...νnint
(D,x1, . . . ,xNB). The Lee-Pomeransky represen-

tation reads

Iν1...νnint
(D,x1, . . . ,xNB) = C

∫

z j≥0

dnintz

(
nint

∏
j=1

z
ν j−1

j

)
[G (z,x)]−

D
2 , (9.117)

with the prefactor (irrelevant for the discussion here)

C =
elεγEΓ

(
D
2

)

Γ
(
(l+1))D

2
−ν
) nint

∏
j=1

Γ(ν j)
(9.118)

and the Lee-Pomeransky polynomial

G (z,x) = U (z)+F (z,x) . (9.119)

The Lee-Pomeransky representation of the Feynman integral is close to an Euler-Mellin integral

as in eq. (9.113), but not quite: First of all, the number of monomials in G(z,x) will in general

not match the number of kinematic variables x1, . . . ,xNB . This issue is easily fixed: We consider a
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generalised Lee-Pomeransky polynomial G(z,x′) = G(z1, . . . ,znint
,x′1, . . . ,x

′
n) with as many vari-

ables x′j as there are monomials in the original Lee-Pomeransky polynomial G(z,x). The original

Lee-Pomeransky polynomial G(z,x) is then recovered as the special case, where the additional

variables take special values. As an example consider the one-loop two-point function with equal

internal masses. With x =−p2/m2 the original Lee-Pomeransky polynomial reads

G (z1,z2,x) = z1 + z2 +(2+ x)z1z2 + z2
1 + z2

2. (9.120)

The generalised Lee-Pomeransky polynomial reads

G
(
z1,z2,x

′
1,x
′
2,x
′
3,x
′
4,x
′
5

)
= x′1z1 + x′2z2 + x′3z1z2 + x′4z2

1 + x′5z2
2. (9.121)

We recover the original Lee-Pomeransky polynomial as

G (z1,z2,x) = G(z1,z2,1,1,2+ x,1,1) . (9.122)

The exponents of the monomials in G(z,x′) define a (nint +1)×n-matrix A through eq. (9.114).

For the example from eq. (9.121) we obtain

A =




1 1 1 1 1

1 0 1 2 0

0 1 1 0 2


 . (9.123)

Secondly, the matrix A should satisfy the two conditions of eq. (9.90). The second condition

does not pose any problem: As the first row of A contains only 1’s, all points lie in a hyperplane

(with first coordinate equal to one) and the (nint +1)-dimensional row vector

(1,0, . . . ,0︸ ︷︷ ︸
nint

) (9.124)

defines the group homomorphism h : Zk+1→ Z. It may happen that A does not satisfy the first

condition (that the columns of A generate Zk+1 as an Abelian group. In this case we add ad-

ditional monomials to the generalised Lee-Pomeransky polynomial G(z,x′) until A does satisfy

the first condition. These additional monomials come with new variables x′j and we take the limit

x′j→ 0 in the end.

Theorem 13 (Feynman integrals and A-hypergeometric functions). Any Feynman integral

Iν1...νnint
(D,x1, . . . ,xNB) (9.125)

depending on the kinematic variables x1, . . . ,xNB is a special case of a A-hypergeometric function
in more variables x′1, . . . ,x

′
n, where the variables x′j take special values.

The relation between Feynman integrals and A-hypergeometric functions has been consid-

ered in [229–232]. The above theorem is due to de la Cruz [231].
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Exercise 87: In this exercise we are going to prove theorem 13. Let G(z,x′) = G(z1, . . . ,znint
,x′1, . . . ,x

′
n)

be a generalised Lee-Pomeransky polynomial such that the associated (nint + 1)× n-matrix A satisfies
eq. (9.90). Consider the integral

I = C
∫

z j≥0

dnint z

(
nint

∏
j=1

z
ν j−1

j

)
[
G
(
z,x′
)]−D

2 . (9.126)

Show that I satisfies the differential equations in eq. (9.92) and eq. (9.93) with c=(−D/2,−ν1, . . . ,−νnint
)T .

The number of variables x′1, . . . ,x
′
n for the A-hypergeometric function can be quite large, as

the following example illustrates: Consider the two-loop double box integral where all internal

masses vanish and the external momenta are light-like: p2
1 = p2

2 = p2
3 = p2

4. This integral depends

only on one kinematic variable, which can be taken as x = s/t. The original Lee-Pomeransky

polynomial reads

G (z1, . . . ,z7,x) =

z1z5 + z1z6 + z1z7 + z2z5 + z2z6 + z2z7 + z3z5 + z3z6 + z3z7 + z1z4 + z2z4 + z3z4 + z4z5 + z4z6

+z4z7 + xz2z3z4 + xz2z3z5 + xz2z3z6 + xz2z3z7 + xz5z6z1 + xz5z6z2 + xz5z6z3 + xz5z6z4

+xz2z4z6 + xz3z4z5 + z1z4z7. (9.127)

The original Lee-Pomeransky polynomial is a sum of 26 monomials. For the generalised Lee-

Pomeransky polynomial G we therefore introduce 26 variables x′1, . . . ,x
′
26. The generalised Lee-

Pomeransky polynomial reads

G
(
z1, . . . ,z7,x

′
1, . . . ,x

′
26

)
=

x′1z1z5 + x′2z1z6 + x′3z1z7 + x′4z2z5 + x′5z2z6 + x′6z2z7 + x′7z3z5 + x′8z3z6 + x′9z3z7 + x′10z1z4

+x′11z2z4 + x′12z3z4 + x′13z4z5 + x′14z4z6 + x′15z4z7 + x′16z2z3z4 + x′17z2z3z5 + x′18z2z3z6

+x′19z2z3z7 + x′20z5z6z1 + x′21z5z6z2 + x′22z5z6z3 + x′23z5z6z4 + x′24z2z4z6 + x′25z3z4z5

+x′26z1z4z7. (9.128)

Thus we go from the case of one kinematic variable x to a A hypergeometric function in 26

variables. At the end we are interested in the limit, where the variables x′j go either to 1 or x.

9.3 The Bernstein-Sato polynomial

Given a polynomial V (x) in n variables x1, . . . ,xn, the Bernstein-Sato theorem [233, 234] states

that there is an identity of the form

P(x,∂) [V (x)]ν+1 = B [V (x)]ν , (9.129)

where P(x,∂) is a polynomial of x and ∂ = (∂1, . . . ,∂n) with ∂ j = ∂/∂ j. B and all coefficients of P
are polynomials of ν and of the coefficients of V (x). B is called the Bernstein-Sato polynomial.
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This can be generalised to several polynomials V1(x), . . . ,Vr(x) in n variables x1, . . . ,xn [235]:

P(x,∂)
r

∏
j=1

[
Vj (x)

]ν j+1
= B

r

∏
j=1

[
Vj (x)

]ν j , (9.130)

where as above P(x,∂) is a polynomial of x and ∂ = (∂1, . . . ,∂n). B and all coefficients of P are

polynomials of the ν j’s and of the coefficients of the Vj(x)’s.

As an example consider

V (x) = xT Ax+2wT X + c, (9.131)

where A is an invertible (n×n)-matrix and w a n-vector. Then

P(x,∂) [V (x)]ν+1 = B [V (x)]ν , (9.132)

with

P(x,∂) = 1− 1

2(ν+1)

(
x+wT A−1

)
∂, B = c−wT A−1w. (9.133)

The Bernstein-Sato polynomial has been applied in [235, 236] to one-loop integrals in the Feyn-

man parameter representation: For one-loop integrals we have

I =
eεγEΓ

(
ν− D

2

)
nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[F (a)]

D
2−ν , (9.134)

and the second graph polynomial F (a) is quadratic in the Feynman parameters. Using

[F (a)]
D
2−ν =

1

B
P(x,∂) [F (a)]1+

D
2−ν

(9.135)

will raise the exponent of the second graph polynomial. Using partial integration for the dif-

ferential operator P(x,∂) will either produce simpler integrals on the boundary of the Feynman

parameter integration domain or integrals with modified exponents ν j. This can be repeated, un-

til the integer part of the exponent of the second graph polynomial is non-negative. At this point,

all poles in the dimensional regularisation parameter ε originate from the various 1/B-prefactors.

The remaining integrals are finite and can be performed numerically.

Methods to compute P(x,∂) and B for a general single polynomial V (x) can be found in the

book by Saito, Sturmfels and Takayama [222].
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Chapter 10

Sector decomposition

Let us consider the Laurent expansion in the dimensional regularisation ε of a Feynman integral:

I =
∞

∑
j= jmin

ε j I( j). (10.1)

For precision calculations we are interested in the first few terms of this Laurent expansion.

The coefficients I( j) are independent of ε and we may ask if there is a way to compute them

numerically. In this section we will discuss the method of sector decomposition, which allows

us to compute the coefficients I( j) by Monte Carlo integration. The essential step will be to

manipulate the original integrand in such a way, that all I( j)’s are given by integrable integrands.

We will start from the Feynman parameter representation of eq. (2.170)

I =
elεγEΓ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−

nint

∑
j=1

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (10.2)

Depending on the exponents, potential singularities of the integrand come from the regions a j =
0, U = 0 or F = 0. We already know that U 6= 0 inside the integration, but there is the possibility

that U vanishes on the boundary of the integration region. In order to keep the discussion simple

we will assume in this chapter that all kinematic variables are in the Euclidean region. Then it

follows that F 6= 0 inside the integration, but F may vanish on the boundary of the integration

region. It is possible to relax the condition that all kinematic variables should be in the Euclidean

region by an appropriate deformation of the integration contour of the final integration.

In mathematical terms, sector decomposition corresponds to a resolution of singularities by

a sequence of blow-ups. We will discuss the relation between these topics.

Apart from the practical application of being able to compute numerically the coefficients

of the Laurent expansion in ε, we may show that in the case where all kinematic variables are

algebraic numbers in the Euclidean region the coefficients I( j) are numerical periods.

339
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10.1 The algorithm of sector decomposition

In this section we discuss the algorithm for iterated sector decomposition [237]. The starting

point is an integral of the form

∫

x j≥0

dnx δ(1−
n

∑
i=1

xi)

(
n

∏
i=1

xµi
i

)
r

∏
j=1

[
Pj(x)

]λ j , (10.3)

where µi = ai +εbi and λ j = c j +εd j. The integration is over the standard simplex. The a’s, b’s,

c’s and d’s are integers. The P’s are polynomials in the variables x1, ..., xn. The polynomials are

required to be non-zero inside the integration region, but may vanish on the boundaries of the

integration region.

The Feynman parameter integral in eq. (10.2) is – apart from a trivial prefactor – of the form

as in eq. (10.3). Eq. (10.3) is slightly more general: We allow more than two polynomials, the

polynomials are not required to be homogeneous and the exponents µi are not required to be

integers, but are allowed to be of the form µi = ai + εbi, with ai,bi ∈ Z.

The algorithm of sector decomposition consists of the following six steps:

Step 1: Convert all polynomials to homogeneous polynomials. This is easily done as follows:

Due to the presence of the Dirac delta distribution in eq. (10.3) we have

1 = x1 + x2 + · · ·+ xn. (10.4)

For each polynomial Pj we determine the highest degree h j and multiply all terms of lower degree

by an appropriate power of x1 + x2 + · · ·+ xn. As an example consider n = 2 and P = x1 + x1x2
2.

The homogenisation of P is

x1 (x1 + x2)
2 + x1x2

2. (10.5)

After step 1 all polynomials Pj are homogeneous polynomials of degree h j.

Step 2: Decompose the integral into n primary sectors. This is done as follows: We write

∫

x j≥0

dnx =
n

∑
l=1

∫

x j≥0

dnx
n

∏
i=1,i 6=l

θ(xl ≥ xi). (10.6)

The sum over l corresponds to the sum over the n primary sectors. In the l-th primary sector we

make the substitution

x j = xlx
′
j for j 6= l. (10.7)
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As after step 1 each polynomial Pj is homogeneous of degree h j we arrive at

∫

x j≥0

dnx δ(1−
n

∑
i=1

xi)

(
n

∏
i=1,i 6=l

θ(xl ≥ xi)

)(
n

∏
i=1

xai+εbi
i

)
r

∏
j=1

[
Pj(x)

]c j+εd j = (10.8)

1∫

0

(
n

∏
i=1,i 6=l

dxi xai+εbi
i

)(
1+

n

∑
j=1, j 6=l

x j

)c r

∏
j=1

[
Pj(x1, ...,x j−1,1,x j+1, ...,xn)

]c j+εd j ,

where

c = −n−
n

∑
i=1

(ai + εbi)−
r

∑
j=1

h j
(
c j + εd j

)
. (10.9)

Each primary sector is now a (n−1)-dimensional integral over the unit hyper-cube. Note that in

the general case this decomposition introduces an additional polynomial factor

(
1+

n

∑
j=1, j 6=l

x j

)c

. (10.10)

Exercise 88: Show that for a Feynman integral as in eq. (10.2) we have in any primary sector c = 0 and
therefore the additional factor is absent.

The underlying reason for the statement that for any Feynman integral we always have c = 0

is the fact that the Feynman integral is a projective integral. In eq. (10.3) we consider more

general integrals. In particular we do not require that the integral in eq. (10.3) descends to an

integral on projective space. Therefore we have in general c 6= 0. In any case, this factor is just

an additional polynomial. After an adjustment (n−1)→ n and possibly (r+1)→ r we therefore

deal with integrals of the form

1∫

0

dnx
n

∏
i=1

xai+εbi
i

r

∏
j=1

[
Pj(x)

]c j+εd j . (10.11)

This is now an integral over the unit hypercube. The polynomials Pj do not vanish inside the

integration region. They may vanish on intersections of the boundary of the integration region

with coordinate subspaces.

Step 3: Decompose the sectors iteratively into sub-sectors until each of the polynomials is of

the form

P = xm1
1 ...xmn

n

(
c+P′(x)

)
, (10.12)

where c 6= 0 and P′(x) is a polynomial in the variables x j without a constant term. In this case the

monomial prefactor xm1
1 ...xmn

n can be factored out and the remainder contains a non-zero constant
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Figure 10.1: Illustration of sector decomposition and blow-up for a simple example.

term. To convert P into the form (10.12) one chooses a subset S = {α1, ..., αk} ⊆ {1, ...n} ac-

cording to a strategy discussed in the next section. One decomposes the k-dimensional hypercube

into k sub-sectors according to

1∫

0

dnx =
k

∑
l=1

1∫

0

dnx
k

∏
i=1,i 6=l

θ(xαl ≥ xαi) . (10.13)

In the l-th sub-sector one makes for each element of S the substitution

xαi = x′αl
x′αi

for i 6= l,

xαi = x′αi
for i = l. (10.14)

This procedure is iterated, until all polynomials are of the form (10.12). At the end all polynomi-

als contain a constant term. Each sub-sector integral is of the form as in eq. (10.11), where every

Pj is now different from zero in the whole integration domain. Hence the singular behaviour of

the integral depends on the ai and bi, the ai being integers.

Fig. 10.1 illustrates this for the simple example S = {1,2}. Eq. (10.13) gives the decomposi-

tion into the two sectors x1 > x2 and x2 > x1. Eq. (10.14) transforms the triangles into squares.

This transformation is one-to-one for all points except the origin. The origin is replaced by the

line x1 = 0 in the first sector and by the line x2 = 0 in the second sector. In mathematics this is

known as a blow-up.
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Step 4: The singular behaviour of the integral depends now only on the factor

n

∏
i=1

xai+εbi
i . (10.15)

For every x j with a j < 0 we perform a Taylor expansion around x j = 0 in order to extract the

possible ε-poles. In the variable x j we write

1∫

0

dx j x
a j+b jε
j I (x j) =

1∫

0

dx j x
a j+b jε
j



|a j|−1

∑
p=0

xp
j

p!
I (p)+ I (R)(x j)


 (10.16)

where we defined I (p) = ∂/∂xp
j I (x j)

∣∣∣
x j=0

. The remainder term

I (R)(x j) = I (x j)−
|a j|−1

∑
p=0

xp
j

p!
I (p) (10.17)

does not lead to ε-poles in the x j-integration. The integration in the pole part can be carried out

analytically:

1∫

0

dx j x
a j+b jε
j

xp
j

p!
I (p) =

1

a j +b jε+ p+1

I (p)

p!
. (10.18)

This procedure is repeated for all variables x j for which a j < 0.

Step 5: All remaining integrals are now by construction finite. We can now expand all ex-

pressions in a Laurent series in ε

B

∑
i=A

Ciε
i +O

(
εB) (10.19)

and truncate to the desired order.

Step 6: It remains to compute the coefficients of the Laurent series. These coefficients contain

finite integrals, which can be evaluated numerically by Monte Carlo integration. This completes

the algorithm of sector decomposition.

There are public codes implementing this algorithm [238–244].

Digression. Blow-ups

Let’s define a blow-up in mathematical terms: We start with the blow-up of a coordinate sub-
space. By choosing appropriate coordinates we may always arrange to be in this situation.
Consider Cn and the submanifold Z defined by

x1 = x2 = ...= xk = 0. (10.20)
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We have dimCZ = n− k and

Z =
{
(0, ...,0,xk+1, ...,xn) | x j ∈ C, k+1≤ j ≤ n

}
. (10.21)

Let P be the subset of

Cn×CPk−1, (10.22)

which satisfies the equations

xiy j− x jyi = 0, i, j ∈ {1, ...,k}, (10.23)

where [y1 : y2 : ... : yk] are homogeneous coordinates on CPk−1. In other words,

P =
{
(x,y) ∈ Cn×CPk−1|xiy j− x jyi = 0, 1≤ i, j ≤ k

}
. (10.24)

The blow-up map

π : P→ Cn

(x,y)→ x, (10.25)

is an isomorphism away from Z: To see this, let x ∈ Cn\Z. Then there is at least one x j with
x j 6= 0 for 1≤ j ≤ k. We then have

yi =
xi

x j
y j, i ∈ {1, ...,k}. (10.26)

Since y ∈ CPk−1 it follows that y j 6= 0 and we find

y = [x1 : x2 : ... : xk] . (10.27)

On the other hand we have for x∈ Z that x j = 0 for all 1≤ j≤ k and the equations xiy j−x jyi = 0

are trivially satisfied for all 1 ≤ i ≤ k. Therefore for x ∈ Z any point y ∈ CPk−1 is allowed. We
define

E = Z×CPk−1 (10.28)

to be the exceptional divisor. The restriction of π to E

π|E : E→ Z (10.29)

gives a fibration with fibre CPk−1.
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10.2 Hironaka’s polyhedra game

In step 2 of the algorithm we choose at each iteration a subset S = {α1, ..., αk} ⊆ {1, ...n}, until

we achieve the form of eq. (10.12) for all polynomials Pj. Up to now we didn’t specify how the

subset S is chosen. We will now fill in the details.

Choosing the set S is a non-trivial issue. We have to ensure that we reach the form of

eq. (10.12) in a finite number of iterations. In particular, the iteration should not lead to an

infinite loop.

To illustrate the problem, let us start with a strategy which does not work: Suppose we

choose S as a minimal subset S = {α1, . . . ,αk} such that at least one polynomial Pj vanishes for

xα1
= · · · = xαk = 0. By a minimal set we mean a set which does not contain a proper subset

having this property. If S contains only one element, S = {α}, then the corresponding Feynman

parameter factorises from Pj. A relative simple example shows, that this procedure may lead to

an infinite loop: If one considers the polynomial

P(x1,x2,x3) = x1x2
3 + x2

2 + x2x3, (10.30)

then the subset S = {1,2} is an allowed choice, as P(0,0,x3) = 0 and S is minimal. In the first

sector the substitution (10.14) reads x1 = x′1, x2 = x′1x′2, x3 = x′3. It yields

P(x1,x2,x3) = x′1x′23 + x′21 x′22 + x′1x′2x′3 = x′1
(
x′23 + x′1x′22 + x′2x′3

)
= x′1P

(
x′1,x

′
3,x
′
2

)
. (10.31)

The original polynomial has been reproduced, which leads to an infinite recursion.

To avoid this situation we need a strategy for choosing S, for which we can show that the

recursion always terminates. This is a highly non-trivial problem. It is closely related to the

resolution of singularities of an algebraic variety over a field of characteristic zero [245]. The

polyhedra game was introduced by Hironaka to illustrate the problem of resolution of singular-

ities. The polyhedra game can be stated with little mathematics. Any solution to the polyhedra

game will correspond to a strategy for choosing the subsets S within sector decomposition, which

guarantee termination.

Hironaka’s polyhedra game is played by two players, A and B. They are given a finite set M
of points m = (m1, ..., mn) ∈Nn

0. We denote by ∆⊂Rn
≥0 the positive convex hull of the set M. It

is given by the convex hull of the set ⋃
m∈M

(
m+Rn

≥0

)
. (10.32)

The two players compete in the following game:

1. Player A chooses a non-empty subset S⊆ {1, ..., n}.

2. Player B chooses one element i out of this subset S.

Then, according to the choices of the players, the components of all (m1, ..., mn)∈M are replaced

by new points (m′1, ..., m′n), given by:

m′j = m j, if j 6= i,

m′i = ∑
j∈S

m j− c, (10.33)
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Figure 10.2: Illustration of Hironaka’s polyhedra game.

where for the moment we set c = 1. This defines the set M′. One then sets M = M′ and goes

back to step 1. Player A wins the game if, after a finite number of moves, the polyhedron ∆ is of

the form

∆ = m+Rn
≥0, (10.34)

i.e. generated by one point. If this never occurs, player B has won. The challenge of the polyhe-

dra game is to show that player A always has a winning strategy, no matter how player B chooses

his moves. A simple illustration of Hironaka’s polyhedra game in two dimensions is given in

fig. 10.2. Player A always chooses S = {1,2}.
A winning strategy for Hironaka’s polyhedra game translates directly into a strategy for

choosing the sub-sectors within sector decomposition which guarantees termination. Without

loss of generality we can assume that we have just one polynomial P in eq. (10.3). (If there are

several polynomials, we obtain a single polynomial by multiplying them together. As only the

zero-sets of the polynomials are relevant, the exponents λ j can be neglected.) The polynomial P
has the form

P =
p

∑
i=1

cix
m
(i)
1

1 x
m
(i)
2

2 ...xm
(i)
n

n . (10.35)

The n-tuple m(i) =
(

m(i)
1 , ..., m(i)

n

)
defines a point in Nn

0 and M =
{

m(1), . . . ,m(p)
}

is the set of

all such points. Substituting the parameters x j according to equation (10.14) and factoring out

a term xc
i yields the same polynomial as replacing the powers m j according to equation (10.33).

In this sense, one iteration of the sector decomposition corresponds to one move in Hironaka’s

game. Reducing P to the form (10.12) is equivalent to achieving (10.34) in the polyhedra game.

Finding a strategy which guarantees termination of the iterated sector decomposition corresponds

to a winning strategy for player A in the polyhedra game. Note that we really need a strategy that

guarantees player A’s victory for every choice player B can take, because the sector decomposi-

tion has to be carried out in every appearing sector. In other words, we sample over all possible

decisions of B.

There are winning strategies for Hironaka’s polyhedra game [245–251]. Common to all

strategies is a sequence of positive numbers associated to the polynomials. All strategies enforce
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this sequence to decrease with each step in the iteration with respect to lexicographical ordering.

As the sequence cannot decrease forever, the algorithm is guaranteed to terminate. The actual

construction of this sequence will differ for different strategies.

An an example we discuss here Spivakovsky’s strategy [246], which was the first solution to

Hironaka’s polyhedra game. To state the strategy, we need a few auxiliary definitions: We define

ω(∆) ∈ Rn
≥0 as the vector given by the minima of the individual coordinates of elements in ∆:

ωi = min{νi | ν ∈ ∆} , i = 1, . . . ,n. (10.36)

Furthermore we write ∆̃ = ∆−ω(∆) and ν̃i = νi−ωi. For a subset Γ⊆ {1, ..., n} we define

dΓ (∆) = min

{
∑
j∈Γ

ν j | ν ∈ ∆

}
and d (∆) = d{1, ...,n} (∆) . (10.37)

We then define a sequence of sets

(I0,∆0, I1,∆1, ..., Ir,∆r) (10.38)

starting from

I0 = {1, ..., n} , ∆0 = ∆. (10.39)

For each ∆k we define a set Hk by

Hk =

{
j ∈ Ik | ∃ ν ∈ ∆k such that ∑

i∈Ik

νi = d (∆k) and ν̃ j 6= 0

}
. (10.40)

Ik+1 is given by

Ik+1 = Ik\Hk. (10.41)

In order to define ∆k+1 we first define for the two complementary subsets Hk and Ik+1 of Ik the

set

MHk =

{
ν ∈ RIk

≥0 | ∑
j∈Hk

ν j < 1

}
(10.42)

and the projection

PHk : MHk −→ R
Ik+1

≥0 ,

PHk (α, β) =
α

1−|β| , α ∈ R
Ik+1

≥0 , β ∈ R
Hk
≥0, |β|= ∑

j∈Hk

β j. (10.43)

Then ∆k+1 is given by

∆k+1 = PHk

(
MHk ∩

(
∆̃k

d
(
∆̃k
) ∪∆k

))
, (10.44)

where ∆̃k = ∆k−ω(∆k). The sequence in eq. (10.38) stops if either d
(
∆̃r
)
= 0 or ∆r = /0. Based

on the sequence in eq. (10.38) player A chooses now the set S as follows:
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1. If ∆r = /0, player A chooses S = {1, ..., n}\Ir.

2. If ∆r 6= /0, player A first chooses a minimal subset Γr ⊆ Ir, such that ∑ j∈Γr
ν j ≥ 1 for all

ν ∈ ∆r and sets S = ({1, ..., n}\Ir)∪Γr.

To each stage of the game (i.e. to each ∆), we can associate a sequence of 2r+2 numbers

δ(∆) =
(
d
(
∆̃
)
, #I1, d

(
∆̃1

)
, . . . ,#Ir, d

(
∆̃r
)
, d (∆r)

)
, (10.45)

adopting the conventions /̃0 = /0 and d( /0) = ∞. The above strategy forces δ(∆) to decrease with

each move with respect to lexicographical ordering. Further, it can be shown that δ(∆) cannot

decrease forever. Hence player A is guaranteed to win. The proof is given in [246].

10.3 Numerical periods

As a spin-off of the algorithm of sector decomposition we may prove a theorem related to the

coefficients I( j) of the Laurent expansion in the dimensional regularisation parameter ε of a

Feynman integral I.

In order to prepare the ground, we start with some sets of numbers: The natural numbers N,

the integer numbers Z, the rational numbers Q, the real numbers R and the complex numbers

C are all well-known. More refined is already the set of algebraic numbers, denoted by Q. An

algebraic number is a solution of a polynomial equation with rational coefficients:

xn +an−1xn−1 + · · ·+a0 = 0, a j ∈Q. (10.46)

As all such solutions lie in C, the set of algebraic numbers Q is a sub-set of the complex numbers

C. Numbers which are not algebraic are called transcendental. The sets N, Z, Q and Q are

countable, whereas the sets R, C and the set of transcendental numbers are uncountable.

We now introduce the set of numerical periods P. The motivation originates in the theory of

singly and doubly periodic functions f (z) of a complex variable z: We know that the exponential

function is a periodic function with period (2πi):

exp(z+2πi) = exp(z) ∀ z ∈ C. (10.47)

In chapter 13 we will discuss doubly periodic functions. A standard example for a doubly pe-

riodic function is Weierstrass’s ℘-function. Let us denote the two periods of Weierstrass’s ℘-

function by ψ1 and ψ2:

℘(z+ψ1) = ℘(z+ψ2) = ℘(z) . (10.48)

It is an observation that the period of the singly periodic function exp(z) and the periods ψ1,ψ2

of the doubly periodic function℘(z) can be expressed as integrals involving only algebraic func-

tions: For the period of the exponential function we have

2πi = 2i

1∫

−1

dt√
1− t2

. (10.49)
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Weierstrass’s ℘-function is associated to the elliptic curve y2 = 4x3−g2x−g3. Assume that the

two constants g2 and g3 are algebraic numbers. The periods of Weierstrass’s ℘-function can be

written as

ψ1 = 2

t2∫

t1

dt√
4t3−g2t−g3

, ψ2 = 2

t2∫

t3

dt√
4t3−g2t−g3

, (10.50)

where t1, t2 and t3 are the roots of the cubic equation 4t3−g2t−g3 = 0.

This observation motivated Kontsevich and Zagier [252] to define the set of numerical periods

P:

Numerical period:

A numerical period is a complex number whose real and imaginary parts are val-

ues of absolutely convergent integrals of rational functions with rational coefficients, over

domains in Rn given by polynomial inequalities with rational coefficients.

We denote the set of numerical periods by P. We may replace in the definition above any

occurrence of “rational” with algebraic, this will not alter the set of numbers. The algebraic

numbers are contained in the set of numerical periods: Q ∈ P. In addition, P contains transcen-

dental numbers, for example the transcendental number π

π =

∫∫

x2+y2≤1

dx dy, (10.51)

or the transcendental number ln(2)

ln(2) =

2∫

1

dx

x
. (10.52)

On the other hand, it is conjectured that the basis of the natural logarithm e and Euler’s constant

γE are not periods. The number (2πi) clearly is a period, but currently it is not known if the

inverse (2πi)−1 belongs to P or not. Although there are uncountably many numbers, which

are not periods, only very recently an example for a number which is not a period has been

found [253].

Periods are a countable set of numbers, lying between Q and C. The set of periods P is a

Q-algebra. In particular the sum and the product of two periods are again periods.

Let us now turn to Feynman integrals:

Theorem 14. Consider a Feynman integrals as in eq. (10.2) with Laurent expansion as in
eq. (10.1). Assume that all kinematic invariants x1, . . . ,xNB are in the Euclidean region and
algebraic:

x j ≥ 0, x j ∈ Q, 1 ≤ j ≤ NB. (10.53)
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Then the coefficients I( j) of the Laurent expansion in ε are numerical periods:

I( j) ∈ P. (10.54)

The proof of this theorem follows from the algorithm of sector decomposition [254, 255]: If

the kinematic variables x j are in the Euclidean region and algebraic, the integral of each sector

in the sector decomposition is a numerical period. As the sum of numerical periods is again a

numerical period, the theorem follows.

10.4 Effective periods and abstract periods

There is a more formal definition of periods as follows [252]: Let X be a smooth algebraic

variety of dimension n defined over Q and D ⊂ X a divisor with normal crossings. (A normal

crossing divisor is a subvariety of dimension n−1, which looks locally like a union of coordinate

hyperplanes.) Further let ω be an algebraic differential form on X of degree n and ∆ a singular

n-chain on the complex manifold X(C) with boundary on the divisor D(C). We thus have a

quadruple (X ,D,ω,∆). To each quadruple we can associate a complex number period(X ,D,ω,∆)
called the period of the quadruple and given by the integral

period(X ,D,ω,∆) =
∫

∆

ω. (10.55)

It is clear that the period of the quadruple is an element of P, and that to any element p ∈ P one

can find a quadruple, such that period(X ,D,ω,∆) = p. The period map is therefore surjective.

The interesting question is whether the period map is also injective. As it stands above, the period

map is certainly not injective for trivial reasons. For example, a simple change of variables can

lead to a different quadruple, but does not change the period. One therefore considers equivalence

classes of quadruples modulo relations induced by linearity in ω and ∆, changes of variables and

Stokes’ formula. The vector space over Q of the equivalence classes of quadruples (X ,D,ω,∆) is

called the space of effective periods and denoted by P . P is an algebra. It is conjectured that the

period map from P to P is injective and therefore an isomorphism [252, 256, 257]. This would

imply that all relations between numerical periods are due to linearity, change of variables and

Stokes’ formula. Let us summarise:
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Effective period:

We consider quadruples (X ,D,ω,∆), where X is a smooth algebraic variety of di-

mension n defined over Q, D ⊂ X a divisor with normal crossings, ω an algebraic

differential form on X of degree n and ∆ a singular n-chain on the complex manifold

X(C) with boundary on the divisor D(C).
Two quadruples (X ,D,ω,∆) and (X ′,D′,ω′,∆′) are called equivalent, if

∫

∆

ω =

∫

∆′

ω′ (10.56)

and this can be derived from linearity in ω and ∆, a change of variables and Stokes’

formula.

The equivalence classes are called effective periods and the algebra of effective periods

is denoted by P . The period map

period : P → P,

(X ,D,ω,∆)→
∫

∆

ω (10.57)

maps every effective period to a numerical period.

In order to make the definition more concrete, we consider as an example the quadruple given

by X(C) =C\{0}, D = /0, ω = dz/z and ∆ the path along the unit circle in the counter-clockwise

direction. We have

period(X ,D,ω,∆) = 2πi. (10.58)

As a second example let us consider the quadruple X(C) = C, D = {1,2}, ω = dz/z and ∆ the

path from 1 to 2 along the real line. We have

period(X ,D,ω,∆) = ln(2) . (10.59)

As in the case of numerical periods it is not known whether there is a quadruple in P , whose

period is (2πi)−1. One therefore adjoins to P formally the inverse of the element whose period

is (2πi) and writes P [ 1
2πi ] for the so obtained algebra. Elements of P [ 1

2πi ] are called abstract

periods.

Abstract period:

Adjoin formally to the algebra of effective periods an element I with

period(I) =
1

2πi
. (10.60)
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The enlarged algebra is called the algebra of abstract periods and denoted by

P

[
1

2πi

]
. (10.61)

Digression. Algebraic varieties over arbitrary fields

Let F be a field and F its algebraic closure. Let F[t1, ..., tn] be the ring of polynomials over
the field F in n variables t1, . . . , tn. An element f ∈ F[t1, ..., tn] is a polynomial in t1, . . . , tn with
coefficients from F. Let A ⊂ F[t1, ..., tn] be a set of such polynomials. The corresponding affine
algebraic set is given by

V (A) = { x ∈ F
n | f (x) = 0 ∀ f ∈ A }. (10.62)

Note that one takes the algebraic closure F of F.
Let’s now specialise to the case where F is a subfield of C. The most important example is

given by F=Q (the rational numbers). The algebraic closure is F=Q (the algebraic numbers).
Let A⊂Q[t1, ..., tn] and denote

X = { x ∈Q
n | f (x) = 0 ∀ f ∈ A }. (10.63)

By X(C) we understand the affine algebraic set

X (C) = { x ∈ Cn | f (x) = 0 ∀ f ∈ A }. (10.64)

To see the difference between X and X(C) consider A = {t2
1 + t2

2 −25}. The point

(x1,x2) =
(

π,
√

25−π2
)

(10.65)

is a point of X(C), but not of X (the coordinates of any point of X are algebraic numbers). We
may equip X(C) with the topology induced from the standard topology on Cn. (This means in
particular that we are not using the Zariski topology, which is otherwise widely used in algebraic
geometry.) The set X(C) together with this topology becomes than a topological space, usually
denoted by X an and called the analytification of X.



Chapter 11

Hopf algebras, coactions and symbols

In this chapter we investigate more formal aspects of Feynman integrals. We first introduce Hopf

algebras and discuss where they appear in particle physics. We then focus on multiple poly-

logarithms. There are three Hopf algebras (with different coproducts) associated with multiple

polylogarithms. The first two are combinatorial in nature and stem from the shuffle algebra and

the quasi-shuffle algebra, respectively. The third one is motivic. We introduce motivic multiple

polylogarithms (sounds complicated, but in the end it boils down to the fact that we introduce

objects, which have all the known relations of multiple polylogarithms and no other relations).

We also introduce the de Rham multiple polylogarithms. The de Rham multiple polylogarithm

form a Hopf algebra. This Hopf algebra coacts on the motivic multiple polylogarithms, turning

the motivic multiple polylogarithms into a comodule. We then study the symbol and the iterated

coaction of multiple polylogarithms. There is a practical application: The symbol (or the iterated

coaction) can be used to simplify long expressions of multiple polylogarithms.

Multiple polylogarithms are in general multi-valued functions. In the last section of this

chapter we will study a systematic method to associate a single-valued function to a multiple

polylogarithm.

Textbooks and lecture notes on Hopf algebras can be found in [258–262].

11.1 Hopf algebras

Let us start with a brief history of Hopf algebras: Hopf algebras were introduced in mathe-

matics in 1941 to describe similar aspects of groups and algebras in a unified manner [263].

An article by Woronowicz in 1987 [264], which provided explicit examples of non-trivial (non-

cocommutative) Hopf algebras, triggered the interest of the physics community. This led to

applications of Hopf algebras in the field of integrable systems and quantum groups. In physics,

Hopf algebras received a further boost in 1998, when Kreimer and Connes re-examined the

renormalisation of quantum field theories and showed that the combinatorial aspects of renor-

malisation can be described by a Hopf algebra structure [265, 266]. Since then, Hopf algebras

have appeared in several facets of physics.

Let us now consider the definition of a Hopf algebra. Let R be a commutative ring with unit

353
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1. An unitial associative algebra over the ring R is an R-module together with an associative

multiplication · and a unit e. In this chapter we will always assume that the algebra has a unit

and that the multiplication is associative. In this chapter we simply write “algebra” whenever

we mean a unitial associative algebra. In physics, the ring R will almost always be a field F
(examples are the rational numbers Q, the real numbers R, or the complex number C). In this

case the R-module will actually be a F-vector space. Note that the unit e can be viewed as a

map from R to A and that the multiplication · can be viewed as a map from the tensor product

A⊗A to A (e.g., one takes two elements from A, multiplies them, and obtains one element as the

outcome):

Multiplication: · : A⊗A→ A,

Unit: e : R→ A. (11.1)

Instead of multiplication and a unit, a coalgebra has the dual structures, obtained by reversing

the arrows in eq. (11.1): a comultiplication ∆ and a counit ē. The counit ē is a map from A to R,

whereas the comultiplication ∆ is a map from A to A⊗A:

Comultiplication: ∆ : A→ A⊗A,

Counit: ē : A→ R. (11.2)

We will always assume that the comultiplication ∆ is coassociative. But what does coassocia-

tivity mean? We can easily derive it from associativity as follows: For a,b,c ∈ A associativity

requires

(a ·b) · c = a · (b · c) . (11.3)

We can re-write condition (11.3) in the form of a commutative diagram:

A⊗A⊗A
id⊗·−−−→ A⊗Ay·⊗id

y·

A⊗A
·−−−→ A

(11.4)

We obtain the condition for coassociativity by reversing all arrows and by exchanging multipli-

cation with comultiplication. We thus obtain the following commutative diagram:

A
∆−−−→ A⊗Ay∆

y∆⊗id

A⊗A
id⊗∆−−−→ A⊗A⊗A

(11.5)

The general form of the coproduct is

∆(a) = ∑
i

a(1)i ⊗a(2)i , (11.6)
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where a(1)i denotes an element of A appearing in the first slot of A⊗A and a(2)i correspondingly

denotes an element of A appearing in the second slot. Sweedler’s notation [258] consists of

omitting the dummy index i and the summation symbol:

∆(a) = a(1)⊗a(2) (11.7)

The sum is implicitly understood. This is similar to Einstein’s summation convention, except

that the dummy summation index i is also dropped. The superscripts (1) and (2) indicate that a

sum is involved. Using Sweedler’s notation, coassociativity is equivalent to

a(1)(1)⊗a(1)(2)⊗a(2) = a(1)⊗a(2)(1)⊗a(2)(2). (11.8)

As it is irrelevant whether we apply the second coproduct to the first or the second factor in the

tensor product of ∆(a) , we can simply write

∆2 (a) = a(1)⊗a(2)⊗a(3). (11.9)

If the coproduct of an element a ∈ A is of the form

∆(a) = a⊗a, (11.10)

then a is referred to as a group-like element. If the coproduct of a is of the form

∆(a) = a⊗ e+ e⊗a, (11.11)

then a is referred to as a primitive element.

In an algebra we have for the unit 1 of the underlying ring R and the unit e of the algebra the

relation

a = 1 ·a = e ·a = a (11.12)

for any element a ∈ A (together with the analogue relation a = a · 1 = a · e = a). In terms of

commutative diagrams this is expressed as

A⊗A A⊗A

e⊗id

x
y·

R⊗A
∼= A

A⊗A A⊗A

id⊗e

x
y·

A⊗R
∼= A

(11.13)

In a coalgebra we have the dual relations obtained from eq. (11.13) by reversing all arrows and

by exchanging multiplication with comultiplication as well as by exchanging the unit e with the

counit ē:

A⊗A A⊗A

ē⊗id

y
x∆

R⊗A
∼= A

A⊗A A⊗A

id⊗ē

y
x∆

A⊗R
∼= A

(11.14)
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A bi-algebra is an algebra and a coalgebra at the same time, such that the two structures

are compatible with each other. In terms of commutative diagrams, the compatibility condition

between the product and the coproduct is expressed as

A⊗A
·−−−→ A

∆−−−→ A⊗Ay∆⊗∆

x·⊗·

A⊗A⊗A⊗A
id⊗τ⊗id−−−−→ A⊗A⊗A⊗A

(11.15)

where τ : A⊗A→A⊗A is the map, which exchanges the entries in the two slots: τ(a⊗b)= b⊗a.

Using Sweedler’s notation, the compatibility between the multiplication and comultiplication is

expressed as

∆(a ·b) =
(

a(1) ·b(1)
)
⊗
(

a(2) ·b(2)
)
. (11.16)

It is common practice to write the right-hand side of eq. (11.16) as

(
a(1) ·b(1)

)
⊗
(

a(2) ·b(2)
)

= ∆(a)∆(b) . (11.17)

In addition, there is a compatibility condition between the unit and the coproduct

R⊗R∼= R
e−−−→ A

e⊗e

y
y∆

A⊗A A⊗A

(11.18)

as well as a compatibility condition between the counit and the product, which is dual to eq. (11.18):

A
ē−−−→ R∼= R⊗R

·
x

xē⊗ē

A⊗A A⊗A

(11.19)

The commutative diagrams in eq. (11.18) and eq. (11.19) are equivalent to

∆e = e⊗ e, and ē (a ·b) = ē(a) ē(b) , respectively. (11.20)

An algebra A is commutative if for all a,b ∈ A one has

a ·b = b ·a. (11.21)

A coalgebra A is cocommutative if for all a ∈ A one has

a(1)⊗a(2) = a(2)⊗a(1). (11.22)
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With the help of the swap map τ we may express commutativity and cocommutativity equiva-

lently as

·τ = ·, and τ∆ = ∆, respectively. (11.23)

A Hopf algebra is a bi-algebra with an additional map from A to A, known as the antipode S,

which fulfils

A
ē−−−→ R

e−−−→ Ay∆

x·

A⊗A
id⊗S−−−→
S⊗id

A⊗A

(11.24)

An equivalent formulation is

a(1) ·S
(

a(2)
)

= S
(

a(1)
)
·a(2) = e · ē(a). (11.25)

If a bi-algebra has an antipode (satisfying the commutative diagram (11.24) or eq. (11.25)), then

the antipode is unique.

If a Hopf algebra A is either commutative or cocommutative, then

S2 = id. (11.26)

A bi-algebra A is graded, if it has a decomposition

A =
⊕
n≥0

An, (11.27)

with

An ·Am ⊆ An+m, ∆(An)⊆
⊕

k+l=n

Ak⊗Al. (11.28)

Elements in An are said to have degree n. The bi-algebra is graded connected, if in addition one

has

A0 = R · e. (11.29)

It is useful to know that a graded connected bi-algebra is automatically a Hopf algebra [267]. In

a graded Hopf algebra we denote by ∆i1,...,ik(a) the projection of ∆n(a) (where n = i1 + · · ·+ ik)

onto

Ai1⊗·· ·⊗Aik , (11.30)

i.e. we only keep those terms which have degree i j in the the j-th slot.
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Let A be a graded connected Hopf algebra. We have

Ker(ē) =
⊕
n≥1

An, (11.31)

e.g ē(a) = 0 if a ∈ An with n≥ 1. For the coproduct one often writes for a ∈ An with n≥ 1

∆(a) = a⊗ e+ e⊗a+ ∆̃(a) . (11.32)

∆̃ is called the reduced coproduct. We have

∆̃(a) ∈
⊕

k+l=n
k,l>0

Ak⊗Al (11.33)

For a graded connected Hopf algebra A the antipode is recursively determined by S(e) = e and

S (a) = −a − ·(S⊗ id) ∆̃(a) (11.34)

for a ∈ An with n ≥ 1. In the second term on the right-hand side of eq. (11.34) we first apply

the reduced coproduct and apply the antipode to the first tensor slot, while the second is left as

it is. By the definition of the reduced coproduct, the weight of the entry in the first tensor slot

(as well as the weight in the second tensor slot) is less than the original weight of a, therefore

the recursion terminates. At the end we multiply the two entries in the two tensor slots together,

indicated by the little multiplication sign “·” just in front of (S⊗ id).
Let us elaborate on the antipode. Let C be a coalgebra over the ring R and A an algebra over

the ring R. Both are R-modules. Let us denote by Hom(C,A) the set of linear maps from C to A,

i.e. for ϕ ∈ Hom(C,A) we have

ϕ(λ1a1 +λ2a2) = λ1ϕ(a1)+λ2ϕ(a2) , λ1,λ2 ∈ R, a1,a2 ∈ C. (11.35)

As C is a coalgebra and A an algebra we may define a product in Hom(C,A) as follows: For

ϕ1,ϕ2 ∈ Hom(C,A) we set

ϕ1 ∗ϕ2 = · (ϕ1⊗ϕ2)∆. (11.36)

This product is called the convolution product. ∆ denotes the coproduct in C, the multiplication

in A is denoted by “·”. The convolution product is associative.

Exercise 89: Show that the convolution product is associative:

(ϕ1 ∗ϕ2)∗ϕ3 = ϕ1 ∗ (ϕ2 ∗ϕ3) . (11.37)

The convolution product has a neutral element, given by eē, where e denotes the unit in A and ē
the counit in C.
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Exercise 90: Show that 1Hom = eē ∈ Hom(C,A) is a neutral element for the convolution product, i.e.

ϕ∗1Hom = 1Hom ∗ϕ = ϕ. (11.38)

Let H be a Hopf algebra and let us specialise to the case C = H. In particular we now have

a product in H. We therefore restrict our attention to algebra homomorphisms AlgHom(H,A)
from H to A which preserve the unit, e.g. in additon to eq. (11.35) we require

ϕ(a1 ·a2) = ϕ(a1) ·ϕ(a2) , a1,a2 ∈ H,

ϕ(eH) = eA, (11.39)

where eH denotes the unit in H and eA denotes the unit in A. As before 1AlgHom = eAēH ∈
AlgHom(H,A) is a neutral element for the convolution product. We may now ask, given ϕ ∈
AlgHom(H,A) is there an inverse element ϕ−1 ∈ AlgHom(H,A), such that

ϕ∗ϕ−1 = ϕ−1 ∗ϕ = 1AlgHom. (11.40)

There is, and the inverse element is given by

ϕ−1 = ϕS, (11.41)

where S denotes the antipode in H.

Exercise 91: Show that ϕ−1 = ϕS is an inverse element to ϕ ∈ AlgHom(H,A).

The exercises 89, 90 and 91 show that the unit-preserving algebra homomorphisms AlgHom(H,A)
form a group with the convolution product. If A is in addition commutative, we call a unit-

preserving algebra homomorphism ϕ ∈ AlgHom(H,C) a character of the Hopf algebra H.

Now let us specialise even further: We take A = C = H and consider AlgHom(H,H). The

neutral element with respect to the convolution product is as before

1AlgHom = eē ∈ AlgHom(H,H), (11.42)

where e denotes the unit in H and ē denotes the counit in H. Let us now consider the identity

map id ∈ AlgHom(H,H),

id(a) = a, ∀ a ∈ H. (11.43)

Please don’t confuse the maps 1AlgHom and id, they are different. This is most easily seen for a

graded connected Hopf algebra. Let a ∈ An and n≥ 1. Then (see eq. (11.31))

1AlgHom (a) = eē(a) = 0,

id(a) = a. (11.44)

The inverse element of the identity map id with respect to the covolution product is given by the

antipode

id−1 = S. (11.45)

Let us now consider a few examples of Hopf algebras.
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Example 1: The group algebra

Let F be a field and let G be a group. We denote by F[G] the vector space with basis G over the

field F. Then F[G] is an algebra with the multiplication given by the group multiplication. The

counit, the coproduct, and the antipode are defined for the basis elements g ∈ G as follows: The

counit ē is given by:

ē(g) = 1. (11.46)

The coproduct ∆ is given by:

∆(g) = g⊗g. (11.47)

Thus, the basis elements g ∈ G are goup-like elements in F[G]. The antipode S is given by:

S (g) = g−1. (11.48)

Having defined the counit, the coproduct, and the antipode for the basis elements g ∈ G, the

corresponding definitions for arbitrary vectors in F[G] are obtained by linear extension. F[G] is

a cocommutative Hopf algebra. F[G] is commutative if G is commutative.

Example 2: Lie algebras

A Lie algebra g is not necessarily associative nor does it have a unit. To overcome this obstacle

one considers the universal enveloping algebra U(g), obtained from the tensor algebra T (g) by

factoring out the ideal generated by

X⊗Y −Y ⊗X − [X ,Y ] , (11.49)

with X ,Y ∈ g. The universal enveloping algebra U(g) is a Hopf algebra. The counit ē is given

by:

ē(e) = 1, ē(X) = 0. (11.50)

The coproduct ∆ is given by:

∆(e) = e⊗ e, ∆(X) = X⊗ e+ e⊗X . (11.51)

Thus, the elements X ∈ g are primitive elements in U(g). The antipode S is given by:

S(e) = e, S(X) =−X . (11.52)

U(g) is a non-commutative cocommutative Hopf algebra.
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Example 3: Quantum SU(2)

The Lie algebra su(2) is generated by three generators H, X± with

[H,X±] =±2X±, [X+,X−] = H. (11.53)

To obtain the deformed universal enveloping algebra Uq(su(2)), the last relation is replaced with

[260, 268]

[X+,X−] =
qH−q−H

q−q−1
, (11.54)

where q is the deformation parameter. The undeformed Lie algebra su(2) is recovered in the

limit q→ 1. The counit ē is given by:

ē(e) = 1, ē(H) = ē(X±) = 0. (11.55)

The coproduct ∆ is given by:

∆(H) = H⊗ e+ e⊗H,

∆(X±) = X±⊗qH/2 +q−H/2⊗X±. (11.56)

The antipode S is given by:

S(H) =−H, S(X±) =−q±1X±. (11.57)

Uq(su(2)) is a non-commutative non-cocommutative Hopf algebra.

Example 4: Symmetric algebras

Let V be a finite dimensional vector space with basis {vi}. The symmetric algebra Sym(V ) is the

direct sum

Sym(V ) =
∞⊕

n=0

Symn(V ), (11.58)

where Symn(V ) is spanned by elements of the form vi1vi2 . . .vin with i1 ≤ i2 ≤ ·· · ≤ in. The

multiplication is defined by

(vi1vi2 . . .vim) ·
(
vim+1

vim+2
. . .vim+n

)
= viσ(1)viσ(2) . . .viσ(m+n)

, (11.59)

where σ is a permutation on m+n elements such that iσ(1) ≤ iσ(2) ≤ ·· · ≤ iσ(m+n). The counit ē
is given by:

ē (e) = 1, ē(v1v2 . . .vn) = 0. (11.60)
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The coproduct ∆ is given for the basis elements vi by:

∆(vi) = vi⊗ e+ e⊗ vi. (11.61)

Using (11.16) one obtains for a general element of Sym(V )

∆(v1v2 . . .vn) = v1v2 . . .vn⊗ e+ e⊗ v1v2 . . .vn

+
n−1

∑
j=1

∑
σ

vσ(1) . . .vσ( j)⊗ vσ( j+1) . . .vσ(n), (11.62)

where σ runs over all ( j,n− j)-shuffles. A ( j,n− j)-shuffle is a permutation σ of (1, . . . ,n) such

that

σ(1)< σ(2)< · · ·< σ( j) and σ( j+1)< σ( j+2)< · · ·< σ(n).

The antipode S is given by:

S(vi1vi2 . . .vin) = (−1)nvi1vi2 . . .vin . (11.63)

The symmetric algebra Sym(V ) is a commutative cocommutative Hopf algebra.

Example 5: Shuffle algebras

Recall the definition of a shuffle algebra from section 8.3 (where we denoted the multiplication

with the symbol “�” instead of “·”): Consider a set of letters A. The set A is known as the

alphabet. A word is an ordered sequence of letters:

w = l1l2 . . . lk, (11.64)

where l1, . . . , lk ∈ A. The word of length zero is denoted by e. The shuffle algebra A on the vector

space spanned by words is defined by

(l1l2 . . . lk)� (lk+1 . . . lr) = ∑
shuffles σ

lσ(1)lσ(2) . . . lσ(r), (11.65)

where the sum runs over all permutations σ, which preserve the relative order of 1,2, . . . ,k and

of k+1, . . . ,r. The empty word e is the unit in this algebra:

e�w = w� e = w. (11.66)

The shuffle algebra is a (non-cocommutative) Hopf algebra [195]. The counit ē is given by:

ē(e) = 1, ē(l1l2 . . . ln) = 0. (11.67)

The coproduct ∆ is given by:

∆(l1l2 . . . lk) =
k

∑
j=0

(
l j+1 . . . lk

)
⊗
(
l1 . . . l j

)
. (11.68)
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This particular coproduct is also known as the deconcatenation coproduct. The antipode S is

given by:

S (l1l2 . . . lk) = (−1)k lklk−1 . . . l2l1. (11.69)

The shuffle multiplication is commutative, therefore the antipode satisfies

S2 = id. (11.70)

From eq. (11.69) this is evident.

To summarise, the shuffle algebra A is a commutative non-cocommutative Hopf algebra.

Example 6: Quasi-shuffle algebras

In section 8.4 we discussed quasi-shuffle algebras Aq with the quasi-shuffle product �q. They

are similar to shuffle algebras. For a quasi-shuffle algebra we consider as for a shuffle algebra

the vector space spanned by words, but now equipped with the quasi-shuffle product instead of

the shuffle product. The quasi-shuffle product differs from the normal shuffle product only by

terms of lower depth. Quasi-shuffle algebras are Hopf algebras [196].

Comultiplication and counit are defined as for the shuffle algebras. The counit ē is given by:

ē(e) = 1, ē(l1l2 . . . ln) = 0. (11.71)

The coproduct ∆ is given by:

∆(l1l2 . . . lk) =
k

∑
j=0

(
l j+1 . . . lk

)
⊗
(
l1 . . . l j

)
. (11.72)

The antipode S is recursively defined through

S (l1l2 . . . lk) = −l1l2 . . . lk−
k−1

∑
j=1

S
(
l j+1 . . . lk

)
�q
(
l1 . . . l j

)
, S(e) = e. (11.73)

The quasi-shuffle product is commutative, therefore the antipode satisfies

S2 = id. (11.74)

A quasi-shuffle algebra Aq is a commutative non-cocommutative Hopf algebra.

Example 7: Rooted trees

A rooted tree is a tree where one vertex is marked as the root. It is common practice in mathe-

matics to draw the root at the top. (Admittedly, this is a little bit counter-intuitive as a real tree in

nature has its root below.) An individual rooted tree is shown in figure (11.1). We consider the

algebra generated by rooted trees. Elements of this algebra are sets of rooted trees, convention-

ally known as forests. The product of two forests is simply the disjoint union of all trees from the
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x0

x1 x2

x3 x4

Figure 11.1: Illustration of a rooted tree. The root is drawn at the top and is labeled x0.

two forests. The empty forest, consisting of no trees, will be denoted by e. Before we are able to

define a coproduct, we first need the definition of an admissible cut. A single cut is a cut of an

edge. An admissible cut of a rooted tree is any assignment of single cuts such that any path from

any vertex of the tree to the root has at most one single cut. An admissible cut C maps a tree t
to a monomial in trees t1 · · · · · tn+1. Precisely one of these sub-trees t j will contain the root of t.
We denote this distinguished tree by RC(t), and the monomial consisting of the n other factors

by PC(t). The counit ē is given by:

ē(e) = 1, ē (t1 · · · · · tk) = 0 for k ≥ 1. (11.75)

The coproduct ∆ is given by (t denotes a non-empty tree):

∆(e) = e⊗ e,

∆(t) = t⊗ e+ e⊗ t + ∑
adm.cuts Cof t

PC(t)⊗RC(t),

∆(t1 · · · · · tk) = ∆(t1) . . . ∆(tk) . (11.76)

The antipode S is given by:

S(e) = e,

S(t) = −t− ∑
adm.cuts C of t

S
(

PC(t)
)
·RC(t),

S (t1 · · · · · tk) = S (t1) · · · · ·S (tk) . (11.77)

The algebra of rooted trees is a commutative non-cocommutative Hopf algebra.

Exercise 92: Which rooted trees are primitive elements in the Hopf algebra of rooted trees?

It is possible to classify the examples discussed above into four groups according to whether

they are commutative or cocommutative:

• Commutative and cocommutative: Examples are the group algebra of a commutative group

or the symmetric algebras.

• Non-commutative and cocommutative: Examples are the group algebra of a non-commu-

tative group or the universal enveloping algebra of a Lie algebra.
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−→

Figure 11.2: A three-loop two-point function with an overall ultraviolet divergence and two sub-

divergences. We find the corresponding rooted tree by first drawing boxes around all ultraviolet-

divergent sub-graphs. The rooted tree is obtained from the nested structure of these boxes.

• Commutative and non-cocommutative: Examples are the shuffle algebra, the quasi-shuffle

algebra or the algebra of rooted trees.

• Non-commutative and non-cocommutative: Examples are given by quantum groups.

Let us now turn to a few applications of Hopf algebras in perturbative quantum field theory.

11.1.1 Renormalisation

We start with revisiting the renormalisation of ultraviolet divergences in quantum field theory (see

section 4.2). A Feynman integral may have ultraviolet (or short-distance) singularities. These

divergences are removed by renormalisation [269]. The combinatorics involved in the renormal-

isation are governed by a Hopf algebra [265,266]. The relevant Hopf algebra is the Hopf algebra

of decorated rooted trees. We discussed the Hopf algebra of rooted trees in example 7 above.

The relation between a Feynman integral and a rooted tree is as follows: A Feynman integral

may have nested ultraviolet divergences, i.e. the associated Feynman graph may contain sub-

graphs, which correspond to ultraviolet sub-integrals. The associated rooted tree of a Feynman

graph (or of a Feynman integral) encodes the nested structure of the sub-divergences. This is

best explained by an example. Fig. (11.2) shows a three-loop two-point function. This Feyn-

man integral has an overall ultraviolet divergence and two sub-divergences, corresponding to the

two fermion self-energy corrections. We obtain the corresponding rooted tree by drawing boxes

around all ultraviolet-divergent sub-graphs. The rooted tree is obtained from the nested structure

of these boxes. Graphs with overlapping singularities correspond to a sum of rooted trees. This

is illustrated for a two-loop example with an overlapping singularity in fig. (11.3).

Given a Feynman graph G we may associate to G a rooted tree t as above. In addition, we may

associate to each vertex of the rooted tree additional information: The sub-graph it corresponds

to, as well as the momenta q j, masses m j and powers ν j associated with the edges of the sub-

graph. This ensures that no information is lost in passing from the Feynman graph G to the rooted
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−→ +

Figure 11.3: Example with overlapping singularities. This graph corresponds to a sum of rooted

trees

tree t and we may recover G from t. A rooted tree with this additional information is called a

decorated rooted tree. The decorations do not spoil the Hopf algebra structure. We denote the

Hopf algebra of decorated rooted trees by H. Furthermore we denote by A the (commutative)

algebra of Laurent series in the dimensional regularisation parameter ε. The Feynman integral

I(t) assigns any decorated rooted tree t ∈ H a Laurent series. The map

I : H→ A (11.78)

is a character of the Hopf algebra H with values in A.

We recall that the counit applied to any non-trivial rooted tree t 6= e yields zero:

ē(t) = 0, t 6= e. (11.79)

If we combine this with the unit e in A we have

eē(t) = 0, t 6= e. (11.80)

From the discussion of the convolution product we know that eē ∈ AlgHom(H,A) is the neutral

element in AlgHom(H,A) and that the inverse of I : H→ A is given by I−1 = IS. Thus we may

write eq. (11.80) as

(
I−1 ∗ I

)
(t) = 0, t 6= e. (11.81)

Eq. (11.81) can also be writtend as

I−1
(

t(1)
)
· I
(

t(2)
)

= 0, t 6= e, (11.82)

where we used Sweedler’s notation. Eq. (11.81) will be our starting point. However, rather than

obtaining zero on the right-hand side, we are interested in a finite quantity. To keep the discussion

simple, we only consider Feynman integrals which have ultraviolet but no infrared divergences.
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For example, this can be achieved by regulating all infrared divergences with a small non-zero

mass.

In addition we introduce a map

R : A→ A (11.83)

which does not alter the divergence structure and which satisfies the Rota-Baxter relation [270]:

R(a1a2)+R(a1)R(a2) = R(a1R(a2))+R(R(a1)a2) . (11.84)

The map R defines a renormalisation scheme. An example is given by modified minimal sub-

traction scheme (MS). With the conventions of this book, the MS-scheme is defined by

R

(
∞

∑
k=−L

ckεk

)
=

−1

∑
k=−L

ckεk. (11.85)

You may wonder, why there are no terms like ln(4π)− γE in eq. (11.85): We eliminated these

terms from the very start by an appropriate choice of the integration measure in eq. (2.56). This

motivates a posteriori the choice of the prefactors elεγE and π−
D
2 in eq. (2.56).

Exercise 93: Show that the map R in eq. (11.85) fulfills the Rota-Baxter equation (11.84).

The notation with the letter R for the map in eq. (11.83) stems from Bogoliubov’s R-operation

[271]. One can now twist the map I−1 = IS with R and define a new map I−1
R recursively by

I−1
R (t) = −R

(
I (t)+ ∑

adm.cuts C of t

I−1
R

(
PC(t)

)
· I
(

RC(t)
))

. (11.86)

From the multiplicativity constraint (11.84) it follows that

I−1
R (t1t2) = I−1

R (t1) I−1
R (t2) . (11.87)

If we replace I−1 by I−1
R in (11.82) we no longer obtain zero on the right-hand side, but one may

show that

I−1
R

(
t(1)
)

I
(

t(2)
)

= finite, t 6= e. (11.88)

This corresponds to the renormalised value of the Feynman integral. Eq. (11.88) is equivalent

to the forest formula [269]. It should be noted that R is not unique and different choices for R
correspond to different renormalisation schemes. There is certainly more that could be said on the

Hopf algebra of renormalisation and we refer the reader to the original literature [266,272–278].
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11.1.2 Wick’s theorem

Let us consider bosonic field operators, which we denote by φi = φ(xi). Wick’s theorem relates

the time-ordered product of n bosonic field operators to the normal product of these operators

and contractions. As an example one has

T (φ1φ2φ3φ4) = : φ1φ2φ3φ4 :+(φ1,φ2) : φ3φ4 :

+(φ1,φ3) : φ2φ4 :+(φ1,φ4) : φ2φ3 :+(φ2,φ3) : φ1φ4 :

+(φ2,φ4) : φ1φ3 :+(φ3,φ4) : φ1φ2 :+(φ1,φ2)(φ3,φ4)

+(φ1,φ3)(φ2,φ4)+(φ1,φ4)(φ2,φ3) , (11.89)

where we used the notation

(
φi,φ j

)
=

〈
0
∣∣T
(
φiφ j

)∣∣0
〉

(11.90)

to denote the contraction. One can use Wick’s theorem to define the time-ordered product in

terms of the normal product and the contraction. To establish the connection with Hopf algebras,

let V be the vector space with basis {φi} and identify the normal product with the symmetric

product introduced in example 4 above [279, 280]. This yields the symmetric algebra S(V ). The

contraction defines a bilinear form V ⊗V →C. One extends this pairing to S(V ) by

(: N1N2 :,M1) =
(

N1,M
(1)
1

)(
N2,M

(2)
1

)
,

(N1, : M1M2 :) =
(

N(1)
1 ,M1

)(
N(2)

1 ,M2

)
. (11.91)

Here, N1, N2, M1 and M2 are arbitrary normal products of the φi. With the help of this pairing

one defines a new product, called the circle product, as follows:

N ◦M =
(

N(1),M(1)
)

: N(2)M(2) : (11.92)

Again, N and M are normal products. Figure 11.4 shows pictorially the definition of the circle

product involving the coproduct, the pairing (..., ...) and the multiplication. It can be shown that

the circle product is associative. Furthermore, one obtains that the circle product coincides with

the time-ordered product. For example,

φ1 ◦φ2 ◦φ3 ◦φ4 = T (φ1φ2φ3φ4) . (11.93)

The reader is invited to verify the left-hand side of (11.93) with the help of the definitions (11.90),

(11.91) and (11.92).

11.1.3 Multiple polylogarithms

Let us now turn to multiple polylogarithms. In chapter 8 we introduced the shuffle algebra and

the quasi-shuffle algebra related to the multiple polylogarithms. In the examples in section 11.1
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∆ ∆

·

(..., ...)

Figure 11.4: The “sausage tangle”: pictorial representation of the definition of the circle product.

we saw that a shuffle algebra and a quasi-shuffle algebra are Hopf algebras. We therefore have

two Hopf algebras associated with the multiple polylogarithms, one associated with the shuffle

product and the integral representation, the other one with the quasi-shuffle product and the sum

representation.

Let us start with the shuffle algebra. Consider an alphabet A = {z1,z2, . . .} and denote by A
the shuffle algebra of words in this alphabet. From example 5 in section 11.1 we know that A is

a Hopf algebra. For fixed y we may view a multiple polylogarithm G(z1, . . . ,zr;y) as a map

G : A → C,

w→G(z1, . . . ,zr;y) , for w = z1 . . .zr. (11.94)

This map is a character of the Hopf algebra A . In particular it is an algebra homomorphism (see

eq. (8.53)) and we have

G(w1�w2) = G(w1) ·G(w2) . (11.95)

The empty word e is the unit in the shuffle algebra A and mapped to 1 in C:

G(e) = G(;y) = 1. (11.96)

Let us now see what the antipode gives us: We start (without any reference to Hopf algebras)

with integration-by-parts identities for the multiple polylogarithms G(z1, . . . ,zr;y). The starting
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point is as follows:

G(z1, . . . ,zk;y) =

y∫

0

dt

(
∂

∂t
G(z1; t)

)
G(z2, . . . ,zk;y)

= G(z1;y)G(z2, . . . ,zk;y)−
y∫

0

dt G(z1; t)g(z2; t)G(z3, . . . ,zk;y)

= G(z1;y)G(z2, . . . ,zk;y)−
y∫

0

dt

(
∂

∂t
G(z2,z1; t)

)
G(z3, . . . ,zk;y). (11.97)

Repeating this procedure one arrives at the following integration-by-parts identity:

G(z1, . . . ,zk;y)+(−1)kG(zk, . . . ,z1;y) = G(z1;y)G(z2, . . . ,zk;y)−G(z2,z1;y)G(z3, . . . ,zk;y)

+ · · ·− (−1)k−1G(zk−1, . . . ,z1;y)G(zk;y), (11.98)

which relates the combination G(z1, . . . ,zk;y) + (−1)kG(zk, . . . ,z1;y) to G-functions of lower

depth. This relation is useful in simplifying expressions. Eq. (11.98) can also be derived in

a different way. In the shuffle algebra A we have for any non-trivial element w the following

relation involving the antipode:

S
(

w(1)
)
�w(2) = 0. (11.99)

Here Sweedler’s notation has been used. Composing eq. (11.99) with the map G : A → C of

eq. (11.94) we obtain

G
(

S
(

w(1)
)
�w(2)

)
= 0. (11.100)

Working out the relation (11.100) for the shuffle algebra of the functions G(z1, . . . , zk;y), we

recover (11.98).

Let us now turn to the quasi-shuffle algebra. We denote letters by l j = (m j,z j) and consider

an alphabet A = {l1, l2, . . .}. We denote by Aq the quasi-shuffle algebra of words in this alphabet

as in section 8.4. From example 6 in section 11.1 we know that Aq is a Hopf algebra. We may

view a multiple polylogarithm Lim1...mk(x1, . . . ,xk) as a map

Li : Aq → C,

w→ Lim1...mk (x1, . . . ,xk) , for w = l1 . . . lk and l j = (m j,x j). (11.101)

We may be a little bit more general, fix an integer n ∈ N and consider Z-sums as in section 9.1.

For fixed n we consider the map

Z : Aq → C,

w→ Zm1...mk (x1, . . . ,xk;n) , for w = l1 . . . lk and l j = (m j,x j). (11.102)
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The maps in eq. (11.101) and eq. (11.102) are characters of the Hopf algebra Aq. We may view

eq. (11.101) as the special case n = ∞ of eq. (11.102). Eq. (11.101) and eq. (11.102) are algebra

homomorphisms, therefore

Li
(
w1�q w2

)
= Li(w1) ·Li(w2) ,

Z
(
w1�q w2

)
= Z (w1) ·Z (w2) . (11.103)

The empty word e is the unit in the quasi-shuffle algebra Aq and mapped to 1 in C:

Li(e) = Li() = 1,

Z (e) = Z (;n) = 1. (11.104)

We may now proceed and check if the antipode provides also a non-trivial relation for the quasi-

shuffle algebra of Z-sums. This requires first some notation: A composition of a positive integer

k is a sequence I = (i1, . . . , il) of positive integers such that i1 + · · ·+ il = k. The set of all

composition of k is denoted by C (k). Compositions act on words w = l1 . . . lk in Aq as

(i1, . . . , il)◦ (l1l2 . . . lk) = l′1l′2 . . . l
′
l, (11.105)

with

l′1 = l1 ◦ · · · ◦ li1, l′2 = li1+1 ◦ · · · ◦ li1+i2, . . . l′l = li1+···+il−1+1 ◦ · · · ◦ li1+···+il , (11.106)

where ◦ in eq. (11.106) denotes the operation defined in eq. (8.64). Thus the first i1 letters of the

word are combined into one new letter l′1, the next i2 letters are combined into the second new

letter l′2, etc.. To give an example let l1 = (m1,x1), l2 = (m2,x2), l3 = (m3,x3), w = l1l2l3 and

I = (2,1). Then

I ◦w = l′1l′2,

l′1 = (m1 +m2,x1 · x2), l′2 = (m3,x3). (11.107)

With this notation for compositions one obtains the following closed formula for the antipode in

the quasi-shuffle algebra [196]:

S (l1l2 . . . lk) = (−1)k ∑
I∈C (k)

I ◦ (lk . . . l2l1) . (11.108)

The analogue of eq. (11.100) reads for w 6= e

Z
(

S
(

w(1)
)
�q w(2)

)
= 0. (11.109)

Written more explicitly we have

Z (l1, . . . , lk)+(−1)k Z (lk, . . . , l1) =

−
k−1

∑
j=1

ZS
(
l j+1 . . . lk

)
Z
(
l1 . . . l j

)
− (−1)k ∑

I∈C (k)\(1,1,...,1)
Z (I ◦ (lk . . . l2l1)) . (11.110)
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Again, the combination Z(n;m1, . . . ,mk;x1, . . . ,xk)+(−1)kZ(n;mk, . . . ,m1;xk, . . . ,x1) reduces to

Z-sums of lower depth, similar to the integration-by-parts identity in eq. (11.98). We therefore

obtained an “integration-by-parts” identity for objects, which don’t have an integral represen-

tation. We first observed, that for the G-functions, which have an integral representation, the

integration-by-parts identites are equal to the identities obtained from the antipode. After this

abstraction towards an algebraic formulation, one can translate these relations to cases, which

only have the appropriate algebra structure, but not necessarily a concrete integral representa-

tion. As an example we have

Z(n;m1,m2,m3;x1,x2,x3)−Z(n;m3,m2,m1;x3,x2,x1) =

Z(n;m1;x1)Z(n;m2,m3;x2,x3)−Z(n;m2,m1;x2,x1)Z(n;m3;x3)

−Z(n;m1 +m2;x1x2)Z(n;m3;x3)+Z(n;m2+m3,m1;x2x3,x1)+Z(n;m3,m1 +m2;x3,x1x2)

+Z(n;m1 +m2 +m3;x1x2x3), (11.111)

which expresses the combination of the two Z-sums of depth 3 as Z-sums of lower depth. Taking

n = ∞ in the equation above we obtain a relation among multiple polylogarithms:

Lim1m2m3
(x1,x2,x3)−Lim3m2m1

(x3,x2,x1) =

Lim1
(x1)Lim2m3

(x2,x3)−Lim2m1
(x2,x1)Lim3

(x3)

−Lim1+m2
(x1x2)Lim3

(x3)+Li(m2+m3)m1
(x2x3,x1)+Lim3(m1+m2)(x3,x1x2)

+Lim1+m2+m3
(x1x2x3). (11.112)

The analog example for the shuffle algebra of the G-function reads:

G(z1,z2,z3;y)−G(z3,z2,z1;y) = G(z1;y)G(z2,z3;y)−G(z2,z1;y)G(z3;y). (11.113)

Multiple polylogarithms obey both the quasi-shuffle algebra and the shuffle algebra. Therefore

we have for multiple polylogarithms two relations, which are in general independent.

11.2 Coactions

In the previous section we saw that the shuffle algebra is a Hopf algebra and so is the quasi-shuffle

algebra. When working with multiple polylogarithms we may either use the G(z1, . . . ,zr;y) no-

tation and work with shuffle algebra or the Lim1...mk(x1, . . . ,xk) notation and work with the quasi-

shuffle algebra. Whatever our choice is, the relations coming from the other algebra are not

directly accessible. We would like to work with a structure, which contains all the relations we

know and only those. As we may view G (for fixed y) as a map from the shuffle algebra A to

C, and Li as a map from the quasi-shuffle algebra Aq to C, our first guess might be to look at

the complex numbers C. There we have all the relations we know about. But it is very hard to

prove that there are no additional relations. (That is to say that one would need to prove that

the period map is injective, this is currently a conjecture.) For this reason we construct a set

of objects, called motivic multiple polylogarithms, which have exactly the relations we know
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about and only those. We denote the set of motivic multiple polylogarithms by Pm
MPL. The set of

motivic multiple polylogarithms is not quite a Hopf algebra, but it is a comodule. In this section

we first introduce coactions and comodules and define then the motivic multiple polylogarithms.

References for this section are [187, 204, 281, 282]. Applications towards Feynman integrals are

considered in [283–285].

Let A be a unitial associative algebra over a ring R and M a left R-module. A linear map

· : A⊗M→M,

(a,v)→ a · v, (11.114)

with

e · v = v,

(a1 ·a2) · v = a1 · (a2 · v) (11.115)

defines a (left-) action of A on M (where e denotes the unit in A). This upgrades the left R-

module M to a left A-module. Please note that we use the multiplication sign “·” to denote the

multiplication in the algebra (e.g. a1 ·a2) as well as for the action of A on M (e.g. a · v).

Let C be a coalgebra. We always assume that C is coassociative and that C has a counit ē.

We are now going to define a coaction and a comodule. This isn’t too complicated, we just have

to reverse the arrows of all maps. We start from a linear map

∆ : M→C⊗M,

v→ ∆(v). (11.116)

Again, please note that we use the symbol to denote on the one hand the coproduct in C (e.g.

∆(a) for a ∈ C) as well as the new map defined in eq. (11.116) (e.g. ∆(v) for v ∈ M). This

is unambiguous, as the argument determines what operation is meant. (It’s like in C++ with

operator overloading.) We will use Sweedler’s notation to write

∆(v) = a(1)⊗ v(2), a(1) ∈ C, v,v(2) ∈ M. (11.117)

Let’s now work out the analogue relations of eq. (11.115). For the map ∆ defined in eq. (11.116)

we require

·(ē⊗ id)∆(v) = v,

(∆⊗ id)∆(v) = (id⊗∆)∆(v) . (11.118)

Exercise 94: Resolve the operator overloading: In eq. (11.118) the symbols “·”, ē and ∆ appear in
various places. Determine for each occurrence to which operation they correspond.

A linear map as in eq. (11.116) and satisfying eq. (11.118) defines a (left-) coaction of C on

M. In this case we call M a (left-) comodule.
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Let H be a Hopf algebra and M an algebra. We denote the unit in H by eH and the unit in M
by eM. M is called a H-comodule algebra if M is a (left-) H-comodule and in addition

∆(eM) = eH ⊗ eM,

∆(v1 · v2) = ∆(v1)∆(v2) , v1,v2 ∈ M. (11.119)

M is called a H-module algebra if M is a (left-) H-module and in addition

a · eM = ē (a) · eM,

a · (v1 · v2) =
(

a(1) · v1

)
·
(

a(2) · v2

)
, a ∈ H, v1,v2 ∈ M. (11.120)

Note that the definitions of a H-comodule algebra and of a H-module algebra are not dual to each

other, as M is assumed to be in both cases an algebra. For H a Hopf algebra and M a coalgebra

there are also the notions of a H-module coalgebra and of a H-comodule coalgebra. We will not

need them, but their definitions are the duals of the definitions of a H-comodule algebra and of a

H-module algebra.

Let us now discuss the application towards multiple polylogarithms. We first define for z1 6=
z0 and zr 6= zr+1

I (z0;z1,z2, . . . ,zr;zr+1) =

zr+1∫

z0

dtr
tr− zr

tr∫

z0

dtr−1

tr−1− zr−1
· · ·

t2∫

z0

dt1
t1− z1

, (11.121)

together with the convention

I (z0;z1) = 1. (11.122)

The condition z1 6= z0 ensures that there is no divergence at the lower integration boundary, the

condition zr 6= zr+1 ensures that there is no divergence at the upper integration boundary. We

then extend the definition to z1 = z0 and zr = zr+1 as follows: For z1 = z0 we use the shuffle

product to isolate all divergences in powers of I(z0;z0;z2). We then set

I (z0;z0;z2) = ln(z2− z0) . (11.123)

In a similar way we handle the case zr = zr+1: We use again the shuffle product and isolate all

divergences in powers of I(z0;z2;z2). We then set

I (z0;z2;z2) = − ln(z0− z2) . (11.124)

The two regularisation prescriptions in eq. (11.123) and eq. (11.124) are compatible with the

path decomposition formula: We have

I (z0;z1;z2) = I (z0;z1;z1)+ I (z1;z1;z2) . (11.125)



11.2. COACTIONS 375

The definition in eq. (11.121) is a slight generalisation of eq. (8.7), allowing the starting point z0

of the integration to be different from zero. We have

G(z1, . . . ,zr;y) = I (0;zr, . . . ,z1;y) , (z1 6= y, zr 6= 0) ,

I (z0;z1,z2, . . . ,zr;zr+1) = G(zr− z0, . . . ,z1− z0;zr+1− z0) . (11.126)

Let us now consider formal objects Im(z0;z1, . . . ,zr;zr+1) (the m stands for “motivic”). The set of

all those objects (modulo an equivalence relation discussed below) will be denoted by Pm
MPL. We

may think of the Im(z0;z1, . . . ,zr;zr+1)’s in the same way we think about words w = z1 . . .zr ∈ A
in the shuffle algebra in the context of multiple polylogarithms. For fixed y and z j ∈ C we have

in the latter case an evaluation map (see eq. (11.94))

G : A→C,

w→ G(z1, . . . ,zr;y) . (11.127)

In the same way we will assume that there is an evaluation map for Im(z0;z1, . . . ,zr;zr+1):

period : Pm
MPL→ C,

Im (z0;z1, . . . ,zr;zr+1)→ I (z0;z1, . . . ,zr;zr+1) , (11.128)

sending the formal object to the concrete iterated integral of eq. (11.121). The map in eq. (11.128)

will be called the period map.

Let’s now assume that all z j’s are algebraic: z j ∈Q. In this case the period map takes values

in P, the set of numerical periods (see section 10.3). We consider the Q-algebra generated by the

Im(z0;z1, . . . ,zr;zr+1)’s subject to the following relations:

1. In Pm
MPL we have any relation, which can be derived for the non-motivic multiple polylog-

arithms I(z0;z1, . . . ,zr;zr+1) using linearity, a change of variables and Stokes’ theorem.

2. Shuffle regularisation: An object Im(z0;z1, . . . ,zr;zr+1) is said to have a trailing zero, if

z1 = z0. It is said to have leading one, if zr = zr+1. Using the shuffle product, we isolate

trailing zeros in powers of Im(z0;z0;zr+1) and leading ones in powers of Im(z0;zr+1;zr+1).
We then set

Im (z0;z0;zr+1) = lnm (zr+1− z0) ,

Im (z0;zr+1;zr+1) = − lnm (z0− zr+1) . (11.129)

We call the objects Im(z0;z1, . . . ,zr;zr+1) motivic multiple polylogarithms and we denote the

algebra defined as above by Pm
MPL. In point 1 we impose relations which can be obtained from

linearity, a change of variables and Stokes’ theorem. This is completely analogue to the definition

of effective periods in section 10.4. This includes shuffle relations, i.e. for identical start and end

points we have

Im(z0;z1, . . . ,zk;zr+1) · Im(z0;zk+1, . . . ,zr;zr+1) = ∑
shuffles σ

Im(z0;zσ(1), . . . ,zσ(r);zr+1).

(11.130)
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It also includes path composition: For y ∈Q we have

Im(z0;z1, . . . ,zr;zr+1) =
r

∑
k=0

Im(z0;z1, . . . ,zk;y) · Im(y;zk+1, . . . ,zr;zr+1), (11.131)

as well as a relation for a vanishing integration cycle: For r ≥ 1 we have

Im (z0;z1, . . . ,zr;z0) = 0. (11.132)

Point 2 implies that for example for z 6= 0,1 we have

Im (0;0,0,z;1) =
1

2
[Im (0;0;1)]2 Im (0;z;1)− Im (0;0;1)Im (0;z,0;1)+ Im (0;z,0,0;1)

=
1

2
[lnm (1)]2 Im (0;z;1)− lnm (1) Im (0;z,0;1)+ Im (0;z,0,0;1)

= Im (0;z,0,0;1) . (11.133)

We now define the de Rham multiple polylogarithms. Roughly speaking, we may think of the

de Rham multiple polylogarithms as the motivic multiple polylogarithms modulo (2πi).
Let r3 =−1

2
+ i

2

√
3 be the third root of unity. The algebra Pm

MPL contains the element

Im (1;0;r3)+ Im
(
r3;0;r2

3

)
+ Im

(
r2

3;0;1
)

(11.134)

which we denote by (2πi)m. The notation stands for “the motivic lift of (2πi)” (and in particular

the super-script m stands for “motivic”, it does not denote an exponent). We have

period((2πi)m) = 2πi, (11.135)

which explains the notation. We denote by P dR
MPL the algebra obtained by factoring out the ideal

〈(2πi)m〉:

P dR
MPL = Pm

MPL/〈(2πi)m〉. (11.136)

The super-script dR stands for “de Rham”. Elements in P dR
MPL are denoted as

IdR(z0;z1, . . . ,zr;zr+1) (11.137)

and called de Rham multiple polylogarithms. Note that for de Rham multiple polylogarithms

there is no period map, as such a map would be ambiguous by terms proportional to (2πi). P dR
MPL

is a Hopf algebra [187, 286], the coproduct is given by

∆IdR (z0;z1,z2, . . . ,zr;zr+1) =
r

∑
k=0

∑
0=i0<i1<···<ik<ik+1=r+1

k

∏
p=0

IdR
(
zip;zip+1,zip+2, . . . ,zip+1−1;zip+1

)
⊗ IdR (z0;zi1,zi2, . . . ,zik ;zr+1) . (11.138)
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Figure 11.5: Left figure: We may represent Im(z0;z1,z2,z3,z4;z5) as a polygon on a half-circle.

Right figure: The term IdR(z0;z1;z2) · IdR(z3;z4;z5)⊗ Im(z0;z2,z3;z5) appearing in the coaction.

The polygon corresponding to Im(z0;z2,z3;z5) is drawn in blue, the polygons corresponding to

IdR(z0;z1;z2) and IdR(z3;z4;z5) are drawn in red.

As P dR
MPL is graded connected, the antipode is given by (see eq. (11.34)):

S
(

IdR (z0;z1)
)

= IdR (z0;z1) ,

S
(

IdR (z0;z1, . . . ,zr;zr+1)
)

= −IdR (z0;z1, . . . ,zr;zr+1)

−· (S⊗ id) ∆̃
(

IdR (z0;z1, . . . ,zr;zr+1)
)
. (11.139)

On the other hand, Pm
MPL is not a Hopf algebra, it is just a P dR

MPL-comodule. The coaction is given

by

∆Im (z0;z1,z2, . . . ,zr;zr+1) =
r

∑
k=0

∑
0=i0<i1<···<ik<ik+1=r+1

k

∏
p=0

IdR
(
zip;zip+1,zip+2, . . . ,zip+1−1;zip+1

)
⊗ Im (z0;zi1,zi2, . . . ,zik ;zr+1) . (11.140)

This formula is very similar to eq. (11.138), but note that the entry in the first slot belongs to

P dR
MPL, while the entry in the second slot belongs to Pm

MPL. There is a graphical way to rep-

resent the formula for the coproduct/coaction. We may represent IdR(z0;z1, . . . ,zr;zr+1) and

Im (z0;z1, . . . ,zr;zr+1) as polygons drawn on a half-circle as shown in the left picture in fig-

ure 11.5. The points z0 and zr+1 are drawn where the circle segment meets the line, the points

z1, . . . ,zr are drawn in that order on the circle segment, such that z1 is adjacent to z0 (and zr is

adjacent to zr+1). In order to obtain the coproduct or the coaction we consider all subsets of

{i1, . . . , ik} ∈ {1, . . . ,r} (including the empty set and the full set). The entry of the second slot

is defined by this subset and given by IdR/m(z0;zi1,zi2, . . . ,zik;zr+1). The entry in the first slot is

the product of de Rham multiple polylogarithms corresponding to the smaller polygons, which

have been omitted. This is shown in the right picture of figure 11.5 for one specific term obtained
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from the coaction on Im(z0;z1,z2,z3,z4;z5). The full formula reads

∆Im(z0;z1,z2,z3,z4;z5) = 1⊗ Im(z0;z1,z2,z3,z4;z5)+ IdR(z0;z1;z2)⊗ Im(z0;z2,z3,z4;z5)

+IdR(z1;z2;z3)⊗ Im(z0;z1,z3,z4;z5)+ IdR(z2;z3;z4)⊗ Im(z0;z1,z2,z4;z5)

+IdR(z3;z4;z5)⊗ Im(z0;z1,z2,z3;z5)+ IdR(z0;z1,z2;z3)⊗ Im(z0;z3,z4;z5)

+IdR(z1;z2,z3;z4)⊗ Im(z0;z1,z4;z5)+ IdR(z2;z3,z4;z5)⊗ Im(z0;z1,z2;z5)

+IdR(z0;z1;z2) · IdR(z2;z3;z4)⊗ Im(z0;z2,z4;z5)

+IdR(z0;z1;z2) · IdR(z3;z4;z5)⊗ Im(z0;z2,z3;z5)

+IdR(z1;z2;z3) · IdR(z3;z4;z5)⊗ Im(z0;z1,z3;z5)+ IdR(z1;z2,z3,z4;z5)⊗ Im(z0;z1;z5)

+IdR(z0;z1;z2) · IdR(z2;z3,z4;z5)⊗ Im(z0;z2;z5)

+IdR(z0;z1,z2;z3) · IdR(z3;z4;z5)⊗ Im(z0;z3;z5)

+IdR(z0;z1,z2,z3;z4)⊗ Im(z0;z4;z5)+ IdR(z0;z1,z2,z3,z4;z5)⊗1. (11.141)

The right picture of figure 11.5 represents one term in this expression (the term IdR(z0;z1;z2) ·
IdR(z3;z4;z5)⊗ Im(z0;z2,z3;z5)).

Let us now see the reason why we introduced the motivic multiple polylogarithms and the de

Rham multiple polylogarithms. We start with the coaction on Limn (x):

∆Limn (x) = −∆Im(0;1,0, . . . ,0︸ ︷︷ ︸
n−1

;x) (11.142)

Since not all points are distinct, many terms in the coaction are zero due to eq. (11.129) and

eq. (11.132). We end up with

∆Limn (x) = LidRn (x)⊗1+
n−1

∑
k=0

1

k!

[
lndR(x)

]k
⊗Limn−k(x), (11.143)

where

lndR(x) = IdR(1;0;x). (11.144)

Now let us specialise to x = 1. Due to eq. (11.132) we have

lnm(1) = Im(1;0;1) = 0, (11.145)

and it follows that lndR(1) = 0 as well. For x = 1 eq. (11.143) reduces to

∆ζmn = ζdRn ⊗1+1⊗ζmn . (11.146)

In exercise 79 you were supposed to show that

ζ2
2 =

5

2
ζ4. (11.147)
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This relation prohibits a coproduct for zeta values similar to eq. (11.146). To see this, assume

that H is a Hopf algebra, ζ2,ζ4 ∈ H are non-zero elements with coproduct

∆(ζ2) = ζ2⊗1+1⊗ζ2,

∆(ζ4) = ζ4⊗1+1⊗ζ4, (11.148)

and eq. (11.147) holds in H. We consider ∆(ζ2
2). On the one hand we have

∆
(
ζ2

2

)
=

5

2
∆(ζ4) =

5

2
[ζ4⊗1+1⊗ζ4] = ζ2

2⊗1+1⊗ζ2
2, (11.149)

on the other hand we obtain using the axiom of compatibility between multiplication and comul-

tiplication in the Hopf algebra H

∆
(
ζ2

2

)
= ∆(ζ2 ·ζ2) = ∆(ζ2) ·∆(ζ2) = [ζ2⊗1+1⊗ζ2] · [ζ2⊗1+1⊗ζ2]

= ζ2
2⊗1+2ζ2⊗ζ2 +1⊗ζ2

2. (11.150)

We assumed ζ2 to be a non-zero element of H, hence ζ2⊗ζ2 6= 0 and we have a contradiction.

Now let us return to the motivic zeta values and the de Rham zeta values: Let n be a positive

even integer. From eq. (8.89) we know that in this case the zeta value ζn is a rational number

times a positive power of (2πi). From the definition of the de Rham multiple polylogarithms

P dR
MPL it follows that ζdRn is equivalent to zero in P dR

MPL. Thus for positive even integers the

coaction on the zeta values reduces to

∆(ζmn ) = 1⊗ζmn , n = 2,4,6,8, . . . . (11.151)

We further set

∆((2πi)m) = 1⊗ (2πi)m. (11.152)

Exercise 95: Work out ∆(lnm(x)). Note that lnm(x) = Im(1;0;x).

The coaction interacts with derivatives and discontinuities of multiple polylogarithms as follows:

Let Imn ∈ Pm
MPL be of weight n. Then

∆

(
∂

∂z
Imn

)
=

(
∂

∂z
⊗ id

)
∆(Imn ) . (11.153)

Let’s verify this for the example Im2 =−Im(0;1,0;x) = Lim2 (x). On the left-hand side we have

∆

(
∂

∂x
Lim2 (x)

)
= ∆

(
1

x
Lim1 (x)

)
=

1

x

(
LidR1 (x)⊗1+1⊗Lim1 (x)

)
. (11.154)

On the right-hand side we have
(

∂

∂x
⊗ id

)
∆(Lim2 (x)) =

(
∂

∂x
⊗ id

)(
LidR2 (x)⊗1+ lndR(x)⊗Lim1 (x)+1⊗Lim2 (x)

)

=

(
∂

∂x
LidR2 (x)

)
⊗1+

(
∂

∂x
lndR(x)

)
⊗Lim1 (x)

=
1

x

(
LidR1 (x)⊗1+1⊗Lim1 (x)

)
. (11.155)
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We also have

∂

∂z
Imn = ·

(
∂

∂z
⊗1

)
∆1,n−1 (I

m
n ) . (11.156)

As an alternative to eq. (8.8) this formula can be used to calculate the derivative of a multiple

polylogarithm. Suppose we would like to calculate

∂

∂z
G(0,z;y) . (11.157)

From eq. (8.8) we have

∂

∂z
G(0,z;y) = G(z;y)

∂

∂z
ln

(
y

z

)
+G(0;y)

∂

∂z
ln

(−z

−z

)
= −1

z
G(z;y) . (11.158)

We have Gm(0,z;y) = Im(0;z,0;y) and from eq. (11.156) we obtain

∂

∂z
Gm (0,z;y) = ·

(
∂

∂z
⊗1

)
∆1,1 (G

m (0,z;y))

= ·
(

∂

∂z
⊗1

)(
lndR

(
y

z

)
⊗Gm (z;y)

)

=

(
∂

∂z
lndR

(
y
z

))
Gm (z;y) = −1

z
Gm (z;y) . (11.159)

Exercise 96: Consider

I (0;x,x;y) = G(x,x;y) = G11

(
1,1;

y

x

)
= Li11

(y

x
,1
)

= H11

(y

x

)
. (11.160)

With the techniques of chapter 8 it is not too difficult to show that the derivatives with respect to x and y
are

∂

∂x
I (0;x,x;y) =

y

x(x− y)
ln

(
x− y

x

)
,

∂

∂y
I (0;x,x;y) =

1

y− x
ln

(
x− y

x

)
. (11.161)

Re-compute the derivatives using eq. (11.156).

In section 5.5.1 we defined the discontinuity of a function f (z) across a branch cut as

Discz f (z) = f (z+ iδ)− f (z− iδ) , (11.162)

where δ > 0 is infinitesimal. Let Imn ∈ Pm
MPL be of weight n. Then

∆(DisczI
m
n ) = (id⊗Discz)∆(Imn ) . (11.163)
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Let us also verify this with an example. The discontinuity of Li2(z) across the branch cut [1,∞[
is

DisczLi2(z) = 2πi ln(z) . (11.164)

The left-hand side of eq. (11.163) gives

∆(DisczLim2 (z)) = ∆
(
(2πi)m lnm (z)

)
= ∆

(
(2πi)m

)
·∆(lnm (z))

=
(
1⊗ (2πi)m

)
·
(

lndR(x)⊗1+1⊗ lnm(x)
)

= lndR(x)⊗ (2πi)m+1⊗ (2πi)m · lnm(x) (11.165)

The right-hand side of eq. (11.163) gives

(id⊗Discz)∆(Lim2 (z)) = (id⊗Discz)
(

LidR2 (x)⊗1+ lndR(x)⊗Lim1 (x)+1⊗Lim2 (x)
)

= lndR(x)⊗DisczLim1 (x)+1⊗DisczLim2 (x)

= lndR(x)⊗ (2πi)m+1⊗ (2πi)m · lnm(x), (11.166)

where we used DisczLi1(x) = 2πi.
Let us summarise:

The coaction commutes with the operations of differentiation and taking discontinu-

ities across branch cuts as follows: For Im ∈ Pm
MPL we have

∆

(
∂

∂z
Im
)

=

(
∂

∂z
⊗ id

)
∆(Im) ,

∆(DisczI
m) = (id⊗Discz)∆(Im) . (11.167)

Please note that within the conventions of this book, the first entry of the tensor carries the

information on the derivative, the last entry of the tensor carries the information on the disconti-

nuities. This is a consequence of the definition of the coaction in eq. (11.140). In this book we

use the convention that Pm
MPL is a left P dR

MPL-comodule.

Some authors use a different convention and consider Pm
MPL to be a right P dR

MPL-comodule, in

which case the roles of the tensor entries are exchanged.

11.3 Symbols

In this section we introduce symbols and the iterated coaction. Both operations forget informa-

tion, but they are useful tools for simplifying expressions. If two expressions agree, their symbols

and their iterated coactions must agree as well. However, the converse is in general not true.

The symbol is the coarser version, it forgets more. In particular, all constants are mapped to

zero. The symbol is defined for transcendental functions, whose total differential is a linear com-

bination of dlog-forms times transcendental functions of weight minus one. The transcendental

functions appearing in the total differential are again requested to satisfy the same properties.
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If a coaction is available we may use the iterated coaction. This is the finer version. The iter-

ated coaction keeps the information on transcendental constants, algebraic constants are mapped

to zero.

We start with the definition of the symbol for iterated integrals [287–290]. Let ω1,ω2, . . . be

a set of dlog-forms in the kinematic variables x. Thus

ω j = d ln f j, (11.168)

where f j is a function of x. In section 6.3.3 we associated to any linear combination of iterated

integrals of depth ≤ r

I =
r

∑
j=1

∑
i1,...,i j

ci1...i jIγ

(
ωi1 , . . . ,ωi j ;λ

)
(11.169)

an element in the tensor algebra T =
∞⊕

k=0

(Ω(X))⊗k

B =
r

∑
j=1

∑
i1,...,i j

ci1...i j

[
ωi1| . . . |ωi j

]
. (11.170)

Recall that the bar notation just denotes a tensor product:

[ω1|ω2| . . . |ωr] = ω1⊗ω2⊗·· ·⊗ωr. (11.171)

As we are only considering dlog-forms, we may as well just denote the f j’s instead of the ω j’s:

S =
r

∑
j=1

∑
i1,...,i j

ci1...i j

(
fi1⊗·· ·⊗ fi j

)
. (11.172)

S is called the symbol of I. B and S denote the information on the integrand of an iterated integral.

The information on the integration path is not stored in the bar notation nor in the symbol. We

alert the reader that in this section the letter S denotes the symbol, not an antipode.

For the linear combination I of iterated integrals in eq. (11.169) we have the total differential

dI =
r

∑
j=1

∑
i1,...,i j

ci1...i jωi1Iγ

(
ωi2 , . . . ,ωi j ;λ

)
. (11.173)

We extend the definition of the symbol from iterated integrals to functions, whose total differen-

tial can be written as

dF = ∑
i

(d ln fi) Fi (11.174)

with the requirement that the total differential of the function Fi can again be written in the same

fashion. We then define the symbol recursively through

S (F) = ∑
i

fi⊗S (Fi) ,

S (ln f ) = f . (11.175)
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Due to eq. (11.173) the definition in eq. (11.172) for iterated integrals agrees with the definition

of eq. (11.175).

Please note the order in the tensor product: In the symbol ( fi1⊗·· ·⊗ fir) of an iterated integral

Iγ(ωi1, . . . ,ωi j ;λ) the first entry fi1 corresponds to the outermost integration, while the last entry

fir corresponds to the innermost integration. This notation is consistent with the conventions used

in this book: In writing G(z1, . . . ,zr;y) or Lim1...mk(x1, . . . ,xk), the variables z1 and x1 refer to the

outermost integration and the outermost summation, respectively. The reader should be alerted

that most literature on symbols uses the reversed notation. To make this clear, let’s consider the

classical polylogarithm

Lin (x) = −G(0, . . . ,0︸ ︷︷ ︸
n−1

,1;x) = −Iγ(ω0, . . . ,ω0︸ ︷︷ ︸
n−1

,ω1), (11.176)

where γ denotes an integration path from zero to x and ω0 = d ln(x) and ω1 = d ln(1− x). Thus

f0 = x and f1 = 1− x. With the conventions of this book, the symbol of the classical polyloga-

rithm is

S (Lin (x)) = −(x⊗·· ·⊗ x︸ ︷︷ ︸
n−1

⊗(1− x)). (11.177)

As in the symbol the entries of the individual tensor slots denote arguments of dlog-forms we

have the following rules:

f1⊗·· ·⊗ (gagb)⊗·· ·⊗ fr = ( f1⊗·· ·⊗ga⊗·· ·⊗ fr)+( f1⊗·· ·⊗gb⊗·· ·⊗ fr) ,

f1⊗·· ·⊗
(
c f j
)
⊗·· ·⊗ fr = f1⊗·· ·⊗ f j⊗·· ·⊗ fr, (11.178)

where c is a constant (independent of x). Thus we have

S (ln(2x)) = S (ln(x)) = x. (11.179)

Note that the minus sign on the right-hand side of eq. (11.177) is outside the first tensor slot, it

corresponds to ci1...i j in eq. (11.172).

Exercise 97: Work out the symbols

S(− ln(x)) and S(ln(−x)) . (11.180)

For two iterated integrals f = Iγ(ω1, . . . ,ωk;λ) and g = Iγ(ωk+1, . . . ,ωr;λ) along the same path

γ we have the shuffle product:

Iγ (ω1, . . . ,ωk;λ) · Iγ (ωk+1, . . . ,ωr;λ) = ∑
shuffles σ

Iγ

(
ωσ(1),ωσ(1), . . . ,ωσ(r);λ

)
. (11.181)

In eq. (8.47) we showed this for the case of multiple polylogarithms. The proof carries over to

iterated integrals. Taking the symbol on both sides of eq. (11.181) we find that

S ( f ·g) = S ( f )�S (g) , (11.182)
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where the shuffle product in the tensor algebra T is defined by

( f1⊗ f2⊗·· ·⊗ fk)� ( fk+1⊗·· ·⊗ fr) = ∑
shuffles σ

fσ(1)⊗ fσ(2)⊗·· ·⊗ fσ(r). (11.183)

Let us now look at a simple example: We compute

S (Li2 (x)+Li2 (1− x)) = −(x⊗ (1− x)+(1− x)⊗ x) . (11.184)

We also have

S (ln(x) · ln(1− x)) = S (ln(x))�S (ln(1− x)) = (x)� (1− x)

= x⊗ (1− x)+(1− x)⊗ x. (11.185)

Thus we obtain

S (Li2 (x)+Li2 (1− x)+ ln(x) · ln(1− x)) = 0. (11.186)

This does not imply that

Li2 (x)+Li2 (1− x)+ ln(x) · ln(1− x) (11.187)

is zero, but we know that the terms which we are missing are in the kernel of the symbol map.

This could be a weight 2 constant, or a weight 1 constant times a logarithm of x. Evaluation the

above expression at x = 1 we find that we should add (−ζ2): Doing so, we already obtain the

correct relation

Li2 (x)+Li2 (1− x)+ ln(x) · ln(1− x)−ζ2 = 0. (11.188)

We may verify this relation by checking the relation at one point (say x = 1) and by showing that

the derivative of the left-hand side equals zero. The derivative is of lower weight and repeating

this procedure will prove the identiy in a finite number of steps.

Transcendental constants like π or ζ2 are in the kernel of the symbol map, and hence not seen

at the level of the symbol. For multiple polylogarithms we also have a coaction. In order to get

a handle on transcendental constants, we may use a finer variant of the symbol map, the iterated

coaction. We start with Imn ∈ Pm
MPL and assume that Imn has homogeneous weight n. We then

consider the (n−1)-fold iterated coproduct/coaction

∆n−1 (Imn ) (11.189)

Due to coassociativity and eq. (11.118) it does not matter to which tensor slot the second and

further coproducts/coactions are applied, the result will be the same. Eq. (11.118) states that

(∆⊗ id)∆(Imn ) = (id⊗∆)∆(Imn ) , (11.190)

and this generalises to higher iterated coproducts/coactions. We may therefore simply write

∆n−1, as we did in eq. (11.189). We then look at ∆1,...,1(Imn ) (with 1+ · · ·+1 = n, i.e. the number
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1 occurs n times). We call ∆1,...,1(Imn ) the maximally iterated coaction, any further iteration would

produce tensor slots of weight zero. In ∆1,...,1(Imn ) the entries of all tensor slots are of weight one.

We have for example

∆1,1 (Lim2 (x)) = lndR(x)⊗Lim1 (x). (11.191)

Up to notation, this is identical to the result from the symbol map. However, the iterated coaction

does not necessarily kill transcendental constants:

∆1,1

(
(2πi)m · lnm(x)

)
= lndR(x)⊗ (2πi)m . (11.192)

Here the iterated coaction differs from the symbol map.

If we just look at the maximal iterated coaction we are not sensitive to transcendental con-

stants of weight two or higher. For example

∆1,1,1 (ζ
m
2 · lnm(x)) = 0, (11.193)

since the coaction does not share out ζm2 into two weight one pieces. Hoever, this is easily fixed:

There is actually no need to focus just on the maximally iterated coaction. Let i1 + · · ·+ ik = n
with i j ∈ N. We may also look at

∆i1,...,ik (I
m
n ) . (11.194)

of the (k−1)-fold iterated coproduct/coaction ∆k−1(Imn ). We have for example

∆1,2 (ζ
m
2 · lnm(x)) = lndR(x)⊗ζm2 . (11.195)

The general idea is as follows: Suppose we know already relations for weight < n and we would

like to establish a new relation at weight n. Instead of dealing with a single expression of weight

n, we use the iterated coaction ∆i1,...,ik . In each tensor slot the weight is lower than the original

weight (i j < n) and we may use in a particular tensor slot relations which we already know. In

summary, we may lower the weight of the objects which we would like to manipulate at the

expense of raising the rank of the tensor.

Let’s look at an example: We would like to relate the classical polylogarithm Lin(1/x) to

Lin(x). We may derive the sought-after relation from the integral representation and the substi-

tution x′ = 1/x. Alternatively, we may derive the relation from the coaction. This derivation

nicely illustrates how the coaction can be applied. This is an example taken from [291,292]. Let

x ∈ R>0 be a positive real number. We consider x− iδ ∈ C, where iδ denotes an infinitesimal

small imaginary part. We therefore have

ln(−x) = ln(x)+ iπ. (11.196)

At weight one we have

Li1

(
1

x

)
= − ln

(
1− 1

x

)
= − ln(1− x)+ ln(−x)

= Li1 (x)+ ln(x)+ iπ. (11.197)
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At weight 2 we first consider the ∆1,1-part of the coaction

∆1,1

(
Lim2

(
1

x

))
= lndR

(
1

x

)
⊗Lim1

(
1

x

)

= − lndR (x)⊗
[
Lim1 (x)+ lnm (x)+(iπ)m

]

= − lndR (x)⊗Lim1 (x)− lndR (x)⊗ lnm (x)− lndR (x)⊗ (iπ)m

= ∆1,1

(
−Lim2 (x)− 1

2
[lnm (x)]2− (iπ)m lnm (x)

)
, (11.198)

where we used in the second line the relation eq. (11.197) for Li1(1/x). The ∆1,1-part of the

coaction will not detect all terms, in particular we will miss at weight 2 terms proportional to ζ2.

We make the ansatz

Li2

(
1

x

)
= −Li2 (x)−

1

2
ln2 (x)− iπ ln(x)+ cζ2, (11.199)

with some unknown rational coefficient c. Evaluating the equation at x = 1 we find c = 2. Is is

then easily verified (by taking derivatives and evaluating at special points) that

Li2

(
1

x

)
= −Li2 (x)−

1

2
ln2 (x)− iπ ln(x)+2ζ2 (11.200)

is the correct relation.

Let us push this example further to weight three: We start with the maximal iterated coaction

∆1,1,1

(
Lim3

(
1

x

))
= lndR

(
1

x

)
⊗ lndR

(
1

x

)
⊗Lim1

(
1

x

)

= lndR (x)⊗ lndR (x)⊗
[
Lim1 (x)+ lnm (x)+(iπ)m

]

= ∆1,1,1

(
Lim3 (x)+

1

6
[lnm (x)]3 +(iπ)m

1

2
[lnm (x)]2

)
. (11.201)

This is not yet the final answer. In ∆1,1,1 we will not detect terms, which are proportional to ζ2,

ζ3 or π3. Let’s first consider terms proportional to ζ2. We may detect them in ∆1,2:

∆1,2

(
Lim3

(
1

x

)
−Lim3 (x)− 1

6
[lnm (x)]3− (iπ)m

1

2
[lnm (x)]2

)
= lndR

(
1

x

)
⊗Lim2

(
1

x

)

= − lndR (x)⊗Lim2 (x)− lndR (x)⊗ 1

2
[lnm (x)]2− lndR (x)⊗ (iπ)m lnm (x)

= − lndR (x)⊗
[

Lim2

(
1

x

)
+Lim2 (x)+

1

2
[lnm (x)]2 +(iπ)m lnm (x)

]
. (11.202)

We may now use eq. (11.200) and find

∆1,2

(
Lim3

(
1

x

)
−Lim3 (x)− 1

6
[lnm (x)]3− (iπ)m

1

2
[lnm (x)]2

)
=−2∆1,2 (ζ

m
2 lnm (x)) . (11.203)
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Terms proportional to ζ3 or π3 cannot be detected from the coaction, as they do not share out.

We make the ansatz

Li3

(
1

x

)
= Li3 (x)+

1

6
ln3 (x)+

1

2
iπ ln2 (x)−2ζ2 ln(x)+ c1ζ3 + c2iπ3. (11.204)

Evaluating the expression at x = 1 yields c1 = c2 = 0 and we finally obtain

Li3

(
1

x

)
= Li3 (x)+

1

6
ln3 (x)+

1

2
iπ ln2 (x)−2ζ2 ln(x) . (11.205)

This relation is then verified by taking derivatives and evaluating at special points.

We may continue in this way and systematically derive inversion relation for Lin(1/x).

11.4 The single-valued projection

Multiple polylogarithms are in general multi-valued functions. In relation to Feynman integrals

this is what we want: The starting points of branch cuts of multiple polylogarithms are related

to the thresholds of Feynman integrals. Nevertheless, we may ask if it is possible to define

single-valued multiple polylogarithms. This is indeed possible and we will define single-valued

multiple polylogarithms in this section. This will also shed some new light on thr role of the de

Rham multiple polylogarithms. Up to now we treated them as some formal objects, as we could

not associate any numerical value to them. With the help of the single-valued multiple polylog-

arithms we may define an evaluation map for the de Rham multiple polylogarithms. References

for this section are [293–296].

In section 11.2 we considered the algebras Pm
MPL and P dR

MPL. There is a projection

πdR : Pm
MPL→ P dR

MPL (11.206)

whose kernel is the ideal 〈(2πi)m〉. We have for example

πdR
(
Lim2 (x)+(iπ)m lnm (x)

)
= LidR2 (x) . (11.207)

We started from the functions I(z0;z1, . . . ,zr;zr+1) defined in eq. (11.121). We implicitly as-

sumed a standard integration path (say a straight line from z0 to zr+1, supplemented in the case

of divergent integrals by a tangential base point prescription). We could have started from an ex-

tended definition Iγ(z0;z1, . . . ,zr;zr+1), allowing arbitrary integration paths. Iγ(z0;z1, . . . ,zr;zr+1)
and Imγ (z0;z1, . . . ,zr;zr+1) would then depend on the integration path. Let us now restrict our

attention to linear combinations, which are homotopy functionals. For those linear combinations

we may think about the de Rham version as multiple polylogarithms which have lost all infor-

mation on the integration path. If we deform the integration path of a homotopy functional of

ordinary multiple polylogarithm across a pole of an integrand, we should compensate by (2πi)
times the residue at the pole. However this equals zero in P dR

MPL and hence this information is

lost for the de Rham multiple polylogarithms. For this reason we did not define a period map for
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y

a

γ1

γ2

γ3

Figure 11.6: Consider Iγi(0;a;y). The three integration paths cannot be deformed continuously

into each other without crossing the pole at a. The result for Iγi(0;a;y) will depend on (the

homotopy class of) the integration path. The difference is proportional to (2πi), and therefore

the de Rham logarithms IdRγi
(0;a;y) are equivalent. Phrased differently, the information on the

integration path is lost in P dR
MPL.

de Rham multiple polylogarithms, as a naive attempt would be ambiguous by terms of the form

(2πi)× functions of weight (n−1).
The essential ingredient for the definition of single-valued multiple polylogarithms is the map

sv : P dR
MPL→ Pm

MPL

sv
(

IdR
)

= ·(id⊗F∞Σ)∆m
(

IdR
)
. (11.208)

Let us explain the ingredients. We recall that P dR
MPL is a Hopf algebra, with coproduct ∆ : P dR

MPL→
P dR

MPL⊗P dR
MPL and antipode S : P dR

MPL→ P dR
MPL defined in eq. (11.138) and eq. (11.139), respec-

tively.

We now define maps

∆m : P dR
MPL→ Pm

MPL⊗Pm
MPL,

Sm : Pm
MPL→ Pm

MPL (11.209)

by replacing the superscript dR with m on the right-hand side of eq. (11.138) and everywhere in

eq. (11.139). We then define

Σ : Pm
MPL→ Pm

MPL

Σ(Im (z0;z1, . . . ,zr;zr+1)) = (−1)r Sm (Im (z0;z1, . . . ,zr;zr+1)) . (11.210)

The map F∞ denotes the real Frobenius

F∞ : Pm
MPL→ Pm

MPL. (11.211)



11.4. THE SINGLE-VALUED PROJECTION 389

We may think about F∞ as complex conjugation. For us the important property will be

period(F∞ (Im)) = period(Im), (11.212)

where z denotes complex conjugation of z.

We may now combine the map sv with the period map of eq. (11.128) and obtain a map

svdR : P dR
MPL→C,

svdR = period◦ sv. (11.213)

This will assign a complex number to a de Rham multiple polylogarithm.

In a similar way we may combine the map πdR of eq. (11.206) with the maps sv and period

and obtain

svm : Pm
MPL→ C,

svm = period◦ sv◦πdR. (11.214)

Eq. (11.214) is called the single-value projection. It can be shown that eq. (11.213) and eq. (11.214)

define single-valued functions of x.

Let us consider a few examples: We have

∆
(

lndR (x)
)

= 1⊗ lndR (x)+ lndR (x)⊗1,

S
(

lndR (x)
)

= − lndR (x) , (11.215)

and therefore

svm (lnm (x)) = ln(x)+ ln(x) = ln
(
|x|2
)
. (11.216)

For the classical polylogarithms one has

∆
(

LidRn (x)
)

= LidRn (x)⊗1+
n−1

∑
k=0

1

k!

[
lndR(x)

]k
⊗LidRn−k(x),

S
(

LidRn (x)
)

= −
n−1

∑
k=0

1

k!

[
− lndR(x)

]k
LidRn−k(x). (11.217)

We obtain

svm (Limn (x)) = Lin (x)− (−1)n
n−1

∑
k=0

1

k!

[
− ln

(
|x|2
)]k

Lin−k (x) , (11.218)

e.g.

svm (Lim1 (x)) = Li1 (x)+Li1 (x) ,

svm (Lim2 (x)) = Li2 (x)−Li2 (x)+ ln
(
|x|2
)

Li1 (x) , etc.. (11.219)
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Exercise 98: Fill in the details for the derivation of svm(Lim1 (x)) and svm(Lim2 (x)).

Setting x =−1 in eq. (11.216) shows that

svm
(
(iπ)m

)
= 0, (11.220)

setting x = 1 in eq. (11.218) yields

svm (ζmn ) = svm (Limn (1)) =

{
2ζn, n odd,
0, n even.

(11.221)

Eq. (11.221) defines the so-called single-valued zeta values

ζsv
n = svm (ζmn ) . (11.222)

Although this may sound like an oxymoron (a zeta value is a number independent of x and there-

fore certainly single-valued as a function of x), it should be understood as follows: The ordinary

zeta values are the values of the classical polylogarithms at x = 1. In exactly the same way we

define the single-valued zeta values to be the values of the single-valued classical polylogarithms

at x = 1.

11.5 Bootstrap

Let’s look at a practical application of the symbol (or the iterated coaction): Suppose we expect

that a certain Feynman integral can be written as a linear combination of multiple polylogarithms.

Suppose further that we can figure out what the possible arguments of the multiple polyloga-

rithms are. We can then write down an ansatz for the Feynman integral under consideration as a

linear combination of multiple polylogarithms with the specific arguments and unknown coeffi-

cients. If the Feynman integral is of uniform weight, the unknown coefficients will be algebraic

numbers. In the next step we determine the unknown coefficients. If the symbol of the Feynman

integral is known, the symbol of the ansatz has to match the symbol of the Feynman integral.

This information together boundary data (and possibly other information like information on

discontinuities) can be sufficient to determine all coefficients. This is the bootstrap approach.

It is an heuristic approach, as it depends on our original guess of the arguments of the multiple

polylogarithms. However it is quite powerful. In particular it allows in special situations to by-

pass the need to rationalise square roots [297,298]. We will illustrate this with an example below,

taken from [299]. The bootstrap approach has also been applied to obtain results for scattering

amplitudes to an impressive high loop-order, see for example [300–303].

Let’s now look at an example: We consider the one-loop two-point function with equal inter-

nal masses introduced as example 1 in section 6.3.1. As master integrals we use (see eq. (6.236)

and eq. (6.277))

I′1 = −2εI10 (2−2ε) ,

I′2 = −ε
√

x(4+ x)I11 (2−2ε) . (11.223)
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The differential equation for~I′ = (I′1, I
′
2)

T is given by eq. (6.237). With eq. (6.239) we have

(
d +A′

)
~I′ = 0, A′ = ε

(
0 0

0 1

)
ω1− ε

(
0 0

1 0

)
ω2, (11.224)

ω1 = d ln(4+ x) , ω2 = d ln
(

2+ x+
√

x(4+ x)
)
.

The master integral I′1 is a tadpole integral and rather trivial:

I′1 = −2−ζ2ε2 +O
(
ε3
)
. (11.225)

In section 6.4.4 we saw that the square root can be rationalised by the transformation

x =
(1− x′)2

x′
, x′ =

1

2

(
2+ x−

√
x(4+ x)

)
, (11.226)

Under this transformation we have

ω1 = 2d ln
(
x′+1

)
−d ln

(
x′
)
, ω2 = −d ln

(
x′
)
. (11.227)

The master integral I′2 vanishes at x = 0 (corresponding to x′ = 1). With this boundary condition

we may integrate the differential equation and obtain

I′2 = 2εG
(
0;x′

)
+2ε2

[
G
(
0,0;x′

)
−2G

(
−1,0;x′

)
−ζ2

]
+O

(
ε3
)
. (11.228)

We have

G
(
0;x′
)
= ln

(
x′
)
, (11.229)

G
(
0,0;x′

)
=

1

2
ln2
(
x′
)
, G

(
−1,0;x′

)
= Li2

(
−x′
)
+ ln

(
x′
)

ln
(
x′+1

)
.

Suppose now that we don’t know a rationalisation of the square root
√

x(4+ x). The symbol

approach allows us to derive eq. (11.228) without the need of rationalising the square root (so

we forget eqs. (11.226)-(11.228) for the moment). We will however assume that the result can

be expressed in terms of multiple polylogarithms. We set

f0 = 2, f1 = x+4, f2 = 2+ x+ r, r =
√

x(4+ x). (11.230)

The set { f0, f1, f2} will be our alphabet. The subset { f0, f1} is called the rational part of the

alphabet, the subset { f2} is called the algebraic part. For an algebraic letter f we define the

conjugated letter f̄ with respect to the root r as the letter obtained by the substitution r→−r.

Thus

f̄2 = 2+ x− r. (11.231)

The letters f1and f2 can be directly read off from the differential equation (11.224). The inclusion

of the letter f0 = 2 seems a little bit artificial, after all 2 is a constant and we have

d ln2 = 0. (11.232)
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However, we require that f2 f̄2 factorises over the rational part of the alphabet. We have

f2 f̄2 = 4 = 22 = f 2
0 . (11.233)

From the differential equation (11.224) we may write down the symbol for I′2:

S
(
I′2
)

= −2ε( f2)+2ε2 ( f1⊗ f2)+O
(
ε3
)
. (11.234)

We now consider an ansatz in the form of a linear combination of multiple polylogarithms, such

that the symbol of the ansatz matches the symbol of eq. (11.234). At order ε1 this is rather easy:

I(1)ansatz = −2ln( f2) ⇒ S
(

I(1)ansatz

)
= −2( f2) . (11.235)

In the next step we check the total differential

d
(

I′2
(1)− I(1)ansatz

)
= 0, (11.236)

hence I′2
(1) and I(1)ansatz can possibly only differ by a constant. From the boundary condition we

obtain

I′2
(1) = −2 [ln( f2)− ln( f0)] , (11.237)

in agreement with eq. (11.228). Note that

2

2+ x+ r
=

2+ x− r
2

. (11.238)

The order ε2 is more interesting: At weight two we expect dilogarithms and products of loga-

rithms. Let us first consider the possible arguments of the dilogarithm: We start from a candidate

argument of the form as a power product

y = f α0

0 f α1

1 f α2

2 , α j ∈ Q. (11.239)

Not every combination of (α0,α1,α2) will be an allowed combination. To find the restrictions,

we consider the symbol of the dilogarithm. We have

S (Li2 (y)) = −(y⊗ (1− y)) . (11.240)

In the first tensor slot the power product distributes according to the rules of eq. (11.178):

(y) = α0 ( f0)+α1 ( f1)+α2 ( f2) . (11.241)

The second tensor slot is more problematic: We don’t want any additional new dlog-forms.

Therefore we require that (1− y) is again a power product:

1− y = f β0

0 f β1

1 f β2

2 , β j ∈ Q. (11.242)
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Thus the allowed arguments y of Li2 are such that for a given y in the form of eq. (11.239) there

exists (β0,β1,β2) such that eq. (11.242) holds. Note that eq. (11.242) is equivalent to

ln(1− y)−β0 ln( f0)−β1 ln( f1)−β2 ln( f2) = 0. (11.243)

Given ln(1− y), ln( f0), ln( f1) and ln( f2) we may use the PSLQ algorithm (discussed in chap-

ter 15) to check if (β0,β1,β2) exists.

For the case at hand one finds the allowed arguments

y ∈ {y1,y2} , y1 = f
− 1

2

0 f
− 1

2

1 f
1
2

2 , y2 = f
1
2

0 f
− 1

2

1 f
− 1

2

2 . (11.244)

with symbols

S (Li2 (y1)) = −(y1⊗ y2) =
1

4
( f2⊗ f2 + f2⊗ f1− f1⊗ f2− f1⊗ f1) ,

S (Li2 (y2)) = −(y2⊗ y1) =
1

4
( f2⊗ f2− f2⊗ f1 + f1⊗ f2− f1⊗ f1) . (11.245)

Let us now construct an ansatz, which matches the symbol. From

S (−4 Li2 (y1)) =− f2⊗ f2− f2⊗ f1+ f1⊗ f2+ f1⊗ f1,

S (ln( f1) ln( f2))= f2⊗ f1+ f1⊗ f2,

S

(
−1

2
ln2 ( f1)

)
= − f1⊗ f1,

S

(
1

2
ln2 ( f2)

)
= f2⊗ f2, (11.246)

it follows that for

I(2)ansatz = −4 Li2 (y1)+ ln( f1) ln( f2)−
1

2
ln2 ( f1)+

1

2
ln2 ( f2) (11.247)

we have

S
(

I(2)ansatz

)
= 2 f1⊗ f2. (11.248)

In the next step we check the derivative: From the differential equation we have

dI′2
(2) = −ω1I′2

(1) = 2 [ln( f2)− ln( f0)]d ln( f1) . (11.249)

However, the derivative of our ansatz is

dI(2)ansatz = 2

[
ln( f2)−

1

2
ln( f0)

]
d ln( f1)+ ln( f0)d ln( f2) . (11.250)

This does not match:

d
(

I′2
(2)− I(2)ansatz

)
= − ln( f0) [d ln( f1)+d ln( f2)] . (11.251)
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The difference is proportional to ln( f0) = ln(2). This comes to no surprise: A constant like ln(2)
is in the kernel of the symbol map and terms proportional to ln(2) are not detected by the symbol.

We can fix this issue as follows: We add to our ansatz a function, whose derivative is given by the

right-hand side of eq. (11.251). This is a problem of lower weight, as the sought-after function

is proportional to the weight one constant ln(2). In our case it is rather trivial: We add

− ln( f0) ln( f1 f2) (11.252)

to our ansatz. Adding this term will not alter the symbol of our ansatz.

Finally, we match the boundary condition at x = 0 and we arrive at

I′2
(2) = −4 Li2 (y1)+ ln( f1) ln

(
f2

f0

)
− 1

2
ln2 ( f1)+

1

2
ln2

(
f2

f0

)
+2ζ2

= −4 Li2 (y1)+2ln2 (y2)− ln2 ( f1)+2ζ2. (11.253)

The result in eq. (11.253) does not look like our previous result in eq. (11.228), but in the next

exercise you are supposed to show that these two results are identical:

Exercise 99: Show that eq. (11.228) and eq. (11.253) agree in a neighbourhood of x = 0.

In deriving the result of eq. (11.253) we never had to rationalise the square root r =
√

x(4+ x).
There are situations, where one can prove that a certain square root is not rationalisable [304],

nevertheless the bootstrap approach is able to find a solution in terms of a linear combination of

multiple polylogarithms [297]. This shows the power of the bootstrap approach.

Let us make a few more comments: The representation of the Feynman integral as a linear

combination of multiple polylogarithms is not necessarily unique. This is already obvious from

the two representations in eq. (11.228) and eq. (11.253). Within the bootstrap approach we could

as well have started with 4 Li2(y2) instead of (−4 Li2(y1)) and obtained yet another different

representation. Using y1 + y2 = 1 and the relation (5.39) one may show that the so obtained

representation is equivalent to the previous one.

One could argue that the result in eq. (11.228) is simpler than the result in eq. (11.253), as

the former contains only a single square root

−x′ = −1

2

(
2+ x−

√
x(4+ x)

)
, (11.254)

whereas the latter contains a square root of a square root

y1 =

√
2+ x+

√
x(4+ x)

2(4+ x)
. (11.255)

This is an artefact of the choice of our alphabet { f0, f1, f2}. If we include another constant (−1)
in our alphabet, we will find (−x′) as an allowed argument of the dilogarithm.
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Exercise 100: Let f1, f2,g1,g2 be algebraic functions of the kinematic variables x. Determine the
symbols of

Li21 ( f1, f2) and G21 (g1,g2;1) . (11.256)

Assume then g1 = 1/ f1 and g2 = 1/( f1 f2). Show that in this case the two symbols agree.
From the two symbols deduce the constraints on the arguments f1, f2 of Li21( f1, f2) and on the argu-

ments g1,g2 of G21(g1,g2;1).

From the previous exercise and eq. (8.8) we may deduce the constraints on the arguments of

a multiple polylogarithm in full generality:

Constraints on the arguments of a multiple polylogarithm:

Let

A = { f1, . . . , fNL} (11.257)

be an alphabet. The f j define dlog-forms ω j = d ln f j. Consider power products zi of the

form

zi =
NL

∏
j=1

f
αi j
j (11.258)

and set Z = {1,z1, . . . ,zk}. The symbol of the multiple polylogarithm G(z1, . . . ,zk;1) can

be expressed in the alphabet A if any difference

zi− z j, zi,z j ∈ Z (11.259)

can again be expressed as a power product in the form of eq. (11.258).

The proof follows directly from eq. (8.8).

In constructing an ansatz it is worth knowing that up to weight four all multiple polyloga-

rithms can be expressed in terms of logarithms, Li2(x1), Li3(x1), Li4(x1) and Li22(x1,x2) [305].

Thus up to weight four it is sufficient to consider only the functions

G1 (z1;1) , G2 (z1;1) , G3 (z1;1) , G4 (z1;1) , G22 (z1,z2;1) . (11.260)

At a given weight, products of functions of lower weight may appear.
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Chapter 12

Cluster algebras

In order to motivate the content of this chapter let us look again at example 2 of section 6.3.1:

The one-loop four-point function with vanishing internal masses and one non-zero external mass.

In this example we have two kinematic variables x1 = 2p1 · p2/p2
4 and x2 = 2p2 · p3/p2

4 (see

eq. (6.68)). By a suitable choice of master integrals we may transform the differential equation

into an ε-form as we did in eq. (6.78). We obtain an alphabet with five letters. The arguments of

the dlog-forms are

x1, x2, x1−1, x2−1, x1 + x2−1. (12.1)

We may now ask: Is there a relation between the initial kinematic variables x1, x2, the Feynman

graph G and the alphabet in eq. (12.1)?

This is where cluster algebras enter the game. Cluster algebras were introduced in mathemat-

ics by Fomin and Zelevinsky in 2001 [306, 307]. A cluster algebra is a commutative Q-algebra

generated by the so-called cluster variables. The cluster variables are grouped into overlapping

subsets of fixed cardinality. These subsets are called clusters. Starting from an initial seed, the

clusters are constructed recursively through mutations.

Introductory texts on cluster algebras are [308–312]. The relation between cluster algebras

and scattering amplitudes in particle physics appeared for the first time in [313] in the context

of N = 4 supersymmetric Yang-Mills amplitudes. The relation of Feynman integrals to cluster

integrals is an evolving field of research and in this chapter we merely touch the tip of an iceberg.

A selection of current research literature on this subject is [314–322].

In section 12.1 we introduce quivers and mutations. Cluster algebras arising from quivers and

without coefficients are discussed in section 12.2. These are the simplest ones. In section 12.3

we introduce coefficients (or frozen vertices). Cluster algebras may also be defined in terms

of matrices. In section 12.4 we consider one further generalisation, going from anti-symmetric

matrices to anti-symmetrisable matrices. In section 12.5 we discuss the relation to Feynman

integrals.

397
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12.1 Quivers and mutations

A quiver is an oriented graph. A quiver therefore consists of a set of vertices V , a set of edges E
and maps

sink : E→V,

source : E→V, (12.2)

assigning to each edge its sink and source, respectively. A quiver is called finite if both the sets

V and E are finite sets. We recall that a self-loop is an edge e with

sink(e) = source(e) . (12.3)

A two-cycle is a pair of two distinct edges e1 and e2 with

sink(e1) = source(e2) and sink(e2) = source(e1) . (12.4)

We will mainly deal with finite quivers without self-loops and two-cycles.

It is convenient to write vi→ v j, if there is an edge e with

source (e) = vi and sink(e) = v j. (12.5)

Let Q be a finite quiver without self-loops and two-cycles. We denote by r = |V | the number of

vertices of Q. We may associate an anti-symmetric (r× r)-matrix B to Q as follows: The entry

bi j is given as the number of edges, which have vi as source and v j as sink minus the number

of edges, which have vi as sink and v j as source. Since we exclude two-cycles at least one of

these two numbers is zero. Furthermore, since we exclude self-loops and two-cycles, we may

reconstruct uniquely the quiver Q from the matrix B. The matrix B is called the exchange matrix

of Q.

Let Q be a finite quiver without self-loops and two-cycles and vk ∈ V a vertex of Q. The

mutation of Q at the vertex vk is a new quiver Q′, obtained from Q as follows:

1. for each path vi→ vk→ v j add an edge vi→ v j,

2. reverse all arrows on the edges incident with vk,

3. remove any two-cycles that may have formed.

Two quivers Q and Q′ are called mutation equivalent if Q′ can be obtained through a sequence

of mutations from Q.

Under a mutation at the vertex vk the matrix B transforms to a matrix B′, whose entries are

given by

b′i j =

{
−bi j if i = k or j = k,
bi j + sign(bik) ·max

(
0,bikbk j

)
, otherwise.

(12.6)
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We call two matrices B and B′ mutation equivalent, if B′ can be obtained through a sequence of

mutations from B.

Exercise 101: Show that the mutation of the matrix B at a fixed vertex vk is an involution, i.e. mu-
tating twice at the same vertex returns the original matrix B.

Let us now associate a variable a j to each vertex v j. We define the mutation of these variables

under a mutation at a vertex vk as

a′j =





a j j 6= k,

1
ak

(
∏

i | bik>0

abik
i + ∏

i | bik<0

a−bik
i

)
j = k.

(12.7)

We use the standard convention that an empty product equals one. The variables a j are called

the cluster A-variables or the cluster A-coordinates.

Let us set

x j = ∏
i

a
bi j
i (12.8)

Under a mutation at a vertex vk the variables x j transform as

x′j =





x j

(
1+ x

−sign(bk j)

k

)−bk j
j 6= k,

1
xk

j = k.
(12.9)

The variables x j are called the cluster X -variables or the cluster X -coordinates [323].

Exercise 102: Derive the transformation in eq. (12.9) from eq. (12.8), eq. (12.7) and eq. (12.6).

Let’s look at an example. We start with the quiver shown in the left picture of fig. 12.1. The

quiver has four vertices. The (4×4)-matrix B of the quiver Q reads

B =




0 1 0 −1

−1 0 1 0

0 −1 0 1

1 0 −1 0


 . (12.10)

We consider the mutation at the vertex v2. We obtain the mutated quiver Q′ shown in the right

picture of fig. 12.1. In Q′ the orientation of all edges incident to v2 is reversed. As the original

quiver Q contains the edges v1 → v2 → v3, there is a new edge with the orientation v1 → v3

(according to rule 1). The matrix B′ associated to Q′ reads

B′ =




0 −1 1 −1

1 0 −1 0

−1 1 0 1

1 0 −1 0


 . (12.11)
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v1

v2 v3

v4

Q

v2−−−−→

v1

v2 v3

v4

Q′

Figure 12.1: The left picture shows the original quiver Q, the right picture the quiver Q′ obtained

through a mutation at the vertex v2.

If we assign the variables (a1,a2,a3,a4) to the vertices (v1,v2,v3,v4) of the original quiver Q,

the mutated variables (a′1,a
′
2,a
′
3,a
′
4) are

a′1 = a1, a′2 =
a1 +a3

a2
, a′3 = a3, a′4 = a4. (12.12)

The X -variables of the original quiver Q are given by

x1 =
a4

a2
, x2 =

a1

a3
, x3 =

a2

a4
, x4 =

a3

a1
, (12.13)

the X -variables of the mutated quiver Q′ are given by

x′1 = x1 (1+ x2) =
a′2a′4
a′3

=
(a1 +a3)a4

a2a3
,

x′2 =
1

x2
=

a′3
a′1

=
a3

a1
,

x′3 =
x2x3

1+ x2
=

a′1
a′2a′4

=
a1a2

(a1 +a3)a4
,

x′4 = x4 =
a′3
a′1

=
a3

a1
. (12.14)

12.2 Cluster algebras without coefficients

We start with the simplest cluster algebras: Cluster algebras obtained from a quiver and without

coefficients.

A seed is pair (Q,a), where Q is a finite quiver without self-loops and two-cycles and a =
{a1, . . . ,ar} a set of variables. The number r equals the number of vertices of the quiver: r = |V |.
The set a = {a1, . . . ,ar} is a set of cluster A-variables.

We assume the variables a1, . . . ,ar to be independent, hence they generate the field of rational

functions Q(a1, . . . ,ar).
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v1 v2

a1 a2

v1−→
v1 v2

1+a2

a1

a2

v2−→
v1 v2

1+a2

a1

1+a1+a2

a1a2

v1−→
v1 v2

1+a1

a2

1+a1+a2

a1a2

v2−→
v1 v2

1+a1

a2

a1

v1−→
v1 v2

a2 a1

Figure 12.2: The A2-cluster algebra.

Let (Q′,a′) be a pair obtained through a sequence of mutations from the original seed (Q,a)
(where a mutation transforms the a j’s according to eq. (12.7)).

We call any a′ so obtained (including the original a) the clusters with respect to Q. We

call the union of all variables a′j of all clusters the cluster variables. Finally, we define the

cluster algebra AQ to be the Q-subalgebra of the field Q(a1, . . . ,ar) generated by all the cluster

variables. The cluster algebra is said to be of finite type, if the number of cluster variables is

finite. Fomin and Zelevinsky [306, 307] have classified all cluster algebras of finite type. A

cluster algebra AQ generated by the seed (Q,a) is of finite type if Q is mutation equivalent to

an orientation of a simply laced Dynkin diagram (i.e. a Dynkin diagram of type ADE). Dynkin

diagrams are reviewed in appendix D.

Let us look at an example. Fig. 12.2 shows the A2-cluster algebra. We start with the seed

shown on the left. The quiver has two vertices, and we may either mutate at the vertex v1 or the

vertex v2. The mutations of the quiver are not too interesting: Independently of which vertex

we choose, the mutation of the quiver has just the arrow reversed. The mutation of the cluster

variables is more interesting: Performing mutations alternating at the vertices v1 and v2, we

obtain the sequence shown in fig. 12.2. We may easily verify that any other mutation reproduces

a seed already shown in fig. 12.2. There are only a finite number of possibilities to verify. The

cluster variables are therefore

a1,a2,
1+a1

a2
,
1+a2

a1
,
1+a1 +a2

a1a2
. (12.15)

This is a finite set and the A2-cluster algebra is therefore of finite type. The A2-cluster algebra is

the algebra

Q

[
a1,a2,

1+a1

a2
,
1+a2

a1
,
1+a1 +a2

a1a2

]
. (12.16)

12.3 Cluster algebras with coefficients

In this section we introduce cluster algebras with coefficients.

Let 1≤ r ≤ s be integers. An ice quiver is a quiver with vertex set

V = {v1, . . . ,vr,vr+1, . . . ,vs} (12.17)
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v1
v2

v3

v4

v5v6v7

Q

v1−−−−→ v1
v2

v3

v4

v5v6v7

Q′

Figure 12.3: The left picture shows an ice quiver Q with two unfrozen vertices (v1,v2) and four

frozen vertices (v3,v4,v5,v6). The mutation at vertex v1 gives the ice quiver Q′, shown in the

right picture. The principal parts of Q and Q′ are drawn in red.

such that there are no edges between vertices vi and v j if i > r and j > r. The vertices vr+1, . . . ,vs

are called frozen vertices. The principal part of Q is the subquiver consisting of the vertices

v1, . . . ,vr and all the oriented edges between them. For an ice quiver we only allow mutations at

vertices vk with k ≤ r. In addition, in a mutation no arrows are drawn between vertices vi and v j

if i > r and j > r.

To an ice quiver we associate a (s×r)-matrix B̃ with entries bi j. The entry bi j (with 1≤ i≤ s
and 1 ≤ j ≤ r) is given as before: The number of edges, which have vi as source and v j as sink

minus the number of edges, which have vi as sink and v j as source. The matrix B̃ is called the

extended exchange matrix. Under a mutation the entries bi j transform as in eq. (12.6).

The (r× r)-submatrix B with entries bi j with 1≤ i, j ≤ r is called – as before – the exchange

matrix. B is also the exchange matrix of the principal part of Q.

In the initial seed we associate the variables

{a1, . . . ,ar,ar+1, . . . ,as} (12.18)

with the vertices {v1, . . . ,vr,vr+1, . . . ,vs}. We call a1, . . . ,ar the cluster variables, a1, . . . ,ar,

ar+1, . . . ,as the extended cluster variables and ar+1, . . . ,as the coefficients. Under a mutation

the extended cluster variables transform as in eq. (12.6). Note that the coefficients ar+1, . . . ,as

do not change under mutations.

For 1≤ j ≤ r we define the cluster X -variables as in eq. (12.8). They transform under muta-

tions as in eq. (12.9). Note that there are no cluster X -variables with indices r+1, . . . ,s.

The cluster algebra of an ice quiver is the subalgebra of Q(a1, . . . ,ar,ar+1, . . . ,as) generated

by the extended cluster variables. The type of a cluster algebra with coefficients is the type

of the cluster algebra generated by the principal part of the seed. Thus a cluster algebra with

coefficients is of finite type, if its principal part is of finite type.

Fig. 12.3 shows an example. It is standard practice to draw frozen vertices as boxes. The

left picture of fig. 12.3 shows an ice quiver with two unfrozen vertices and four frozen vertices.

A mutation at the vertex v1 will produce the quiver Q′ shown in the right picture of fig. 12.3.

The principal part of Q consists of two vertices and one edge shown in red in the left picture of
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fig. 12.3. The cluster algebra generated by Q corresponds to a A2-cluster algebra with coeffi-

cients.

Exercise 103: Determine the cluster A-variables for the ice quiver Q′ of fig. 12.3 in terms of the cluster
variables of the ice quiver Q.

Exercise 104: Mutate the ice quiver Q′ of fig. 12.3 at the vertex v2 to obtain an ice quiver Q′′. De-
termine the cluster A-variables for the ice quiver Q′′ in terms of the cluster variables of the ice quiver
Q.

12.4 Cluster algebras from anti-symmetrisable matrices

In order to arrive at a classification of all cluster algebras of finite type we need one more gener-

alisation: Up to now we discussed cluster algebras in terms of quivers: Quivers without frozen

vertices for cluster algebras without coefficients and ice quivers for cluster algebras with coeffi-

cients. Instead of quivers we could have used the exchange matrix B (for cluster algebras without

coefficients) or the extended exchange matrix B̃ (for cluster algebras with coefficients). Up to

now the exchange matrix B was always an anti-symmetric (r× r)-matrix

B = −BT . (12.19)

We now relax this condition. We no longer require that B is anti-symmetric, but only that B is

anti-symmetrisable.

A (r× r)-matrix B is called anti-symmetrisable if there is a diagonal (r× r)-matrix D with

positive integers on the diagonal, such that D ·B is anti-symmetric: D ·B = −BT D. Let D =
diag(d1, . . . ,dr). An anti-symmetrisable matrix satisfies

dibi j = −d jb ji. (12.20)

Example: The matrix

B =

(
0 −1

2 0

)
(12.21)

is not anti-symmetric. However, it is anti-symmetrisable:

(
2 0

0 1

)(
0 −1

2 0

)
=

(
0 −2

2 0

)
. (12.22)

This generalisation allows us to include cluster algebras, which correspond to non-simply laced

Dynkin diagrams (i.e. Dynkin diagrams of type B, C, F or G).

We now start from an extended exchange matrix B̃ of dimension (s× r), such that the associ-

ated exchange matrix B (i.e. the (r×r)-submatrix B) is anti-symmetrisable and a set {a1, . . . ,as}
of extended cluster A-variables. The first r variables {a1, . . . ,ar} are the cluster A-variables, the
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remaining (s− r) variables ar+1, . . . ,as are the coefficients. Under a mutation the extended ex-

change matrix transforms as in eq. (12.6). The cluster A-variables transform as in eq. (12.7), the

coefficients do not change. For 1≤ j≤ r we may define cluster X -variables as in eq. (12.8). They

transform as in eq. (12.9). The cluster algebra is the subalgebra of Q(a1, . . . ,ar,ar+1, . . . ,as) gen-

erated by the extended cluster variables.

In order to state the theorem on the classification of cluster algebras of finite type, we need

a little bit more terminology to establish the relation with Dynkin diagrams. A (r× r)-matrix A
with integer entries is called a symmetrisable generalised Cartan matrix if

1. all diagonal entries of A are equal to 2,

2. all off-diagonal entries of A are non-positive,

3. there exists a diagonal matrix D with positive diagonal entries such that the matrix D ·A is

symmetric.

A symmetrisable generalised Cartan matrix is called positive, if D ·A is positive definite. This is

equivalent to the positivity of all principal minors |A[I]|, where I denotes the rows and columns

to be deleted. Now let us choose I as the subset of (r− 2) elements, which leaves the i-th and

j-th row and column undeleted. For a positive symmetrisable generalised Cartan matrix we then

have

det

(
2 ai j

a ji 2

)
> 0, (12.23)

or equivalently

ai ja ji ≤ 3. (12.24)

A positive symmetrisable generalised Cartan matrix is called a Cartan matrix of finite type.

A symmetrisable generalised Cartan matrix is called a decomposable, if by a simultane-

ous permutation of rows and columns it can be transformed to a block-diagonal matrix with at

least two blocks. Otherwise it is called indecomposable. The indecomposable Cartan matrices

of finite type can be classified into four families (An, Bn, Cn and Dn) and a finite number of

exceptional cases (E6, E7, E8, F4 and G2). We review this classification in appendix D. The inde-

composable Cartan matrices of finite type are in one-to-one correspondence with the respective

Dynkin diagrams. Given a Dynkin diagram with r vertices, we obtain the corresponding r× r-

Cartan matrix as follows: The entries of the Cartan matrix on the diagonal are aii = 2 (this is fixed

by the definition of a symmetrisable generalised Cartan matrix). The off-diagonal entries ai j are

zero, unless the vertices i and j are connected in the Dynkin diagram. If they are connected in

the Dynkin diagram, they may be connected by one line, two lines or three lines. In the last two

cases there will be in addition an arrow in the Dynkin diagram. We have:

one line i j ai j = −1, a ji = −1,

two lines i j ai j = −1, a ji = −2,

three lines i j ai j = −1, a ji = −3,
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Let B be an anti-symmetrisable (r× r)-matrix with integer entries. We associate to B a (r× r)-
symmetrisable generalised Cartan matrix A(B) with entries ai j as follows:

ai j =

{
2, if i = j,

−
∣∣bi j
∣∣ , if i 6= j.

(12.25)

We may now state the classification theorem for cluster algebras of finite type [307, 309]:

Classification of cluster algebras of finite type:

Theorem 15. A cluster algebra is of finite type, if and only if it contains an exchange
matrix B such that A(B) is a Cartan matrix of finite type.

Please note that Dynkin diagrams and quivers are different objects. This is best seen by an

example: The Dynkin diagram of type B2 corresponds to the exchange matrices B

1 2 ⇒ B = ±
(

0 −1

2 0

)
, (12.26)

whereas the quiver Q, shown below, corresponds to the exchange matrix B′

1 2 ⇒ B′ =

(
0 2

−2 0

)
. (12.27)

The former generates a cluster algebra of finite type, the latter does not.

Exercise 105: The B2-cluster algebra: Determine the cluster variables from the initial seed

B =

(
0 −1

2 0

)
, a = (a1,a2) . (12.28)

12.5 The relation of cluster algebras to Feynman integrals

Let us now explore the relation of cluster algebras to Feynman integrals. In this section we

denote the kinematic variables of a Feynman integrals by x, the cluster A-variables by a. In order

to avoid a conflict of notation we will denote in this section cluster X -coordinates by x̃.

We define polylogarithmic cluster functions of weight w as follows [315]: Let us assume that

the cluster A-variables a (or the cluster X -variables x̃) are functions of the kinematic variables x.

Polylogarithmic cluster functions of weight 0 are constants, a polylogarithmic cluster functions

f (w) of weight w has a differential of the form

d f (w) = ∑
j

f (w−1)
j d lna j, (12.29)
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where the a j’s are cluster A-variables and the f (w−1)
j ’s are polylogarithmic cluster functions of

weight (w− 1). A similar definition applies by substituting the cluster A-variables with cluster

X -variables.

Let us now return to the one-loop box integral with one external mass and vanishing internal

masses from the introductory remarks of this chapter. The four master integrals I′1, I′2, I′3 and I′4
(defined in eq. (6.73)) can be expressed in terms of multiple polylogarithms with the five-letter

alphabet

x1, x2, x1−1, x2−1, x1 + x2−1. (12.30)

Furthermore, the term I( j)
i
′ appearing in the ε-expansion at order j

I′i =
∞

∑
j=0

I( j)
i
′ (12.31)

is of uniform weight j. Setting

a1 = −x1, a2 = −x2 (12.32)

shows that I( j)
i
′ is a polylogarithmic cluster functions of weight j for the A2-cluster algebra

(compare with fig. 12.2). We set

a1 = a1, a2 = a2, a3 =
1+a2

a1
, a4 =

1+a1 +a2

a1a2
, a5 =

1+a1

a2
. (12.33)

Let us take the definition of ω1-ω5 from eq. (6.77). We have

ω1 = d ln(x1) = d ln(a1) , (12.34)

ω2 = d ln(x1−1) = d ln(1+a1) = d ln(a2)+d ln(a5) ,

ω3 = d ln(x2) = d ln(a2) ,

ω4 = d ln(x2−1) = d ln(1+a2) = d ln(a1)+d ln(a3) ,

ω5 = d ln(x1 + x2−1) = d ln(1+a1 +a2) = d ln(a1)+d ln(a2)+d ln(a4) .

Let us now go to higher loops, keeping the same external kinematic. The planar and non-planar

double box integrals are known [192, 324], as well as the planar triple box [325]. These can be

expressed as multiple polylogarithms with a six-letter alphabet

x1, x2, x1−1, x2−1, x1 + x2−1, x1 + x2. (12.35)

The sixth letter (x1 + x2) is not present in the one-loop case. We may again relate this alphabet

to a cluster algebra. We need a cluster algebra with six cluster variables. The B2-cluster algebra

discussed in exercise 105 has six cluster variables:

a1, a2, a3 =
1+a2

2

a1
, a4 =

1+a1 +a2
2

a1a2
, a5 =

1+2a1 +a2
1 +a2

2

a1a2
2

, a6 =
1+a1

a2
.

(12.36)
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Setting [320]

x1 = − a2
2

1+a1
, x2 = −1+a1 +a2

2

a1 (1+a1)
(12.37)

allows us to express these Feynman integrals to all order in ε as polylogarithmic cluster functions.

In detail we have

ω1 = d ln(x1) = d ln(a2)−d ln(a6) ,

ω2 = d ln(x1−1) = d ln(a1)+d ln(a4)−d ln(a6) ,

ω3 = d ln(x2) = d ln(a4)−d ln(a6) ,

ω4 = d ln(x2−1) = d ln(a2)+d ln(a5)−d ln(a6) ,

ω5 = d ln(x1 + x2−1) = d ln(a2)+d ln(a4) ,

ω6 = d ln(x1 + x2) = d ln(a3) . (12.38)
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Chapter 13

Elliptic curves

Up to now we discussed mainly Feynman integrals, which can expressed in terms of multiple

polylogarithms. Multiple polylogarithms are an important class of functions for Feynman inte-

grals, but not every Feynman integral can be expressed in terms of multiple polylogarithms. We

have already encountered one example: The two-loop sunrise integral with equal internal masses,

discussed as example 4 in section 6.3.1, is not expressible in terms of multiple polylogarithms.

This Feynman integral is related to an elliptic curve. We will see that by a suitable fibre trans-

formation and by a suitable base transformation we may nevertheless transform the differential

equation for this Feynman integral into the ε-form of eq. (6.92). The solution is then again given

as iterated integrals, in this specific case as iterated integrals of modular forms.

We call the Feynman integrals treated in this chapter “elliptic Feynman integrals”. As a

rough guide, elliptic Feynman integrals are the next-to-easiest Feynman integrals, with Feynman

integrals evaluating to multiple polylogarithms being the easiest Feynman integrals. Of course,

there are also more complicated Feynman integrals beyond these two categories [326–330].

In this chapter we will study elliptic functions, elliptic curves, modular transformations and

the moduli space of a genus one curve with n marked points.

Textbooks on elliptic curves are Du Val [331] and Silverman [332], textbooks on modular

forms are Stein [333], Miyake [334], Diamond and Shurman [335] and Cohen and Strömberg

[336].

13.1 Algebraic curves

We start with the definition of an algebraic curve. As ground field we take the complex numbers

C. An algebraic curve in C2 is defined by the zero set of a polynomial P(x,y) in two variables x
and y:

P(x,y) = 0 (13.1)

It is more common to consider algebraic curves not in the affine space C2, but in the projective

space CP2. Let [x : y : z] be homogeneous coordinates of CP2. An algebraic curve in CP2 is

409



410 CHAPTER 13. ELLIPTIC CURVES

defined by the zero set of a homogeneous polynomial P(x,y,z) in the three variables x, y and z:

P(x,y,z) = 0 (13.2)

The requirement that P(x,y,z) is a homogeneous polynomial is necessary to have a well-defined

zero set on CP2.

We usually work in the chart z = 1. In this chart eq. (13.2) reduces to

P(x,y,1) = 0. (13.3)

If d is the degree of the polynomial P(x,y,z), the arithmetic genus of the algebraic curve is

given by

g =
1

2
(d−1)(d−2) . (13.4)

For a smooth curve the arithmetic genus equals the geometric genus, therefore just using “genus”

is unambiguous in the smooth case. Let’s look at an example: The equation

y2z− x3− xz2 = 0 (13.5)

defines a smooth algebraic curve of genus 1.

Let us now turn to elliptic curves: An elliptic curve over C is a smooth algebraic curve in

CP2 of genus one with one marked point. It is common practice to work in the chart z = 1 and

to take as the marked point the “point at infinity”. Eq. (13.5) reads in the chart z = 1

y2− x3− x = 0, (13.6)

The point at infinity, which is not contained in this chart, is given by [x : y : z] = [0 : 1 : 0].
Over the complex numbers C any elliptic curve can be cast into the Weierstrass normal

form. In the chart z = 1 the Weierstrass normal form reads

y2 = 4x3−g2x−g3. (13.7)

A second important example is to define an elliptic curve by a quartic polynomial in the chart

z = 1:

y2 = (x− x1)(x− x2)(x− x3)(x− x4) . (13.8)

If all roots of the quartic polynomial on the right-hand side are distinct, this defines a smooth

elliptic curve. (The attentive reader may ask, how this squares with the genus formula above. The

answer is that the elliptic curve in CP2 is not given by the homogenisation y2z2 = (x− x1z)(x−
x2z)(x−x3z)(x−x4z). The latter curve is singular at infinity. However, there is a smooth elliptic

curve, which in the chart z = 1 is isomorphic to the affine curve defined by eq. (13.8). )

As one complex dimension corresponds to two real dimensions, we may consider a smooth

algebraic curve (i.e. an object of complex dimension one) also as a real surface (i.e. an object

of real dimension two). The latter objects are called Riemann surfaces, as the real surface
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x

y

Figure 13.1: The left picture shows the real part of an elliptic curve in the Weierstrass normal

form y2 = 4x3−g2x−g3. The marked point is at infinity. The right part shows a real Riemann

surface of genus one with one marked point.

inherits the structure of a complex manifold. We may therefore view an elliptic curve either as

a complex one-dimensional smooth algebraic curve in CP2 with one marked point or as a real

Riemann surface of genus one with one marked point. This is shown in fig. 13.1. We get from

the complex algebraic curve to the real Riemann surface as follows: Let’s consider the curve

defined by eq. (13.8). We first note that for x /∈ {x1,x2,x3,x4} we have two possible values of y:

y = ±
√

(x− x1)(x− x2)(x− x3)(x− x4). (13.9)

We denote by [xi,x j] the line segment from xi to x j in the complex plane. We may define a single-

valued square root for x ∈ CP1\Cuts, where the cuts remove points between, say, x1 and x2 as

well as between x3 and x4:

Cuts = [x1,x2]∪ [x3,x4] (13.10)

For the other possible value of y we take a second copy of CP1\Cuts. The two cuts on each copy

can be deformed into circles. We then glue the two copies together along the circles originating

from the cuts. This gives the torus shown in fig. 13.1.

13.2 Elliptic functions and elliptic curves

Let us now turn to periodic functions and periods. In chapter 10 we already introduced the

advanced concepts of numerical periods, effective periods and abstract periods. We didn’t really

discuss where the topic of periods originated from. We will now close this gap and review

periodic functions of a single complex variable z.
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We consider a non-constant meromorphic function f of a complex variable z. A period ψ of

the function f is a constant such that for all z:

f (z+ψ) = f (z) (13.11)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ψ = 0 only),

• a simple lattice, generated by one period ψ : Λ = {nψ | n ∈ Z},

• a double lattice, generated by two periods ψ1,ψ2 with Im(ψ2/ψ1) 6= 0 :

Λ = {n1ψ1 +n2ψ2 | n1,n2 ∈ Z} . (13.12)

It is common practice to order these two periods such that Im(ψ2/ψ1)> 0.

There cannot be more possibilities: Assume that there is a third period ψ3, which is not an

element of the lattice Λ spanned by ψ1 and ψ2. In this case we may construct arbitrary small

periods as linear combinations of ψ1, ψ2 and ψ3 with integer coefficients. In the next step one

shows that this implies that the derivative of f (z) vanishes at any point z, hence f (z) is a constant.

This contradicts our assumption that f is a non-constant function.

An example for a singly periodic function is given by

exp(z) . (13.13)

In this case the simple lattice is generated by ψ = 2πi.
Double periodic functions are called elliptic functions. An example for a doubly periodic

function is given by Weierstrass’s ℘-function. Let Λ be the lattice generated by ψ1 and ψ2.

Then

℘(z) =
1

z2
+ ∑

ψ∈Λ\{0}

(
1

(z+ψ)2
− 1

ψ2

)
. (13.14)

℘(z) is periodic with periods ψ1 and ψ2. Weierstrass’s ℘-function is an even function, i.e.

℘(−z) =℘(z).
Of particular interest are also the corresponding inverse functions. These are in general mul-

tivalued functions. In the case of the exponential function x = exp(z), the inverse function is

given by

z = ln(x) . (13.15)

The inverse function to Weierstrass’s elliptic function x =℘(z) is an elliptic integral given by

z =

x∫

∞

dt√
4t3−g2t−g3

(13.16)
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with

g2 = 60 ∑
ψ∈Λ\{0}

1

ψ4
, g3 = 140 ∑

ψ∈Λ\{0}

1

ψ6
. (13.17)

Note that as ℘(−z) =℘(z),

z = −
x∫

∞

dt√
4t3−g2t−g3

(13.18)

is also an inverse function to x =℘(z). We may therefore choose any sign of the square root. In

this book we use the convention as in eq. (13.16) together with a branch cut of the square root

along the negative real axis.

Elliptic integrals:

The standard elliptic integrals are classified as complete or incomplete elliptic inte-

grals and as integrals of the first, second or third kind. The complete elliptic integrals

are

first kind: K (x) =

1∫

0

dt√
(1− t2)(1− x2t2)

,

second kind: E (x) =

1∫

0

dt

√
1− x2t2

√
1− t2

,

third kind: Π(v,x) =

1∫

0

dt

(1− vt2)
√

(1− t2)(1− x2t2)
. (13.19)

The incomplete elliptic integrals are

first kind: F (z,x) =

z∫

0

dt√
(1− t2)(1− x2t2)

,

second kind: E (z,x) =

z∫

0

dt

√
1− x2t2

√
1− t2

,

third kind: Π(v,z,x) =

z∫

0

dt

(1− vt2)
√
(1− t2)(1− x2t2)

. (13.20)

The complete elliptic integrals are a special case of the incomplete elliptic integrals and

obtained from the incomplete elliptic integrals by setting the variable z to one.
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γ1
γ2

Figure 13.2: A genus one Riemann surface, where the two independent cycles γ1 and γ2 are

indicated.

The classification of elliptic integrals as integrals of the first, second or third kind follows the

classification of Abelian differentials: An Abelian differential f (z)dz is called Abelian differ-

ential of the first kind, if f (z) is holomorphic. It is called an Abelian differential of the second

kind, if f (z) is meromorphic, but with all residues vanishing. It is called an Abelian differential

of the third kind, if f (z) is meromorphic with non-zero residues.

In C/Λ with coordinate z the differential dz is clearly an Abelian differential of the first kind.

Exercise 106: Consider the elliptic curve y2 = 4x3−g2x−g3 . Show that

dz =
dx

y
, (13.21)

where y =
√

4x3−g2x−g3. This shows that dx/y is a holomorphic differential.

So far we introduced elliptic curves and elliptic integrals. The link between the two is pro-

vided by the periods of an elliptic curve. An elliptic curve has one holomorphic differential

(i.e. one Abelian differential of the first kind). If we view the elliptic curve as a genus one Rie-

mann surface (i.e. a torus), we see that there are two independent cycles γ1 and γ2, as shown

in fig. 13.2. A period of an elliptic curve is the integral of the holomorphic differential along a

cycle. As there are two independent cycles, there are two independent periods. Let’s study this

for an elliptic curve in the Legendre form

y2 = x(x−1)(x−λ) , (13.22)

where λ is a parameter not equal to 0, 1 or infinity. We may think of the elliptic curve as two

copies of CP1\Cuts, where the cuts are between 0 and λ as well as between 1 and ∞. dx/y is the

holomorphic differential. Integrating between x = 0 and x = λ will give a half-period, integrating

from x = λ to x = 0 on the other side of the cut gives another half-period. In order to obtain two

periods, we choose two independent integration paths. (The integration between x = 0 and x = λ
will give a result proportional to the integration between x = 1 and x = ∞, therefore to obtain two

independent periods, the two integrations should have one integration boundary in common and

differ in the other integration boundary.) A possible choice for the two independent periods is

ψ1 = 2

λ∫

0

dx

y
= 4K

(√
λ
)
, ψ2 = 2

λ∫

1

dx

y
= 4iK

(√
1−λ

)
. (13.23)



13.2. ELLIPTIC FUNCTIONS AND ELLIPTIC CURVES 415

Exercise 107: Determine two independent periods for the elliptic curve defined by a quartic polynomial:

y2 = (x− x1)(x− x2)(x− x3)(x− x4) . (13.24)

From fig. 13.2 it is evident that the first homology group H1(E) of an elliptic curve E is iso-

morphic to Z×Z and generated by γ1 and γ2. The two periods are integrals of the holomorphic

differential dx/y along γ1 and γ2, respectively. We have dimH1(E) = 2 and it follows that also

the first cohomology group of an elliptic curve is two-dimensional. We already know that dx/y
is an element of the first de Rham cohomology group

dx

y
∈ H1

dR (E) . (13.25)

For the elliptic curve of eq. (13.22) we may take as a second generator

xdx

y
∈ H1

dR (E) . (13.26)

Integrating xdx/y over γ1 and γ2 defines the quasi-periods φ1 and φ2, respectively. We obtain

φ1 = 2

λ∫

0

xdx

y
= 4K

(√
λ
)
−4E

(√
λ
)
, φ2 = 2

λ∫

1

xdx

y
= 4iE

(√
1−λ

)
. (13.27)

The period matrix is defined by

P =

(
ψ1 ψ2

φ1 φ2

)
=

(
4K 4iK′

4K−4E 4iE ′

)
, (13.28)

where we used the abbreviations K =K(
√

λ), E =E(
√

λ), K′=K(
√

1−λ) and E ′=E(
√

1−λ).
The determinant of the period matrix is given by

detP = 8πi. (13.29)

This follows from the Legendre relation:

KE ′+EK′−KK′ =
π

2
. (13.30)

The elliptic curve y2 = x(x− 1)(x− λ) depends on a parameter λ, and so do the periods

ψ1(λ) and ψ2(λ). We may now ask: How do the periods change, if we change λ? The variation

is governed by a second-order differential equation: We have

[
4λ(1−λ)

d2

dλ2
+4(1−2λ)

d

dλ
−1

]
ψ j = 0, j = 1,2. (13.31)

The differential operator

4λ(1−λ)
d2

dλ2
+4(1−2λ)

d
dλ
−1 (13.32)
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Re z

Im z

ψ1

ψ2

Figure 13.3: C/Λ, where Λ is a double lattice generated by ψ1 and ψ2. Points inside the funda-

mental parallelogram correspond to points on the elliptic curve. A point outside the fundamental

parallelogram can always be shifted inside the fundamental parallelogram through the addition

of some lattice vector.

is called the Picard-Fuchs operator of the elliptic curve y2 = x(x−1)(x−λ).
There is a third possibility to represent an elliptic curve: We may also represent an elliptic

curve as C/Λ, where Λ is the double lattice generated by ψ1 and ψ2. This is shown in fig. 13.3.

Points, which differ by a lattice vector are considered to be equivalent. The different equivalence

classes are represented by the points inside the fundamental parallelogram, as shown in fig. 13.3.

They correspond to points on the elliptic curve. Before we go into the details, let us first remark

that this is not too surprising: If we start from the representation of an elliptic curve as a genus

one Riemann surface and cut open this surface along the two cycles γ1 and γ2 shown in fig. 13.2,

we obtain a parallelogram.

Let’s now fill in the technical detail: We would like to map a point on an elliptic curve,

defined by a polynomial P, to a point in C/Λ and vice versa. For simplicity we assume that the

elliptic curve is given in the Weierstrass normal form y2−4x3 +g2x+g3 = 0.

We start with the direction from the Weierstrass normal form to C/Λ: Given a point (x,y)
with y2−4x3 +g2x+g3 = 0 the corresponding point z ∈C/Λ is given by the incomplete elliptic

integral

z =

x∫

∞

dt√
4t3−g2t−g3

. (13.33)

Let’s now consider the reverse direction from z ∈ C/Λ to a point on the curve defined by the

Weierstrass normal form. Given a point z ∈ C/Λ the corresponding point (x,y) on y2− 4x3 +
g2x+g3 = 0 is given by

(x,y) =
(
℘(z) ,℘′ (z)

)
. (13.34)
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℘(z) denotes Weierstrass’s ℘-function.

Let us now introduce some additional notation and conventions: It is common practise to

normalise one period to one: (ψ2,ψ1)→ (τ,1), where

τ =
ψ2

ψ1
. (13.35)

In addition one requires Im(τ) > 0. This is always possible: If Im(τ) < 0 simply exchange

ψ1 and ψ2 and proceed as above. The possible values of τ lie therefore in the complex upper

half-plane, defined by

H = { τ ∈ C | Im(τ)> 0 } . (13.36)

Let us now consider an elliptic curve as being given by C/Λ, where Λ is a lattice. Two elliptic

curves E = C/Λ and E ′ = C/Λ′ are called isomorphic, if there is a complex number c such that

cΛ = Λ′. (13.37)

For example, the two elliptic curves defined by the lattices with the periods (ψ2,ψ1) and (τ,1) =
(ψ2/ψ1,1) are isomorphic. Two elliptic curves are isogenic, if there is a complex number c such

that

cΛ ⊂ Λ′, (13.38)

i.e. cΛ is a sub-lattice of Λ′.

13.2.1 Calculations with elliptic curves

Let us now turn to practicalities of doing calculations with elliptic curves. We consider the

generic quartic case

E : v2− (u−u1)(u−u2)(u−u3)(u−u4) = 0. (13.39)

where the roots u j may depend on variables x = (x1, . . . ,xNB):

u j = u j (x) , j ∈ {1,2,3,4}. (13.40)

In practical applications the x j’s will be the kinematic variables the Feynman integral depends

on. In eq. (13.39) we used the variables (u,v) instead of (x,y) to avoid a clash of notation with

the kinematic variables. In this section we consider an elliptic curve together with a fixed choice

of two independent periods ψ1,ψ2. In mathematical terms we are considering a framed elliptic

curve. In section 13.3 we will remove the framing and discuss arbitrary choices for the two

periods.

But let us now proceed and define a standard choice for the two periods: We set

U1 = (u3−u2)(u4−u1) , U2 = (u2−u1)(u4−u3) , U3 = (u3−u1)(u4−u2) . (13.41)
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Note that we have

U1 +U2 = U3. (13.42)

We define the modulus k and the complementary modulus k̄ of the elliptic curve E by

k2 =
U1

U3
, k̄2 = 1− k2 =

U2

U3
. (13.43)

Note that there are six possibilities of defining k2 (compare with exercise 107). Our standard

choice for the periods and quasi-periods is

ψ1 =
4K (k)

U
1
2

3

, ψ2 =
4iK

(
k̄
)

U
1
2

3

,

φ1 =
4 [K (k)−E (k)]

U
1
2

3

, φ2 =
4iE
(
k̄
)

U
1
2

3

. (13.44)

This defines the framing of the elliptic curve. The Legendre relation for the periods and the

quasi-periods reads

ψ1φ2−ψ2φ1 =
8πi

U3
. (13.45)

As in eq. (13.35) we define the modular parameter τ by

τ =
ψ2

ψ1
. (13.46)

In addition we define the nome q and the nome squared q̄ by

q = exp(iπτ) , q̄ = exp(2iπτ) . (13.47)

(In the literature the letter q is either used for the nome or the nome squared. In this book we

denote the nome by q and the nome squared by q̄. Obviously we have q̄ = q2. We will mainly

use the nome squared q̄.)

We assumed that the roots u1,u2,u3,u4 depend on the variables x = (x1, . . . ,xNB), hence also

the periods and quasi-periods will depend on x. We would like to know how the periods and

quasi-periods vary with x. The answer is provided by the following system of first-order differ-

ential equations

d

(
ψi

φi

)
=

(
−1

2
d lnU2

1
2
d ln U2

U1

−1
2
d ln U2

U3

1
2
d ln U2

U2
3

)(
ψi

φi

)
, i ∈ {1,2}, (13.48)

where d denotes the differential with respect to the variables x1, . . . ,xNB , e.g.

d f (x) =
NB

∑
j=1

(
∂ f

∂x j

)
dx j. (13.49)
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We further have

2πi dτ = d ln q̄ =
2πi

ψ2
1

4πi
U3

d ln
U2

U1
. (13.50)

In general, our base space is NB-dimensional (with coordinates x1, . . . ,xNB). Sometimes we want

to restrict to a one-dimensional subspace. To this aim consider a path γ : [0,1]→ CNB such that

xi = xi(λ), where the variable λ parametrises the path. For a path γ we may view the periods ψ1

and ψ2 as functions of the path variable λ. We may then write down a second-order Picard-Fuchs

equation for the variation of the periods along the path γ (as we did in eq. (13.31)):

[
d2

dλ2
+ p1,γ

d

dλ
+ p0,γ

]
ψi = 0, i ∈ {1,2}. (13.51)

The coefficients p1,γ and p0,γ are given by

p1,γ =
d

dλ
lnU3−

d

dλ
ln

(
d

dλ
ln

U2

U1

)
, (13.52)

p0,γ =
1

2

(
d

dλ
lnU1

)(
d

dλ
lnU2

)
− 1

2

(
d

dλ
U1

)(
d2

dλ2 U2

)
−
(

d2

dλ2U1

)(
d

dλ
U2

)

U1

(
d

dλ
U2

)
−U2

(
d

dλ
U1

)

+
1

4U3

[
1

U1

(
d

dλ
U1

)2

+
1

U2

(
d

dλ
U2

)2
]
.

This defines the Picard-Fuchs operator along the path γ:

Lγ =
d2

dλ2
+ p1,γ

d

dλ
+ p0,γ. (13.53)

Note that eq. (13.51) and eq. (13.53) follow from eq. (13.48) by restricting to γ and by eliminating

the quasi-periods φi.

The Wronskian of eq. (13.51) is defined by

Wγ = ψ1
d

dλ
ψ2−ψ2

d
dλ

ψ1, (13.54)

and given by

Wγ =
4πi

U3

d

dλ
ln

U2

U1
. (13.55)

We further have

d

dλ
Wγ = −p1,γWγ,

2πidτ =
2πi Wγ

ψ2
1

dλ. (13.56)
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Let us now consider a one-parameter family of elliptic curves, which we parametrise by a variable

x. This occurs, if either we just have one kinematic variable x (i.e. NB = 1) or if we restrict to

a one-dimensional subspace as above. The discussion from above (eqs. (13.51)-(13.56)) carries

over, with λ replaced by x.

In this situation we may want to perform a base transformation as in section 7.2 and change

variables from x to τ (or from x to q̄, the change from τ to q̄ is rather trivial). Eqs. (13.46) and

(13.47) gives us τ and q̄ as a function of x. From eq. (13.56) we have for the Jacobian of the

transformation

dτ

dx
=

W

ψ2
1

, (13.57)

where W denotes the Wronskian, defined as in eq. (13.54) and with λ replaced by x. However,

what we really need is not τ or q̄ as a function of x, but x as a function of τ or q̄. In this context it

is useful to know about the Jacobi theta functions and the Dedekind eta function.

Digression. Jacobi theta functions and Dedekind eta function

Dedekind’s eta function η(τ) is defined for τ ∈H by

η(τ) = e
iπτ
12

∞

∏
n=1

(
1− e2πinτ

)
. (13.58)

With q̄ = exp(2πiτ) this becomes

η(τ) = q̄
1
24

∞

∏
n=1

(1− q̄n) . (13.59)

We have

η(τ) =
∞

∑
n=−∞

(−1)n q̄
(6n−1)2

24 = q̄
1
24

{
1+

∞

∑
n=1

(−1)n
[
q̄

1
2 (3n−1)n + q̄

1
2 (3n+1)n

]}
. (13.60)

Dedekind’s eta function is related to the Jacobi theta function θ2 (defined below):

η(τ) =
1√
3

θ2

(π

6
, q̄

1
6

)
. (13.61)

Under modular transformations we have

η(τ+1) = e
2πi
24 η(τ) , η

(
−1

τ

)
= (−iτ)

1
2 η(τ) . (13.62)

Dedekind’s eta function is related to the modular discriminant ∆(τ) through

∆(τ) = (2πi)12 η(τ)24 . (13.63)
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Let us now turn to the Jacobi theta functions. For historical reasons, they are defined through the
nome q = exp(iπτ) and a variable z, which within the conventions of this book we later always
will rescale as z→ πz. But for the moment, we follow the standard (historical) notation. The
general theta function is defined for a,b ∈ R by

θ [a,b] (z,q) = θ [a,b] (z|τ) =
∞

∑
n=−∞

q(n+ 1
2 a)

2

e2i(n+ 1
2 a)(z− 1

2 πb). (13.64)

The theta function satisfies

4i
∂

∂τ
θ [a,b] (z|τ) = π

∂2

∂z2
θ [a,b] (z|τ) . (13.65)

For n ∈ Z we have

θ [a+2n,b](z|τ) = θ [a,b] (z|τ) , θ [a,b+2n](z|τ) = e−nπiaθ [a,b] (z|τ) . (13.66)

If a,b ∈ Z it is therefore sufficient to consider the four cases

θ1 (z,q) = θ [1,1] (z,q) , θ2 (z,q) = θ [1,0] (z,q) ,

θ3 (z,q) = θ [0,0] (z,q) , θ4 (z,q) = θ [0,1] (z,q) . (13.67)

Explicitly the four theta functions are defined by

θ1 (z,q) = θ1 (z|τ) = − i
∞

∑
n=−∞

(−1)n q(n+ 1
2)

2

ei(2n+1)z = 2
∞

∑
n=0

(−1)n q(n+ 1
2)

2

sin((2n+1)z) ,

θ2 (z,q) = θ2 (z|τ) =
∞

∑
n=−∞

q(n+ 1
2)

2

ei(2n+1)z = 2
∞

∑
n=0

q(n+ 1
2)

2

cos((2n+1)z) ,

θ3 (z,q) = θ3 (z|τ) =
∞

∑
n=−∞

qn2

e2inz = 1+2
∞

∑
n=1

qn2

cos(2nz) ,

θ4 (z,q) = θ4 (z|τ) =
∞

∑
n=−∞

(−1)n qn2

e2inz = 1+2
∞

∑
n=1

(−1)n qn2

cos(2nz) . (13.68)

The theta functions have a representation as infinite products:

θ1 (z,q) = 2q
1
4 sinz

∞

∏
n=1

(
1−q2n)(1−2q2n cos(2z)+q4n) ,

θ2 (z,q) = 2q
1
4 cosz

∞

∏
n=1

(
1−q2n)(1+2q2n cos(2z)+q4n) ,

θ3 (z,q) =
∞

∏
n=1

(
1−q2n)(1+2q2n−1 cos(2z)+q4n−2

)
,

θ4 (z,q) =
∞

∏
n=1

(
1−q2n)(1−2q2n−1 cos(2z)+q4n−2

)
. (13.69)
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The functions θ1 and θ2 are periodic in z with period 2π, the functions θ3 and θ4 are periodic in
z with period π.

θ1 (z+2π,q) = θ1 (z,q) , θ3 (z+π,q) = θ3 (z,q) ,

θ2 (z+2π,q) = θ2 (z,q) , θ4 (z+π,q) = θ4 (z,q) . (13.70)

πτ is a quasi-period of the theta functions with periodicity factor ±
(
qe2iz

)−1
:

θ1 (z+πτ,q) =−
(
qe2iz)−1

θ1 (z,q) , θ3 (z+πτ,q) =
(
qe2iz)−1

θ3 (z,q) ,

θ2 (z+πτ,q) =
(
qe2iz)−1

θ2 (z,q) , θ4 (z+πτ,q) =−
(
qe2iz)−1

θ4 (z,q) . (13.71)

A prime denotes the derivative with respect to the first variable z

θ′i (z,q) =
∂

∂z
θi (z,q) , i ∈ {1,2,3,4}. (13.72)

Useful relations are

θ′1 (0,q) = θ2 (0,q)θ3 (0,q)θ4 (0,q) ,

θ4
3 (0,q) = θ4

2 (0,q)+θ4
4 (0,q) . (13.73)

The theta functions can be used to express the modulus k, the complementary modulus k′, the
complete elliptic integral of the first kind K and the complete elliptic integral of the second kind
E as functions of the nome q:

k =
θ2

2 (0,q)

θ2
3 (0,q)

, k′ =
θ2

4 (0,q)

θ2
3 (0,q)

,

K =
π

2
θ2

3 (0,q) , E =
π

2

(
1− θ′′4 (0,q)

θ4
3 (0,q)θ4 (0,q)

)
θ2

3 (0,q) . (13.74)

We have the following relations with Dedekind’s eta function:

θ2 (0,q) = 2
η(2τ)2

η(τ)
, θ3 (0,q) =

η(τ)5

η
(

τ
2

)2
η(2τ)2

, θ4 (0,q) =
η
(

τ
2

)2

η(τ)
. (13.75)

Exercise 108: Express the modulus squared k2 and the complementary modulus squared k′2 as a quotient
of eta functions.

Equipped with the Jacobi theta functions and the Dedekind eta function we now return to our

original problem, expressing x as a function of τ or q̄. Let’s look at the modulus squared k2,

defined in eq. (13.43) for the elliptic curve E of eq. (13.39). On the one hand we have from

eq. (13.43)

k2 =
U1

U3
=

(u3−u2)(u4−u1)

(u3−u1)(u4−u2)
. (13.76)
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The right-hand side is a (known) function of x. On the other hand, we learned in exercise 108

that

k2 = 16
η
(

τ
2

)8
η(2τ)16

η(τ)24
. (13.77)

Here, the right-hand side has an expansion in q̄
1
2 (the square root originates from the argument

τ/2):

16
η
(

τ
2

)8
η(2τ)16

η(τ)24
= 16q̄

1
2 −128q̄+704q̄

3
2 −3072q̄2+11488q̄

5
2 +O

(
q̄3
)
. (13.78)

Thus

U1

U3
= 16

η
(

τ
2

)8
η(2τ)16

η(τ)24
. (13.79)

We may then solve eq. (13.79) for x as a power series in q̄N = q̄
1
N for an appropriate N. It is

usually possible with the help of computer algebra programs to obtain a large number of terms

of this power series. In a second step we try to find a closed form for this power series. There

are several heuristic methods how this can be done:

1. If we expect that the result should lie within a certain function space, we can start from an

ansatz with unknown coefficients and determine the coefficients by comparing sufficient

many terms in the power series.

2. If we expect that the result can be expressed as an eta quotient, we may use dedicated

computer programs to find this eta quotient [337].

3. We may use the “On-Line Encyclopedia of Integer Sequences” [338] by typing the first

few coefficients of the power series into the web interface.

Let us remark that the first method can be turned into a strict method by first proving that the

result must lie within a finite-dimensional function space. Once this is established, we know that

the result can be written as a finite linear combination of certain basis functions and it suffices to

determine the coefficients by comparing sufficient many terms in the power series.

Let us now look at an example: We consider a family of elliptic curves

E : v2−u(u+4)
[
u2 +2(1+ x)u+(1− x)2

]
= 0, (13.80)

depending on a parameter x. We denote the roots of the quartic polynomial in eq. (13.80) by

u1 = −4, u2 = −
(
1+
√

x
)2
, u3 = −

(
1−
√

x
)2
, u4 = 0. (13.81)
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We have

k2 =
U1

U3
=

16
√

x

(1+
√

x)3
(3−√x)

, (13.82)

and therefore

16
√

x

(1+
√

x)3
(3−√x)

= 16
η
(

τ
2

)8
η(2τ)16

η(τ)24
. (13.83)

We first solve this equation for
√

x as a power series in q̄2 = q̄
1
2 :

√
x = 3q̄2−6q̄3

2 +9q̄5
2−12q̄7

2 +21q̄9
2−36q̄11

2 +51q̄13
2 +O

(
q̄15

2

)
. (13.84)

Squaring the left-hand side and the right-hand side we obtain

x = 9q̄−36q̄2 +90q̄3−180q̄4 +351q̄5−684q̄6 +1260q̄7+O
(
q̄8
)
. (13.85)

In the last step we convert the power series to a closed form:

x = 9
η(τ)4 η(6τ)8

η(3τ)4 η(2τ)8
. (13.86)

We therefore obtained an expression for x as a function of τ (or q̄).

13.3 Modular transformations and modular forms

In the previous section we considered a framed elliptic curve, i.e. an elliptic curve together with

a fixed choice of periods ψ1 and ψ2, which generate the lattice Λ. In this section we investigate

the implications of our freedom of choice for the periods ψ1 and ψ2. This will lead us to modular

transformations.

We recall that we may represent an elliptic curve as C/Λ, where Λ is a double lattice gener-

ated by ψ1 and ψ2. As only the lattice Λ matters, but not the specific generators, we may consider

a different pair of periods (ψ′2,ψ
′
1), which generate the same lattice Λ. An example is shown in

fig. 13.4: The generators τ and 1 generate the same lattice as the generators τ′and 1.

Let’s return to the general case and consider a change of basis from the pair of periods

(ψ2,ψ1) to the pair of periods (ψ′2,ψ
′
1). The new pair of periods (ψ′2,ψ

′
1) is again a pair of

lattice vectors, so it can be written as
(

ψ′2
ψ′1

)
=

(
a b
c d

)(
ψ2

ψ1

)
, (13.87)

with a,b,c,d ∈ Z. The transformation should be invertible and (ψ2,ψ1) and (ψ′2,ψ
′
1) should

generate the same lattice Λ. This implies
(

a b
c d

)
∈ SL2 (Z) . (13.88)
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1

τ τ ′

Figure 13.4: The generators τ and 1 generate the same lattice as the generators τ′and 1.

The group SL2(Z) is called the modular group. It is generated by the two matrices

T =

(
1 1

0 1

)
and S =

(
0 −1

1 0

)
. (13.89)

In terms of τ and τ′ we have

τ′ =
aτ+b
cτ+d

. (13.90)

A transformation of the form as in eq. (13.90) is called a modular transformation.

We may then look at functions f (τ), which transform under modular transformations in a

particular way. This will lead us to modular forms. A meromorphic function f : H→ C is a

modular form of modular weight k for SL2(Z) if

1. f transforms under modular transformations as

f

(
aτ+b

cτ+d

)
= (cτ+d)k · f (τ) for γ =

(
a b
c d

)
∈ SL2(Z), (13.91)

2. f is holomorphic on H,

3. f is holomorphic at i∞.

The prefactor (cτ+d)k in eq. (13.91) is called automorphic factor and equals

(cτ+d)k =

(
ψ′1
ψ1

)k

. (13.92)

It is convenient to introduce the |kγ operator, defined by

( f |kγ)(τ) = (cτ+d)−k · f (γ(τ)). (13.93)

Exercise 109: Show that

( f |kγ1) |kγ2 = f |k (γ1γ2) . (13.94)
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With the help of the |kγ operator we may rewrite eq. (13.91) as

( f |kγ) = f for γ ∈ SL2(Z). (13.95)

A meromorphic function f : H → C, which only satisfies eq. (13.91) (or equivalently only

eq. (13.95)) is called weakly modular of weight k for SL2(Z). It is clear that f is weakly

modular of weight k for SL2(Z) if eq. (13.95) holds for the two generators of SL2(Z):

f (T (τ)) = f (τ+1) = f (τ) and f (S (τ)) = f

(−1

τ

)
= τk f (τ) . (13.96)

From the periodicity f (τ+1) = f (τ) and the holomorphicity at the cusp τ = i∞ it follows that a

modular form f (τ) of SL2(Z) has a q̄-expansion

f (τ) =
∞

∑
n=0

anq̄n with q̄ = e2πiτ. (13.97)

A modular form for SL2(Z) is called a cusp form of SL2(Z), if it vanishes at the cusp τ = i∞.

This is the case if a0 = 0 in the q̄-expansion of f (τ). The set of modular forms of weight k for

SL2(Z) is denoted by Mk(SL2(Z)), the set of cusp forms of weight k for SL2(Z) is denoted by

Sk(SL2(Z)).
Apart from SL2(Z) we may also look at congruence subgroups. The standard congruence

subgroups are defined by

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c≡ 0 mod N

}
,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, c≡ 0 mod N

}
,

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, b,c≡ 0 mod N

}
.

Γ(N) is called the principle congruence subgroup of level N. The principle congruence sub-

group Γ(N) is a normal subgroup of SL2(Z). In general, a subgroup Γ of SL2(Z) is called a

congruence subgroup, if there exists an N such that

Γ(N) ⊆ Γ. (13.98)

The smallest such N is called the level of the congruence subgroup.

We may now define modular forms for a congruence subgroup Γ, by relaxing the transfor-

mation law in eq. (13.91) to hold only for modular transformations from the subgroup Γ, plus

holomorphicity on H and at the cusps. In detail: A meromorphic function f :H→C is a modular

form of modular weight k for the congruence subgroup Γ if
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1. f transforms as

( f |kγ) = f for γ ∈ Γ, (13.99)

2. f is holomorphic on H,

3. f |kγ is holomorphic at i∞ for all γ ∈ SL2(Z).

Let Γ be a congruence subgroup of level N. Modular forms for Γ are invariant under τ′ = τ+N,

since

TN =

(
1 N
0 1

)
∈ Γ. (13.100)

In other words, they are periodic with period N: f (τ+N) = f (τ). Depending on Γ, there might

even be a smaller N′ with N′|N such that TN′ ∈ Γ. For example for Γ0(N) and Γ1(N) we have

(
1 1

0 1

)
∈ Γ0 (N) and

(
1 1

0 1

)
∈ Γ1 (N) . (13.101)

Let now N′ be the smallest positive integer such that TN′ ∈ Γ. It follows that modular forms for

Γ have a Fourier expansion in q̄N′ = q̄
1

N′ :

f (τ) =
∞

∑
n=0

anq̄n
N′ . (13.102)

We remark that eq. (13.101) implies that modular forms for Γ0(N) and Γ1(N) have a Fourier

expansion in q̄:

f (τ) =
∞

∑
n=0

anq̄n. (13.103)

In the following we will use frequently the notation

τN =
τ

N
, q̄N = e

2πiτ
N and therefore q̄N = exp(2πiτN) = q̄

1
N . (13.104)

A modular form f (τ) for Γ is called a cusp form, if a0 = 0 in the Fourier expansion of f |kγ for

all γ ∈ SL2(Z).
For a congruence subgroup Γ of SL2(Z) we denote by Mk(Γ) the space of modular forms

of weight k, and by Sk(Γ) the space of cusp forms of weight k. The space Mk(Γ) is a finite

dimensional C-vector space. Furthermore, Mk(Γ) is the direct sum of two finite dimensional

C-vector spaces: the space of cusp forms Sk(Γ) and the Eisenstein subspace Ek(Γ).
From the inclusions

Γ(N)⊆ Γ1(N)⊆ Γ0(N)⊆ SL2(Z) (13.105)
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follow the inclusions

Mk(SL2(Z))⊆Mk(Γ0(N))⊆Mk(Γ1(N))⊆Mk(Γ(N)). (13.106)

For a given N, the space Mk(Γ(N)) of modular forms of weight k for the principal congruence

subgroup Γ(N) is the largest one among the spaces listed in eq. (13.106). By definition we have

for f ∈Mk(Γ(N)) and γ ∈ Γ(N)

f |kγ = f , γ ∈ Γ(N). (13.107)

We may ask what happens if we transform by a γ ∈ SL2(Z), which does not belong to the con-

gruence subgroup Γ(N). One may show that in this case we have

f |kγ ∈Mk(Γ(N)), γ ∈ SL2(Z)\Γ(N), (13.108)

i.e. f |kγ is again a modular form of weight k for Γ(N), although not necessarily identical to f .

The proof relies on the fact that Γ(N) is a normal subgroup of SL2(Z). This is essential: If Γ is

a non-normal congruence subgroup of SL2(Z) one has in general f |kγ /∈Mk(Γ).

Exercise 110: Let f ∈Mk(Γ(N)) and γ ∈ SL2(Z)\Γ(N). Show that f |kγ ∈Mk(Γ(N)).

Let N′ be a divisor of N. We have

Γ0 (N)⊆ Γ0

(
N′
)
, Γ1 (N) ⊆ Γ1

(
N′
)
, Γ(N)⊆ Γ

(
N′
)
, (13.109)

and therefore

Mk
(
Γ0

(
N′
))
⊆Mk (Γ0 (N)) , Mk

(
Γ1

(
N′
))
⊆Mk (Γ1 (N)) , Mk

(
Γ
(
N′
))
⊆Mk (Γ(N)) .

(13.110)

In other words, a modular form f ∈Mk(Γ0(N)) is also a modular form for Γ0(K ·N) where K ∈N
(and similar for Γ1(N) and Γ(N)).

There is one more generalisation which we can do: We may consider for Γ0(N) modular

forms with a character χ. In appendix E we review in detail Dirichlet characters χ(n). In essence,

a Dirichlet character of modulus N is a function χ : Z→ C satisfying

(i) χ(n) = χ(n+N) ∀ n ∈ Z,

(ii) χ(n) = 0 if gcd(n,N)> 1,

χ(n) 6= 0 if gcd(n,N) = 1,

(iii) χ(nm) = χ(n)χ(m) ∀ n,m ∈ Z. (13.111)

Let N be a positive integer and let χ be a Dirichlet character modulo N. A meromorphic function

f : H→ C is a modular form of weight k for Γ0(N) with character χ if

1. f transforms as

f

(
aτ+b

cτ+d

)
= χ(d)(cτ+d)k f (τ) for

(
a b
c d

)
∈ Γ0(N), (13.112)
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2. f is holomorphic on H,

3. f |kγ is holomorphic at i∞ for all γ ∈ SL2(Z).

The space of modular forms of weight k and character χ for the congruence subgroup Γ0(N) is

denoted by Mk(N,χ), the associated space of cusp forms by Sk(N,χ) and the Eisenstein subspace

by Ek(N,χ).
Introducing modular forms with characters is useful due to the following theorem:

Theorem 16. The space Mk(Γ1(N)) is a direct sum of spaces of modular forms with characters:

Mk(Γ1(N)) =
⊕

χ

Mk(N,χ), (13.113)

where the sum runs over all Dirichlet characters modulo N. Similar decompositions hold for the
space of cusp forms and the Eisenstein subspaces:

Sk(Γ1(N)) =
⊕

χ

Sk(N,χ), Ek(Γ1(N)) =
⊕

χ

Ek(N,χ). (13.114)

The following exercise shows, why we only consider modular forms with characters for the

congruence subgroup Γ0(N) (and subgroups thereof):

Exercise 111: Let χ be a Dirichlet character with modulus N and f ∈Mk(N,χ). Let further γ1,γ2 ∈Γ0(N)
and set γ12 = γ1γ2. Show that

f (γ1 (γ2 (τ))) = f (γ12 (τ)) . (13.115)

We now introduce iterated integrals of modular forms. Let f1, . . . , fn be modular forms (for

SL2(Z) or some congruence subgroup Γ of level N). For a modular form f ∈Mk(Γ) of level N
let N′ be the smallest positive integer such that

(
1 N′

0 1

)
∈ Γ. (13.116)

We set

ωmodular ( f ) = 2πi f (τ)
dτ

N′
= 2πi f (τ)dτN′ = f (τ)

dq̄N′

q̄N′
. (13.117)

If the modular form f (τ) has the q̄N′-expansion

f (τ) =
∞

∑
n=0

anq̄n
N′ , (13.118)
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we have

ωmodular ( f ) =
∞

∑
n=0

anq̄n−1
N′ dq̄N′ . (13.119)

Let γ : [a,b]→H be a path with γ(a) = τ0 and γ(b) = τ. We set

I ( f1, . . . , fn;τ) = Iγ

(
ωmodular ( f1) , . . . ,ω

modular ( fn) ;b
)
, (13.120)

where the right-hand side refers to the general definition of an iterated integral given in eq. (6.140).

Explicitly

I ( f1, f2, . . . , fn;τ) =

(
2πi

N′

)n τ∫

τ0

dτ1 f1 (τ1)

τ1∫

τ0

dτ2 f2 (τ2)· · ·
τn−1∫

τ0

dτn fn (τn) . (13.121)

As base point we usually take τ0 = i∞. Please note that an integral over a modular form is in

general not a modular form. This is not surprising if we consider the following analogy: An

integral over a rational function is in general not a rational function.

We usually like iterated integrals appearing in solutions of Feynman integrals to have at worst

simple poles. Let’s study iterated integrals of modular forms. As modular forms are holomorphic

in the complex upper half-plane, there are no poles there. So the only interesting points are the

cusps. Let’s consider as an example modular forms f ∈ Mk(SL2(Z)), so the only cusp is at

τ = i∞. By definition a modular form f (τ) is holomorphic at the cusp and has a q̄-expansion

f (τ) = a0 +a1q̄+a2q̄2 + . . . , q̄ = exp(2πiτ). (13.122)

The transformation q̄ = exp(2πiτ) transforms the point τ = i∞ to q̄ = 0 and we have

2πi f (τ)dτ =
dq̄

q̄

(
a0 +a1q̄+a2q̄2 + . . .

)
. (13.123)

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at q̄ = 0.

13.3.1 Eisenstein series

In applications towards Feynman integrals we will need the q̄N′-expansions of modular forms.

A complete treatment is beyond the scope of this book and we refer the reader to textbooks on

modular forms [333–336].

We limit ourselves to the aspects most relevant to Feynman integrals. In this section we will

look at the q̄N′-expansions of modular forms spanning the Eisenstein subspace. We will study

Eisenstein series for SL2(Z), Γ1(N) and Γ(N).
The case of the full modular group SL2(Z) is rather simple and the main result is that any

modular form for SL2(Z) can be written as a polynomial in two Eisenstein series e4(τ) and e6(τ)
of modular weight 4 and 6, respectively.
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Eisenstein series for Γ1(N) appear in the simplest elliptic Feynman integrals. A basis for

Ek(Γ1(N)) can be given explicitly.

For a modular form f of a congruence subgroup Γ of level N we also would like to know

the transformation behaviour under γ ∈ SL2(Z)\Γ. We first note that by the definition of a

congruence subgroup we have f ∈Mk(Γ(N)). If in addition f ∈ Ek(Γ(N)) we may answer this

question explicitly.

Eisenstein series for SL2(Z)

The z-dependent Eisenstein series Ek(z,τ) are defined by

Ek (z,τ) = ∑e
(n1,n2)∈Z2

1

(z+n1 +n2τ)k
. (13.124)

The subscript e at the summation sign denotes the Eisenstein summation prescription defined by

∑e
(n1,n2)∈Z2

f (z+n1 +n2τ) = lim
N2→∞

N2

∑
n2=−N2

(
lim

N1→∞

N1

∑
n1=−N1

f (z+n1 +n2τ)

)
. (13.125)

The series in eq. (13.124) is absolutely convergent for k ≥ 3. For k = 1 and k = 2 the Eisenstein

summation depends on the choice of generators. One further sets

ek (τ) = ∑e
(n1,n2)∈Z2\(0,0)

1

(n1 +n2τ)k
. (13.126)

We have ek(τ) = 0 whenever k is odd. The q̄-expansions of the first few Eisenstein series are

e2 (τ) = 2(2πi)2

[
− 1

24
+ q̄+3q̄2 +4q̄3 +7q̄4 +6q̄5 +12q̄6

]
+O

(
q̄7
)
, (13.127)

e4 (τ) =
(2πi)4

3

[
1

240
+ q̄+9q̄2 +28q̄3 +73q̄4 +126q̄6

]
+O

(
q̄7
)
,

e6 (τ) =
(2πi)6

60

[
− 1

504
+ q̄+33q̄2 +244q̄3 +1057q̄4+3126q̄5 +8052q̄6

]
+O

(
q̄7
)
.

For k≥ 4 the Eisenstein series ek(τ) are modular forms of Mk(SL2(Z)). The space Mk(SL2(Z))
has a basis of the form

(e4 (τ))
ν4 (e6 (τ))

ν6 , (13.128)

where ν4 and ν6 run over all non-negative integers with 4ν4 +6ν6 = k.

As an example, let us give the cusp form of modular weight 12 for SL2(Z):

∆(τ) = (2πi)12 η(τ)24 = 10800
(

20(e4 (τ))
3−49(e6 (τ))

2
)
. (13.129)
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Note that e2(τ) is not a modular form. Under modular transformations e2(τ) transforms as

e2

(
aτ+b

cτ+d

)
= (cτ+d)2 e2 (τ)−2πic(cτ+d) . (13.130)

Modularity is spoiled by the second term on the right-hand side.

Exercise 112: Consider

f (τ) = e2 (τ)−2e2 (2τ) (13.131)

and work out the transformation properties under γ ∈ Γ0(2).

Eisenstein series for Γ1(N)

Let Γ be a congruence subgroup of SL2(Z). By definition there exists an N, such that

Γ(N) ⊆ Γ. (13.132)

This implies

Mk (Γ) ⊆ Mk (Γ(N)) (13.133)

and this reduces in a first step the study of modular forms for an arbitrary congruence subgroup

Γ to the study of modular forms of the principal congruence subgroup Γ(N). Now let η(τ) ∈
Mk(Γ(N)). Then [334]

η(Nτ) ∈ Mk
(
Γ1

(
N2
))

, (13.134)

which reduces in a second step the study of modular forms for an arbitrary congruence subgroup

Γ to the study of modular forms of the congruence subgroup Γ1 (N).
Let us therefore consider modular forms for the congruence subgroups Γ1(N), and here in

particular the Eisenstein subspace Ek(Γ1(N)). Let us first note that

T1 =

(
1 1

0 1

)
∈ Γ1 (N) , (13.135)

and therefore the modular forms f ∈Mk(Γ1(N)) have an expansion in q̄. From eq. (13.114) we

know that Ek(Γ1(N)) decomposes into Eisenstein spaces Ek(N,χ).

Ek(Γ1(N)) =
⊕

χ

Ek(N,χ). (13.136)

A basis for the Eisenstein subspace Ek(N,χ) can be given explicitly. To this aim we first define

generalised Eisenstein series. Let χa and χb be primitive Dirichlet characters with conductors

da and db, respectively. We set

Ek (τ,χa,χb) = a0 +
∞

∑
n=1

(
∑
d|n

χa(n/d) ·χb(d) ·dk−1

)
q̄n, (13.137)
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The normalisation is such that the coefficient of q̄ is one. The constant term a0 is given by

a0 =

{
−Bk,χb

2k , if da = 1,

0, if da > 1.
(13.138)

Note that the constant term a0 depends on χa and χb. The generalised Bernoulli numbers Bk,χb

are defined by

db

∑
n=1

χb(n)
xenx

edbx−1
=

∞

∑
k=0

Bk,χb

xk

k!
. (13.139)

Note that in the case of the trivial character χb = 1, eq. (13.139) reduces to

xex

ex−1
=

∞

∑
k=0

Bk,1
xk

k!
, (13.140)

yielding B1,1 = 1/2. The ordinary Bernoulli numbers Bk are generated by x/(ex−1) (i.e. without

an extra factor ex in the numerator) and yield B1 =−1/2.

Let now χa, χb and k be such that

χa (−1)χb (−1) = (−1)k
(13.141)

and if k = 1 one requires in addition

χa (−1) = 1, χb (−1) = −1. (13.142)

Let K be a positive integer. We then set

Ek,K (τ,χa,χb) =

{
Ek (Kτ,χa,χb) , (k,χa,χb) 6= (2,1,1), K ≥ 1,
E2 (τ,1,1)−KE2 (Kτ,1,1) , (k,χa,χb) = (2,1,1), K > 1.

(13.143)

Let N be an integer multiple of (K ·da ·db). Then Ek,K(τ,χa,χb) is a modular form for Γ1(N) of

modular weight k and level N:

Ek,K (τ,χa,χb) ∈ Ek(Γ1(N)), (K ·da ·db) | N. (13.144)

In more detail we have that for (k,χa,χb) 6= (2,1,1)

Ek,K (τ,χa,χb) ∈ Ek(N, χ̃), (13.145)

where χ̃ is the Dirichlet character with modulus N induced by χaχb. Furthermore, for (k,χa,χb)=
(2,1,1) and K > 1 we have

Ek,K (τ,χa,χb) ∈ Ek(N, 1̃) = Ek(Γ0(N)). (13.146)
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Theorem 17. Let (K · da · db) be a divisor of N. The Ek,K(τ,χa,χb) subject to the conditions
outlined above (eqs. (13.141) - (13.142)) form a basis of Ek(N, χ̃), where χ̃ is the Dirichlet
character with modulus N induced by χaχb.

Of particular interest are characters which are obtained from the Kronecker symbol. These

characters take the values {−1,0,1}. In general, the value of a Dirichlet character is a root of

unity or zero. The restriction to Dirichlet characters obtained from the Kronecker symbol has

the advantage that the q̄-expansion of the Eisenstein series can be computed within the rational

numbers.

Let a be an integer, which is either one or the discriminant of a quadratic field. In ap-

pendix E.9 we give a criteria for a being the discriminant of a quadratic field. The Kronecker

symbol, also defined in appendix E.9, then defines a primitive Dirichlet character

χa (n) =
(a

n

)
(13.147)

of conductor |a|. Let a and b be integers, which are either one or the discriminant of a quadratic

field. For

χa (n) =
(a

n

)
, χb (n) =

(
b
n

)
(13.148)

we introduce the short-hand notations

Ek,a,b (τ) = Ek (τ,χa,χb)

Ek,a,b,K (τ) = Ek,K (τ,χa,χb) . (13.149)

These Eisenstein series have a q̄-expansion with rational coefficients.

Remark: For k even and k ≥ 4 the relation between the Eisenstein series ek(τ) defined in

eq. (13.126) and the Eisenstein series with a trivial character is

ek (τ) = 2
(2πi)k

(k−1)!
Ek,1,1 (τ) . (13.150)

Eisenstein series for Γ(N)

Let r,s be integers with 0≤ r,s < N. Following [339, 340] we set

hk,N,r,s (τ) =
∞

∑
n=1

anq̄n
N. (13.151)

For n≥ 1 the coefficients are given by

an =
1

2Nk ∑
d|n

N−1

∑
c1=0

dk−1
[
e

2πi
N (r n

d−(s−d)c1) +(−1)k e−
2πi
N (r n

d−(s+d)c1)
]
. (13.152)



13.3. MODULAR TRANSFORMATIONS AND MODULAR FORMS 435

The constant term is given for k ≥ 2 by

a0 = − 1

2k
Bk

( s

N

)
, (13.153)

where Bk(x) is the k’th Bernoulli polynomial defined by

text

et −1
=

∞

∑
k=0

Bk (x)

k!
tk. (13.154)

For k = 1 the constant term is given by

a0 =





1
4
− s

2N , s 6= 0,
0, (r,s) = (0,0),
i
4

cot
(

r
N π
)
, otherwise.

(13.155)

We have

hk,N,r,s (τ) =
1

2

(k−1)!

(2πi)k ∑e
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

(n1 +n2τ)k . (13.156)

Exercise 113: Show eq. (13.156).

The normalisation is compatible with the normalisation of the previous subsection. For example

we have

hk,1,0,0 (τ) = Ek,1,1 (τ) . (13.157)

With the exception of (k,r,s) 6= (2,0,0) the hk,N,r,s(τ) are Eisenstein series for Γ(N):

hk,N,r,s (τ) ∈ Ek (Γ(N)) . (13.158)

For (k,N,r,s) = (2,1,0,0) we have

h2,1,0,0 (τ) = E2,1,1 (τ) =
1

2(2πi)2
e2 (τ) , (13.159)

which is not a modular form.

The most important property of the Eisenstein series hk,N,r,s(τ) is their transformation be-

haviour under the full modular group: The Eisenstein series hk,N,r,s(τ) transform under modular

transformations

γ =

(
a b
c d

)
∈ SL2 (Z) (13.160)

of the full modular group SL2(Z) as

hk,N,r,s

(
aτ+b

cτ+d

)
= (cτ+d)k hk,N,(rd+sb) mod N,(rc+sa) mod N (τ) , (13.161)

or equivalently with the help of the |kγ operator
(
hk,N,r,s|kγ

)
(τ) = hk,N,(rd+sb) mod N,(rc+sa) mod N (τ) . (13.162)

Exercise 114: Prove eq. (13.162) for the case k ≥ 3.
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13.3.2 The modular lambda function and Klein’s j-invariant

In eq. (13.77) we have seen that

k2 = 16
η
(

τ
2

)8
η(2τ)16

η(τ)24
. (13.163)

The right-hand side defines a function of τ, called the modular lambda function:

λ(τ) = 16
η
(

τ
2

)8
η(2τ)16

η(τ)24
. (13.164)

The function λ(τ) is invariant under Γ(2). The congruence subgroup Γ(2) is generated by

(
1 2

0 1

)
,

(
1 0

2 1

)
,

(
−1 0

0 −1

)
. (13.165)

Thus λ(τ) is invariant under

τ′ = τ+2, and τ′ =
τ

1+2τ
. (13.166)

Under the generators of SL2(Z) the modular lambda function transforms as

τ′ = τ+1 : λ
(
τ′
)
= − λ(τ)

1−λ(τ)
,

τ′ =
−1

τ
: λ

(
τ′
)
= 1−λ(τ) . (13.167)

Klein’s j-invariant is defined by

j (τ) =
1728g2 (τ)

3

g2 (τ)
3−27g3 (τ)

2
, (13.168)

where

g2 (τ) = 60e4 (τ) , g3 (τ) = 140e6 (τ) . (13.169)

Note that the denominator in eq. (13.168) is the modular discriminant

∆(τ) = g2 (τ)
3−27g3 (τ)

2 = (2πi)12 η(τ)24 . (13.170)

Two elliptic curves are isomorphic if their j-invariants agree.

The relation of the modular lambda function to Klein’s j-invariant is

j (τ) = 256

(
1−λ+λ2

)3

λ2 (1−λ)2
. (13.171)
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13.4 Moduli spaces

For elliptic Feynman integrals, which only depend on one kinematic variable (e.g. NB = 1) we

now have all necessary tools: In essence, we perform in addition to a fibre transformation also a

base transformation and change from the original kinematic variable x to the modular parameter

τ. We then express the Feynman integrals as iterated integrals of modular forms. We will see in

an example later on, how this is done in practice.

However, there are elliptic Feynman integrals, which depend on more than one kinematic

variable (e.g. NB > 1) and for those we need one more ingredient: We have to introduce the

moduli space M1,n of a smooth genus one curve with n marked points and we will see that an

elliptic Feynman integral can be expressed as a linear combination of iterated integrals on a

covering space of the moduli space M1,n with integrands having only simple poles. This comes

to no surprise, as a “simple” Feynman integral, which evaluates to multiple polylogarithms, can

be expressed as a linear combination of iterated integrals on a covering space of the moduli space

M0,n of a genus zero curve with n marked points, again with integrands having only simple poles.

In appendix F we give a detailed introduction into the moduli space Mg,n of a smooth alge-

braic curve of genus g with n marked points. Here in this section we briefly summarise the main

points and proceed then to the relevant aspects for computing elliptic Feynman integrals.

Let’s start with the short summary: Let X be a topological space. The configuration space of

n ordered points in X is

Confn (X) =
{
(x1, . . . ,xn) ∈ Xn|xi 6= x j for i 6= j

}
. (13.172)

The non-trivial ingredient is the requirement that the points are distinct: xi 6= x j. Without this

requirement we would simply look at Xn.

An example is the configuration space of n points on the Riemann sphere CP1:

Confn
(
CP1

)
=

{
(z1, . . . ,zn) ∈

(
CP1

)n
∣∣∣ zi 6= z j for i 6= j

}
. (13.173)

A Möbius transformation

z′ =
az+b

cz+d
(13.174)

transforms the Riemann sphere into itself. These transformations form a group PSL (2,C). Usu-

ally we are not interested in configurations

(z1, . . . ,zn) ∈ Confn
(
CP1

)
and (z′1, . . . ,z

′
n) ∈ Confn

(
CP1

)
, (13.175)

which differ only by a Möbius transformation:

z′j =
az j +b

cz j +d
, j ∈ {1, . . . ,n}. (13.176)

This brings us to the definition of the moduli space of the Riemann sphere with n marked points:

M0,n = Confn
(
CP1

)
/PSL(2,C) . (13.177)
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complex curve
z1

z2

z3⇔

z1

z2

z3

z1

z2

z3⇔z2

z1

z3

real surface

Figure 13.5: The upper left figure shows a configuration of three marked points on a complex

curve of genus zero, the upper right figure shows the corresponding configuration when the

complex curve is viewed as a real Riemann surface. The lower figures show the analogous

situation for a complex curve of genus one.

We may use the freedom of Möbius transformations to fix three points (usually 0, 1 and ∞).

Therefore

dim
(
Confn

(
CP1

))
= n,

dim(M0,n) = n−3. (13.178)

Let’s generalise this: We are interested in the situation, where the topological space X is a smooth

algebraic curve C in CP2. This implies that there exists a homogeneous polynomial P(z1,z2,z3)
such that

C =
{
[z1 : z2 : z3] ∈ CP2

∣∣P(z1,z2,z3) = 0
}
. (13.179)

If d is the degree of the polynomial P(z1,z2,z3), the genus g of C is given by eq. (13.4). Note

that we may view C either as a complex curve (of complex dimension one) or as a real surface

(of real dimension two). This is illustrated in fig. 13.5.

Let’s pause for a second and let us convince ourselves that this set-up is a generalisation of the

previous case: The special case C =CP1 is obtained for example by the choice P(z1,z2,z3) = z3.

The genus formula gives us that CP1 has genus zero.

Let us now consider a smooth curve C of genus g with n marked points. Two such curves

(C;z1, . . . ,zn) and (C′;z′1, . . . ,z
′
n) are isomorphic if there is an isomorphism

φ : C→C′ such that φ(zi) = z′i. (13.180)

The moduli space

Mg,n (13.181)
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is the space of isomorphism classes of smooth curves of genus g with n marked points. For g≥ 1

the isomorphism classes do not only depend on the positions of the marked points, but also on

the “shape” of the curve. For g = 0 there is only one “shape”, the Riemann sphere. For g = 1 the

shape of the torus is described by the modular parameter τ.

The dimension of Mg,n is

dim(Mg,n) = 3g+n−3, (13.182)

for g = 0 this formula agrees with the previous result in eq. (13.178).

Let us now focus on the moduli spaces M0,n and M1,n and work out natural choices for

coordinates on M0,n and M1,n.

• We start with genus 0. We have dimM0,n = n− 3. As mentioned above, the sphere has

a unique shape. We may use Möbius transformations to fix three points, say zn−2 = 1,

zn−1 = ∞, zn = 0. This leaves

(z1, . . . ,zn−3) (13.183)

as coordinates on M0,n.

• We now turn to genus 1. From eq. (13.182) we have dimM1,n = n. We need one coordinate

to describe the shape of the elliptic curve (or the shape of the torus or the shape of the

parallelogram). We may take τ as defined in eq. (13.35) for this. We may use translation

transformations to fix one marked point, say zn = 0. This gives

(τ,z1, . . . ,zn−1) (13.184)

as coordinates on M1,n.

We then consider iterated integrals on M0,n and M1,n. We recall from section 6.3.3 that iterated

integrals on a manifold M are defined by a set ω1, . . . , ωk of differential 1-forms on M and a path

γ : [0,1]→M as

Iγ (ω1, . . . ,ωk;λ) =

λ∫

0

dλ1 f1 (λ1)

λ1∫

0

dλ2 f2 (λ2)· · ·
λk−1∫

0

dλk fk (λk) , (13.185)

where the pull-back of ω j to the interval [0,1] is denoted by

f j (λ)dλ = γ∗ω j. (13.186)

Let us briefly discuss iterated integrals on M0,n. We are interested in differential one-forms,

which have only simple poles. Thus we consider

ω = d ln
(
zi− z j

)
=

dzi−dz j

zi− z j
. (13.187)
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Keeping z1, . . . ,zn−4 fixed and integrating along y = zn−3 leads to

ωmpl =
dy

y− z j
. (13.188)

The iterated integrals constructed from these differential one-forms are the multiple polyloga-

rithms:

G(z1, . . . ,zk;y) =

y∫

0

dy1

y1− z1

y1∫

0

dy2

y2− z2
· · ·

yk−1∫

0

dyk

yk− zk
, zk 6= 0, (13.189)

discussed in detail in section 8. As discussed in section 8 we may relax the condition zk 6= 0 and

allow trailing zeros.

Let’s now consider iterated integrals on M1,n. We recall that we may take (τ,z1, . . . ,zn−1)
as coordinates on M1,n. We may decompose an arbitrary integration path into pieces along dτ
(with z1 = · · ·= zn−1 = const) and pieces along the dz j’s (with τ = const). Thus we obtain two

classes of standardised iterated integrals: Iterated integrals on M1,n with integration along dτ and

iterated integrals on M1,n with integration along the dz j’s.

In addition we have to specify the differential one-forms we want to integrate. The differ-

ential one-forms which we want to consider in the case of M1,n are derived from the Kronecker

function. The Kronecker function F(x,y,τ) is defined in terms of the first Jacobi theta function

by

F (x,y,τ) = πθ′1 (0,q)
θ1 (π(x+ y) ,q)

θ1 (πx,q)θ1 (πy,q)
, (13.190)

where q= exp(πiτ) and the first Jacobi theta function θ1(z,q) is defined in eq. (13.68). θ′1 denotes

the derivative with respect to the first argument. Please note that in order to make contact with

the standard notation for the Jacobi theta functions we used here the nome q = exp(πiτ) and not

the nome squared q̄ = q2 = exp(2πiτ). The definition of the Kronecker function is cleaned up if

we define

θ̄1 (z, q̄) = θ1

(
πz, q̄

1
2

)
. (13.191)

Then

F (x,y,τ) = θ̄′1 (0, q̄)
θ̄1 (x+ y, q̄)

θ̄1 (x, q̄) θ̄1 (y, q̄)
. (13.192)

Digression. Properties of the Kronecker function:

From the definition it is obvious that the Kronecker function is symmetric in the variables (x,y):

F (y,x,τ) = F (x,y,τ) . (13.193)
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The (quasi-) periodicity properties are

F (x+1,y,τ) = F (x,y,τ) , F (x+ τ,y,τ) = e−2πiyF (x,y,τ) . (13.194)

The function

Ω(x,y,τ) = exp

(
2πi

(yIm(x)+ xIm (y))

Im(τ)

)
F (x,y,τ) (13.195)

is symmetric in x and y and doubly periodic

Ω(x+1,y,τ) = Ω(x+ τ,y,τ) = Ω(x,y,τ) , (13.196)

but no longer meromorphic (that is to say that Ω also depends on x̄, ȳ and τ̄, the dependency on
the anti-holomorphic variables enters through 2i Im(x) = x− x̄).

The Fay identity reads

F (x1,y1,τ)F (x2,y2,τ) = (13.197)

F (x1,y1 + y2,τ)F (x2− x1,y2,τ)+F (x2,y1 + y2,τ)F (x1− x2,y1,τ) .

We recall that the Kronecker function is symmetric in x and y. We are interested in the

Laurent expansion in one of these variables. We define functions g(k)(z,τ) through

F (z,α,τ) =
∞

∑
k=0

g(k) (z,τ)αk−1. (13.198)

We are primarily interested in the coefficients g(k)(z,τ) of the Kronecker function. Let us recall

some of their properties [341–343].

Properties of the coefficients g(k)(z,τ) of the Kronecker function:

1. The functions g(k)(z,τ) have the symmetry

g(k)(−z,τ) = (−1)k g(k)(z,τ). (13.199)

2. When viewed as a function of z, the function g(k)(z,τ) has only simple poles. More

concretely, the function g(1)(z,τ) has a simple pole with unit residue at every point

of the lattice. For k > 1 the function g(k)(z,τ) has a simple pole only at those lattice

points that do not lie on the real axis.

3. The (quasi-) periodicity properties are

g(k) (z+1,τ) = g(k) (z,τ) ,

g(k) (z+ τ,τ) =
k

∑
j=0

(−2πi) j

j!
g(k− j) (z,τ) . (13.200)
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We see that g(k)(z,τ) is invariant under translations by 1, but not by τ. The translation

invariance by τ is only spoiled by the terms with j ≥ 1 in eq. (13.200).

4. Under modular transformations the functions g(k)(z,τ) transform as

g(k)
(

z

cτ+d
,
aτ+b

cτ+d

)
= (cτ+d)k

k

∑
j=0

(2πi) j

j!

(
cz

cτ+d

) j

g(k− j) (z,τ) . (13.201)

Modular invariance is only spoiled by the terms with j ≥ 1 in eq. (13.201).

5. The q̄-expansion of the g(k)(z,τ) functions is given by (with q̄ = exp(2πiτ) and w̄ =
exp(2πiz))

g(0) (z,τ) = 1,

g(1) (z,τ) = −2πi

[
1+ w̄

2(1− w̄)
+E0,0 (w̄;1; q̄)

]
,

g(k) (z,τ) = − (2πi)k

(k−1)!

[
−Bk

k
+E0,1−k (w̄;1; q̄)

]
, k > 1, (13.202)

where Bk denotes the k-th Bernoulli number, defined in eq. (7.85) and

En;m (ū; v̄; q̄) = ELin;m (ū; v̄; q̄)− (−1)n+m
ELin;m

(
ū−1; v̄−1; q̄

)
,

ELin;m (ū; v̄; q̄) =
∞

∑
j=1

∞

∑
k=1

ū j

jn

v̄k

km q̄ jk. (13.203)

6. We may relate g(k)(z,Kτ) (with K ∈ N) to functions with argument τ according to

g(k) (z,Kτ) =
1

K

K−1

∑
l=0

g(k)
(

z+ l

K
,τ

)
. (13.204)

Having defined the functions g(k)(z,τ), we may now state the differential one forms which

we would like to integrate on M1,n. To keep the discussion simple, we focus on M1,2 with coor-

dinates (τ,z). (The general case M1,n is only from a notational perspective more cumbersome.)

We consider

ωKronecker
k = (2πi)2−k

[
g(k−1)

(
z− c j,τ

)
dz+(k−1)g(k)

(
z− c j,τ

) dτ

2πi

]
, (13.205)

with c j being a constant. The differential one-form ωKronecker
k is closed

dωKronecker
k = 0. (13.206)
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Let us first consider the integration along dτ (i.e. z = const). Here, the part

ωKronecker,τ
k = (2πi)2−k (k−1)g(k)

(
z− c j,τ

) dτ

2πi

=
(k−1)

(2πi)k g(k)
(
z− c j,τ

) dq̄

q̄
(13.207)

is relevant. This is supplemented by z-independent differential one-forms constructed from mod-

ular forms: Let fk(τ) ∈Mk(Γ) be a modular form of weight k and level N for the congruence

subgroup Γ. Let N′ be the smallest positive integer such that TN′ ∈ Γ. We set as in eq. (13.117)

ωmodular
k = (2πi) fk (τ)

dτ

N′
. (13.208)

Let us now assume for simplicity N′ = 1 (otherwise we should use the variable q̄N′ instead of the

variable q̄ in the formulae below). Let ω j with weight k j be as in eq. (13.207) or as in eq. (13.208)

and γ the path from τ = i∞ to τ, corresponding in q̄-space to a path from q̄ = 0 to q̄. We then

consider in q̄-space the iterated integrals

Iγ (ω1, . . . ,ωr; q̄) . (13.209)

The integrands have no poles in 0 < |q̄| < 1. A simple pole at q̄ = 0 is possible and allowed. If

ωr has a simple pole at q̄ = 0 we say that the iterated integral has a trailing zero. We may split

ωr into a part proportional to dq̄/q̄ and a regular remainder. The singular part of a trailing zero

can be treated in exactly the same way as we did in the case of multiple polylogarithms.

To summarise:

Iterated integrals along dτ:

For the integration along dτ we consider in q̄-space the iterated integrals

Iγ (ω1, . . . ,ωr; q̄) , (13.210)

where ω j is of the form

ω
Kronecker,τ
k j

=

(
k j−1

)

(2πi)k j
g(k j)

(
z− c j,τ

) dq̄

q̄
or ωmodular

k j
= fk j (τ)

dq̄

q̄
, (13.211)

with fk j(τ) being a modular form of weight k j.

Let us now consider the integration along dz (i.e. τ = const). For the integration along dz the

part

ωKronecker,z
k = (2πi)2−k g(k−1)

(
z− c j,τ

)
dz (13.212)

is relevant. The iterated integrals of the differential one-forms in eq. (13.212) along a path γ from

z = 0 to z are the elliptic multiple polylogarithms Γ̃, as defined in ref. [344]:
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The elliptic multiple polylogarithms Γ̃ (i.e. iterated integrals along dz):

Γ̃( n1 ... nr
c1 ... cr ;z;τ) =

(2πi)n1+···+nr−r Iγ

(
ωKronecker,z

n1+1 (c1,τ) , . . . ,ω
Kronecker,z
nr+1 (cr,τ) ;z

)
. (13.213)

Let us stress that this is one possibility to define elliptic multiple polylogarithms. In the

literature there exist various definitions of elliptic multiple polylogarithms due to the following

problem: It is not possible that the differential one-forms ω entering the definition of elliptic

multiple polylogarithms have at the same time the following three properties:

(i) ω is double-periodic,

(ii) ω is meromorphic,

(iii) ω has only simple poles.

We can only require two of these three properties. The definition of the Γ̃-functions selects

meromorphicity and simple poles. Meromorphicity means that ω does not depend on the anti-

holomorphic variables. The differential one-forms are not double-periodic. (This is spoiled by

the quasi-periodicity of g(k)(z,τ) with respect to z→ z+ τ.) However, this is what physics (i.e.

the evaluation of Feynman integrals) dictates us to choose. The integrands are then either multi-

valued functions on M1,n or single-valued functions on a covering space, in the same way as

ln(z) is a multi-valued function on C× or a single-valued function on a covering space of C×.

Of course, in mathematics one might also consider alternative definitions, which prioritise other

properties. A definition of elliptic multiple polylogarithms, which implements properties (i) and

(ii), but gives up property (iii) can be found in [345], a definition, which implements properties

(i) and (iii), but gives up (ii) can be found in [342]. It is a little bit unfortunate that these different

function are all named elliptic multiple polylogarithms. The reader is advised to carefully check

what is meant by the name “elliptic multiple polylogarithm”, this also concerns the definitions

in [346, 347].

It is not unusual in Feynman integral calculations that we end up with an integration involv-

ing a square root of a quartic polynomial in combination with integrands known from multiple

polylogarithms. There is a systematic way to convert these integrals to the elliptic multiple poly-

logarithms Γ̃ [343, 344]. The square root defines an elliptic curve

E : v2− (u−u1)(u−u2)(u−u3)(u−u4) = 0, (13.214)

and we consider as integrands the field of rational functions of the elliptic curve E, i.e. rational

functions in u and v subject to the relation v2 = (u− u1)(u− u2)(u− u3)(u− u4). Primitives,

which are not in this function field originate from the integrands

du

v
,

udu

v
,

u2 du

v
,

du

u− c
,

du

(u− c)v
, (13.215)
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where c is a constant. This list includes the integrands du/(u−c) for the multiple polylogarithms.

Note that in the quartic case udu/v is a differential of the third kind, a differential of the second

kind can be constructed from a linear combination of u2 du/v and udu/v:

(
u2− 1

2
s1u

)
du

v
, s1 = u1 +u2 +u3 +u4. (13.216)

In section 13.2.1 we discussed the general quartic case and defined a pair of periods (see eq. (13.44),

we use the notation as in section 13.2.1)

ψ1 = 2

u3∫

u2

du

v
=

4K (k)

U
1
2

3

, ψ2 = 2

u3∫

u4

du

v
=

4iK
(
k̄
)

U
1
2

3

. (13.217)

It is convenient to normalise one period to one, hence we define τ = ψ2/ψ1 and we consider the

lattice Λ generated by (1,τ). Abel’s map

z =
1

ψ1

u∫

u1

du

v
(13.218)

relates a point (u,v) on the elliptic curve to a point z ∈ C/Λ. We have

2πi

ψ1

du

v
= 2πi dz = ω

Kronecker,z
1 . (13.219)

Let us also discuss the case of modular weight k = 2. This includes the integrands for the multiple

polylogarithms du/(u−c). These integrands have a pole at u = c and a pole at u = ∞. We define

the images of u = c and u = ∞ under Abel’s map by

zc =
1

ψ1

c∫

u1

du

v
, z∞ =

1

ψ1

∞∫

u1

du

v
. (13.220)

We then have

du

u− c
=

[
g(1) (z− zc,τ)+g(1) (z+ zc,τ)−g(1) (z− z∞,τ)−g(1) (z+ z∞,τ)

]
dz. (13.221)

The integrand du/((u− c)v) translates to

vcdu

(u− c)v
=

[
g(1) (z− zc,τ)−g(1) (z+ zc,τ)+g(1) (zc− z∞,τ)+g(1) (zc + z∞,τ)

]
dz. (13.222)

where v2
c = (c−u1)(c−u2)(c−u3)(c−u4). For the integrand udu/v one finds

(u−u1) du
v

=
[
g(1) (z+ z∞,τ)−g(1) (z− z∞,τ)−2g(1) (z∞,τ)

]
dz. (13.223)
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The term u1du/v can be translated with formula (13.219). It remains to treat the integrand

u2 du/v or equivalently the linear combination appearing in eq. (13.216). This integrand has a

double pole at u = ∞. We would like to have integrands with only simple poles. In order to

enforce simple poles, we introduce

Z4 = −
u∫

u1

du

v

[
u2− 1

2
s1u+

1

2
(u1u2 +u3u4)−

1

2
U3

φ1

ψ1

]
, (13.224)

where φ1 is the quasi-period defined in eq. (13.44). It can be shown that Z4 has as a function of

u only simple poles. One then finds

Z4 du

v
=

[
g(1) (z− z∞,τ)+g(1) (z+ z∞,τ)

]
dz. (13.225)

However, enforcing simple poles with the introduction of Z4 has a price: We now have to consider

higher powers of Z4 as well. This will give rise to an infinite tower of integrands, corresponding

to modular weight k > 2. For the details we refer to [343,344]. Eqs. (13.221), (13.222), (13.223)

and (13.225) are the complete set of formulae at modular weight 2.

13.5 Elliptic Feynman integrals

With the background in mathematics on elliptic curves, modular forms and moduli spaces we

are now in a position to tackle the first Feynman integrals, which cannot be expressed in terms

of multiple polylogarithms.

We do this in two steps: We start with elliptic Feynman integrals, which depend only on

one kinematic variable x. The essential trick is to change from the variable x to a new variable,

the modular parameter τ. We will find that the Feynman integrals can be expressed as iterated

integrals on M1,1 (i.e. iterated integrals of modular forms).

In a second step we generalise to elliptic Feynman integrals which depend on several kine-

matic variables x1,x2, . . . . This will lead us to iterated integrals on M1,n.

13.5.1 Feynman integrals depending on one kinematic variable

In section 6.3.1 we introduced already the two-loop sunrise integral with equal internal masses:

Iν1ν2ν3
(D,x) = e2εγE

(
m2
)ν123−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2
(
−q2

3 +m2
)ν3

,

(13.226)

with x = −p2/m2 and q1 = k1, q2 = k2− k1, q3 = −k2 − p. We have set µ2 = m2. This is

the simplest example of an elliptic Feynman integral. It has been studied intensively in the

literature [348–356].
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Figure 13.6: The three master integrals for the family of the equal mass sunrise integral.

There are three master integrals and we start from the basis

~I = (I110, I111, I211)
T . (13.227)

The three master integrals are shown in fig. 13.6. The differential equation for this basis has been

given in eq. (6.87).

It is simpler to analyse this system in D = 2−2ε dimensions. This is no restriction: With the

help of the dimensional shift relations we may always relate integrals in (2−2ε) dimensions to

integrals in (4−2ε) dimensions. We have for example

I110 (2−2ε,x) = I220 (4−2ε,x) ,

I111 (2−2ε,x) =
3

(x+1)(x+9)
[(3+ x) I220 (4−2ε,x)

+2(1−2ε)(2−3ε) I111 (4−2ε,x)+2(1−2ε)(3− x) I211 (4−2ε,x)] ,

I211 (2−2ε,x) =
1

(x+1)2 (x+9)2

{[
3(x+1)(x+9)+ ε

(
2x3 +34x2 +54x+54

)]
I220 (4−2ε,x)

+2(1−2ε)(2−3ε) [(x+1)(x+9)−2ε(x−3)(x+3)] I111 (4−2ε,x)

+2(1−2ε)
[
3(x+1)(x+9)− ε

(
x3 +36x2 +45x−54

)]
I211 (4−2ε,x)

}
. (13.228)

The equal mass sunrise integral is the simplest Feynman integral related to an elliptic curve.

The first question which we should address is how to obtain the elliptic curve associated to this

integral. For the sunrise integral there are two possibilities, we may either obtain an elliptic

curve from the Feynman graph polynomial or from the maximal cut. The sunrise integral has

three propagators, hence we need three Feynman parameters, which we denote by a1,a2,a3. The

Feynman parameter representation for I111 reads

I111 (2−2ε,x) = e2εγEΓ(1+2ε)
∫

a j≥0

d3a δ

(
1−

3

∑
j=1

a j

)
[U (a)]3ε

[F (a)]1+2ε
,

U (a) = a1a2 +a2a3 +a3a1,

F (a) = a1a2a3x+(a1 +a2 +a3)(a1a2 +a2a3 +a3a1) . (13.229)
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The second graph polynomial defines an elliptic curve

EFeynman : a1a2a3x+(a1 +a2 +a3)(a1a2 +a2a3 +a3a1) = 0, (13.230)

in CP2, with [a1 : a2 : a3] being the homogeneous coordinates of CP2. The elliptic curve varies

with the kinematic variable x. In general, the Feynman parameter space can be viewed as CPn−1,

with n being the number of propagators of the Feynman integral. It is clear that this approach

does not generalise in a straightforward way to other elliptic Feynman integrals with more than

three propagators. (For an elliptic curve we want the zero set of a single polynomial in CP2).

We therefore turn to the second method of obtaining the elliptic curve, which generalises

easily: We study the maximal cut of the sunrise integral. Within the loop-by-loop approach

MaxCut I111 (2−2ε,x) =
(2πi)3

π2

∫

CMaxCut

dz√
z(z+4)

[
z2 +2(1− x)z+(1+ x)2

] +O (ε) ,

(13.231)

Thus we obtain an elliptic curve as a quartic polynomial P(u,v) = 0:

Ecut : v2−u(u+4)
[
u2 +2(1− x)u+(1+ x)2

]
= 0. (13.232)

Also this elliptic curve varies with the kinematic variable x. Please note that these two elliptic

curves EFeynman and Ecut are not isomorphic, but only isogenic. For the sunrise integral we may

work with either one of the two. In the following we will use Ecut.

Let us therefore consider Ecut, defined by the quartic polynomial in eq. (13.232). We denote

the roots by

u1 = −4, u2 = −
(
1+
√
−x
)2
, u3 = −

(
1−
√
−x
)2
, u4 = 0. (13.233)

We may then determine two independent periods ψ1 and ψ2 as in section 13.2.1. Therefore, let

ψ1 and ψ2 be defined by eq. (13.44). We set τ = ψ2/ψ1 and we denote the Wronskian by

W = ψ1
d

dx
ψ2−ψ2

d

dx
ψ1 = − 6πi

x(x+1)(x+9)
. (13.234)

We then perform a change of the basis of the master integrals from the pre-canonical basis

(I110, I111, I211) to

J1 = 4ε2 I110 (2−2ε,x) ,

J2 = ε2 π

ψ1
I111 (2−2ε,x) ,

J3 =
1

ε

ψ2
1

2πiW

d

dx
J2 +

ψ2
1

2πiW

(
3x2 +10x−9

)

2x(x+1)(x+9)
J2. (13.235)

This transformation is not rational or algebraic in x, as can be seen from the prefactor 1/ψ1 in

the definition of J2. The period ψ1 is a transcendental function of x.
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The fibre transformation in eq. (13.235) can be understood and motivated as follows: The

definition of J1 is straightforward and follows from eq. (2.123). As far as J2 is concerned, we

first note that ψ1 and ψ2 are obtained by integrating the holomorphic one-form du/v of the elliptic

curve along two cycles γ1 and γ2, respectively (see also fig. 13.2). If we replace in eq. (13.231)

CMaxCut by γ1 we obtain

(2πi)3

π2

∫

γ1

dz√
z(z+4)

[
z2 +2(1− x)z+(1+ x)2

] = −8iπ2 ψ1

π
. (13.236)

J2 is obtained by dividing I111 by ψ1 and by adjusting powers of π and ε. Prefactors consisting

of algebraic numbers (for example (−8i)) are not relevant.

Let us turn to J3: It is well-known in mathematics, that the first cohomology group for a

family of elliptic curves Ex, parametrised by x, is generated by the holomorphic one form du/v
and its x-derivative. This motivates an ansatz, consisting of J2 and its τ-derivative:

J3 = c2 (x)
1

2πi

d

dτ
J2 + c3 (x)J2, (13.237)

with unknown functions c2(x) and c3(x). We determine c2(x) and c3(x) such that this ansatz

transforms the differential equation into an ε-form. One finds

c2 (x) =
1

ε
and c3 (x) =

1

24

(
3x2 +10x−9

) ψ2
1

π2
, (13.238)

and therefore

J2 =
1

ε

1

2πi

d

dτ
J2 +

1

24

(
3x2 +10x−9

) ψ2
1

π2
J2. (13.239)

This agrees with eq. (13.235): From eq. (13.56) it follows that

1

2πi

d

dτ
=

ψ2
1

2πiW

d

dx
. (13.240)

In the basis J = (J1,J2,J3)
T we have now

(
d

dx
+Ax

)
~J = 0 (13.241)

with

Ax = ε




0 0 0

0
(3x2+10x−9)
2x(x+1)(x+9) −2πiW

ψ2
1

3i
4

ψ1

W
1

x(x+1)(x+9) −
i

288

W ψ2
1

π3 (3− x)4 (3x2+10x−9)
2x(x+1)(x+9)


 . (13.242)



450 CHAPTER 13. ELLIPTIC CURVES

Through the fibre transformation we have managed that the dimensional regularisation parameter

ε is factored out, however the matrix Ax is not yet in a particular nice and suitable form. The

situation is similar to eq. (6.237), where a fibre transformation allowed us to factor out ε, but

left us with a square root singularity. In eq. (13.242) we have a transcendental function (i.e. ψ1)

appearing in the matrix Ax.

In order to put the matrix A into a nice form, we perform a base transformation and change

the variable from x to τ. With the help of eq. (13.240) we obtain
(

1

2πi
d
dτ

+Aτ

)
~J = 0 (13.243)

with

Aτ = ε




0 0 0

0 η2 η0

η3 η4 η2


 (13.244)

and

η0 = −1,

η2 =
1

24

ψ2
1

π2

(
3x2 +10x−9

)
,

η3 = − 1

96

ψ3
1

π3
x(x+1)(x+9) ,

η4 = − 1

576

ψ4
1

π4
(3− x)4 . (13.245)

It remains to express η2, η3 and η4 as a function of τ. To this aim we first express x as a function

of τ. Noting that upon the substitution x→ (−x) the elliptic curve in eq. (13.232) is identical to

the one discussed in eq. (13.80) it follows that

x = −9
η(τ)4 η(6τ)8

η(3τ)4 η(2τ)8
. (13.246)

We may then obtain the q̄-expansions of η2, η3 and η4. (For the complete elliptic integral K
appearing in ψ1 we use eq. (13.74).) For example, for η2 we obtain

η2 = −1

2
−8q̄−4q̄2−44q̄3 +4q̄4−48q̄5−40q̄6 +O

(
q̄7
)
. (13.247)

By comparing the q̄-expansions one checks that η0, η2, η3 and η4 are modular forms of Γ1(6) of

modular weight 0, 2, 3 and 4, respectively. In order to get an explicit expression we introduce a

basis {b1,b2} for the modular forms of modular weight 1 for the Eisenstein subspace E1(Γ1(6))
as follows: We define two primitive Dirichlet characters χ1 and χ(−3) with conductors 1 and 3,

respectively, through the Kronecker symbol

χ1 =

(
1

n

)
, χ(−3) =

(−3

n

)
. (13.248)
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Explicitly we have

χ1 (n) = 1, ∀n ∈ Z,

χ−3 (n) =





0, n = 0 mod 3,
1, n = 1 mod 3,
−1, n = 2 mod 3,

(13.249)

We then set

b1 = E1

(
τ;χ1,χ(−3)

)
= E1,1,−3,1 (τ) ,

b2 = E1

(
2τ;χ1,χ(−3)

)
= E1,1,−3,2 (τ) . (13.250)

The generalised Eisenstein series Ek(τ,χa,χb) have been defined in eq. (13.137), the generalised

Eisenstein series Ek,a,b,K(τ) have been defined in eq. (13.149). The integration kernels may be

expressed as polynomials in b1 and b2:

η2 = −6
(
b2

1 +6b1b2−4b2
2

)
,

η3 = −9
√

3
(
b3

1−b2
1b2−4b1b2

2 +4b3
2

)
,

η4 = −324b4
1. (13.251)

Let us summarise: Through a fibre transformation and a base transformation we obtained the

differential equation

(d +A)~J = 0 (13.252)

with

A = 2πi ε




0 0 0

0 η2 (τ) η0 (τ)
η3 (τ) η4 (τ) η2 (τ)


dτ, (13.253)

where ηk(τ) denotes a modular form of modular weight k for Γ1(6). The differential equation

for the equal mass sunrise system is now in ε-form and the kinematic variable matches the stan-

dard coordinate on M1,1. With the additional information of a boundary value, the differential

equation is now easily solved order by order in ε in terms of iterated integrals of modular forms.

One finds for example

J2 =

[
3Cl2

(
2π

3

)
+4I (η0,η3;τ)

]
ε2 +O

(
ε3
)
. (13.254)

The Clausen value Cl2(2π/3) comes from the boundary value. The first few terms of the q̄-

expansion read

J(2)2 = 3Cl2

(
2π

3

)
−3
√

3

[
q̄− 5

4
q̄2 + q̄3− 11

16
q̄4 +

24

25
q̄5− 5

4
q̄6 +

50

49
q̄7− 53

64
q̄8 + q̄9

]

+O
(
q̄10
)
. (13.255)
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Analytic continuation

In the calculation above we solved the differential equation in a neighbourhood of x = 0 (cor-

responding to q̄ = 0) and the result is valid in a neighbourhood of x = 0. We are interested in

extending this result to all x ∈ R− iδ, where the infinitesimal imaginary part originates from

Feynman’s iδ-prescription. We have to ensure that the periods ψ1 and ψ2 vary smoothly, as x
varies in R− iδ [357].

Let’s look at the details: The expressions for the the modulus k and the complementary

modulus k′ of the elliptic curve Ecut are

k2 =
16
√
−x

(
1+
√
−x
)3 (

3−
√
−x
) , k′2 =

(
1−
√
−x
)3 (

3+
√
−x
)

(
1+
√
−x
)3 (

3−
√
−x
) , (13.256)

where Feynman’s iδ-prescription (x→ x− iδ) is understood. We define the periods ψ1 and ψ2

for all x ∈ R− iδ by

(
ψ2

ψ1

)
=

4
(
1+
√
−x
) 3

2
(
3−
√
−x
) 1

2

γ

(
iK (k′)
K (k)

)
, (13.257)

where K(x) denotes the complete elliptic integral of the first kind. The essential new ingredient

is the 2×2-matrix γ given by

γ =





(
1 0

2 1

)
, −∞ < x < −1.

(
1 0

0 1

)
, −1 < x < −3+2

√
3,

(
1 0

2 1

)
, −3+2

√
3 < x < ∞,

(13.258)

The matrix γ ensures that the periods ψ1 and ψ2 vary smoothly as the kinematic variable x varies

smoothly in x ∈ R− iδ [357]. The complete elliptic integral K(k) can be viewed as a function of

k2: We set K̃(k2) = K(k). The function K̃(k2) has a branch cut at [1,∞[ in the complex k2-plane.

The matrix γ compensates for the discontinuity when we cross this branch cut. It is relatively

easy to see that k2 as a function of x crosses this branch cut at the point x = −3+2
√

3 ≈ 0.46,

the corresponding value in the k2-plane is k2 = 2. The point x = −1 is a little bit more subtle.

Let us parametrise a small path around x =−1 by

x(φ) = −1−δeiφ, φ ∈ [0,π], (13.259)

then

k2 = 1+
1

32
δ3e3iφ +O

(
δ4
)
, (13.260)

and the path in k2-space winds around the point k2 = −1 by an angle 3π as the path in x-space

winds around the point x = 1 by the angle π.
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x ∈ [0,∞[
x ∈ [−1 : 0]

x ∈ [−9 :−1]
x ∈]−∞,−9]

Re(q̄)

Im
(q̄
)

10.50−0.5−1

1

0.5

0

−0.5

−1

Figure 13.7: The path in q̄-space as x ranges over R. We always have |q̄| ≤ 1 and |q̄|= 1 only at

x ∈ {−9,−1,∞}.

Eq. (13.257) defines the periods ψ1 and ψ2 for all values x ∈ R− iδ. The periods take values

in C∪{∞}.
The original differential equation (eq. (6.87)) has singular points at

x ∈ {−9,−1,0,∞} . (13.261)

The point x = −9 is called the threshold, the point x = −1 is called the pseudo-threshold. The

singular points of the differential equation are mapped in τ-space to

τ(x =−9) =
1

3
, τ(x =−1) = 0, τ(x = 0) = i∞, τ(x = ∞) =

1

2
. (13.262)

The points

{
0,

1

3
,
1

2
, i∞

}
(13.263)

in τ-space are the cusps of Γ1(6).
In fig. 13.7 we plot the values of the variable q̄ as x ranges over R. We see that all values of q̄

are inside the unit disc with the exception of the three points x ∈ {−9,−1,∞}, where the corre-

sponding q̄-values are on the boundary of the unit disc. Once the periods ψ1 and ψ2 are defined

as in eq. (13.257), the q̄-expansion in eq. (13.254) gives the correct result for x∈R\{−9,−1,∞}.
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Re τ

Im τ

1
2

1−1

Figure 13.8: The fundamental domain F for τ.

Note that although the q̄-expansion corresponds to an expansion around x = 0, it gives also the

correct result for

x ∈ ]−∞,−9[ and x ∈ ]−9,−1[. (13.264)

These intervals correspond to the yellow and green segments in fig. 13.7. The q̄-expansion in

eq. (13.254) does not converge for x ∈ {−9,−1,∞} and in a neighbourhood of these points the

convergence is slow. In the next subsection we will see how to improve the convergence in a

neighbourhood of these points.

Modular transformations

In this paragraph we address two questions: In the calculation of the equal mass two-loop sunrise

integral we started with a specific choice of periods ψ1 and ψ2. Our first question is: What

happens if we make a different choice ψ′1 and ψ′2?

We have seen that we may express the equal mass two-loop sunrise integral as iterated inte-

grals of modular forms. We may evaluate these integrals through their q̄-expansion. The con-

vergence of q̄-series is fast, if |q̄| ≪ 1, however it is rather slow if |q̄| . 1. The sunrise integral

depends only on one kinematic variable, which we take as the modular parameter τ. By a modu-

lar transformation τ′ = γ(τ) with γ ∈ SL2(Z) we may transform τ′ into the fundamental domain

F shown in fig. 13.8 and defined by

F = (13.265){
τ′ ∈H

∣∣∣∣
∣∣τ′
∣∣> 1 and − 1

2
< Re

(
τ′
)
≤ 1

2

}
∪
{

τ′ ∈H

∣∣∣∣
∣∣τ′
∣∣= 1 and 0≤ Re

(
τ′
)
≤ 1

2

}
.

Such a transformation achieves that

∣∣q̄′
∣∣ ≤ e−π

√
3 ≈ 0.0043. (13.266)
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This is a small expansion parameter. Our second question is: How do elliptic Feynman integrals

transform under modular transformations?

The two questions are of course related: A modular transformation corresponds exactly to

the transformation (see eq. (13.87))

(
ψ′2
ψ′1

)
= γ

(
ψ2

ψ1

)
. (13.267)

There are two complications we have to take into account: First of all, in order to transform τ
into the fundamental domain F we need a γ ∈ SL2(Z). Already in the simplest example of an

elliptic Feynman integral we have seen that the modular forms appearing in the solution belong

to a congruence subgroup Γ (e.g. Γ1(6) in the case of the sunrise integral). For f ∈Mk(Γ) and

γ ∈ SL2(Z) we have in general

f |kγ /∈ Mk(Γ). (13.268)

The second complication is as follows: Suppose our Feynman integral is expressed as iterated

integrals of modular forms for a congruence subgroup Γ and – in order to avoid the first com-

plication – suppose that γ ∈ Γ. By changing variables from τ to τ′ = γ(τ) we leave the class of

functions we started with and generate new integrands with additional appearances of ln(q̄). To

see this in more detail, let’s look at an example: Let f be a modular form of weight k for Γ. For

simplicity we assume that f vanishes at the cusp τ = i∞. Let N′ be the smallest positive integer

such that TN′ ∈ Γ. The modular form has then the Fourier expansion

f =
∞

∑
n=1

anq̃n
N′ . (13.269)

Let γ ∈ Γ. We then have

I ( f ;τ) =
2πi
N′

τ∫

i∞

f (τ̃)dτ̃ =
∞

∑
n=1

q̄∫

0

anq̃n
N′

dq̃N′

q̃N′
=

∞

∑
n=1

an

n
q̄n

N′. (13.270)

Let us now consider a coordinate transformation

τ = γ−1
(
τ′
)
=

aτ′+b

cτ′+d
, γ−1 ∈ Γ. (13.271)

It is simpler to consider the inverse transformation here. We have

I ( f ;τ) =
2πi

N′

τ∫

i∞

f (τ̃)dτ̃ =
2πi

N′

γ(τ)∫

γ(i∞)

f
(
γ−1
(
τ̃′
)) dτ̃′

(cτ̃′+d)2

=
2πi
N′

γ(τ)∫

γ(i∞)

(
cτ̃′+d

)k−2
( f |kγ−1)(τ̃′) dτ̃′. (13.272)
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As we only consider γ ∈ Γ, the expression ( f |kγ−1)(τ̃′) is again a modular form for Γ, this is fine.

However, we picked up a factor (cτ̃′+ d)k−2. Only for the modular weight k = 2 this factor is

absent. In general we leave the class of integrands constructed purely from modular forms and

end up with integrands which contain in addition powers of the automorphic factor (cτ′+d).
The two complications are solved as follows [358]: For the first complication we note that

if f ∈ Mk(Γ) is of level N we have f ∈ Mk(Γ(N)). For any γ ∈ SL2(Z) we then have (see

eq. (13.108))

f |kγ ∈ Mk (Γ(N)) . (13.273)

For the second complication we note that we may view the transformation τ′ = γ(τ) as a base

transformation. In order to stay within the class of iterated integrals of modular forms we should

accompany the base transformation by a fibre transformation.

Let us illustrate the two aspects with an example. We consider again the system of the equal

mass sunrise integral with the master integrals ~J = (J1,J2,J3)
T defined in eq. (13.235) and the

differential equation (see eqs. (13.252)-(13.253))

(d +A)J = 0, A = 2πi ε




0 0 0

0 η2 (τ) η0 (τ)
η3 (τ) η4 (τ) η2 (τ)


dτ. (13.274)

For this particular example, the ηk(τ)’s are modular forms of Γ1(6) and therefore also modular

forms of Γ(6). Let us now consider for

γ(τ) =
aτ+b

cτ+d
, γ ∈ SL2(Z) (13.275)

the combined transformation

J′ =




1 0 0

0 (cτ+d)−1 0

0 c
2πiεη0

(cτ+d)


J,

τ′ =
aτ+b

cτ+d
. (13.276)

Working out the transformed differential equation we obtain

(
d +A′

)
J′ = 0 (13.277)

with

A′ = 2πi ε




0 0 0

0 (η2|2γ−1)(τ′) (η0|0γ−1)(τ′)
(η3|3γ−1)(τ′) (η4|4γ−1)(τ′) (η2|2γ−1)(τ′)


dτ′. (13.278)

We have

ηk|kγ−1 ∈ Mk(Γ(6)) (13.279)
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and therefore we don’t leave the space of modular forms with the combined transformation of

eq. (13.276). The transformed system may therefore again be solved for any γ ∈ SL2(Z) in terms

of iterated integrals of modular forms. In particular, we achieved that terms with additional

automorphic factors do not occur.

The fact that we need to redefine the master integrals is not too surprising. Let’s look at J2.

We originally defined J2 by

J2 = ε2 π

ψ1
I111 (2−2ε,x) , (13.280)

i.e. we rescaled I111 (up to a constant) by 1/ψ1. This definition is tied to our initial choice of

periods. Noting that the automorphic factor (cτ+d) is nothing than the ratio of two periods

cτ+d =
ψ′1
ψ1

, (13.281)

we find that J′2 is given by

J′2 = ε2 π

ψ′1
I111 (2−2ε,x) . (13.282)

The maximal cut and the period matrix

We have seen that the basis J1, J2 and J3 defined in eq. (13.235) puts the differential equation for

the system into an ε-form. In section 7.1.7 we introduced a technique, which guesses a basis of

master integrals from a set of master integrands ϕi and a set of master contours C j. The various

master integrands integrated against the various master contours define a period matrix P with

entries

Pi j =
〈
ϕi|C j

〉
. (13.283)

In the i-th row of this matrix we then look at the term of order jmin in the ε-expansion (with jmin

defined as in eq. (7.175)). This defines a matrix Pleading with entries

Pleading
i j = coeff

(〈
ϕi|C j

〉
,ε jmin

)
· ε jmin (13.284)

Our strategy in section 7.1.7 was to look for integrands ϕi such that all entries of Pleading are

constants of weight zero. We already know that this is not a sufficient condition, as we may

always multiply ϕi by an ε-dependent prefactor with leading term 1. We now show that it is

neither a necessary condition. (But the condition is helpful in practice.)

We will focus on the maximal cut, hence only the integrals J2 and J3 are relevant. We work

with the loop-by-loop Baikov representations, where we have four integration variables z1− z4.

Let C ′ be the integration domain selecting the maximal cut, i.e. a small counter-clockwise circle

around z1 = 0, a small counter-clockwise circle around z2 = 0 and a small counter-clockwise

circle around z3 = 0. We set z4 = z in accordance with the notation used in eq. (13.236). We
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denote by γ1 and γ2 the two cycles of the elliptic curve. They define the integration domain in

the variable z. We define

C2 = C ′∪ γ1, C3 = C ′∪ γ2. (13.285)

We denote the integrands of J2 and J3 by ϕ2 and ϕ3, respectively. Let us look at the period matrix

P =

(
〈ϕ2|C2〉 〈ϕ2|C3〉
〈ϕ3|C2〉 〈ϕ3|C3〉

)
(13.286)

and the matrix Pleading defined as in eq. (13.284). We compute the entries of Pleading. To this aim

we first express J2 and J3 as a linear combination of I111 and I211. One finds

J2 = ε2 π

ψ1
I111,

J3 =
ε2

24

(
7x2 +50x+27

) ψ1

π
I111 +

ε

12
(x+1)(x+9)

(
ψ1

π
+ x

d
dx

ψ1

π

)
I111

−ε

4
(x+1)(x+9)

ψ1

π
I211. (13.287)

The derivative dψ1/dx may be expressed with the help of eq. (13.48) as a linear combination of

ψ1 and φ1:

d
dx

ψ1 = −1

2
ψ1

d
dx

lnU2+
1

2
φ1

d
dx

ln
U2

U1
, (13.288)

U1 = 16
√
−x, U2 =

(
1−
√
−x
)3 (

3+
√
−x
)
.

Let ϕ111 and ϕ211 denote the integrands of I111 and I211, respectively. Replacing CMaxCut by γ1 or

γ2 in eq. (13.231) we immediately have

〈ϕ111|C2〉 = −8iπψ1 +O (ε) , 〈ϕ111|C3〉 = −8iπψ2 +O (ε) , (13.289)

For ϕ211 the following two integrals are helpful (v =
√

(u−u1)(u−u2)(u−u3)(u−u4)):

2

u3∫

u2

du

(u−u1)v
=

1

u2−u1
ψ1−

u4−u2

(u2−u1)(u4−u1)
φ1,

2

u3∫

u4

du

(u−u1)v
=

1

u2−u1
ψ2−

u4−u2

(u2−u1)(u4−u1)
φ2. (13.290)

One finds

Pleading = 2i

(
(2πiε)2 (2πiε)2 τ

0 −(2πiε)

)
. (13.291)

We see that the second entry in the first row Pleading
12 is not constant, this entry depends on the

kinematic variable τ.
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p2

p2

m2

p2

m2

Figure 13.9: Further examples of Feynman integrals evaluating to iterated integrals of modular

forms. Internal solid lines correspond to a propagator with mass m2, internal dashed lines to a

massless propagator. External dashed lines indicate a light-like external momentum.

Further examples

There are more Feynman integrals depending on one kinematic variable x = −p2/m2 and eval-

uating to iterated integrals of modular forms. Fig. 13.9 shows some additional examples [348,

359–363]. In computing these integrals, we encounter two additional integration kernels

ω0 =
dx

x
, ω1 =

dx

x+1
. (13.292)

If we only would have those integration kernels in the differential equation, we would be able

to express the result in terms of multiple polylogarithms. However, we have the ones appearing

in eq. (13.253) combined with the ones from eq. (13.292). We therefore have to rewrite all

integration kernels in terms of the variable τ. We may express ω0 and ω1 in terms of modular

forms:

ω0 = 2πi η2,0 dτ, ω1 = 2πi η2,1 dτ. (13.293)

The modular forms η2,0 and η2,1, both of modular weight 2, are given by

η2,0 =
1

2iπ

ψ2
1

W

1

x
= −12

(
b2

1−4b2
2

)
,

η2,1 =
1

2iπ

ψ2
1

W

1

x+1
= −18

(
b2

1 +b1b2−2b2
2

)
, (13.294)

where b1 and b2 are the two Eisenstein series defined in eq. (13.250).

13.5.2 Feynman integrals depending on several kinematic variables

Let us now turn our attention to elliptic Feynman integrals, which depend on more than one

kinematic variable (e.g. NB > 1). In the case of just one kinematic variable (NB = 1) we may think

of the base space as a covering space of M1,1 with coordinate τ. In the case of more kinematic

variables this generalises to a covering space of M1,n with coordinates (τ,z1, . . . ,zn−1).
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In section 13.4 we introduced in eq. (13.205) the differential one-form ωKronecker
k . We can be

a little bit more general than eq. (13.205): Let K ∈ N and L(z) a linear function of z1, . . . ,zn−1:

L(z) =
n−1

∑
j=1

α jz j +β. (13.295)

The generalisation of eq. (13.205) which we would like to consider is

ωk (L(z) ,Kτ) = (2πi)2−k
[

g(k−1) (L(z) ,Kτ)dL(z)+K (k−1)g(k) (L(z) ,Kτ)
dτ

2πi

]
. (13.296)

The differential one-form ωk(L(z),Kτ) is closed

dωk (L(z) ,Kτ) = 0. (13.297)

We may always reduce the case K > 1 to the case K = 1 with help of (compare with eq. (13.204))

ωk (L(z) ,Kτ) =
K−1

∑
l=0

ωk

(
L(z)+ l

K
,τ

)
. (13.298)

It is therefore sufficient to focus on the case K = 1.

Let us study the case of elliptic Feynman integrals depending on several kinematic variables

with a concrete example. We don’t have to go very far, we may generalise the equal mass sunrise

integral to the unequal mass sunrise integral. We now take the three masses squared m2
1, m2

2 and

m2
3 in the propagators to be pairwise distinct. We consider

Iν1ν2ν3
(D,x,y1,y2) =

e2εγE
(
m2

3

)ν123−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

1(
−q2

1 +m2
1

)ν1
(
−q2

2 +m2
2

)ν2
(
−q2

3 +m2
3

)ν3
,

(13.299)

with x =−p2/m2
3, y1 = m2

1/m2
3, y2 = m2

2/m2
3. and as before q1 = k1, q2 = k2−k1, q3 =−k2− p.

We have set µ2 = m2
3. Also this integral has been studied intensively in the literature [354, 364–

372].

There are now seven master integrals and we may start from the basis

~I = (I110, I101, I011, I111, I211, I121, I112)
T . (13.300)

In mathematical terms we are looking at a rank 7 vector bundle over M1,3.

Finding the elliptic curve proceeds exactly in the same way as discussed in the equal mass

case. The second graph polynomial defines an elliptic curve

EFeynman : a1a2a3x+(a1y1 +a2y2 +a3)(a1a2 +a2a3 +a3a1) = 0, (13.301)

in CP2, with [a1 : a2 : a3] being the homogeneous coordinates of CP2.
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a1

a2

a3

∆

EFeynman

Re z

Im z

τ

z1

z2

Figure 13.10: EFeynman and ∆ intersect at three points, the images of these three points in C/Λ
are 0,z1,z2.

Alternatively, the loop-by-loop approach for the maximal cut gives

Ecut : v2−
[
u2 +2(y1 + y2)u+(y1− y2)

2
][

u2 +2(1− x)u+(1+ x)2
]
= 0. (13.302)

As in the equal mass case the two elliptic curves EFeynman and Ecut are not isomorphic, but only

isogenic. We may work with either of the two curves. In the following we will use Ecut.

In the next step we would like to change the kinematic variables from (x,y1,y2) to the stan-

dard coordinates (τ,z1,z2) on M1,3. This raises the question: How to express the new coordinates

in terms of the old coordinates and vice versa? For τ the answer is straightforward: τ is again the

ratio of the two periods

τ =
ψ2

ψ1
, (13.303)

and ψ1 and ψ2 are functions of x, y1 and y2, given by eq. (13.44).

Also for z1 and z2 there is a simple geometric interpretation: In the Feynman parameter rep-

resentation there are two geometric objects of interest: the domain of integration ∆ (the simplex

a1,a2,a3 ≥ 0, a1 +a2 +a3 ≤ 1) and the elliptic curve EFeynman (the zero set of the second graph

polynomial). The two objects EFeynman and ∆ intersect at three points, as shown in fig. 13.10.

The images of these three points in C/ΛFeynman are

0, zFeynman
1 , zFeynman

2 , (13.304)

where we used a translation transformation to fix one point at 0. The elliptic curves EFeynman and

Ecut are related by τ = τcut = 1
2
τFeynman and assuming that the points zFeynman

1 and zFeynman
2 are

inside the fundamental parallelogram of Ecut we have

zi = zcut
i = zFeynman

i , i ∈ {1,2}. (13.305)
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Working out the details we find

zi =
F (ui,k)

2K (k)
, i ∈ {1,2}, (13.306)

where K(x) denotes the complete elliptic integral of the first kind, F(z,x) denotes the incomplete

elliptic integral of the first kind and k denotes the modulus of the elliptic curve Ecut as defined

by eq. (13.43). The variables u1 and u2 are given by

u1 =

√
4y1y2−4x(y1 + y2)− (1+ x− y1− y2)

2 +8
√−xy1y2

2
(√−xy1 +

√
y2

) ,

u2 =

√
4y1y2−4x(y1 + y2)− (1+ x− y1− y2)

2 +8
√−xy1y2

2
(√−xy2 +

√
y1

) . (13.307)

Eq. (13.303) and eq. (13.306) define the new coordinates (τ,z1,z2) as functions of the old co-

ordinates (x,y1,y2). We also need the inverse relation, which gives us (x,y1,y2) as functions of

(τ,z1,z2). One finds

x =
(1−κ1)(1−κ2)κ1κ2λ2

(1−λκ1)(1−λκ2)
,

y1 =
κ1 (1−κ1)

(1−λκ1)(κ1−κ2)
2 (1−κ1−κ2 +λκ1κ2)

2
R,

y2 =
κ2 (1−κ2)

(1−λκ2)(κ1−κ2)
2 (1−κ1−κ2 +λκ1κ2)

2
R, (13.308)

with

R =
(
1+κ3

1κ3
2λ3
)
(κ1 +κ2)−

(
1+κ2

1κ2
2λ2
)(

κ2
1 +κ2

2

)
(1+λ)−8

(
1+κ2

1κ2
2λ2
)

κ1 κ2

+(1+λκ1 κ2)(κ1 +κ2)
3 λ+3(1+λκ1 κ2)κ1 κ2 (κ1 +κ2)λ

+8(1+λκ1 κ2)κ1 κ2 (κ1 +κ2)+4κ2
1κ2

2λ(1−λ)−8κ1 κ2 (κ1 +κ2)
2 λ−8κ2

1κ2
2

−2
(
1−2κ1+λκ2

1

)(
1−2κ2 +λκ2

2

)√
κ1κ2 (1−κ1)(1−κ2)(1−λκ1)(1−λκ2).

(13.309)

and

λ =
θ4

2 (0,q)

θ4
3 (0,q)

,

κ1 =
θ2

3 (0,q)

θ2
2 (0,q)

θ2
1

(
πz1
2
,q
)

θ2
4

(
πz1
2
,q
) ,

κ2 =
θ2

3 (0,q)

θ2
2 (0,q)

θ2
1

(
πz2
2
,q
)

θ2
4

(
πz2
2
,q
) . (13.310)
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Eq. (13.308) and eq. (13.310) together with q = exp(iπτ) allow us to express (x,y1,y2) in terms

of (τ,z1,z2).
The system of differential equations can again be transformed into an ε-form by a redefinition

of the master integrals and a change of coordinates from (x,y1,y2) to (τ,z1,z2) [358, 372]. Let’s

look at the fibre transformation: We seek a matrix U relating the new master integrals ~J to the

old master integrals~I

~J = U~I, (13.311)

such that in the transformed differential equation the dimensional regularisation parameter ε
appears only as a prefactor. We construct U in two steps:

U = U2U1, (13.312)

Let us set

~J1 = U1
~I, d~J1 = Â1

~J1. (13.313)

The entries of U1 are constructed such that Â1 is linear in ε and the ε0-part is strictly lower

triangular, i.e.

Â1 = Â(0)
1 + εÂ(1)

1 , (13.314)

where Â(0)
1 and Â(1)

1 are independent of ε and Â(0)
1 is strictly lower triangular. This can be done

with a transformation, where the entries of U1 are rational functions of ε, x, y1, y2, ψ1 and ∂xψ1

(i.e. compared to the full transformation U the entries of U1 do not involve incomplete elliptic

integrals. They only involve complete elliptic integrals related to ψ1 and ∂xψ1). The entries of

U1 are determined from an ansatz and with the help of the methods of section 7.1. Explicitly, U1

is given by setting F54 = F64 = F74 = 0 in the formula (13.321) below.

In a second step U2 is constructed. U2 eliminates the non-zero entries of Â(0)
1 . As Â(0)

1

is strictly lower triangular, this can be done systematically by integration and will lead to in-

complete elliptic integrals. In a final clean-up (and after the change of coordinates on the base

manifold) we trade the incomplete elliptic integrals for d ln(y1)/dτ and d ln(y2)/dτ.

In order to present the explicit formulae, we first introduce a few abbreviations: We introduce

the monomial symmetric polynomials Mλ1λ2λ3
(a1,a2,a3) in the variables a1, a2 and a3. These

are defined by

Mλ1λ2λ3
(a1,a2,a3) = ∑

σ

(a1)
σ(λ1) (a2)

σ(λ2) (a3)
σ(λ3) , (13.315)

where the sum is over all distinct permutations σ of (λ1,λ2,λ3). A few examples are

M100 (a1,a2,a3) = a1 +a2 +a3,

M111 (a1,a2,a3) = a1a2a3,

M210 (a1,a2,a3) = a2
1a2 +a2

2a3 +a2
3a1 +a2

2a1 +a2
3a2 +a2

1a3. (13.316)
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As an abbreviation we then set

Mλ1λ2λ3
= Mλ1λ2λ3

(y1,y2,1) . (13.317)

As an example we have

M110 = M110 (y1,y2,1) = y1y2 + y1 + y2. (13.318)

In addition, we introduce the abbreviation

∆ = 2M110−M200 = 2y1y2 +2y1 +2y2− y2
1− y2

2−1. (13.319)

We further set

Wx = ψ1
d

dx
ψ2−ψ2

d

dx
ψ1. (13.320)

Let us now present the basis ~J:

J1 = ε2I101, (13.321)

J2 = ε2I011,

J3 = ε2I110,

J4 = ε2 π

ψ1
I111,

J5 = ε [(y1 + y2−2) I111 +(3− x− y1−3y2)y1I211 +(3− x−3y1− y2)y2I121 +2(1+ x) I112]

+
2ε2

(3x2 +2M100x+∆)

[
7(y1 + y2−2)x2 +2

(
3y2

1 +3y2
2−6+ y1 + y2−2y1y2

)
x

+(y1 + y2−2)∆] I111 +F54J4,

J6 = ε [(y1− y2) I111− (1+ x+ y1− y2)y1I211 +(1+ x− y1 + y2)y2I121−2(y1− y2) I112]

+
2ε2 (y1− y2)

(3x2 +2M100x+∆)

[
7x2 +2(3y1 +3y2−1)x+∆

]
I111 +F64J4,

J7 =
1

ε

ψ2
1

2πiWx

d

dx
J4 +

ε2

8

1

(3x2 +2M100x+∆)
2

[
9x6 +22M100x5 +(50M110−M200)x4

−(44M300−76M210 +216M111)x3− (41M400−84M310 +86M220 +52M211)x2

+2∆(5M300−5M210 +2M111)x−∆3
] ψ1

π
I111−

1

8
F64J6−

1

24
F54J5 +F74J4.
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The three functions F54, F64, F74, appearing in the definition of J5, J6 and J7 are given by

F54 =

6i

(3x2 +2M100x+∆)ψ1

[
(1+ x+ y1− y2)

1

y1

dy1

dτ
+(1+ x− y1 + y2)

1

y2

dy2

dτ

]
,

F64 =

2i

(3x2 +2M100x+∆)ψ1

[
(3y1 + y2−1+3x)

1

y1

dy1

dτ
− (y1 +3y2−1+3x)

1

y2

dy2

dτ

]
,

F74 =

− 1

(3x2 +2M100x+∆)
2

ψ2
1

[
(
3y2

1 + y2
2 +1−2y2 +6y1x+3x2

)( 1

y1

dy1

dτ

)2

−
(
3y2

1 +3y2
2−1+2y1y2−2y1−2y2 +6(y1 + y2−1)x+3x2

)( 1

y1

dy1

dτ

)(
1

y2

dy2

dτ

)

+
(
y2

1 +3y2
2 +1−2y1 +6y2x+3x2

)( 1

y2

dy2

dτ

)2
]
. (13.322)

In this basis the differential equation reads

(d+A)J = 0, (13.323)

with

A = ε




a11 0 0 0 0 0 0

0 a22 0 0 0 0 0

0 0 a33 0 0 0 0

0 0 0 a44 a45 a46 a47

a51 a52 a53 a54 a55 a56 a57

a61 a62 a63 a64 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77




. (13.324)

In order to present the entries of A in a compact form we introduce z3 =−z1− z2 and a constant

β = 1. We define (for arbitrary β)

Ωk (z,β,τ) =
1

2
ωk (z,τ)+

1

4
ωk (z−β,τ)+

1

4
ωk (z+β,τ) (13.325)

−2(k−1)

[
ωk

( z

2
,τ
)
+

1

2
ωk

(
z−β

2
,τ

)
+

1

2
ωk

(
z+β

2
,τ

)]
,

where ωk(z,τ) denotes the one-form defined in eq. (13.296). For β = 1 we have

Ωk (z,1,τ) = ωk (z,τ)−2(k−1)ωk (z,2τ) . (13.326)
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We will encounter Ω2(z,β,τ) and Ω3(z,β,τ). For the entries ai j we also need two differential

forms η2(τ) and η4(τ), which depend on τ, but not on the zi’s. These are defined by

η2 (τ) = [e2 (τ)−2e2 (2τ)]
dτ

2πi
, η4 (τ) =

1

(2πi)2
e4 (τ)

dτ

2πi
, (13.327)

where ek(τ) denotes the standard Eisenstein series, defined in eq. (13.126). We have

e2 (τ)−2e2 (2τ) ∈ M2(Γ0(2)), e4 (τ) ∈ M4(SL2(Z)). (13.328)

For the entries of A we have the following relations

a45 =
1

24
a57, a46 =

1

8
a67, a33 = a11 +a22,

a53 = a11 +a22−a51−a52, a56 = 3a65, a77 = a44,

a61 = 2a11−a51, a62 =−2a11 +a51, a63 = a11−a22,

a75 =
1

24
a54, a76 =

1

8
a64, (13.329)

and the following symmetries

a22 (z1,z2,z3) = a11 (z2,z1,z3) , a52 (z1,z2,z3) = a51 (z2,z1,z3) ,

a72 (z1,z2,z3) = a71 (z2,z1,z3) , a73 (z1,z2,z3) = a71 (z1,z3,z2) . (13.330)

Thus we need to specify only a few entries. We group them by modular weight.

Modular weight 0:

a4,7 = ω0 (z,τ) = −2πidτ. (13.331)

Modular weight 1:

a5,7 = 6i [ω1 (z1,τ)+ω1 (z2,τ)] ,

a6,7 = 2i [ω1 (z1,τ)−ω1 (z2,τ)] . (13.332)

Note that ω1(z,τ) = 2πidz is independent of τ.

Modular weight 2:

a1,1 = −2 [Ω2 (z1,β,τ)−Ω2 (z3,β,τ)] ,

a4,4 = ω2 (z1,τ)+ω2 (z2,τ)+ω2 (z3,τ)−Ω2 (z1,β,τ)−Ω2 (z2,β,τ)+3Ω2 (z3,β,τ)

−6η2 (τ) ,

a5,1 = −2 [Ω2 (z1,β,τ)−Ω2 (z2,β,τ)−2Ω2 (z3,β,τ)] ,

a5,5 = −3ω2 (z3,τ)−Ω2 (z1,β,τ)−Ω2 (z2,β,τ)+3Ω2 (z3,β,τ)−6η2 (τ) ,

a6,5 = −ω2 (z1,τ)+ω2 (z2,τ) ,

a6,6 = −2ω2 (z1,τ)−2ω2 (z2,τ)+ω2 (z3,τ)−Ω2 (z1,β,τ)−Ω2 (z2,β,τ)+3Ω2 (z3,β,τ)

−6η2 (τ) , (13.333)
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Modular weight 3:

a5,4 = 12i [ω3 (z1,τ)+ω3 (z2,τ)−2ω3 (z3,τ)] ,

a6,4 = 12i [ω3 (z1,τ)−ω3 (z2,τ)] ,

a7,1 = i [Ω3 (z1,β,τ)−Ω3 (z2,β,τ)+Ω3 (z3,β,τ)] . (13.334)

Modular weight 4:

a7,4 = 12 [ω4 (z1,τ)+ω4 (z2,τ)+ω4 (z3,τ)−6η4 (τ)] . (13.335)

We have managed to transform the differential equation for the family of the unequal mass sun-

rise integral (e.g. an elliptic Feynman integral depending on three kinematic variables) into an

ε-form. This differential equation can be solved in terms of the iterated integrals discussed in

section 13.4.

Let us close this section with a discussion of the behaviour of the system under a modular

transformation

γ =

(
a b
c d

)
∈ SL2(Z). (13.336)

The coordinate transform as

z′1 =
z1

cτ+d
, z′2 =

z2

cτ+d
, τ′ =

aτ+b

cτ+d
. (13.337)

The constant β = 1 transforms as

β′ =
β

cτ+d
, (13.338)

so in general we will have β′ 6= 1. We may view β as being a further marked point in a higher

dimensional space M1,n′ with n′ > n. We set again z′3 = −z′1− z′2. We also need to redefine the

master integrals. We set

J′ =Uγ J, (13.339)

where Uγ is given by

Uγ =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1
cτ+d 0 0 0

0 0 0
6ic(z1+z2)

cτ+d 1 0 0

0 0 0
2ic(z1−z2)

cτ+d 0 1 0

0 0 0 − c
2πiε +

c2(z2
1+z1z2+z2

2)
cτ+d − ic(z1+z2)

4
− ic(z1−z2)

4
cτ+d




. (13.340)
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The transformation matrix U is not too difficult to construct, if one starts from the assumption

that the first elliptic master integral (i.e. J4) should be rescaled as

J′4 =
ω1

ω′1
J4 =

1

cτ+d
J4. (13.341)

Under this combined transformation the differential equation for the transformed system reads

then

(
d +A′

)
J′ = 0, (13.342)

where A′ is obtained (with one exception) from A by replacing all unprimed variables with primed

variables. For example a′7,1 is given by

a′7,1 = i
[
Ω3

(
z′1,β

′,τ′
)
−Ω3

(
z′2,β

′,τ′
)
+Ω3

(
z′3,β

′,τ′
)]
. (13.343)

The only exception is η2(τ). For γ∈Γ0(2) the differential one-form η2(τ) transforms into η2(τ
′).

For a general γ ∈ SL2(Z) let us set b2(τ) = e2(τ)−2e2(2τ). Then η2(τ) is replaced by

(b2|2γ−1)(τ′)
dτ′

2πi
. (13.344)

(b2|2γ−1)(τ′) is again a modular form for Γ(2), but not necessarily identical to b2(τ
′).

It remains to work out (b2|2γ−1)(τ′). To this aim we first express b2(τ) in terms of Eisenstein

series for Γ(2). We find

b2 (τ) = 4(2πi)2 h2,2,0,1 (τ) , (13.345)

where the Eisenstein series hk,N,r,s(τ) have been defined in eq. (13.151). The transformation law

for b2(τ) follows then from the transformation law for hk,N,r,s(τ) given in eq. (13.161). We obtain

(b2|2γ−1)(τ′) = 4(2πi)2 h2,2,b mod 2,d mod 2

(
τ′
)
, γ−1 =

(
d −b
−c a

)
. (13.346)

Further examples of elliptic Feynman integrals can be found in [373–382].



Chapter 14

Motives and mixed Hodge structures

In most chapters of this book we followed the pattern to show how known facts in mathematics

may help a physicist (to compute Feynman integrals). In this chapter we reverse the pattern.

We would like to illustrate how known facts in physics (Feynman integrals we know how to

calculate) may help a mathematician. This concerns the theory of motives. In part, such a

theory is conjectural (hence the interest of mathematicians). Feynman integrals provide non-

trivial examples such a theory should contain. In this chapter we introduce the mathematical

language and the main ideas behind motives.

Motives where introduced by Alexander Grothendieck to unify cohomology theories. In or-

der to see at least two different cohomology theories we discuss in section 14.1 Betti cohomology

and de Rham cohomology. Unification will require a more abstract language, and in section 14.2

we introduce categories as the appropriate language. In section 14.3 we try to give a glimpse on

what a theory of motives should be about. As remarked earlier, this is still partly a conjectural

theory and sections 14.2 and 14.3 mainly serve to acquaint the reader with the main ideas and

the language of this field.

We can be more concrete if we look at the Hodge realisation of a motive (also called an

H-motive). Here we focus on the interplay between Betti cohomology and de Rham cohomol-

ogy. The theory is based on Hodge structures, which we discuss in section 14.4. Finally, in

section 14.5 we discuss examples from Feynman integrals. We will also see how this formalism

offers us an alternative way to compute the differential equation for a Feynman integral.

Readers interested in the topics of this chapter would almost certainly consult additional text

books. Introductory texts for categories are the review article by Deligne and Milne [383] and the

books by Mac Lane [384], Leinster [385] and Etingof, Gelaki, Nikshych and Ostrik [386]. More

information on motives can be found in the book by André [387]. Hodge structures are treated

in the books by Voisin [388] and Peters and Steenbrink [389]. The proceedings of a summer

school on Hodge structures [390] give also very useful information. Review articles related to

the content of this chapter are [282, 391, 392].

469
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14.1 Cohomology

In this section we review Betti cohomology and de Rham cohomology. We also discuss relative

Betti cohomology and relative de Rham cohomology, as well as algebraic de Rham cohomology.

14.1.1 Betti cohomology

Betti cohomology (also known as singular cohomology) is based on a triangulation of a topo-

logical space by simplices. We already encountered simplices in section 9.2.1. Let a0,a1, . . . ,an

be (n+1) linear independent vectors in Rd (with d ≥ n+1). The n-simplex σn = 〈a0,a1, . . . ,an〉
is the polytope

σn = 〈a0,a1, . . . ,an〉 =

{
α0a0 +α1a1 + · · ·+αnan|α j ≥ 0,

n

∑
j=0

α j = 1

}
. (14.1)

For example a 0-simplex is a point, a 1-simplex is a line interval, a 2-simplex is a triangle and

a 3-simplex is a tetrahedron. The ai are called the vertices of the simplex σn. Faces and facets

(we recall that a facet is a face of codimension one) of simplices are defined as for polytopes

(see section 9.2.1). They correspond to k-dimensional simplices defined by a subset of (k+ 1)
vertices of σn. We denote the i-th facet of the simplex σn = 〈a0,a1, . . . ,an〉 by

σi
n−1 = 〈a0, . . . , âi, . . . ,an〉, (14.2)

where the hat denotes that the corresponding vertex is omitted. The incident number [σn : σi
n−1]

is defined as

[σn : σi
n−1] =

{
+1 if (i,0, . . . , i−1, i+1, . . . ,n) is an even permutation of (0,1, . . . ,n),
−1 if (i,0, . . . , i−1, i+1, . . . ,n) is an odd permutation of (0,1, . . . ,n).

(14.3)

A simplicial complex B is a set of a finite number of simplexes in Rd satisfying the following

two properties:

1. an arbitrary face of a simplex σ of B belongs to B,

2. if σ and σ′ are two simplexes of B, the intersection σ∩σ′ is either empty or a face of σ and

σ′.

The union of all simplices of B defines a subset of Rd , which we denote by |B|. Let X be a

topological space. If there exists a simplicial complex B and a homeomorphism t : |B| → X then

X is said to be triangulable and the pair (B, t) is called a triangulation of X .

For a simplex σn we define the boundary of the simplex by

∂σn =
n

∑
i=0

[σn : σi
n−1]σ

i
n−1. (14.4)
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In other words, the boundary of a simplex is a linear combination of its facets with the coefficients

being given by the incident numbers.

Let B be a simplicial complex. An integral k-chain of B is a function mapping the set of k-

simplexes {σk,1,σk,2, . . .} into the integers Z, such that σk, j→ n j. An integral k-chain is denoted

as

ck = ∑
j

n j σk, j. (14.5)

The integral k-chains form a group with respect to addition. We denote this group by Ck(B). The

boundary of a k-chain is given by

∂ck = ∑
j

k

∑
i=0

n j [σk, j : σi
k−1, j]σ

i
k−1, j, (14.6)

where σi
k−1, j denotes the i-th facet of the k-dimensional simplex σk, j.

A k-cycle zk is defined by

∂zk = 0. (14.7)

A k-chain bk is called a boundary if there exists a (k+1)-chain ck+1 such that

∂ck+1 = bk. (14.8)

Due to the alternating signs originating from the incidence numbers we have ∂∂ck = 0 for any

chain, so each boundary bk = ∂ck+1 is also a cycle (since ∂bk = ∂∂ck+1 = 0). The sets of all

k-chains, k-cycles and k-boundaries form Abelian groups, denoted by Ck(B), Zk(B) and Bk(B),
respectively. The boundary operator ∂ : Ck(B)→ Ck−1(B), which maps k-chains into (k− 1)-
chains, is also a group homomorphism. The group of boundaries Bk(B) forms a subgroup of the

group of cycles Zk(B). Since all groups are Abelian, the factor group

Hk(B) =
Zk(B)
Bk(B)

(14.9)

is well defined and is called the k-th homology group Hk(B) of the complex B.

A sequence of Abelian groups . . . ,C0,C1,C2, . . . together with homomorphism ∂k :Ck→Ck−1

such that ∂k−1 ◦∂k = 0 in an example of a chain complex. A chain complex is denoted as

· · · ∂3−→C2
∂2−→C1

∂1−→C0
∂0−→ ·· · . (14.10)

The chain groups Ck(B) form a chain complex.

The cohomology groups are defined as follows: Given an Abelian group K and the k-chain

groups Ck(B) of a simplicial complex B we consider the k-cochain group

Ck(B,K) = Hom(Ck(B),K). (14.11)
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The group K is called the coefficient group. A typical choice would be K = Z. We define the

coboundary operator d : Ck(B,K)→Ck+1(B,K) by

(
d f k
)
(ck+1) = f k (∂ck+1) (14.12)

for all f k ∈ Ck(B,K) and ck+1 ∈Ck+1(B). Cocycles and coboundaries are then defined in the

usual way : A k-cochain f k is called a k-cocylce if d f k = 0, it is called a k-coboundary if there

is a (k−1)-cochain gk−1 such that f k = dgk−1. The k-cohomology group Hk(B,K) is defined as

Hk(B,K) =
Zk(B,K)

Bk(B,K)
, (14.13)

where Zk(B,K) is the group of k-cocycles and Bk(B,K) is the group of k-coboundaries.

For a triangulable topological space X one first chooses a triangulation (B, t) and defines the

Betti cohomology (or singular cohomology) by eq. (14.13). One can show that this is indepen-

dent of the chosen triangulation. We denote the k-th cohomology group by

Hk
B(X) (14.14)

The subscript B stands for “Betti”, not the simplicial complex B. As we mentioned above, Hk
B(X)

is independent of the chosen triangulation (B, t). If we want to emphasise the coefficient group

K, we write Hk
B(X ,K).

We may also define relative homology groups and relative cohomology groups: Whereas a

k-cycle of a complex B is a chain with no boundary at all, we can relax this condition by requiring

that the boundary lies only within some specified subcomplex A. If A is a subcomplex of B, we

define the relative chain group as

Ck(B,A) =
Ck(B)

Ck(A)
. (14.15)

The relative cycle group Zk(B,A) and the relative boundary group Bk(B,A) are defined in a sim-

ilar way: A chain zk ∈Ck(B) defines a cycle [zk] ∈Ck(B,A) if

∂zk ∈ A. (14.16)

A chain bk ∈Ck(B) defines a boundary [bk] ∈Ck(B,A) if there is a chain ck+1 ∈Ck+1(B) with

bk−∂ck+1 ∈ A. (14.17)

It can be shown that Bk(B,A) is a subgroup of Zk(B,A) and thus the relative homology group

Hk(B,A) =
Zk(B,A)

Bk(B,A)
(14.18)

is well defined.
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Exercise 115: Show that a relative boundary is a relative cycle.

The relative cohomology groups are obtained from the relative homology groups in complete

analogy to the way the cohomology groups are obtained from the homology groups, starting

with the relative k-cochain group

Ck(B,A,K) = Hom(Ck(B,A),K). (14.19)

14.1.2 De Rham cohomology

If X is a differentiable manifold, we may consider de Rham cohomology (as we did in sec-

tion 6.3.2): The k-th de Rham cohomology group Hk
dR(X) is the set of equivalence classes of

closed k-forms modulo exact k-forms. The group law is the addition of k-forms.

Let us now look at the relation between de Rham cohomology and Betti cohomology: Let

X be a differentiable manifold. To this manifold we can on the one hand associate the de Rham

cohomology Hk
dR(X), as well as the Betti cohomology Hk

B(X). There is an isomorphism between

the de Rham and Betti cohomology:

comparison : Hk
dR(X)⊗C→ Hk

B(X)⊗C,

ω→


γ→

∫

γ

ω


 . (14.20)

If we fix a basis for Hk
dR(X) and Hk

B(X) the isomorphism is given explicitly as follows: Let

n = dimHk
dR(X) = dimHk

B(X). Let us denote by ω1, . . . ,ωn a basis for Hk
dR(X) and by γ1, . . . ,γn

a basis for the Betti homology HB
k (X). A basis for the Betti cohomology Hk

B(X) is then given by

the duals γ∗1, . . . ,γ
∗
n and satisfies γ∗i (γ j) = δi j. We then have

ωi = ∑
j

pi jγ
∗
j , pi j =

∫

γ j

ωi. (14.21)

The coefficients pi j are called periods and the n×n-matrix P with entries pi j is called the period

matrix.

If Y is a closed submanifold of X , we may consider relative de Rham cohomology. We first

define Ωk(X ,Y ) to be the space of differential k-forms on X , whose restriction to Y is zero. The

relative de Rham cohomology group Hk
dR(X ,Y ) is then given by the equivalence classes of the

closed forms in Ωk(X ,Y ) modulo the exact ones.

Let’s look at an example: We take X = C∗ = C\{0} and Y = {1,2}. For the non-relative

cohomology we have

dimH1
B(X) = 1, dimH1

dR(X) = 1. (14.22)

A basis for HB
1 (X) is given by an anti-clockwise circle γ1 around z = 0, a basis for H1

dR(X) is

given by ω1 = dz/z. For the relative cohomology we have

dimH1
B(X ,Y ) = 2, dimH1

dR(X ,Y) = 2. (14.23)
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A basis for HB
1 (X ,Y ) is now given by γ1 as above and the line segment γ2 from z = 1 to z = 2.

The boundary of this line segments are the points z = 1 and z = 2, which are in Y . A basis for

the relative de Rham cohomology H1
dR(X ,Y ) is given by ω1 = dz/z and ω2 = dz. Note that in

the relative case dz is no longer an exact form, as the zero form (i.e. the function) f (z) = z
does not belong to Ω0(X ,Y). All functions from Ω0(X ,Y ) are required to vanish on Y and f (z)
does not (for example f (1) = 1 6= 0). As a side-remark, let us note that the restriction of a k-

form to a (k−1)-dimensional submanifold always vanishes, there are simply not enough linear

independent tangential vectors to contract into the k-form. Thus ω1,ω2 ∈ Ω1(X ,Y ). There is

again an isomorphism between the de Rham and Betti cohomology:

Hk
dR(X ,Y )⊗C→Hk

B(X ,Y)⊗C. (14.24)

The period matrix is given by

P =

(
2πi ln2

0 1

)
. (14.25)

14.1.3 Algebraic de Rham cohomology

On a differential manifold M we have the complex of differential forms Ω•(M). Let U ⊂M be

an open subset. On U we may write any differential k-form as

ω = ∑
i1<···<ik

fi1...ik (x)dxi1 ∧· · ·∧dxik , fi1...ik ∈ C ∞ (U,C) . (14.26)

Let us stress that there is no point in singling out polynomial or rational functions: A polynomial

or rational function in one coordinate system will in general not be a polynomial or rational

function in another coordinate system.

However, the situation changes if we consider algebraic varieties. Algebraic varieties are

defined by polynomial equations and we may single out the variables defining the variety. For an

algebraic variety X we may consider regular functions on X , these are functions which we may

write locally on an open set U as a rational function such that the denominator polynomial is

nowhere vanishing on U . One denotes the regular functions on X by O(X). An algebraic form

on X is given by

ω = ∑
i1<···<ik

fi1...ik (x)dxi1 ∧· · ·∧dxik , fi1...ik ∈ O (X) . (14.27)

We denote the complex of algebraic forms on X by Ω•alg(X). Differentiation is defined in the

usual way.

If F is a subfield of C and X is defined over F, we denote by X an the analytification of X (see

section 10.4). This means that the coordinates of the points in X an may be complex (and not just

in F) and X an is equipped with the standard topology (the one which is Hausdorff).

Algebraic de Rham cohomology is the cohomology obtained by restricting ourselves to the

algebraic forms of eq. (14.27). We denote algebraic de Rham cohomology groups by

Hk
alg dR (X) . (14.28)
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Any cohomology class in Hk
alg dR(X) defines a cohomology class in Hk

dR(X
an) and we trivially

have

Hk
alg dR (X) ⊆ Hk

dR (X
an) . (14.29)

Non-trivial is the following theorem [256]:

Theorem 18.

Hk
alg dR (X)⊗C = Hk

dR (X
an) . (14.30)

This theorem states that every cohomology class of Hk
dR(X

an) has a representative as an al-

gebraic cohomology class. It is therefore sufficient to consider just Hk
alg dR(X). This allows us to

work just with rational functions.

Let’s look at an example. We consider

xy−1 ∈ Q [x,y] . (14.31)

This defines a variety over Q:

X =
{
(x,y) ∈Q

2 | xy−1 = 0
}
. (14.32)

For x we may choose any algebraic number not equal to zero, y is then given by y = 1/x. Hence

X is isomorphic to

X ∼= Q\{0}. (14.33)

The analytification of X is given by

X an ∼= C\{0} = C∗. (14.34)

We have

Ω0
alg (X) = Q [x,y]/〈xy−1〉 = Q

[
x,

1

x

]
,

Ω1
alg (X) = Q

[
x,

1

x

]
·dx,

Ω1
alg (X) = 0. (14.35)

An algebraic one-form is a sum of terms xn ·dx with n ∈ Z. The only term which is not exact is

the one with n =−1. Hence, H1
alg dR(X) is generated by dx/x.

There is a generalisation of theorem 18 to the relative case:

Theorem 19.

Hk
alg dR (X ,Y )⊗C = Hk

dR (X
an,Y an) . (14.36)
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As Y is allowed to intersect itself, the definition of Hk
alg dR(X ,Y) is more involved. We il-

lustrate here the construction of the relative algebraic de Rham cohomology groups for the case

where X is a smooth affine algebraic variety and Y a simple normal crossing divisor. For the

general case, where X is a smooth variety and Y a closed subvariety we refer to the book by

Huber and Müller-Stach [393].

A codimension 1 closed subvariety Y ⊂ X is called a normal crossing divisor, if for every

point x∈Y there is an open neighbourhood U ⊆ X of x with local coordinates x1, . . . ,xn such that

Y is locally given by

x1 · x2 · . . . · xk = 0, for some 1≤ k ≤ n. (14.37)

Y is called a simple normal crossing divisor if in addition the irreducible components of Y are

smooth. In other words, Y looks locally like a union of coordinate hyperplanes.

Let us assume that Y is a union of r irreducible components Yi:

Y = Y1∪Y2∪· · ·∪Yr. (14.38)

Let I ⊆ {1, . . . ,r}. We set

YI =
⋂
i∈I

Yi, Y p =

{
X , p = 0,⊔
|I|=p

YI, p≥ 1. (14.39)

Given a subset I = {i0, . . . , ip} ⊆ {1, . . . ,r} with (p+1) elements, we define Il to be the subset

with p elements, obtained from I by removing the l-th element:

Il =
{

i0, . . . , îl, . . . , ip
}
. (14.40)

As YIl is the intersection of p irreducible components and YI is the intersection of YIl with Yil we

have

YI ⊂ YIl . (14.41)

With these definitions we may now look at the double complex K p,q = Ω
q
alg(Y

p). In the double

complex K•,• we have two differentials: The first one is defined by

dvertical : K p,q→ K p,q+1,

dvertical = (−1)p d, (14.42)

where d is the ordinary exterior derivative. The alternating sign is required to turn K p,q into a

complex. The second one is given by

dhorizontal : K p,q→ K p+1,q,

dhorizontal =
⊕
|I|=p+1

p⊕
l=0

(−1)l rIlI, (14.43)
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and

rIlI : Ω
q
alg (YIl)→Ω

q
alg (YI) (14.44)

is the restriction map. In the next step one considers the total complex

Ωn
alg (X ,Y ) =

⊕
p+q=n

K p,q (14.45)

together with the differential

dtotal = dvertical +dhorizontal. (14.46)

The relative algebraic de Rham cohomology group Hk
alg dR(X ,Y ) is then the k-th cohomology

group of Ωk
alg(X ,Y ) with respect to dtotal.

We may visualise the double complex K p,q as follows:

. . . . . . . . .

dvertical

x dvertical

x dvertical

x

Ω2
alg (X)

dhorizontal−−−−−→ ⊕
i

Ω2
alg (Yi)

dhorizontal−−−−−→ ⊕
i< j

Ω2
alg

(
Yi∩Yj

) dhorizontal−−−−−→ . . .

dvertical

x dvertical

x dvertical

x

Ω1
alg (X)

dhorizontal−−−−−→ ⊕
i

Ω1
alg (Yi)

dhorizontal−−−−−→ ⊕
i< j

Ω1
alg

(
Yi∩Yj

) dhorizontal−−−−−→ . . .

dvertical

x dvertical

x dvertical

x

Ω0
alg (X)

dhorizontal−−−−−→ ⊕
i

Ω0
alg (Yi)

dhorizontal−−−−−→ ⊕
i< j

Ω0
alg

(
Yi∩Yj

) dhorizontal−−−−−→ . . .

(14.47)

The total complex Ω•alg(X ,Y ) is obtained by summing up the diagonals. For example

Ω2
alg (X ,Y ) = Ω2

alg (X)⊕
(⊕

i

Ω1
alg (Yi)

)
⊕
(⊕

i< j

Ω0
alg

(
Yi∩Yj

)
)
. (14.48)

The construction above works the same way if we drop the restriction to algebraic forms. It

is instructive to see how this definition reduces to the one we had previously in section 14.1.2.

To this aim we consider the case where Y has only one irreducible component without self-

intersections. In this case

Ωk (X ,Y ) = Ωk (X)⊕Ωk−1 (Y ) . (14.49)

We may therefore write an element in Ωk(X ,Y) as a pair (ϕ,ξ) with ϕ∈Ωk(X) and ξ∈Ωk−1(Y ).
The differential dtotal works out as

dtotal (ϕ,ξ) = (dϕ, ι∗ϕ−dξ) , (14.50)



478 CHAPTER 14. MOTIVES AND MIXED HODGE STRUCTURES

where ι : Y → X denotes the inclusion. In 14.1.2 we defined the relative de Rham cohomology

as equivalence classes of closed differential forms, which vanish on Y . Let us denote a represen-

tative of such a class by ω. We would like to show that the two definitions are equivalent: Any

ω ∈ Hk
dR(X ,Y) (according to the definition in section 14.1.2) defines

(ϕ,ξ) = (ω,0) . (14.51)

ω is closed and vanishes on Y , hence ι∗ω = 0. We therefore have

dtotal (ω,0) = (dω, ι∗ω) = (0,0) . (14.52)

On the other hand, any (ϕ,ξ)∈Hk
dR(X ,Y ) (according to the definition of this sub-section) defines

ω = ϕ−d (hπ∗ξ) . (14.53)

This requires some explanation. We start from a tubular neighbourhood T of Y in X and denote

by π : T → Y the projection. Furthermore h is a bump function. Let T1 and T2 be two further

tubular neighbourhoods of Y in X with T1 ⊂ T2 ⊂ T . The bump function h is equal to 1 on T1 and

equal to zero on X\T2. One may show that the cohomology class defined by ω is independent of

the choices made for T and h. If (ϕ,ξ) is closed, we have dϕ = 0 and ι∗ϕ = dξ. It follows that ω
is closed (dω = dϕ = 0) and vanishes when restricted to Y :

ι∗ω = ι∗ϕ− ι∗d (hπ∗ξ) = dξ−dξ = 0. (14.54)

Therefore ω defines a cohomology class according to the definition of section 14.1.2.

14.2 Categories

In mathematics it is quite common to consider for example vector spaces together with linear

maps between vector spaces (i.e. vector space homomorphisms) or groups together with group

homomorphisms. There are proofs which work the same way for vector spaces as they do for

groups. It is therefore useful to introduce another layer of abstraction, where the common prop-

erties are treated in a unified way. This brings us to category theory.

Let us expand on the examples of vector spaces and groups: We may view the vector spaces

(or groups) as objects and we denote morphisms between two objects X and Y (with X as source

and Y as target) by an arrow X
α→ Y .

A category consists of

• a class of objects denoted by Obj(C ),

• for every pair X ,Y ∈ Obj(C ) a class of morphisms X
α→ Y from X to Y denoted by

HomC (X ,Y ) or simply Hom(X ,Y) if no confusion arises,

• for every ordered triple of objects X ,Y,Z a map from Hom(X ,Y )× Hom(Y,Z)
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to Hom(X ,Z) called composition, the composition of α ∈ Hom(X ,Y ) with β ∈
Hom(Y,Z) is denoted by β◦α,

• for α ∈ Hom(W,X), β ∈ Hom(X ,Y) and γ ∈ Hom(Y,Z) we have the associativity

law γ◦ (β◦α) = (γ◦β)◦α,

• an identity morphism id : X → X for every object X , such that α ◦ idX = α and

idY ◦α = α for any α ∈ Hom(X ,Y).

A morphism α ∈ Hom(X ,Y ) is called an isomorphism if there exists a morphism α−1 ∈
Hom(Y,X) such that

α−1 ◦α = idX and α◦α−1 = idY . (14.55)

Examples of categories are the category of sets, denoted by Set, where the objects are sets and

the morphisms are maps between sets, the category of groups, denoted by Grp, where the objects

are groups and the morphisms are group homomorphisms and the category of finite-dimensional

F-vector spaces, denoted VectF, where the objects are finite-dimensional vector space over the

field F and the morphisms are linear maps between vector spaces. A less standard example of a

category is a quiver, where every vertex has a self-loop attached to it and for any two oriented

edges vi→ v j and v j→ vk there is an oriented edge vi→ vk, subject to the associativity law. The

objects are the vertices and the morphisms are the oriented edges.

In the definition of a category we wrote “class of objects” and “class of morphisms”. This

wording avoids Russell’s “set of all sets”-contradiction. A category C is called a small category

if the class of all morphisms of C is a set. (This implies automatically that Obj(C ) is a set too,

as objects are in one-to-one correspondence with the identity maps.) A category C is called a

locally small category if for each X ,Y ∈ Obj(C ) the class Hom(X ,Y ) is a set.

Given a category C the dual category C ∗ is given by

Obj(C ∗) = Obj(C ) ,

HomC ∗(X ,Y ) = HomC (Y,X). (14.56)

In other words, the dual category C ∗ is obtained from the category C by reversing all arrows.

Maps between categories which preserve composition and identities are called functors. In

detail:

A covariant functor T : C →D from a category C to a category D consists of

• a map T : Obj(C )→ Obj(D), and

• maps T = TXY : Hom(X ,Y ) → Hom(TX ,TY ), which preserve composition and

identities, i.e.

T (β◦α) = (T β)◦ (Tα) for all morphisms X
α→Y

β→ Z in C ,

T (idX) = idT X for all X ∈ Obj(C ). (14.57)
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If no confusion arises we will simply write T for TXY (as we did already above).

A functor is called faithful, if for any X ,Y ∈ Obj(C ) the map

TXY : HomC (X ,Y )→ HomD(T X ,TY ) (14.58)

is injective, the functor is called full, if the map is surjective and the functor is called fully

faithful, if the map is bijective.

There is also the notion of a contravariant functor: A contravariant functor T : C → D is

a covariant functor C → D∗ (or equivalently a covariant functor C ∗ → D). Spelled out as in

eq. (14.57) we have

A contravariant functor T : C →D from a category C to a category D consists of

• a map T : Obj(C )→ Obj(D), and

• maps T =TXY : Hom(X ,Y )→Hom(TY,T X), which preserve composition and iden-

tities, i.e.

T (β◦α) = (T α)◦ (Tβ) for all morphisms X
α→Y

β→ Z in C ,

T (idX) = idT X for all X ∈ Obj(C ). (14.59)

A contravariant functor reverses all arrows.

A natural transformation Φ : T1→ T2 between two functors T1 : C1→ C2 and T2 : C1→ C2

(between the same categories) is a map that assigns to each object X ∈ Obj(C1) a morphism

ΦX ∈ HomC2
(T1(X),T2(X)) such that for any morphism α ∈ HomC1

(X ,Y )

ΦY ◦T1(α) = T2(α)◦ΦX . (14.60)

In terms of a commutative diagram:

T1 (X)
ΦX−−−→ T2 (X)

T1(α)

y
yT2(α)

T1 (Y )
ΦY−−−→ T2 (Y )

(14.61)

A natural transformation Φ is called a natural equivalence of functors if each map ΦX is an

isomorphism. ΦX is called a functorial isomorphism.

For a category C we denote by IC : C → C the identity functor, which assigns each object and

morphism to itself. Two categories C1 and C2 are called equivalent categories, if there exists

two functors T21 : C1→ C2 and T12 : C2→ C1 such that T12 ◦T21 : C1→ C1 and IC1
: C1→ C1 are

natural equivalent as well as T21 ◦T12 : C2→ C2 and IC2
: C2→ C2.

We are interested in categories, which have additional structures. We therefore introduce

various specialisations: Monoidal categories, tensor categories, Abelian categories and finally

Tannakian categories. It is the last one (Tannakian categories) which is most relevant to us.
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14.2.1 Monoidal categories

A monoidal category C is a category equipped with a functor from C ×C into C , denoted by ⊗,

a unit object 1 and an isomorphism ι : 1⊗1→ 1, subject to the following constraints:

For any three objects X ,Y,Z ∈ Obj(C ) there is a functorial isomorphism

ΦX ,Y,Z : X⊗ (Y ⊗Z)→ (X⊗Y )⊗Z (14.62)

satisfying the pentagon identity:

(ΦX ,Y,Z⊗ id)◦ΦX ,Y⊗Z,W ◦ (id⊗ΦY,Z,W ) = ΦX⊗Y,Z,W ◦ΦX ,Y,Z⊗W . (14.63)

ΦX ,Y,Z is also called an associativity constraint. The pentagon identity reads in terms of a

commutative diagram

X⊗ (Y ⊗ (Z⊗W ))
ΦX ,Y,Z⊗W−−−−−→ (X⊗Y )⊗ (Z⊗W )

ΦX⊗Y,Z,W−−−−−→ ((X⊗Y )⊗Z)⊗WyidX⊗ΦY,Z,W

xΦX ,Y,Z⊗idW

X⊗ ((Y ⊗Z)⊗W )
ΦX ,Y⊗Z,W−−−−−→ (X⊗ (Y ⊗Z))⊗W

(14.64)

For the unit object 1 one requires that there are functorial isomorphisms

lX : 1⊗X → X and rX : X⊗1 → X , (14.65)

satisfying the triangle diagram

X⊗ (1⊗Y ) (X⊗1)⊗Y

X⊗Y

ΦX ,1,Y

idX⊗lY
rX⊗idY (14.66)

Instead of eq. (14.66) we may require that the functors L1 : C → C and R1 : C → C acting on the

objects of C as

L1 : X → 1⊗X ,

R1 : X → X⊗1 (14.67)

are autoequivalences of C [386]. We denote a monoidal category by (C ,⊗,Φ,1, ι). The functo-

rial isomorphisms lX and rX are related to this data as

L1 (lX) = (ι⊗ idX)◦φ1,1,X ,

R1 (rX) = (idX ⊗ ι)◦φ−1
X ,1,1. (14.68)
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One of the simplest examples of a monoidal category is VectF, the category of finite-dimensional

vector spaces over the field F. The unit object 1 in this category is the one-dimensional vector

space isomorphic to F.

A monoidal category C is called (left) rigid (or has left duals), if for each object X there is

an object X∗ and morphisms evX : X∗⊗X → 1, coevX : 1→ X⊗X∗ such that

X
coevX−−−→ (X⊗X∗)⊗X

Φ−1
X ,X∗,X−−−−→ X⊗ (X∗⊗X)

evX−−−→ X ,

X∗
coevX−−−→ X∗⊗ (X⊗X∗)

ΦX∗,X ,X∗−−−−−→ (X∗⊗X)⊗X
evX−−−→ X∗

(14.69)

compose to idX and idX∗ , respectively.

14.2.2 Tensor categories

A tensor category is a monoidal category such that the two functors C×C→C given by (X ,Y )→
X⊗Y and (X ,Y )→ Y ⊗X are naturally equivalent, i.e. there exists a functorial isomorphism

ΨX ,Y : X⊗Y → Y ⊗X . (14.70)

The functional isomorphism ΨX ,Y is required to satisfy

ΨY,X ◦ΨX ,Y = idX⊗Y (14.71)

and the hexagon identity

(ΨX ,Z⊗ id)◦ΦX ,Z,Y ◦ (id⊗ΨY,Z) = ΦZ,X ,Y ◦ΨX⊗Y,Z ◦ΦX ,Y,Z. (14.72)

ΨX ,Y is also called a commutativity constraint. The hexagon identity ensures that the asso-

ciativity constraint and the commutativity constraint are compatible. In terms of a commutative

diagram we have

X⊗ (Y ⊗Z)
ΦX ,Y,Z−−−→ (X⊗Y )⊗Z

ΨX⊗Y,Z−−−−→ Z⊗ (X⊗Y )yidX⊗ΨY,Z

yΦZ,X ,Y

X⊗ (Z⊗Y )
ΦX ,Z,Y−−−→ (X⊗Z)⊗Y

ΨX ,Z⊗idY−−−−−→ (Z⊗X)⊗Y

(14.73)

Let C and C ′ be two tensor categories. A tensor functor is a pair (T,c) consisting of a functor

T : C → C ′ and functorial isomorphisms cX ,Y : T (X)⊗T(Y )→ T (X⊗Y ) satisfying

1. for all X ,Y,Z ∈ Obj(C ) the following diagram commutes:

T (X)⊗ (T (Y )⊗T (Z))
idT (X)⊗cY,Z−−−−−−→ T (X)⊗T (Y ⊗Z)

cX ,Y⊗Z−−−→ T (X⊗ (Y ⊗Z))yΦ′T (X),T(Y),T (Z)

yT (ΦX ,Y,Z)

(T (X)⊗T (Y ))⊗T (Z)
cX ,Y⊗idT(Z)−−−−−−→ T (X⊗Y )⊗T (Z)

cX⊗Y,Z−−−→ T ((X⊗Y )⊗Z)
(14.74)
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2. for all X ,Y ∈ Obj(C ) the following diagram commutes:

T (X)⊗T (Y )
cX ,Y−−−→ T (X⊗Y )yΨ′T (X),T(Y)

yT (ΨX ,Y )

T (Y )⊗T (X)
cY,X−−−→ T (Y ⊗X)

(14.75)

3. we have 1′ = T (1) and ι′ = T (ι) up to a unique isomorphism.

14.2.3 Abelian categories

An additive category C is a locally small category where

1. every set HomC (X ,Y ) is an Abelian group (written additively) such that for α1,α2 ∈
Hom(X ,Y ) and β1,β2 ∈ Hom(Y,Z) we have

(β1 +β2)◦ (α1 +α2) = β1 ◦α1 +β1 ◦α2+β2 ◦α1 +β2 ◦α2. (14.76)

2. There exists a zero object 0 ∈ Obj(C ) such that HomC (0,0) = 0.

3. For all objects X1,X2 ∈ Obj(C ) there exists an object Y ∈ Obj(C ) and morphisms i1 ∈
Hom(X1,Y ), i2 ∈ Hom(X2,Y ), p1 ∈ Hom(Y,X1) and p2 ∈ Hom(Y,X2) such that

p1 ◦ i1 = idX1
, p2 ◦ i2 = idX2

, i1 ◦ p1 + i2 ◦ p2 = idY . (14.77)

It can be shown that the object Y is unique up to a unique isomorphism. One denotes this element

as Y = X1⊗X2 and calls it the direct sum of X1 and X2. This defines a bifunctor⊗ : C ×C → C .

One of the simplest examples of an additive category is again VectF, the category of finite-

dimensional vector spaces over the field F. The zero object 0 in this category is the zero-

dimensional vector space consisting only of the zero vector.

Let F be a field. An additive category C is said to be F-linear if every set HomC (X ,Y) is a

F-vector space, such that the composition of morphisms is F-linear.

Let us now turn to the definition of an Abelian category: An Abelian category is an addi-

tive category, where kernels and cokernels exist. In order to define kernels and cokernels in an

additive category, we have to do some gymnastics:

Let C be an additive category and α ∈ HomC (X ,Y ) a morphism. Suppose there exists an

object K ∈Obj(C ) and a morphism k ∈HomC (K,X) such that α◦k = 0 and if k′ ∈HomC (K′,X)
is such that α ◦ k′ = 0 then there exists a unique l ∈ HomC (K′,K) such that kl = k′. The pair

(K,k) is called the kernel of α and denoted Ker(α).
The cokernel is defined in a similar way: Suppose there exists an object C ∈ Obj(C ) and a

morphism c∈HomC (Y,C) such that c◦α = 0 and if c′ ∈HomC (Y,C′) is such that c′ ◦α = 0 then

there exists a unique l ∈ HomC (C,C′) such that lc = c′. The pair (C,c) is called the cokernel of

α and denoted Coker(α).
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An Abelian category C is an additive category, where for every α∈HomC (X ,Y ) there exists

a sequence

K
k→ X

i→ I
j→ Y

c→C (14.78)

with α = j ◦ i and

Ker(α) = (K,k) , Coker(α) = (C,c) ,

Ker(c) = (I, j) , Coker(k) = (I, i) . (14.79)

A functor is called exact, if it preserves short exact sequences, e.g.

0−→ X
α−→ Y

β−→ Z −→ 0 (14.80)

implies

0−→ T (X)
T (α)−→ T (Y )

T (β)−→ T (Z)−→ 0. (14.81)

14.2.4 Tannakian categories

We now have all ingredients to define Tannakian categories. As before, we denote by F a field

and by VectF the category of finite-dimensional F-vector spaces.

Let R be a ring. We denote by ModR the category of finitely generated R-modules and by

ProjR the category of finitely generated projective R-modules.

Let C be a category. For X ∈Obj(C ) we denote by End(X)=Hom(X ,X) the endomorphisms

of X , and in particular End(1) = Hom(1,1).
A neutral Tannakian category C over F is a rigid Abelian tensor category with End(1) = F

and a F-linear exact faithful tensor functor

ω : C → VectF, (14.82)

called the fibre functor. We say that the fibre functor ω takes values in F.

We may generalise the definition of a neutral Tannakian category towards a Tannakian cat-

egory as follows: Let R be a non-zero F-algebra. We define a fibre functor on C which takes

values in R as a F-linear exact faithful tensor functor η : C → ModR that takes values in the

subcategory ProjR of ModR.

With these preparations we finally arrive at the definition of a Tannakian category:

A Tannakian category C over F is a rigid Abelian tensor category with End(1) = F and

a fibre functor with values in the F-algebra R.

Let’s look at an example: Let V be a finite-dimensional vector space and GL(V ) the group

of automorphisms of V . For example V = Cn and GL(V ) = GL(n,C). Let G be a group. A

representation of G is a homomorphism ρ : G→ GL(V ). Since ρ is a homomorphism we have

ρ(g1g2) = ρ(g1)ρ(g2) . (14.83)



14.3. MOTIVES 485

By abuse of notation we denote by ρ also the map ρ : G×V → V , v→ ρ(g)v. Let’s now fix

the ground field to be C. The finite-dimensional representations of G form a category, which

we denote by RepC(G). The objects in this category are pairs (ρ,V ) ∈ Obj(RepC(G)). The

morhpisms in this category are as follows: Let (ρ1,V1) and (ρ2,V2) be two objects in RepC(G).
The class of morphisms HomRepC(G)((ρ1,V1),(ρ2,V2)) consists of maps α : V1 → V2 such that

for all g ∈ G the following diagram commutes:

G×V1
ρ1−−−→ V1yidG×α

yα

G×V2
ρ2−−−→ V2

(14.84)

RepC(G) is a (neutral) Tannakian category. The fibre functor is given by the forgetful functor,

which associates to any object (ρ,V) ∈ Obj(RepC(G)) the object V ∈ Obj(VectC).
A second example is given by the category of mixed Hodge structures MHS, discussed in

section 14.4.

14.3 Motives

Motives are a conjectured framework to unify different cohomology theories. For an algebraic

variety X there is more than one cohomology theory. Most relevant to us are de Rham coho-

mology or Betti cohomology. Other cohomology theories are for example l-adic cohomology or

crystalline cohomology. Before outlining the main ideas behind motives, we have to introduce

correspondences, which will play the role of morphisms in the category of motives.

Digression. Correspondences and adequate equivalence relations

Let X be an algebraic variety. The group of cycles Z(X) is the free Abelian group generated by
the set of subvarieties of X. We write a cycle as a formal linear combination

Z = ∑
j

n jYj, (14.85)

where n j ∈ Z and Yj a subvariety of X.
Let X and Y be two algebraic varieties. A correspondence between X and Y is a cycle of

Z(X×Y ).
Two cycles Z1 and Z2 are called rational equivalent, if there is a cycle W on P1×X (i.e. a

correspondence between P1 and X) and t1, t2 ∈ P1 such that

Z1−Z2 = W ∩ ({t1}×X)−W ∩ ({t2}×X) . (14.86)

We write

Z1 ∼rat Z2. (14.87)
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The group

Z(X)/∼rat (14.88)

is called the Chow group of X.
Rational equivalence is the statement that we may interpolate between the cycles Z1 and

Z2 with a parameter t, being the coordinate of a curve of genus zero (i.e. P1). This can be
generalised to curves of higher genus: Two cycles Z1 and Z2 are called algebraic equivalent, if
there is an irreducible curve C and a cycle W on C ×X and t1, t2 ∈ C such that

Z1−Z2 = W ∩ ({t1}×X)−W ∩ ({t2}×X) . (14.89)

We write

Z1 ∼alg Z2. (14.90)

Clearly, rational equivalence implies algebraic equivalence.
Two cycles Z1 and Z2 are called numerical equivalent, if deg(Z1 ∩W ) = deg(Z2 ∩W ) for

any cycle with dimW = codimZ. We write

Z1 ∼num Z2. (14.91)

deg(Z1∩Z2) is the intersection number of Z1 and Z2. If dimZ1 = codimZ2 and if the intersection
is a set of points (counted with multiplicities)

Z1∩Z2 = ∑
j

n jPj, Pj ∈ X (14.92)

one has

deg(Z1∩Z2) = ∑
j

n j. (14.93)

We have the implications

∼rat ⇒ ∼alg ⇒ ∼num, (14.94)

hence rational equivalence is the finest equivalence relation and numerical equivalence is the
coarsest equivalence relation.

Let us now give a short summary on the conjectured theory of motives: Let us denote by

VarQ, the category of algebraic varieties defined over Q and by SmProjQ the subcategory of

smooth projective varieties over Q. It is conjectured that there exists a Tannakian category of

mixed motives MixMot and a functor

h : VarQ→MixMot, (14.95)
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such that the cohomologies HdR and HB factor through h, e.g. there exist commutative diagrams

VarQ MixMot

VectQ

h

HdR ηdR

,

VarQ MixMot

VectQ

h

HB ηB

. (14.96)

ηdR and ηB are fibre functors in MixMot. If we just consider the subcategory of smooth projec-

tive varieties SmProjQ one expects

h : SmProjQ→ PureMot, (14.97)

where PureMot denotes the subcategory of pure motives.

Morphisms in MixMot are given by correspondences.

One further expects that motives extend to the relative setting, i.e. to any pair (X ,Y ) with X
a smooth algebraic variety and Y a closed subvariety there is a motive h(X ,Y).

Motives are often studied through their Hodge realisation. The Hodge realisation is a functor

MixMot → MHS, (14.98)

where MHS denotes the category of mixed Hodge structures (again a Tannakian category). Re-

stricted to the category of pure motives we have

PureMot → HS, (14.99)

where HS denotes the category of (pure) Hodge structures.

With this short interlude on motives we now leave the field of conjectural mathematics and

return to solid grounds. In the next section we introduce Hodge structures, followed by examples

from Feynman integrals.

14.4 Hodge structures

Hodge structures have their origin in the study of compact Kähler manifolds [394]. Let M be a

complex manifold with complex structure J. A Riemannian metric g on M is called Hermitian, if

it is compatible with the complex structure J, in other words for vector fields X ,Y on M we have

g(JX ,JY ) = g(X ,Y ) . (14.100)

For a Hermitian manifold one defines an associated differential two-form by

K (X ,Y ) = g(JX ,Y ) . (14.101)
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K is called the Kähler form. A Hermitian manifold is called a Kähler manifold, if the two-form

K is closed:

dK = 0. (14.102)

Examples of compact Kähler manifolds are provided by compact Riemann surfaces. Riemann

surfaces are complex manifolds of complex dimension one and the Kähler form of any Hermitian

metric is necessarily closed. A second example is given by the complex projective space Pn(C).
As a third example we mention complex submanifolds of Kähler manifolds. These submanifolds

are again Kähler.

On a compact Kähler manifold we have the following decomposition of the cohomology

groups

Hk (X)⊗C =
⊕

p+q=k

H p,q(X), H p,q(X) = Hq,p(X). (14.103)

For a fixed k this provides an example of a pure Hodge structure of weight k.

14.4.1 Pure Hodge structures

Let VZ be a Z-module of finite rank and VC =VZ⊗ZC its complexification.

A pure Hodge structure of weight k on the Z-module VZ is a direct sum decomposition

VC =
⊕

p+q=k

V p,q with V p,q =V q,p. (14.104)

If one replaces Z by Q or R, one speaks about a rational or real Hodge structure, respectively.

The bar in V q,p denotes complex conjugation with respect to the real structure VC =VR⊗RC (if

we start from VZ we have VR =VZ⊗ZR).

The numbers

hp,q(V ) = dim V p,q (14.105)

are called the Hodge numbers.

There is a second definition of a pure Hodge structure, which is more adapted for generali-

sations. The second definition is based on a Hodge filtration: Let F•VC be a finite decreasing

filtration:

VC ⊇ ...⊇ F p−1VC ⊇ F pVC ⊇ F p+1VC ⊇ ...⊇ (0) (14.106)

such that

VC = F pVC⊕Fk−p+1VC. (14.107)
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Then V carries a pure Hodge structure of weight k. These two definitions are equivalent: Given

the Hodge decomposition, we can define the corresponding Hodge filtration by

F pVC =
⊕
j≥p

V j,k− j. (14.108)

Conversely, given a Hodge filtration we obtain the Hodge decomposition by

V p,q = F pVC∩FqVC. (14.109)

Hodge structures behave under the operations of direct sums, tensor products and duality as

follows:

• Direct sum: If V and W are Hodge structures of weight k, then also V ⊕W is a Hodge

structure of weight k.

• Tensor product: If V is a Hodge structure of weight k, and W is a Hodge structure of weight

l, then the tensor product V ⊗W is a Hodge structure of weight (k · l).

• Duality: If V is a Hodge structure of weight k, then Hom(V,Z) is a Hodge structure of

weight (−k).

Let look at a few examples:

Example 1: Let (e1,e2) be a basis of R2 and consider VZ = Ze1⊕Ze2. We can define a

Hodge structure of weight 1 with the decomposition

VC = V 1,0⊕V 0,1, (14.110)

by setting

V 1,0 = C(e1− ie2) , V 0,1 = C(e1 + ie2) . (14.111)

Note that the definition V 1,0 = Ce1, V 0,1 = Ce2 would not work: Since e1 = e1 and e2 = e2, we

have V 1,0 = Ce1 6=V 0,1 = Ce2.

Example 2: The Tate Hodge structure Z(1) is the Hodge structure with underlying Z-

module given by VZ = Z(1) = 2πi Z. One sets

VC = Z(1)⊗ZC= C. (14.112)

For the Hodge decomposition one sets

VC = V−1,−1, (14.113)

hence V p,q = 0 for (p,q) 6= (−1,−1). The Tate Hodge structure Z(1) is a pure Hodge structure

of weight −2.

One further defines

Z(m) = Z⊗m. (14.114)
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We therefore have

Z(m) = (2πi)mZ. (14.115)

Z(m) is a pure Hodge structure of weight (−2m) with the decomposition

Z(m)⊗C=V−m,−m. (14.116)

Given a Hodge structure on VZ of weight k, one defines the Tate twist V (m) as the Hodge

structure of weight k−2m with underlying Z-module

V (m)Z = (2πi)m⊗VZ (14.117)

and Hodge decomposition

V (m)C =
⊕

p+q=k−2m

V (m)p,q with V (m)p,q =V p+m,q+m. (14.118)

A polarisation of a pure Hodge structure V of weight k is a non-degenerate bilinear form

Q : VZ⊗VZ→ Z, (14.119)

with Q(v,w) = (−1)kQ(w,v). For the complex extension Q : VC⊗VC → C one requires for

v ∈V p,q and w ∈V p′,q′

Q(v,w) = 0 for (p′,q′) 6= (k− p,k−q) (14.120)

and

ip−qQ(v, v̄) > 0 (14.121)

for v 6= 0.

As an example let us consider polarised Hodge structures of dimension 2 and weight 1: Let

VZ be generated by e1,e2. For v,w ∈ VZ we write v = v1e1 + v2e2, w = w1e1 +w2e2. Let us

assume that the bilinear form defining the polarisation Q : VZ⊗VZ→ Z is given by

Q(v,w) = (w2,w1)

(
0 1

−1 0

)(
v2

v1

)
(14.122)

We assume that VZ is a Hodge structure of weight 1, hence

VC = V 1,0⊗V 0,1 (14.123)

and h1,0 = h0,1 = 1. Let ψ = ψ1e1 +ψ2e2 with ψ1,ψ2 ∈ C be a basis of V 1,0. From

iQ(ψ, ψ̄) > 0 (14.124)
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it follows that

i(ψ̄2ψ1− ψ̄1ψ2) > 0. (14.125)

This implies in particular ψ1 6= 0. We may therefore rescale the generator of V 1,0 by 1/ψ1. We

then have

V 1,0 = 〈e1 + τe2〉 , τ =
ψ2

ψ1
(14.126)

and

iQ(e1 + τe2,e1 + τ̄e2) = −i(τ− τ̄) = 2Imτ > 0. (14.127)

This shows that all Hodge structures of dimension 2 and weight 1 with the polarisation form as

in eq. (14.122) are parametrised by τ ∈H. V 0,1 is generated by

V 0,1 = V 1,0 = 〈e1 + τ̄e2〉 . (14.128)

It is instructive to discuss this concretely for elliptic curves: Let

E : y2 = 4x(x−1)(x−λ) (14.129)

be an elliptic curve. We denote by γ1 and γ2 two independent cycles. As they are independent,

they form a basis of the first Betti homology group HB
1 (E). We then consider Betti cohomology.

Let γ∗1,γ
∗
2 ∈ H1

B(E) be the dual basis, i.e. the basis which satisfies

〈γ∗i ,γi〉 = δi j. (14.130)

γ∗1 and γ∗2 correspond to e1 and e2 in the discussion above. From section 13.2 we know that a

basis of H1
dR(E) is given by

ω1 =
dx

y
, ω2 =

xdx

y
. (14.131)

We denote the period matrix by

P =

(
〈ω1,γ1〉 〈ω1,γ2〉
〈ω2,γ1〉 〈ω2,γ2〉

)
=

(
ψ1 ψ2

φ1 φ2

)
. (14.132)

From the Legendre relation we have

detP = 2πi. (14.133)

We recall that instead of (x,y) we may use a complex coordinate z through

z =

x∫

∞

dt√
4t (t−1)(t−λ)

, (x,y) =
(
℘(z) ,℘′ (z)

)
. (14.134)



492 CHAPTER 14. MOTIVES AND MIXED HODGE STRUCTURES

In terms of the complex coordinate z, the one-form ω1 is given by ω1 = dz. On the other hand,

we may express ω1 as a linear combination of γ∗1 and γ∗2: We make the ansatz ω1 = c1γ∗1 + c2γ∗2,

contract with γ1 and γ2 and find

ω1 = ψ1γ∗1 +ψ2γ∗2. (14.135)

This corresponds to ψ = ψ1e1 +ψ2e2 just before eq. (14.124). Thus we have

H1
B(E)C = H1,0⊗H0,1, (14.136)

with H1,0 being generated by ω1 = dz and H0,1 being generated by ω1 = dz̄.

Exercise 116: We now have two bases of H1
dR(E): on the one hand (ω1,ω2), on the other hand (dz,dz̄).

We already know ω1 = dz. Work out the full relation between the two bases.

14.4.2 Mixed Hodge structures

Pure Hodge structures are relevant for smooth projective algebraic varieties, these are necessar-

ily compact. If one gives up the requirement of smoothness or compactness one is lead to a

generalisation called mixed Hodge structure [395–397].

A mixed Hodge structure is given by a Z-module VZ of finite rank, a finite increasing

filtration on VQ =VZ⊗ZQ, called the weight filtration:

(0)⊆ ...⊆Wk−1VQ ⊆WkVQ ⊆Wk+1VQ ⊆ ...⊆VQ, (14.137)

and a finite decreasing filtration on VC =VZ⊗ZC, called the Hodge filtration:

VC ⊇ ...⊇ F p−1VC ⊇ F pVC ⊇ F p+1VC ⊇ ...⊇ (0), (14.138)

such that F• induces a pure Hodge structure of weight k on

GrWk VQ = WkVQ/Wk−1VQ. (14.139)

A mixed Hodge structure is called a mixed Tate Hodge structure if

hp,q = 0 for p 6= q. (14.140)

Example 1: Let us fix two independent vectors e0 and e−1 and a complex number x. We set

VQ = 〈e0 + lnx · e−1,2πie−1〉 . (14.141)

On VQ we define the weight filtration by

W0VQ = VQ = 〈e0 + lnx · e−1,2πie−1〉 ,
W−1VQ = W−2VQ = 〈2πie−1〉 ,
W−3VQ = 0. (14.142)
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On VC we define the Hodge filtration by

F1VC = 0, F0VC = 〈e0〉 , F−1VC = 〈e0,e−1〉 . (14.143)

We have

GrW0 VC = 〈e0 + lnx · e−1,2πie−1〉/〈2πie−1〉= 〈e0,e−1〉/〈e−1〉 ∼= 〈e0〉 ,
GrW
−1VC = 0,

GrW
−2VC = 〈2πie−1〉 . (14.144)

In the decomposition

GrW0 VC =
⊕

p

V p,−p (14.145)

one easily finds that V p,−p = 0 for p≥ 1, since F1VC = 0. From V−p,p =V p,−p it follows then

that also V−p,p = 0 for p≥ 1. Therefore

GrW0 VC = V 0,0 ∼= 〈e0〉 . (14.146)

In a similar way one finds

GrW−2VC = V−1,−1 = 〈2πie−1〉 . (14.147)

Therefore the Hodge structure of GrW0 VQ is isomorph to Q(0), and the Hodge structure of GrW−2VQ

is isomorph to Q(1). Thus, VQ defines a mixed Tate Hodge structure with V 0,0 and V−1,−1 non-

zero.

Note that VQ is spanned by the columns of

P =

(
1 0

lnx 2πi

)
. (14.148)

With

C0 =

(
0 0

1 0

)
(14.149)

we have

d

dx
P =

C0

x
P, M0P = Pexp(C0) , (14.150)

where M0 denotes the monodromy operator around x = 0 (see eq. (8.94)).

Example 2: In a similar spirit let us consider the (n+1)× (n+1)-matrix

P =




1 0 0 · · · 0

−Li1(x) 2πi 0 · · · 0

−Li2(x) 2πi ln(x) (2πi)2 · · · 0

· · · · · · · · · · · · · · ·
−Lin(x) 2πi lnn−1(x)

(n−1)! (2πi)2 lnn−2(x)
(n−2)! · · · (2πi)n




(14.151)
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For later use we note that with

C0 =




0 0 · · · · · · 0

0 0 · · · · · · 0

0 1
. . . 0

...
...

. . .
. . .

...

0 0 · · · 1 0



, C1 =




0 0 0 · · · 0

1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0




(14.152)

we have

d

dx
P =

(
C0

x
+

C1

x−1

)
P, M0P = Pexp(C0) , M1P = Pexp(C1) . (14.153)

M0 and M1 denote the monodromy operators around x = 0 and x = 1, respectively.

We introduce independent vectors e0,e−1, . . . ,e−n and set

v0 = e0−Li1(x)e−1 −Li2(x)e−2− . . . −Lin(x)e−n,

v1 = 2πie−1+2πi ln(x)e−2+ · · · +2πi
lnn−1(x)
(n−1)!

e−n,

v2 = (2πi)2 e−2+ · · ·+(2πi)2 lnn−2(x)

(n−2)!
e−n,

· · ·
vn = (2πi)ne−n. (14.154)

We then consider

VQ = 〈v0,v1, . . . ,vn〉 . (14.155)

VQ is a mixed Hodge structure with the weight filtration

W0VQ = 〈v0,v1,v2, . . . ,vn〉 ,
W−1VQ = W−2VQ = 〈v1,v2, . . . ,vn〉 ,
W−3VQ = W−4VQ = 〈v2, . . . ,vn〉 ,
· · · · · · · · ·

W−2n+1VQ =W−2nVQ = 〈vn〉 ,
W−2n−1VQ = 0, (14.156)

and the Hodge filtration

F1VC = 0,

F0VC = 〈e0〉 ,
F−1VC = 〈e0,e−1〉 ,

· · ·
F−nVC = 〈e0,e−1, . . . ,e−n〉 = VC. (14.157)
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VQ is a mixed Tate Hodge structure.

Exercise 117: Work out all V p,q and show that VQ is mixed Tate.

14.4.3 Variations of Hodge structures

We are in particular interested in families of (mixed) Hodge structures, parametrised by a mani-

fold B (the B stands for “base”). We assume that for every point x ∈ B we have a mixed Hodge

structure. This will lead us to a variation of mixed Hodge structures [398, 399]. In detail:

A variation of mixed Hodge structure on the manifold B consists of

• a local system LZ of Z-modules of finite rank,

• a finite increasing filtration W of LQ = LZ⊗Q by sublocal systems of rational

vector spaces,

• a finite decreasing filtration F of LOB = LZ⊗OB, satisfying Griffiths’ transversality

condition:

∇(F p) ⊂ F p−1⊗Ω1
B. (14.158)

• the filtrations W and F define a mixed Hodge structure on each fibre

(LOB(x),W (x),F (x)) of the bundle LOB(x) at point x.

Here, OB denotes the sheaf of holomorphic functions on B, and Ω1
B denotes the sheaf of

differential one-forms on B.

Let’s continue with example 2 from the previous section: VQ is generated by 〈v0,v1, . . . ,vn〉,
where the vectors v j are given by the columns of the matrix P in eq. (14.151). From eq. (14.153)

we deduce

[d−C0 d ln(x)−C1 d ln(x−1)]v j = 0, (14.159)

with the (n+ 1)× (n+ 1)-matrices C0 and C1 defined in eq. (14.152). The connection ∇ is

therefore given by

∇ = d−C0 d ln(x)−C1 d ln(x−1) (14.160)

and we write

∇v j = 0. (14.161)

In physics jargon we call ∇ a covariant derivative and say that the v j’s are covariantly constant

(or parallel transported with respect to ∇). In the mathematical language one says that the v j’s

define a locally constant sheaf.
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Let’s consider U = C\(]−∞,0]∪ [1,∞[). In this region P is single-valued and from sec-

tion 14.4.2 we know already that for any x ∈ U the columns of P define a mixed Tate Hodge

structure. It remains to verify Griffiths’ transversality condition. We need to determine ∇e− j for

j ∈ {0, . . . ,n}. We find

∇e0 = − dx
x−1

e−1,

∇e− j = −dx

x
e− j−1, 1 ≤ j < n,

∇e−n = 0. (14.162)

With eq. (14.162) it follows that

∇(F p) ⊂ F p−1⊗Ω1
U . (14.163)

Exercise 118: Derive eq. (14.162).

14.4.4 Mixed Hodge structures on cohomology groups

Let X be a complex algebraic variety and Y a (possibly empty) closed subvariety. It has been

shown by Deligne [396,397] that the relative cohomology group Hk(X ,Y) carries a mixed Hodge

structure. If Y is empty, this reduces to the (non-relative) cohomology Hk(X).
Let us look at the details: To simplify life we assume that X is smooth and Y a simple normal

crossing divisor. If Y is not a simple normal crossing divisor, one uses first the resolution of

singularities (see chapter 10) to achieve this condition.

For the mixed Hodge structure we have to define the weight filtration and the Hodge filtration.

This is best explained with differential forms and de Rham cohomology. Due to theorem 19 we

may replace de Rham cohomology with algebraic de Rham cohomology. But let us stick in

this section with de Rham cohomology. We denote by Ω
p
X the sheaf of holomorphic differential

forms of degree p on X and by Ω
p
X(logY ) the sheaf of meromorphic differential forms of degree

p on X with at most logarithmic poles along Y . A meromorphic differential form ω has at most

logarithmic poles along Y if both ω and dω have at most a simple pole along Y .

This implies that in the coordinate system of eq. (14.37) a differential one-form ω ∈Ω1
X can

locally be written as

ω =
n

∑
j=1

f j (x)dx j, (14.164)

with f j holomorphic, while a differential one-form ω ∈Ω1
X(logY ) can locally be written as

ω =
k

∑
j=1

f j (x)
dx j

x j
+

n

∑
j=k+1

f j (x)dx j, (14.165)

again with f j holomorphic. The differential p-forms in Ω
p
X and Ω

p
X(logY ) are then obtained from

the p-fold wedge product of forms in Ω1
X and Ω1

X(logY ), respectively.
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Let’s now consider Ω•X(logY ). There is a trivial filtration:

F pΩ•X(logY ) =
⊕
r≥p

Ω
p
X(logY ). (14.166)

This filtration induces the Hodge filtration on the cohomology.

For the weight filtration we count the number of dlog-forms. One sets

WmΩ
p
X(logY ) =





0 for m < 0,

Ω
p−m
X ∧Ωm

X (logY ) for 0≤ m≤ p,
Ω

p
X(logY ) for p < m.

(14.167)

This filtration induces the weight filtration on the cohomology. Without going into the details

let us note that in the k-th cohomology group differential forms with m dlog-one-forms will

contribute at weight m+ k.

Let us illustrate the weight filtration with an example. We take X = C3 and

Y = {x1 = 0}∪{x2 = 0}∪{x3 = 1} . (14.168)

We consider the three-forms

ω1 = −dx1

x1
∧ dx2

x2
∧ dx3

1− x3
,

ω2 = −dx1

x1
∧dx2∧

dx3

1− x3
. (14.169)

As both are three-forms, we have

ω1,ω2 ∈ F3Ω•X(logY ). (14.170)

In a local coordinate system around (x1,x2,x3) = (0,0,1) the three-form ω1 has three dlog forms,

while ω2 has only two. Hence

ω1 ∈ W3Ω3
X(logY ), ω2 ∈ W2Ω3

X(logY ). (14.171)

The counting of the dlog forms as weight is illustrated as follows: Consider the integration

domain γ : 0≤ x3 ≤ x2 ≤ x1 ≤ 1. We then have

∫

γ

ω1 = ζ3,

∫

γ

ω2 = −ζ2 +2. (14.172)

Thus 〈ω1|γ〉 is pure of (polylogarithmic) weight 3, while 〈ω2|γ〉 is mixed with highest (polylog-

arithmic) weight 2.
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The attentive reader might have noticed that we already discussed weight filtrations of mixed

Hodge structures in two examples. From eq. (14.142) and eq. (14.156) we would expect that

the weight of ζn within Hodge theory is (−2n). This deserves some explanation. Let’s look at

ζ3: We start from the three-form ω1, hence we are interested in the relative cohomology group

H3(X ,Y ). The form ω1 is a wedge product of three dlog-one-forms. We therefore have k = 3

and m = 3. The comment after eq. (14.167) implies that ω1 contributes at weight m+ k = 6 in

cohomology. Instead of looking at cohomology we may also look at homology, which is just the

dual. Under dualisation the weight of the weight filtration changes sign, in our example 6→−6,

in agreement with the examples of eq. (14.142) and eq. (14.156).

14.4.5 Motivic periods

We may now bring the various pieces together and define motivic periods. We remind the reader

that we discussed effective periods in chapter 10 and that we already discussed motivic periods in

chapter 11. The definition which we provide now is a slight generalisation of the definition of ef-

fective periods discussed in section 10.4. The motivic periods discussed in chapter 11 correspond

to the subset of motivic mixed Tate periods.

Let X be a smooth variety defined by polynomials with coefficients in Q. Let Y be a closed

subvariety. We denote by X an and Y an the analytifications. Let ω∈Hk
alg dR (X ,Y ) be a class of the

k-th relative algebraic de Rham cohomology and let γ ∈ HB
k (X an,Y an,Q) be a class in the k-th

relative Betti homology.

From the previous section we know that we have mixed Hodge structure on Hk(X ,Y ). That

is to say that Hk
alg dR(X ,Y ) is equipped with a Hodge filtration F• and a weight filtration W•,

that the Betti cohomology Hk
B(X

an,Y an,Q) is equipped with a weight filtration W• and there is a

comparison isomorphism

comparison : Hk
alg dR (X ,Y )⊗C→ Hk

B (X
an,Y an,Q)⊗C (14.173)

compatible with the weight filtration.

The triple

Mk (X ,Y ) =
[
Hk

alg dR (X ,Y ) ,Hk
B (X

an,Y an,Q) ,comparison
]m

(14.174)

is called an H-motive (or “motive” for short, the long official name is “Hodge realisation of the

motive”).

The real Frobenius is a linear involution

F∞ : Hk
B (X

an,Y an,Q)→Hk
B (X

an,Y an,Q) (14.175)

defined as follows: We denote by conjalg dR the C-antilinear involution on Hk
alg dR (X ,Y )⊗C

given by

conjalg dR (ω⊗ z) = ω⊗ z̄ (14.176)
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and by conjB the analogous C-antilinear involution on Hk
B (X

an,Y an)⊗C. Then F∞ is defined

such that the following diagram commutes:

Hk
alg dR (X ,Y )⊗C

comparison−−−−−−→ Hk
B (X

an,Y an)⊗C

conjalg dR

y
y(F∞⊗id) conjB

Hk
alg dR (X ,Y )⊗C

comparison−−−−−−→ Hk
B (X

an,Y an)⊗C

(14.177)

The following exercise illustrates the action of the real Frobenius:

Exercise 119: Consider X = C\{0} and Y = /0. Take ω = dx/x as a basis of H1
alg dR(X) and let γ be

a small counter-clockwise circle around x = 0. γ is a basis of HB
1 (X). Denote by γ∗ the dual basis of

H1
B(X). Work out

F∞ (γ∗) . (14.178)

Let us then consider the Q-vector space of equivalence classes of triples

[
Mk (X ,Y ) ,ω,γ

]m
(14.179)

modulo the relations induced by linearity in ω and γ, changes of variables and Stokes’ formula.

Linearity states that for c1,c2 ∈Q

[
Mk (X ,Y ) ,c1ω1 + c2ω2,γ

]m
= c1

[
Mk (X ,Y ) ,ω1,γ

]m
+ c2

[
Mk (X ,Y ) ,ω2,γ

]m
,

[
Mk (X ,Y ) ,ω,c1γ1 + c2γ2

]m
= c1

[
Mk (X ,Y ) ,ω,γ1

]m
+ c2

[
Mk (X ,Y ) ,ω,γ2

]m
. (14.180)

Let f : X → X ′ be a regular map and Y ′ = f (Y ). A change of variables implies

[
Mk (X ,Y ) , f ∗ω′,γ

]m
=

[
Mk (X ′,Y ′

)
,ω′, f∗γ

]m
. (14.181)

For Stokes’ theorem consider X ⊃Y ⊃Z and denote the connecting morphism by d : Hk−1(Y,Z)→
Hk(X ,Y ). Then

[
Mk (X ,Y ) ,dω,γ

]m
=

[
Mk−1 (Y,Z) ,ω,∂γ

]m
. (14.182)

The equivalence classes with respect to these relations are called effective motivic periods and

denoted as Pm. To each effective motivic period we can associate a numerical period. In other

words, there is a map

period : Pm→ P,[
Mk (X ,Y ) ,ω,γ

]m
→

∫

γ

ω. (14.183)
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Every motivic period comes with a mixed Hodge structure (the one discussed in section 14.4.4)

and in particular a weight filtration. If we forget about the extra information on the mixed Hodge

structure we have an effective period as introduced in chapter 10, which can be specified by the

quadruple (X ,Y,ω,γ).
The real Frobenius F∞ : Hk

B(X
an,Y an,Q)→ Hk

B(X
an,Y an,Q) of eq. (14.175) induces a map

F∞ : Pm→ Pm (14.184)

through

[
Mk (X ,Y ) ,ω,γ

]m
→
[
Mk (X ,Y ) ,ω,F∞ (γ)

]m
. (14.185)

By abuse of notation we also denote this map by F∞. The latter map we already encountered in

eq. (11.211).

14.4.6 The motivic Galois group

In order not to raise false expectations let us state from the beginning that although despite the

title of this section we will be dealing with the motivic Galois group only indirectly through its

dual, which is a Hopf algebra. But that is o.k., as this is the way we would like to apply it anyway.

Of course, it is possible to construct the group from its dual.

We start by introducing algebraic groups. An affine algebraic group G is a group defined

by polynomial equations such that the group law is polynomial.

To give an example, consider SL2(Q), the set of (2× 2)-matrices with entries from Q and

determinant 1:

g =

(
z11 z12

z21 z22

)
, z11,z12,z21,z22 ∈ Q, detg = 1. (14.186)

Alternatively, we may view SL2(Q) as an affine algebraic variety:

SL2(Q) =
{
(z11,z12,z21,z22) ∈Q

4 | z11z22− z12z21−1 = 0
}

(14.187)

Exercise 120: Let F be a sub-field of C. Show that GLn(F) (the group of (n× n)-matrices with entries
from F and non-zero determinant) can be defined by a polynomial equation.

Let us now consider functions on the group, i.e. maps

G→ F, (14.188)

where we take F to be a sub-field of C. If we specialise to matrix groups, like GLn(F), the entry

of the i-th row and j-th column provides a function on the group:

ai j : GLn(F)→ F,

g→ zi j. (14.189)
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A polynomial function on the group is a function on the group, which is a polynomial in the

ai j’s. We denote by H the set of polynomial functions on the group. H is a Hopf algebra. The

coproduct comes from the multiplication in the group. Let g1,g2 ∈ GLn(F) with entries z(1)i j and

z(2)i j , respectively, and consider

ai j (g1 ·g2) =
n

∑
k=1

z(1)ik z(2)k j =
n

∑
k=1

aik (g1)ak j (g2)

= ·
(

n

∑
k=1

aik⊗ak j

)
(g1⊗g2) . (14.190)

This gives us the coproduct

∆ : H→ H⊗H,

ai j→
n

∑
k=1

aik⊗ak j. (14.191)

It can be verified that H is indeed a Hopf algebra.

Let us summarise: Given a group G = GLn(F) we obtain a Hopf algebra H by considering

the polynomial functions on G. This also goes in the reverse direction: One may show that one

can construct the group G from the Hopf algebra H.

A group may act on a vector space. Also in this case we may consider the dual picture. For

concreteness, we take again G = GLn(F) and consider V = Fn. Let

v =




x1
...

xn


 ∈ V. (14.192)

We consider functions on V . We start from the coordinate functions

bi : Fn→ F,

v→ xi. (14.193)

Let M denote the set of polynomial functions on V (i.e. functions which are given as polynomials

in the bi’s). The action of G on V induces a coaction of H on M: Consider

bi (g · v) =
n

∑
k=1

zikxk =
n

∑
k=1

aik (g)bk (v)

= ·
(

n

∑
k=1

aik⊗bk

)
(g⊗ v) . (14.194)

This gives us the coaction (which we also denote by ∆)

∆ : M→ H⊗M,

bi→
n

∑
k=1

aik⊗bk. (14.195)
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Let’s now apply these ideas to motivic periods: We first define motivic de Rham periods. These

are triples of the form

[
Mk (X ,Y ) ,ω,ω∗

]dR
, (14.196)

where ω ∈ Hk
alg dR (X ,Y ) and ω∗ ∈ (Hk

alg dR (X ,Y ))∗ (the dual). As usual, we consider these

triples modulo the relations of linearity eq. (14.180), change of variables eq. (14.181) and Stokes

eq. (14.182). We call the set of equivalence classes motivic de Rham periods and denote this

set by P dR.

Let us denote by ω1, . . . ,ωr ∈ Hk
alg dR(X ,Y ) a basis of Hk

alg dR(X ,Y) and by ω∗1, . . . ,ω
∗
r ∈

(Hk
alg dR(X ,Y ))∗ the dual basis of (Hk

alg dR(X ,Y ))∗. On P dR we have a coproduct

∆ : P dR→ P dR⊗P dR (14.197)

which is given by

∆
[
Mk (X ,Y ) ,ωi,ω

∗
k

]dR
=

r

∑
l=1

[
Mk (X ,Y) ,ωi,ω

∗
l

]dR
⊗
[
Mk (X ,Y ) ,ωl,ω

∗
k

]dR
. (14.198)

P dR is a Hopf algebra. The motivic Galois group GdR is the dual of the Hopf algebra P dR.

(This is the definition of the motivic Galois group. As mentioned in the introduction of this

section, it is an indirect definition.)

Motivic coaction:

We have a coaction of the motivic de Rham periods P dR on the effective motivic periods

Pm

∆ : Pm→ P dR⊗Pm (14.199)

given by

∆
[
Mk (X ,Y ) ,ω,γ

]m
=

r

∑
l=1

[
Mk (X ,Y ) ,ω,ω∗l

]dR
⊗
[
Mk (X ,Y) ,ωl,γ

]m
. (14.200)

Eq. (14.200) is called the motivic coaction.

Let’s look at an example. We elaborate on the example from section 14.1.2. We take X =
C∗ =C\{0} and Y = {1,x} (in section 14.1.2 we considered the special case x = 2). A basis for

HB
1 (X ,Y ) is given by an anti-clockwise circle γ1 around z = 0 and the line segment γ2 from z = 1

to z = x. A basis for H1
dR(X ,Y ) is given by ω1 = dz/z and ω2 = dz/(x−1). The period matrix is

given by

P =

(
2πi lnx
0 1

)
. (14.201)
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We have chosen the normalisation of ω2 such that∫

γ2

ω2 = 1. (14.202)

We set

lnm(x) =
[
M1 (X ,Y ) ,ω1,γ2

]m
. (14.203)

The motivic coaction gives us

∆(lnm(x)) =
[
M1 (X ,Y ) ,ω1,ω

∗
1

]dR⊗
[
M1 (X ,Y) ,ω1,γ2

]m

+
[
M1 (X ,Y ) ,ω1,ω

∗
2

]dR⊗
[
M1 (X ,Y ) ,ω2,γ2

]m
. (14.204)

Let’s look at the individual expressions: The period map of eq. (14.183) sends [M1 (X ,Y ) ,ω2,γ2]
m

to 1. This can be read off from eq. (14.202). Assuming that the period map is injective, we set
[
M1 (X ,Y ) ,ω2,γ2

]m
= 1m. (14.205)

[M1 (X ,Y ) ,ω1,ω
∗
1]
dR is an element of P dR. The motivic de Rham periods form a Hopf algebra

and it can be shown that the counit maps [M1 (X ,Y ) ,ω1,ω
∗
1]
dR to 1. We denote

[
M1 (X ,Y) ,ω1,ω

∗
1

]dR
= 1dR. (14.206)

If we finally define

lndR(x) =
[
M1 (X ,Y ) ,ω1,ω

∗
2

]dR
(14.207)

we arrive at

∆(lnm(x)) = 1dR⊗ lnm(x)+ lndR(x)⊗1m, (14.208)

in agreement with eq. (J.528). This provides the link with the coaction defined for multiple

polylogarithms in section 11.2.

14.5 Examples from Feynman integrals

Feynman integrals provide ample examples for motivic periods. Throughout this section we

assume that all kinematic variables satisfy

x j ≥ 0, (Euclidean region) (14.209)

and

x j ∈ Q. (14.210)

Condition (14.209) ensures that in the Feynman parametrisation the singularities of the integrand

are at worst on the boundary of the integration domain, but not inside. Condition (14.210) ensures

that the variety where the integrand is singular is defined over Q.
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14.5.1 Feynman motives depending only on one graph polynomial

We recall that with these assumptions we may use the algorithm of sector decomposition (see

chapter 10) and express any term I( j) in the ε-expansion of any Feynman integral I

I =
∞

∑
j= jmin

ε jI( j) (14.211)

as an absolute convergent integral. This will also ensure that the singularities have normal cross-

ings. From theorem 14 we know that each I( j) gives a numerical period. Denoting by η the

integrand (a k-form), γ the integration domain (a relative k-cycle with boundary contained in B),

P the space containing γ and Y the variety where η is singular we obtain a motive

Mk (P\Y,B\(B∩Y )) (14.212)

and the motivic period

[
Mk (P\Y,B\(B∩Y )) ,η,γ

]m
. (14.213)

Let us now specialise to two cases, where Y is determined by a single graph polynomial. (The

case where Y is determined by both graph polynomials is only from a notational perspective more

cumbersome.) We start from the Feynman parameter representation eq. (2.198) and set from the

beginning ν1 = · · ·= νnint
= 1:

I = elεγEΓ

(
nint−

lD

2

)∫

∆

Unint− (l+1)D
2

F nint− lD
2

ω. (14.214)

The differential (nint−1)-form ω is defined in eq. (2.196). Let us further assume that the inte-

gration over the Feynman parameters is well-defined without regularisation. This implies that

the Feynman integral is either finite or has at most an overall ultraviolet singularity, which man-

ifests itself in the prefactor Γ(nint− lD/2). Let us further assume that either the exponent of the

F -polynomial is zero or the exponent of the U-polynomial is zero. In the former case we end

up with (apart from prefactors)

∫

∆

ω

U
D
2

, (14.215)

in the latter case with
∫

∆

ω

F
D
2

. (14.216)

In both cases the integrand depends only on one graph polynomial. For D an even integer, the

integrand is a rational function.
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Figure 14.1: The 4-loop wheel with four spokes graph (left) and the 6-loop zigzag graph (right).

Figure 14.2: The first three members of the family of banana graphs.

Let’s see if there are interesting examples matching our assumptions: Setting D = 2 in

eq. (14.215) yields nint = l (since the exponent of the F -polynomial has to vanish). This only al-

lows for a product of tadpole integrals and is not so interesting. However, D = 4 leads to nint = 2l
and there are interesting graphs. There is the family of the wheel with l spokes graph and the

family of zigzag graphs [400–402]. Two examples are shown in fig. 14.1.

In the case of eq. (14.216) we may set D = 2. We obtain then nint = (l + 1). This gives

the family of banana graphs shown in fig. 14.2 [366, 403]. For non-zero internal masses these

integrals are finite (in D = 2 space-time dimensions).

Thus the examples which we are going to consider are

∫

∆

ω

U2
(wheel with l spokes graphs, zigzag graphs),

∫

∆

ω

F
(banana graphs). (14.217)

In both cases the integrand is a rational differential form on CPnint−1 and ∆ = RPnint−1
≥0 . The

integration region has a boundary, which we denote by ∂∆. Despite the fact that we assumed the

integrals are finite, we cannot conclude that the integrand has no singularities: There might be

(and will be) integrable singularities. This will happen, whenever the relevant graph polynomial

vanishes. Let us set X = U for the wheel with l spokes graphs and the zigzag graphs and X = F
for the banana graphs. We define

X =
{

a ∈ CPnint−1 | X (a) = 0
}
. (14.218)
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X is an algebraic variety, defined as the zero set of the graph polynomial X . In the integration, we

encounter a singularity wherever X and ∆ intersect. It can be shown for the first graph polynomial

U that

X ∩∆ ⊂ ∂∆, (14.219)

e.g. intersections happens only on the boundary ∂∆ of the integration region ∆. This is the case

because U is a sum of monomials with all coefficients equal to 1. Eq. (14.219) also holds true

for the second graph polynomial F , if we restrict ourselves for the kinematics to the Euclidean

region (e.g. all kinematic variables x j ≥ 0). In this case F is a sum of monomials with all

coefficients positive. This is the reason why we imposed assumption eq. (14.209).

If X ∩ ∂∆ is non-empty, we blow-up CPnint−1 in this region. Let us denote the blow-up by

P. We further denote the strict transform of X by Y and we denote the total transform of the set

{x1 · x2 · . . . · xn = 0} by B.

We view the integrals of eq. (14.217) as periods of a mixed Hodge structures, obtained from

two geometric objects: The algebraic variety X and the domain of integration ∆. As the domain

of integration ∆ has a boundary we have to consider relative cohomology. In order to avoid

(integrable) singularities of the integrand we consider the blow-up. This leads us to the mixed

Hodge structure given by the relative cohomology group [50, 400, 404–407]

Hnint−1 (P\Y,B\(B∩Y )) . (14.220)

The Feynman integral is then a period of this cohomology class. The motive associated to the

Feynman integral is given by

Mnint−1 (P\Y,B\(B∩Y )) = (14.221)[
Hnint−1

alg dR (P\Y,B\(B∩Y )) ,Hnint−1
B ((P\Y )an ,(B\(B∩Y ))an ,Q) ,comparison

]m
.

14.5.2 The sunrise motive

Let us now look at a concrete example: The two-loop sunrise integral with unequal masses. We

encountered this Feynman integral already in eq. (13.299). With the notation as in eq. (13.299)

we consider

I111 (2,x,y1,y2) =

∫
d2k1

iπ

d2k2

iπ

m2
3(

−q2
1 +m2

1

)(
−q2

2 +m2
2

)(
−q2

3 +m2
3

) . (14.222)

In the Feynman parameter representation we have

I111 (2,x,y1,y2) =

∫

∆

ω

F
, (14.223)

with

F = a1a2a3x+(a1y1 +a2y2 +a3)(a1a2 +a2a3 +a3a1) ,

ω = a1da2∧da3−a2da1∧da3 +a3da1∧da2,

∆ = RP2
≥0. (14.224)
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We define the variety where F vanishes:

X =
{
[a1 : a2 : a3] ∈ CP2 | F (a) = 0

}
. (14.225)

X and ∆ intersect in the three points

[1 : 0 : 0] , [0 : 1 : 0] , [0 : 0 : 1] . (14.226)

Let P be the blow-up of CP2 in these three points. The exceptional divisors in these three

points are denoted by E1, E2 and E3, respectively. We denote the strict transform of X by Y and

we denote by B the total transform of a1 · a2 · a3 = 0. The mixed Hodge structure (or motive)

associated to the Feynman integral I111(2,x,y1,y2) is then

H2 (P\Y,B\B∩Y ) . (14.227)

The Feynman integral is a period of this motive.

What can be said about this motive? One can show that there is a short exact sequence of

mixed Hodge structures [366]

0 −−−→ Z(−1) −−−→ H2 (P\Y,B\B∩Y ) −−−→ H2 (P\Y ) −−−→ 0, (14.228)

and for H2(P\Y ) we have the short exact sequence

0 −−−→ ZE1⊕ZE2⊕ZE3 −−−→ H2 (P\Y ) res−−−→ H1 (Y ) −−−→ 0, (14.229)

This sequence is split as a sequence of mixed Hodge structures via

H2 (P\Y ) res−−−→ H1 (Y )

π∗
x

y∼=
H2(CP2\X)

res−−−→∼= H1 (X) .

(14.230)

Digression. Exact sequences

We start from a category where kernels and cokernels are defined. Typical examples are the
category of groups, the category of vector spaces or the category of modules. We denote the
objects by Oi and the morphisms by f j. Consider a sequence of morphisms

O0
f1−−−→ O1

f2−−−→ O2
f3−−−→ . . .

fn−−−→ On. (14.231)

The sequence is said to be exact, if

im( fi) = ker( fi+1) . (14.232)

An exact sequence of the form

0 −−−→ O1
f−−−→ O2

(14.233)
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states that f is injective, i.e. f is a monomorphism. The image of 0 under the first map is 0,
which by the assumption of exactness is the kernel of f . Hence the kernel of f is trivial and f is
injective.

By a similar reasoning, the exact sequence

O1
f−−−→ O2 −−−→ 0 (14.234)

expresses that f is surjective, i.e. f is an epimorphism: The kernel of the rightmost morphism is
O2. Since the sequence is supposed to be exact, this equals the image of f , hence f is surjective.

A short exact sequence is an exact sequence of the form

0 −−−→ O1
f−−−→ O2

g−−−→ O3 −−−→ 0. (14.235)

This implies that f is injective and g is surjective. A short exact sequence is said to be split, if
there is a morphism h : O3→ O2 such that g◦h is the identity map on O3.

In order to distinguish a general exact sequence from the special case of a short exact se-
quence, the term long exact sequence is also used for the former.

Now let us discuss how these considerations can be turned into a practical tool. Suppose

we would like to compute the differential equation of I111(2,x,y1,y2) with respect to x. Of

course, we already know one possibility how to do this: We could start with integration-by-parts

identities in D dimensions as in section 6.1, derive a coupled system of first-order differential

equations as in section 6.3 and convert the coupled system of first-order differential equations

to a single higher order differential equation as in section 7.1.3. Doing so, we would expect

an inhomogeneous fourth order differential equation for I111(D,x,y1,y2). (We expect a fourth

order differential equation because there are four master integrals in the top sector. We expect an

inhomogeneous differential equation because there are sub-topologies.) For generic D we would

indeed obtain an inhomogeneous fourth order differential equation. However we are interested

in the finite integral I111(2,x,y1,y2) in two space-time dimensions. This raises the question if

we can carry out the calculation directly in D = 2 space-time dimensions without the need of

introducing an additional symbolic variable D. Secondly, we will see shortly that in two space-

time dimensions there are only two independent master integrals in the top sector (instead of four

master integrals for generic D). Thus we would like to avoid to work in intermediate stages with

four master integrals in the top sector, if only two master integrals are required.

These questions are particularly important for cutting-edge calculations, where additional

variables or additional master integrals can push the required computing resources (memory

and/or CPU time) beyond the available resources. Therefore we would like to calculate only

these parts which are strictly necessary. Motivic methods allow us to do this [366].

Let’s look at the details. We would like to derive the differential equation for I111(2,x,y1,y2)
with respect to the kinematic variable x. We treat the two additional kinematic variables y1 and

y2 as (fixed) parameters. We seek

L I111(2,x,y1,y2) = Q(x) , (14.236)
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where L is a differential operator

L =
r

∑
j=0

Pj (x)
d j

dx j (14.237)

and Q(x) the inhomogeneous term. The order r of the differential operator L is a priori unknown.

Let’s focus first on the differential operator L. We start from the algebraic variety X defined

by the second Symanzik polynomial F :

a1a2a3x+(a1y1 +a2y2 +a3)(a1a2 +a2a3 +a3a1) = 0. (14.238)

This defines for generic values of the parameters x, y1 and y2 an elliptic curve. The elliptic

curve varies smoothly with the parameters x, y1 and y2. By a birational change of coordinates

this equation can brought into the Weierstrass normal form (instead of the common x,y,z we use

u,v,w as coordinates in CP2)

v2w−u3− f2(x)uw2− f3(x)w
3 = 0. (14.239)

f2 and f3 are functions of the kinematic variables x, y1 and y2. As we are mainly interested in the

dependence on x, we suppress in the notation the dependence on y1 and y2. In the chart w = 1

the above equation reduces to

v2−u3− f2(x)u− f3(x) = 0. (14.240)

In these coordinates H1(X) is generated by

η =
du

v
and η′ =

d

dx
η. (14.241)

Since H1(X) is two-dimensional it follows that η′′ = d2

dx2 η must be a linear combination of η and

η′. In other words we must have a relation of the form

η′′+R1(x)η
′+R0(x)η = 0. (14.242)

It is convenient to bring this equation onto a common denominator. Doing so and carrying out

the derivatives with respect to x we have

η =
(
u3 + f2u+ f3

)2 du

v5
,

η′ = −1

2

(
f ′2u+ f ′3

)(
u3 + f2u+ f3

) du

v5
,

η′′ =

[
−1

2

(
f ′′2 u+ f ′′3

)(
u3 + f2u+ f3

)
+

3

4

(
f ′2u+ f ′3

)2

]
du

v5
. (14.243)

The numerator of eq. (14.242) is then a polynomial of degree 6 in the single variable u. Since we

work in H1(X), we can simplify the expression by adding an exact form

d

(
un

v3

)
= un−1

[(
n− 9

2

)
u3 +

(
n− 3

2

)
f2u+n f3

]
du

v5
. (14.244)
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This allows us to reduce the numerator polynomial from degree six to a linear polynomial. The

two coefficients of this linear polynomial have to vanish, on account of eq. (14.242). We obtain

therefore two equations for the two unknowns R1 and R0. Solving for R1 and R0 we find

R1 (x) =
P1 (x)

P2 (x)
, R0 (x) =

P0 (x)

P2 (x)
, (14.245)

with

P2 (x) = −x
[
3x2 +2M100x−M200 +2M110

][
x4 +4M100x3 +2(3M200 +2M110)x2

+4(M300−M210 +10M111)x+(M200−2M110)
2
]
,

P1 (x) = −9x6−32M100x5− (37M200 +70M110)x4− (8M300 +56M210 +144M111)x3

+(13M400−36M310 +46M220−124M211)x2

−(−8M500 +24M410−16M320−96M311 +144M221)x

+(M600−6M510 +15M420−20M330 +18M411−12M321−6M222) ,

P0 (x) = −3x5−7M100x4− (2M200 +16M110)x3 +(6M300−14M210)x2

+(5M400−8M310 +6M220−8M211)x+(M500−3M410 +2M320 +8M311

−10M221) . (14.246)

Here we used the same notation as in section 13.5.2:

Mλ1λ2λ3
= Mλ1λ2λ3

(y1,y2,1) (14.247)

and Mλ1λ2λ3
(a1,a2,a3) is defined in eq. (13.315).

We therefore obtain the Picard-Fuchs operator for η ∈ H1(X) as

L = P2 (x)
d2

dx2
+P1 (x)

d

dx
+P0 (x) , (14.248)

with P2, P1 and P0 defined in eq. (14.246). This is also the Picard-Fuchs operator of the Feynman

form

ϕ =
ω

F
∈ H2 (P\Y ) (14.249)

due to the splitting of the sequence in eq. (14.229) and the flatness of the system ZE1⊕ZE2⊕
ZE3. So for any cycle γ ∈ H2(P\Y ) we have

L



∫

γ

ϕ


 = 0. (14.250)

Let us now turn to the inhomogeneous part Q(x). The integration domain for the Feynman

integral I111 is not a cycle γ ∈ H2(P\Y ), but the relative cycle ∆ ∈ H2(P\Y,B\B∩Y ). From the
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short exact sequence in eq. (14.228) we deduce that Lϕ is exact, i.e. there is a one-form β such

that

L ϕ = dβ. (14.251)

We make the ansatz [408]

β =
1

F 2
[(a2q3−a3q2)da1 +(a3q1−a1q3)da2 +(a1q2−a2q1)da3] , (14.252)

where q1, q2 and q3 are polynomials of degree 4 in the variables a1, a2 and a3. The most general

form is

qi =

c(i)400a4
1 + c(i)040a4

2 + c(i)004a4
3 + c(i)310a3

1a2 + c(i)301a3
1a3 + c(i)130a1a3

2 + c(i)103a1a3
3 + c(i)031a3

2a3 + c(i)013a2a3
3

+c(i)211a2
1a2a3 + c(i)121a1a2

2a3 + c(i)112a1a2a2
3 + c(i)220a2

1a2
2 + c(i)202a2

1a2
3 + c(i)022a2

2a2
3. (14.253)

We would like β to be finite on the boundary ∂σ. This implies

c(1)040 = c(1)004 = c(2)400 = c(2)004 = c(3)400 = c(3)040 = 0. (14.254)

The remaining 39 coefficients c(i)jkl are found by solving the linear system of equations obtained

from inserting the ansatz into eq. (14.251). The solution of this linear system is not unique,

corresponding to the fact that β can be changed by a closed one-form. The solutions for the

coefficients c(i)jkl are rather lengthy and not listed here. In the next step we integrate β along the

boundary ∂∆ to get Q(x):

Q(x) =

∫

∂∆

β. (14.255)

Note that the integration is in the blow-up P of P2. This is most easily done as follows: We start

from the integration domain RP2
≥0, which we take as the union of three squares

∆12,3∪∆23,1∪∆31,2 (14.256)

with

∆i j,k =
{
[a1 : a2 : a3] | 0≤ ai,a j ≤ 1, ak = 1

}
. (14.257)

Each square contains one point, which needs to be blown-up. In the square ∆i j,k this is the point

ai = a j = 0,ak = 1. The blow-up can be done as described in section 10.1. The blow-up of each

square can be covered with two charts. Thus we get six charts in total. The integration contour

∂∆ is sketched in fig. 14.3. Performing the integration we obtain

Q(x) = −18x4−24M100x3 +(4M200−40M110)x2− (−8M300 +8M210 +48M111)x

+(−2M400 +8M310−12M220−8M211)

+2c(x,y1,y2,1) lny1 +2c(x,y2,1,y1) lny2 (14.258)
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a1

a2
a3

Figure 14.3: Sketch of the integration domain ∆ covered by six charts. Each chart is drawn in a

different colour. The boundary ∂∆ is shown in red.

and

c(x,y1,y2,y3) =

(2y1− y2− y3)x3 +
(
6y2

1−3y2
2−3y2

3−7y1y2−7y1y3 +14y2y3

)
x2

−
(
−6y3

1 +3y3
2 +3y3

3 +11y2
1y2 +11y2

1y3−8y1y2
2−8y1y2

3−3y2
2y3−3y2y2

3

)
x

+
(
2y4

1− y4
2− y4

3−5y3
1y2−5y3

1y3 + y1y3
2 + y1y3

3 +4y3
2y3 +4y2y3

3

+3y2
1y2

2 +3y2
1y2

3−6y2
2y2

3 +2y2
1y2y3− y1y2

2y3− y1y2y2
3

)
. (14.259)

The coefficients c(x,yi,y j,yk) of the logarithms of the masses vanish for equal masses.

Putting everything together the sought-after differential equation reads
[

P2 (x)
d2

dx2
+P1 (x)

d
dx

+P0 (x)

]
I111 (2,x,y1,y2) = Q(x) . (14.260)

This is an inhomogeneous second-order differential equation for the sunrise integral with un-

equal masses in two space-time dimensions. As it is second-order, we have two master integrals

in the top sector in two space-time dimensions. We recall that for generic D we have four master

integrals in the top sector. The two additional master integrals can be chosen such that they van-

ish in the limit D→ 2 [368].

Exercise 121: Consider the one-loop two-point function with equal internal masses

I11 (2,x) =

∫
d2k

iπ

m2

(
−q2

1 +m2
1

)(
−q2

2 +m2
2

) , x = − p2

m2
. (14.261)

Derive with the methods of this section the differential equation for I11(2,x) with respect to the kinematic
variable x.

14.5.3 Banana motives

In the previous section we considered the one-loop bubble integral (in exercise 121) and the two-

loop sunrise integral, both in two space-time dimensions. These are the first two members of the
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family of banana graphs. The first three members of this family are shown in fig. 14.2.

The l-loop banana integral has (l +1) propagators and is given in D space-time dimensions

by

Iν1...νl+1
(D) = elεγE

(
µ2
)ν− lD

2

∫ l

∏
a=1

dDka

iπ
D
2

δD

(
p−

l+1

∑
b=1

kb

)(
l+1

∏
c=1

1

(−k2
c +m2

c)
ν j

)
. (14.262)

We introduce

x =
−p2

µ2
, y1 =

m2
1

µ2
, y2 =

m2
2

µ2
, . . . , yl+1 =

m2
l+1

µ2
. (14.263)

As usual we may set one variable to one. The l-loop banana integral depends therefore in the

generic case (i.e. all internal masses pairwise distinct and (−p2) non-zero and not equal to

any internal mass squared) on NB = l + 1 kinematic variables. Of particular interest is also the

equal mass case m1 = · · ·= ml+1 = m, in which case the l-loop banana integral depends on one

kinematic variable, which we may take as x =−p2/m2.

The Feynman parameter representation of the l-loop banana integral is given by

Iν1...νl+1
(D) =

elεγEΓ
(
ν− lD

2

)

l+1

∏
j=1

Γ(ν j)

∫

∆

ω

(
l+1

∏
j=1

a
ν j−1

j

)
Uν− (l+1)D

2

F ν− lD
2

, (14.264)

with ∆ = RPl
≥0 and

ω =
l+1

∑
j=1

(−1) j−1 a j da1∧ ...∧ d̂a j∧ ...∧dan. (14.265)

The hat indicates that the corresponding term is omitted. The graph polynomials are given by

U =

(
l+1

∏
i=1

ai

)
·
(

l+1

∑
j=1

1

a j

)
, F = x

(
l+1

∏
i=1

ai

)
+

(
l+1

∑
i=1

aiyi

)
U. (14.266)

At one, two and three loops we have

l = 1 : F = a1a2x+(a1 +a2)(a1y1 +a2y2) , (14.267)

l = 2 : F = a1a2a3x+(a1a2 +a1a3 +a2a3)(a1y1 +a2y2 +a3y3) ,

l = 3 : F = a1a2a3a4x+(a1a2a3 +a1a2a4 +a1a3a4 +a2a3a4)(a1y1 +a2y2 +a3y3 +a4y4) .

Any sub-topology of the l-loop banana integral is a product of l one-loop tadpole integrals. If all

masses are distinct and (−p2) and D generic, we have for the l-loop banana family

Nmaster = 2l+1−1 (14.268)
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master integrals. We have (l + 1) sub-topologies and there is one master integral for each sub-

topology. These may be taken as

I011...11, I101...11, . . . , I111...10. (14.269)

The top sector has

2l+1− l−2 (14.270)

master integrals. A basis for the top sector is given by

ν j ∈ {1,2} , l +1 ≤ ν ≤ 2l, (14.271)

where as usual ν = ν1+ · · ·+νl+1. At one, two and three loops a basis for the top sector is given

by

l = 1 : I11, (14.272)

l = 2 : I111, I211, I121, I112,

l = 3 : I1111, I2111, I1211, I1121, I1112, I2211, I2121, I2112, I1221, I1212, I1122.

In the equal mass case the number of master integrals is

Nmaster = l +1. (14.273)

There is only one sub-sector with one master integral. The top sector has l master integrals in

the equal mass case, which can be taken as

I11...1, I21...1, I31...1, . . . , I(l−1)1...1, Il1...1. (14.274)

Let us now study the l-loop banana integral in D = 2 space-time dimensions. We go back to

the unequal mass case. As already observed in the two-loop case, the master integrals may be

ramified for special values of D. For D = 2 one has in the unequal mass case in the top sector

only

2l+1−
(

l +2

⌊ l+2
2
⌋

)
(14.275)

master integrals. For example, there are 1,2,6 master integrals in the top sector for 1,2,3 loops,

respectively.

We are in particular interested in the case ν1 = · · · = νl+1 = 1 and D = 2. Eq. (14.264)

simplifies in this case to

I1...1 (2) =

∫

∆

ω

F
. (14.276)
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As a sideremark we note that there exists a one-dimensional integral representation for I1...1(2)
involving Bessel functions [409, 410]:

I1...1 (2) = 2l

∞∫

0

dt t J0

(
t
√

x
) l+1

∏
i=1

K0 (t
√

yi) . (14.277)

However, our main interest here is the geometry underlying the l-loop banana integral. The

geometry is determined by the variety where F vanishes:

X =
{
[a1 : a2 : · · · : al+1] ∈ CPl | F (a) = 0

}
. (14.278)

The second graph polynomial is a homogeneous polynomial of degree (l+1). For generic kine-

matic variables the hypersurface X ∈ CPl is smooth and defines by theorem 20 below a Calabi-

Yau (l− 1)-fold. In particular we have at two-loops an elliptic curve and at three-loops a K3

surface.

The motive associated to the Feynman integral I1...1(2) is obtained along the lines of sec-

tion 14.5.1. We denote the blow-up of CPl by P, the strict transform of X by Y and the total

transform of the set {x1 · x2 · . . . · xn = 0} by B. The motive associated to the Feynman integral

I1...1(2) is then

Ml (P\Y,B\(B∩Y )) . (14.279)

The banana integrals are the simplest example, where higher-dimensional algebraic varieties (i.e.

Calabi-Yau (l−1)-folds) enter the computation of Feynman integrals. The banana integrals have

been studied in [329, 330, 366, 403, 411–416], other Feynman integrals related to Calabi-Yau

manifolds have been studied in [326–328].

Digression. Calabi-Yau manifolds

A Calabi-Yau manifold of complex dimension n (or a Calabi-Yau n-fold for short) is a compact
Kähler manifold M of complex dimension n, satisfying one of the following equivalent conditions:

1. The first Chern class of M vanishes (over R).

2. M has a Kähler metric with vanishing Ricci curvature.

3. M has a Kähler metric with local holonomy Hol(p) ⊆ SU(n) (where p ∈ M denotes a
point).

4. A positive power of the canonical bundle of M is trivial.

5. M has a finite cover that is a product of a torus and a simply connected manifold with
trivial canonical bundle.

If M is simply connected, the following conditions are equivalent to the ones above:

5. M has a holomorphic n-form that vanishes nowhere.
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1

0 0

1 20 1

0 0

1

1

2 2

1 4 1

2 2

1

1

0 0

0 10 0

0 0

1

K3 surface Abelian surface Enriques surface

Table 14.1: The Hodge diamonds for a K3 surface, an Abelian surface and an Enriques surface.

6. The canonical bundle of M is trivial.

Note that the conditions (1)− (4) are in general weaker than the conditions (5)− (6). The exact
definition of Calabi-Yau manifolds varies slightly in the literature. Some authors define Calabi-
Yau manifolds by conditions (5)− (6), such a definition excludes for example Enriques surfaces
as Calabi-Yau manifolds. Other authors are even more restrictive and require

7. M has a Kähler metric with local holonomy Hol(p) = SU(n).

Defining a Calabi-Yau manifold by condition (7) excludes for example Abelian surfaces as
Calabi-Yau manifolds. On the other hand, condition (7) ensures that the Hodge numbers h j,0

vanish for 0 < j < n. It can be shown that condition (7) implies condition (5) [417]. Condi-
tion (5) is equivalent to condition (6) and condition (6) clearly implies condition (4). Therefore
requiring condition (7) defines a Calabi-Yau manifold according to (1) - (5).

A simply connected Calabi-Yau 2-fold is called a K3 surface (after Kummer, Kähler and
Kodaira). The requirement of simple connectedness in the definition of a K3 surface excludes
complex tori.

In table 14.1 we show the Hodge diamonds for a K3 surface, an Abelian surface and an
Enriques surface. These Hodge diamonds illustrate that condition (7) ensures

hn,0 = 1, h j,0 = 0, 0 < j < n. (14.280)

Examples of Calabi-Yau manifolds can be obtained from the following theorem:

Theorem 20. Let X be the hypersurface defined by a homogeneous polynomial P of degree
d = n+2 in CPn+1. If X is smooth, than X is a Calabi-Yau n-fold.

In the definitions above we used some technical terms, which we now explain:
We start from a Kähler manifold M. First of all, a Kähler manifold is a special case of

a Riemannian manifold of real dimension (2n), so M comes with a Riemannian metric g and
the associated Levi-Civita connection ∇. M is also a complex manifold, so there is a complex
structure J. The manifold M is further a Hermitian manifolds, this means that the complex
structure J is compatible with the metric g:

g(JX ,JY ) = g(X ,Y ) (14.281)
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for X ,Y ∈ TpM. Finally, the fact that M is Kähler implies that the complex structure satisfies

∇J = 0. (14.282)

From the Levi-Civita connection one defines the Riemann curvature tensor R and the Ricci tensor
Ric. The Ricci form is then defined by

ρ(X ,Y) = Ric(JX ,Y ) . (14.283)

The Ricci form of a Kähler manifold is a real closed (1,1)-form and can be written locally as

ρ = −i∂∂̄ lndetg. (14.284)

As ρ is closed, it defines a class [ρ] ∈ H1,1(M,R) ⊂ H2(M,R). The first Chern class of M is
given by

c1 =
1

2π
[ρ] . (14.285)

The connection ∇ naturally defines a transformation group at each tangent space TpM as follows:
Let p ∈M be a point and consider the set of closed loops at p, {γ(t)|0≤ t ≤ 1,γ(0) = γ(1) = p}.
Take a vector X ∈ TpM and parallel transport X along the curve γ. After a trip along γ we
end up with a new vector Xγ ∈ TpM. Thus the loop γ and the connection ∇ induces a linear
transformation

Pγ : TpM→ TpM (14.286)

The set of these transformations is denoted Hol(p) and is called the holonomy group at p.
The holonomy of a Riemannian manifold of real dimension (2n) is contained in O(2n). If the
manifold is orientable this becomes SO(2n). If M is flat, the holonomy group consists only of the
identity element. If M is Kähler, the holonomy group is contained in U(n) and M is Calabi-Yau
if the the holonomy group is contained in SU(n).

The canonical bundle of a smooth algebraic variety X of (complex) dimension n is the line
bundle of holomorphic n-forms

KX =
n∧

Ω1
X . (14.287)

The k-th tensor product Kk
X of the canonical bundle is again a line bundle. The plurigenus of X

is the dimension of the vector space of global sections of Kk
X :

Pk = dimH0
(

X ,Kk
X

)
. (14.288)

The Kodaira dimension κ of X is defined to be (−∞), if all plurigenera Pk are zero for k > 0,
otherwise it is defined as the minimum such that Pk/kκ is bounded. In other words, the Kodaira
dimension κ gives the rate of growth of the plurigenera:

Pk = O (kκ) . (14.289)
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Let’s look at an example in (complex) dimension 1: The smooth algebraic curves are classified
by their genus g. One has

g = 0 : κ =−∞, Pk = 0, k > 0,

g = 1 : κ = 0, Pk = 1, k ≥ 0,

g≥ 2 : κ = 1, Pk = (2k−1)(g−1) , k ≥ 2. (14.290)

An Abelian surface is an Abelian variety of (complex) dimension two. An Abelian variety

is a projective algebraic variety that is also an algebraic group. The group law is necessarily
commutative. It can be shown that the Abelian varieties are exactly those complex tori, which
can be embedded into projective space. To give an example: An elliptic curve is an Abelian
variety of (complex) dimension one.

An Enriques surface is a smooth projective minimal algebraic surface of Kodaira dimension
0 with Betti numbers b1 = 0 and b2 = 10 [418].



Chapter 15

Numerics

At the end of the day of an analytic calculation of Feynman integrals we would like to get a

number. This requires methods for the numerical evaluation of all functions appearing in the

final result for a Feynman integral. In this chapter we discuss methods how this can be done

for multiple polylogarithms and the elliptic generalisations discussed in chapter 13. All these

methods can be pushed to obtain numerical results with a precision of hundred or thousand

digits. For phenomenological applications in physics this is certainly overkill, but there is one

application, where high-precision numerics is extremely useful: The PSLQ algorithm allows us

to find relations among dependent transcendental constants. This algorithm is often used in the

context of Feynman integral calculations to find a simple form for the boundary constants. We

discuss this algorithm in section 15.4.

15.1 The dilogarithm

As a warm-up example let us start with the numerical evaluation of the dilogarithm [95]: The

dilogarithm is defined by

Li2(x) = −
x∫

0

dt
t

ln(1− t) , (15.1)

and has a branch cut along the positive real axis, starting at the point x = 1. For |x| ≤ 1 one has

the convergent power series expansion

Li2(x) =
∞

∑
n=1

xn

n2
. (15.2)

The first step for a numerical evaluation consists in mapping an arbitrary (complex) argument x
into the region, where the power series in eq. (15.2) converges. This can be done with the help

of the reflection identity (see eq. (5.39)

Li2(x) = −Li2

(
1

x

)
− π2

6
− 1

2
(ln(−x))2 , (15.3)

519
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which is used to map the argument x, lying outside the unit circle into the unit circle. The

function ln(−x) appearing on the right-hand side of eq. (15.3) is considered to be “simpler”, e.g.

it is assumed that a numerical evaluation routine for this function is known. In addition we can

shift the argument into the range −1≤ Re(x)≤ 1/2 with the help of

Li2(x) = −Li2(1− x)+
π2

6
− ln(x) ln(1− x). (15.4)

Although one can now attempt a brute force evaluation of the power series in eq. (15.2), it is

more efficient to rewrite the dilogarithm as a series involving the Bernoulli numbers B j (defined

in eq. (7.85)):

Li2(x) =
∞

∑
j=0

B j

( j+1)!
z j+1, z =− ln(1− x). (15.5)

Therefore the numerical evaluation of the dilogarithm consists in using eqs. (15.3) and (15.4) to

map any argument x into the unit circle with the additional condition Re(x)≤ 1/2. One then uses

the series expansion in terms of Bernoulli numbers eq. (15.5).

Exercise 122: Derive eq. (15.5).

15.2 Multiple polylogarithm

Let us now consider multiple polylogarithms. We used several notations for them (see chapter 8):

A long notation related to the integral representation

G(z1,z2 . . . ,zr;y) , (15.6)

where the z j’s are allowed to be zero, a short notation related to the integral representation

Gm1...mk(z1, . . . ,zk;y), (15.7)

where all z j’s are assumed to be non-zero and a representation related to the sum representation

Lim1...mk(x1, . . . ,xk). (15.8)

These notations are related by eq. (8.13) and eqs. (8.19)-(8.20).

We would like to evaluate numerically the multiple polylogarithms in eq. (15.6) for arbitrary

complex arguments. Let us first note that with the help of the shuffle product we may always

remove trailing zeros (as discussed in section 8.3). If zr 6= 0 we may use the scaling relation

eq. (8.10) to scale y to 1 (or a positive real number). Let us therefore assume without loss of

generality that y is a positive real number. Our integration path is then the line segment from 0

to y along the positive real axis. The z′j are assumed not to lie on this line segment (but they are

allowed to be infinitesimal close to this line segment):

z j ∈ C\ [0,y] . (15.9)
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As we already removed trailing zeros, we may use the notation as in eq. (15.7) or eq. (15.8).

The principal ideas for algorithm for the numerical evaluation of multiple polylogarithms is very

similar to the example of the dilogarithm discussed above. We first use the integral representation

to transform all arguments into a region, where the sum representation converges. Truncating the

sum representation to an appropriate order provides a numerical evaluation. In addition, there

are methods which can be used to accelerate the convergence for the series representation of the

multiple polylogarithms.

Let’s look at the details: In most physical applications, the z j’s appearing in the integral

representation will be real numbers. To distinguish if the integration contour runs above or

below a cut, we define the abbreviations z±, meaning that a small positive, respectively negative

imaginary part is to be added to the value of the variable:

z+ = z+ iδ, z− = z− iδ, δ > 0. (15.10)

The sum representation Lim1,...,mk(x1, . . . ,xk) is convergent, if

∣∣x1x2 . . .x j
∣∣≤ 1 for all j ∈ {1, . . . ,k} and (m1,x1) 6= (1,1). (15.11)

Therefore the function Gm1,...,mk (z1, . . . ,zk;y) has a convergent series representation if

|y| ≤
∣∣z j
∣∣ for all j, (15.12)

e.g. no element in the set {|z1|, . . . , |zk|, |y|} is smaller than |y| and in addition if m1 = 1 we have

y/z1 6= 1.

15.2.1 Transformation into the region where the sum representation con-

verges

If eq. (15.12) is not satisfied, we first transform into the domain, where the sum representation

is convergent. This transformation is based on the integral representation. We start from the

function

Gm1,...,mk

(
z1, . . . ,z j−1,s,z j+1, . . . ,zk;y

)
, (15.13)

with the assumption that |s| is the smallest element in the set {|z1|, ..., |z j−1|, |s|, |z j+1|, ..., |zk|, |y|}.
The algorithm goes by induction and introduces the more general structure

y1∫

0

ds1

s1−b1
· · ·

sr−1∫

0

dsr

sr−br
G(a1, . . . ,sr, . . . ,aw;y2), (15.14)

where |y1| is the smallest element in the set {|y1|, |b′1|, . . . , |b′r|, |a′1|, . . . , |a′w|, |y2|}. The prime

indicates that only the non-zero elements of ai and b j are considered. If the integrals over s1 to

sr are absent, we recover the original G-function in eq. (15.13). Since we can always remove



522 CHAPTER 15. NUMERICS

trailing zeroes with the help of the algorithm in section 8.3, we can assume that aw 6= 0. We first

consider the case where the G-function is of depth one, e.g.

y1∫

0

ds1

s1−b1
· · ·

sr−1∫

0

dsr

sr−br
G(0, . . . ,0︸ ︷︷ ︸

m−1

,sr;y2) =

y1∫

0

ds1

s1−b1
· · ·

sr−1∫

0

dsr

sr−br
Gm(sr;y2), (15.15)

and show that we can relate the function Gm(sr;y2) to Gm (y2;sr), powers of ln(sr) and functions,

which do not depend on sr. For m = 1 we have

G1 (sr± ;y2) = G1

(
y2∓ ;sr

)
−G(0;sr)+ ln

(
− y2∓

)
. (15.16)

For m≥ 2 one can use the transformation 1/y and one obtains:

Gm (sr± ;y2) = −ζm +

y2∫

0

dt

t
Gm−1 ( t± ;y2)−

sr∫

0

dt

t
Gm−1 (t± ;y2) . (15.17)

One sees that the first and second term in eq. (15.17) yield functions independent of sr. The third

term has a reduced weight and we may therefore use recursion. This completes the discussion

for Gm (sr;y2). We now turn to the general case with a G-function of depth greater than one in

eq. (15.14). Here we first consider the sub-case, that sr appears in the last place in the parameter

list and (m−1) zeroes precede sr, e.g.

y1∫

0

ds1

s1−b1
· · ·

sr−1∫

0

dsr

sr−br
G(a1, . . . ,ak,0, . . . ,0︸ ︷︷ ︸

m−1

,sr;y2). (15.18)

Since we assumed that the G-function has a depth greater than one, we have ak 6= 0. Here we use

the shuffle relation to relate this case to the case where sr does not appear in the last place:

G(a1, . . . ,ak,0, . . . ,0︸ ︷︷ ︸
m−1

,sr;y2) = (15.19)

G(a1, . . . ,ak;y2)G(0, . . . ,0︸ ︷︷ ︸
m−1

,sr;y2)− ∑
shuffles′

G(α1, . . . ,αk+m;y2),

where the sum runs over all shuffles of (a1, . . . ,ak) with (0, . . . ,0,sr) and the prime indicates that

(α1, . . . ,αk+m) = (a1, . . . ,ak,0, . . . ,0,sr) is to be excluded from this sum. In the first term on

the right-hand side of eq. (15.19) the factor G(a1, . . . ,ak;y2) is independent of sr , whereas the

second factor G(0, . . . ,0,sr;y2) is of depth one and can be treated with the methods discussed

above. The terms corresponding to the sum over the shuffles in eq. (15.19) have either sr not

appearing in the last place in the parameter list or a reduced number of zeroes preceding sr. In the

last case we may use recursion to remove sr from the last place in the parameter list. It remains

to discuss the case, where the G-function has depth greater than one and sr does not appear in

the last place in the parameter list, e.g.

y1∫

0

ds1

s1−b1
· · ·

sr−1∫

0

dsr

sr−br
G(a1, . . . ,ai−1,sr,ai+1, . . . ,aw;y2), (15.20)
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with aw 6= 0. Obviously, we have

G(a1, . . . ,ai−1,sr,ai+1, . . . ,aw;y2) = (15.21)

G(a1, . . . ,ai−1,0,ai+1, . . . ,aw;y2)+

sr∫

0

dsr+1
∂

∂sr+1
G(a1, . . . ,ai−1,sr+1,ai+1, . . . ,aw;y2) .

The first term G(a1, . . . ,ai−1,0,ai+1, . . . ,aw;y2) does no longer depend on sr and has a reduced

depth. For the second term we first write out the integral representation of the G-function. We

then use

∂

∂s

1

t− s
= − ∂

∂t

1

t− s
, (15.22)

followed by partial integration in t and finally partial fraction decomposition according to

1

(t−α)(t− s)
=

1

s−α

(
1

t− s
− 1

t−α

)
. (15.23)

If sr is not in the first place of the parameter list, we obtain

sr∫

0

dsr+1
∂

∂sr+1
G(a1, . . . ,ai−1,sr+1,ai+1, . . . ,aw;y2)

= −
sr∫

0

dsr+1

sr+1−ai−1
G(a1, . . . ,ai−2,sr+1,ai+1, . . . ,aw;y2)

+

sr∫

0

dsr+1

sr+1−ai−1
G(a1, . . . ,ai−2,ai−1,ai+1, . . . ,aw;y2)

+

sr∫

0

dsr+1

sr+1−ai+1
G(a1, . . . ,ai−1,sr+1,ai+2, . . . ,aw;y2)

−
sr∫

0

dsr+1

sr+1−ai+1
G(a1, . . . ,ai−1,ai+1,ai+2, . . . ,aw;y2) . (15.24)

Each G-function has a weight reduced by one unit and we may use recursion. If sr appears in the

first place we have the following special case:

sr∫

0

dsr+1
∂

∂sr+1
G(sr+1,ai+1, . . . ,aw;y2) =

sr∫

0

dsr+1

sr+1− y2
G(ai+1, . . . ,aw;y2) (15.25)

+

sr∫

0

dsr+1

sr+1−ai+1
G(sr+1,ai+2, . . . ,aw;y2)−

sr∫

0

dsr+1

sr+1−ai+1
G(ai+1,ai+2, . . . ,aw;y2) .
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There is however a subtlety: If αi−1 or αi+1 are zero, the algorithm generates terms of the form

y∫

0

ds

s
F(s)−

y∫

0

ds

s
F(0). (15.26)

Although the sum of these two terms is finite, individual pieces diverge at s = 0. We regularise

the individual contributions with a lower cut-off λ:

y∫

λ

ds

s
F(s)−

y∫

λ

ds

s
F(0). (15.27)

In individual contributions we therefore obtain at the end of the day powers of lnλ from integrals

of the form

y∫

λ

ds1

s1

s1∫

λ

ds2

s2
=

1

2
ln2 y− lny lnλ+

1

2
ln2 λ. (15.28)

In the final result, all powers of lnλ cancel, and we are left with G-functions with trailing ze-

ros. These are then converted by standard algorithms to G-functions without trailing zeros. The

G-functions without trailing zeros can then be evaluated numerically by their power series ex-

pansion.

In addition, the algorithms may introduce in intermediate steps G-functions with leading

ones, e.g. G(1, . . . ,zk;1). These functions are divergent, but the divergence can be factorised and

expressed in terms of the basic divergence G(1;1). The algorithm is very similar to the one for

the extraction of trailing zeroes. In the end all divergences cancel.

15.2.2 Series acceleration

The G-function Gm1,...,mk(z1, . . . ,zk;y) has a convergent sum representation if the conditions in

eq. (15.12) are met. This does not necessarily imply, that the convergence is sufficiently fast,

such that the power series expansion can be used in a straightforward way. In particular, if z1 is

close to y the convergence is rather poor. In this paragraph we consider methods to improve the

convergence. The main tool will be the Hölder convolution.

The multiple polylogarithms satisfy the Hölder convolution [188]. For z1 6= 1 and zr 6= 0

this identity reads

G(z1, . . . ,zr;1) =
r

∑
j=0

(−1) j G

(
1− z j,1− z j−1, . . . ,1− z1;1− 1

p

)
G

(
z j+1, . . . ,zr;

1

p

)
.

(15.29)

The Hölder convolution can be used to improve the rate of convergence for the series represen-

tation of multiple polylogarithms.
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Let us see how this is done: We consider Gm1,...,mk(z1, . . . ,zk;y) and assume that the conditions

of eq. (15.12) are met (i.e. the multiple polylogarithm has a convergent sum representation). By

assumption we have zk 6= 0, and therefore we can normalise y to one. We are therefore consider-

ing Gm1,...,mk(z1, . . . ,zk;1). Convergence implies then, that we have |z j| ≥ 1 and (z1,m1) 6= (1,1).
If some z j is close to the unit circle, say,

1≤
∣∣z j
∣∣≤ 2, (15.30)

we use the Hölder convolution eq. (15.29) with p = 2 to rewrite the G-functions as

G(z1, . . . ,zr;1) = G(2z1, . . . ,2zr;1)+(−1)rG(2(1− zr),2(1− zr−1), . . . ,2(1− z1);1)

+
r−1

∑
j=1

(−1) j G
(
2(1− z j),2(1− z j−1), . . . ,2(1− z1);1

)
G
(
2z j+1, . . . ,2zr;1

)
. (15.31)

Here, we normalised the right-hand side to one and explicitly wrote the first and last term of

the sum. We observe, that the first term G(2z1, . . . ,2zr;1) has all arguments outside
∣∣2z j

∣∣ ≥
2. This term has therefore a better convergence. Let us now turn to the second term in eq,

(15.31). If some z j lies within
∣∣z j−1

∣∣ < 1/2, the Hölder convolution transforms the arguments

out of the region of convergence. In this case, we repeat the steps above, e.g. transformation

into the region of convergence, followed by a Hölder convolution, if necessary. While this is

a rather simple recipe to implement into a computer program, it is rather tricky to proof that

this procedure does not lead to an infinite recursion, and besides that, does indeed lead to an

improvement in the convergence. For the proof we have to understand how the algorithms for the

transformation into the region of convergence act on the arguments of a G-function with length r.

In particular we have to understand how in the result the G-functions of length r are related to the

original G-function. Products of G-functions of lower length are “simpler” and not relevant for

the argument here. We observe, that this algorithm for the G-function G(z1, . . . ,zr;y) substitutes

y by the element with the smallest non-zero modulus from the set {|z1| , . . . , |zr| , |y|}, permutes

the remaining elements into an order, which is of no relevance here and possibly substitutes some

non-zero elements by zero. The essential point is, that it does not introduce any non-trivial new

arguments (e.g. new non-zero arguments). The details can be found in [419].

15.2.3 Series expansion

With the preparations of the previous paragraphs we may now assume that we have a multiple

polylogarithm Gm1,...,mk(z1, . . . ,zk;y), which has a sufficient fast converging sum representation.

With the help of eq. (8.20) we switch to the Li-notation

Lim1...mk(x1, . . . ,xk) =
∞

∑
n1>n2>...>nk>0

xn1

1

n1
m1

. . .
xnk

k

nk
mk
. (15.32)

Let us write

Lim1...mk(x1, . . . ,xk) =
∞

∑
n1=1

dn1
, dn1

=
xn1

1

nm1
1

n1−1

∑
n2=1

xn2
2

nm2
2

. . .
nk−1−1

∑
nk=1

xnk
k

nmk
k

. (15.33)
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We may approximate Lim1...mk(x1, . . . ,xk) by

Iapprox(N) =
N

∑
n1=1

dn1
(15.34)

for some N ∈ N. This is a finite sum and can be evaluated on a computer. Choosing N large

enough, such that the neglected terms contribute below the numerical precision gives the numer-

ical evaluation of the iterated integral.

In more detail, let us define for two numbers a and b an equivalence relation. We say a∼ b,

if they have exactly the same floating-point representation within a given numerical precision. A

reasonable truncation criteria is as follows: We truncate the iterated integral at N if

Iapprox (N) ∼ Iapprox (N−1) and dN 6= 0. (15.35)

This gives reliable results in most cases.

15.2.4 Examples

The algorithms for the numerical evaluation of multiple polylogarithm are implemented in the

computer algebra program GiNaC [419]. GiNaC is a C++ library and allows symbolic calculations

as well as numerical calculations with arbitrary precision within C++. Alternatively, GiNaC offers

also a small interactive shell called ginsh.

Let us consider as a first example

Li31

(
1

2
,
3

4

)
. (15.36)

This multiple polylogarithm is evaluated numerically in ginsh as follows:

> Li({3,1},{0.5,0.75});

0.029809219570239646653

We may change the number of digits:

> Digits=30;

30

> Li({2,2,1},{3.0,2.0,0.2});

0.0298092195702396466595180002639066394709

We may also use the G(z1,z2 . . . ,zr;y)-notation: We have

Li31

(
1

2
,
3

4

)
= G31 (6,8;3) = G(0,0,6,8;3) . (15.37)

The G-function is evaluated as follows:
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> Digits=30;

30

> G({0,0,6.0,8.0},3.0);

0.0298092195702396466595180002639066394709

Let us also consider

G

(
1

2
± iδ;1

)
= ±iπ, (15.38)

where δ is an infinitesimal small positive number. Here we have to specify a small imaginary

part, which indicates, if the pole at 1
2

lies above or below the integration path. In ginsh we may

include the signs of the small imaginary parts of the z j’s as an optional second list:

> G({0.5},{1},1.0);

3.1415926535897932385*I

> G({0.5},{-1},1.0);

-3.1415926535897932385*I

The default choice is a small positive imaginary part for the z j’s:

> G({0.5},1.0);

3.1415926535897932385*I

Implementations, which work with floating-point data types are handyG [420] and FastGPL

[421]. These programs offer only a fixed precision, but are significantly faster and therefore

better suited to be used in situations where multiple polylogarithms need to be evaluated several

million times (like in Monte Carlo integrations).

Furthermore, there are dedicated implementations for the subclass of harmonic polyloga-

rithms [215, 422, 423].

15.3 Iterated integrals in the elliptic case

Let us now turn to the numerical evaluation of iterated integrals related to elliptic Feynman inte-

grals. We introduced these integrals in section 13.4. Let us recall that these are iterated integrals

on a covering space of the moduli space M1,n. Standard coordinates on M1,n are (τ,z1, . . . ,zn−1)
(see section 13.4) and we may decompose an arbitrary integration path into pieces along dτ (with

z1 = · · · = zn−1 = const) and pieces along the dz j’s (with τ = const). By choosing appropriate

boundary values it is sufficient to limit ourselves to iterated integrals with integration along dτ.

Thus we consider in this section iterated integrals of the form as in eq. (13.210).

Comparing the numerical evaluation of these iterated integrals to the numerical evaluation of

multiple polylogarithms, there are several similarities, but also two fundamental differences. We

recall that the essential steps for the evaluation of multiple polylogarithms were (i) removal of

trailing zeros, (ii) transformation into a region, where the series representation converges, (iii)

series acceleration and (iv) evaluation of the truncated series.
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The first difference of the numerical evaluation of iterated integrals in dτ with the numerical

evaluation of multiple polylogarithms is actually good news: There are no poles in τ-space along

the integration path. There might be poles at the starting point of the integration path (“trailing

zeros”) or at the endpoint, but not in between. This implies that the iterated integrals in τ-

space always have a convergent series representation except for a few points. These few points

correspond in q̄-space to an integration up to |q̄| = 1. In physical terms, this corresponds to

a threshold or (more generally) to a singularity of the differential equation. Thus, for iterated

integrals in dτ we do not need to consider point (ii) from the list above (i.e. no need for a

transformation into a region, where the series representation converges). Let us emphasize, that

this is not true for the iterated integrals in dz, e.g. the elliptic multiple polylogarithms Γ̃ defined

in eq. (13.213): As in the case of ordinary multiple polylogarithms we may integrate in the case

of elliptic multiple polylogarithms Γ̃ past poles. However, as already mentioned above, there is

no need for the functions Γ̃. With appropriate boundary values we may always integrate along

dτ.

On the other hand, the second difference is not so pleasant: For endpoints of the integration

path in q̄-space close to |q̄| . 1 the series expansion of the iterated integral converges rather

slowly and we would like to apply methods to accelerate the series convergence. A modular

transformation is the natural candidate. By a modular transformation τ′ = γ(τ) with γ ∈ SL2(Z)
we may transform τ′ into the fundamental domain

F = (15.39){
τ′ ∈H

∣∣∣∣
∣∣τ′
∣∣> 1 and − 1

2
< Re

(
τ′
)
≤ 1

2

}
∪
{

τ′ ∈H

∣∣∣∣
∣∣τ′
∣∣= 1 and 0≤ Re

(
τ′
)
≤ 1

2

}

and achieve that

∣∣q̄′
∣∣ ≤ e−π

√
3 ≈ 0.0043. (15.40)

This is a small expansion parameter. So far, so good. However, as discussed in section 13.5.1

and section 13.5.2 individual iterated integrals of the form as in eq. (13.210) do in general not

transform nicely under modular transformations. In general, we will leave through a modular

transformation the space of iterated integrals of the form as in eq. (13.210). We will stay inside

the space of iterated integrals of the form as in eq. (13.210) if we perform simultaneously a fibre

transformation and change the basis of our master integrals. (We have seen explicit examples

in eq. (13.276) and eq. (13.339).) Unfortunately, this implies that the acceleration techniques

are tied to the specific family of Feynman integrals under consideration and that we cannot

implement acceleration techniques based on modular transformations into a black-box algorithm

for iterated integrals of the form as in eq. (13.210).

What can be done, is the following: Assuming that the iterated integral under consideration

has a sufficiently fast converging series expansion, we may implement points (i) (removal of

trailing zeros) and (iv) (evaluation of the truncated series) into a black-box algorithm. On the

positive side, this can be done with a generality which exceeds the specific forms of eq. (13.211).

We will now discuss this in more detail.
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Setup

Let M be a one-dimensional complex manifold with coordinate x and let ω1, ..., ωr be differential

1-forms on M. Let λ0 ∈ R>0 and denote by U the domain U = {x ∈ C||x| ≤ λ0}. Let us assume

that all ω j are holomorphic in U\{0} and have at most a simple pole at x = 0. In other words

ω j = f j (x)dx =
∞

∑
n=0

c j,n xn−1dx, c j,n ∈ C. (15.41)

We say that ω j has a trailing zero, if c j,0 6= 0. We denote by

L0 = d ln(x) =
dx

x
(15.42)

the logarithmic form with c0 = 1 and cn = 0 for n > 0.

We set

I(L0, . . . ,L0︸ ︷︷ ︸
r

;x0) =
1

r!
lnr (x0) (15.43)

and define recursively

I (ω1,ω2, . . . ,ωr;x0) =

x0∫

0

dx1 f1 (x1) I (ω2, . . . ,ωr;x1) . (15.44)

We say that the iterated integral I(ω1, . . . ,ωr;x0) has a trailing zero, if ωr has a trailing zero. If

ωr has a trailing zero, we may always write

ωr = cr,0L0 +ωreg
r , (15.45)

with

ωreg
r =

∞

∑
n=1

c j,n xn−1dx (15.46)

having no trailing zero. In the case where I(ω1,ω2, . . . ,ωr;x0) has no trailing zero, the definition

in eq. (15.44) agrees with the previous definition of iterated integrals in eq. (6.140). Furthermore,

we do not need to specify the path: As all ω j’s are holomorphic in U and dimM = 1, the iterated

integral is path-independent.

Shuffle product and trailing zeros

Iterated integrals always come with a shuffle product (compare with section 8.3):

I(ω1, . . . ,ωk;x0) · I(ωk+1, . . . ,ωr;x0) = ∑
shuffles σ

I(ωσ(1), . . . ,ωσ(r);x0), (15.47)
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where the sum runs over all shuffles σ of (1, . . . ,k) with (k+1, . . . ,r). The proof of this formula

is identical to the proof of the shuffle product formula for multiple polylogarithms given in sec-

tion 8.3. We may use the shuffle product and eq. (15.45) to remove trailing zeros, for example if

c1,0 = 0 and c2,0 = 1 we have

I(ω1,ω2;x0) = I(ω1,L0;x0)+ I(ω1,ω
reg
2 ;x0)

= I(L0;x0)I(ω1;x0)− I(L0,ω1;x0)+ I(ω1,ω
reg
2 ;x0). (15.48)

This isolates all trailing zeros in integrals of the form (15.43), for which we may use the explicit

formula in eq. (15.43). It is therefore sufficient to focus on iterated integrals with no trailing

zeros. For

I(ω1, . . . ,ωr;x0) (15.49)

this means cr,0 = 0. Please note that ck,0 6= 0 is allowed for k < r and in particular that the form

L0 is allowed in positions k < r.

For integrals with no trailing zeros we introduce the notation

Im1,...,mr(ω1, . . . ,ωr;x0) = I(L0, . . . ,L0︸ ︷︷ ︸
m1−1

,ω1, . . . ,ωr−1,L0, . . . ,L0︸ ︷︷ ︸
mr−1

,ωr;x0), (15.50)

where we assumed that ωk 6= L0 and (mk − 1) L0’s precede ωk. This notation resembles the

notation of multiple polylogarithms. The motivation for this notation is as follows: The iterated

integrals Im1,...,mr(ω1, . . . ,ωr;x0) have just a r-fold series expansion, and not a (m1 + · · ·+mr)-
fold one.

Series expansion

With the same assumptions as in the previous subsection (all ω j are holomorphic in U\{0} and

have at most a simple pole at x = 0) an iterated integral with no trailing zero has a convergent

series expansion in U :

Im1,...,mr(ω1, . . . ,ωr;x0) =
∞

∑
i1=1

i1

∑
i2=1

· · ·
ir−1

∑
ir=1

xi1
0

c1,i1−i2 . . .cr−1,ir−1−ircr,ir

im1
1 im2

2 · · · · · i
mr
r

, (15.51)

where the Laurent expansion around x= 0 of the differential one-forms ω j is given by eq. (15.41).

Eq. (15.51) can be used for the numerical evaluation of the iterated integral: We truncate the outer

sum over at i1 = N. Let us write eq. (15.51) as

Im1,...,mr(ω1, . . . ,ωr;x0) =
∞

∑
i1=1

di1,

di1 = xi1
0

i1

∑
i2=1

· · ·
ir−1

∑
ir=1

c1,i1−i2 . . .cr−1,ir−1−ircr,ir

im1
1 im2

2 · · · · · i
mr
r

. (15.52)
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This gives a numerical approximation Iapprox(N) of the iterated integral

Iapprox(N) =
N

∑
i1=1

di1. (15.53)

As truncation criteria we may again use eq. (15.35).

Iterated integrals along dτ

The discussion of the previous paragraphs applies to the iterated integrals along dτ, introduced

in eq. (13.210). For the integration along dτ we consider in q̄-space the iterated integrals

Iγ (ω1, . . . ,ωr; q̄) , (15.54)

where ω j is of the form

ω
Kronecker,τ
k j

=

(
k j−1

)

(2πi)k j
g(k j)

(
z− c j,τ

) dq̄

q̄
or ωmodular

k j
= fk j (τ)

dq̄

q̄
, (15.55)

with fk j(τ) being a modular form of weight k j. The q̄-expansion of ωKronecker,τ
k j

is given in

eq. (13.202), the q̄-expansion of Eisenstein series has been discussed in section 13.3.1. Note

that if a modular form is non-vanishing at the cusp τ = i∞, then it has a simple pole at q̄ = 0 in

q̄-space (and no further poles inside the unit disk |q̄|< 1). The simple pole at q̄ = 0 comes from

the Jacobian of the transformation from τ to q̄:

2πidτ =
dq̄

q̄
. (15.56)

Example

We may use GiNaC to evaluate numerically iterated integrals of the form as in eq. (13.210) [424].

Let us see how this works in a full example. We consider the equal mass sunrise integral in two

space-time dimensions:

I111 (2,x) =
m2

π2

∫
d2k1

∫
d2k2

∫
d2k3

δ2 (p− k1− k2− k3)(
k2

1−m2
)(

k2
1−m2

)(
k2

1−m2
) (15.57)

with x=−p2/m2. Feynman’s iδ-prescription translates into an infinitesimal small negative imag-

inary part of x. In section 13.5.1 we worked out this integral and found

I111 (2,x) =
ψ1

π

[
3Cl2

(
2π

3

)
+4I (η0,η3;τ)

]
. (15.58)

This involves the iterated integral

I (η0,η3;τ) , (15.59)
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with

η0 = −1,

η3 = −9
√

3
(
b3

1−b2
1b2−4b1b2

2 +4b3
2

)
(15.60)

and

b1 = E1

(
τ;χ1,χ(−3)

)
= E1,1,−3,1 (τ) ,

b2 = E1

(
2τ;χ1,χ(−3)

)
= E1,1,−3,2 (τ) . (15.61)

The following C++ code computes the Feynman integral I111(2,x) for x ∈ R\{−9,−1,0}:

#include <ginac/ginac.h>

int main()

{

using namespace std;

using namespace GiNaC;

Digits = 30;

// input x = -p^2/m^2, x real and not equal to {-9,-1,0}

numeric x = numeric(-1,100);

numeric sqrt_3 = sqrt(numeric(3));

numeric sqrt_mx = sqrt(-x);

numeric k2 = 16*sqrt_mx/pow(1+sqrt_mx,numeric(3))/(3-sqrt_mx);

ex pre = 4*pow(1+sqrt_mx,numeric(-3,2))*pow(3-sqrt_mx,numeric(-1,2));

if (x < -9) pre = -pre;

ex psi1 = pre*EllipticK(sqrt(k2));

ex psi2 = pre*I*EllipticK(sqrt(1-k2));

if ((x < -1) || (x > -3+2*sqrt_3)) psi1 += 2*psi2;

if ((x > -9) && (x < -1)) psi1 += 2*psi2;

ex tau = psi2/psi1;

ex qbar = exp(2*Pi*I*tau);

ex L0 = basic_log_kernel();

ex b1 = Eisenstein_kernel(1, 6, 1, -3, 1);

ex b2 = Eisenstein_kernel(1, 6, 1, -3, 2);

ex eta3 = modular_form_kernel(3, -9*sqrt_3*(pow(b1,3)-pow(b1,2)*b2

-4*b1*pow(b2,2)+4*pow(b2,3)));

ex Cl2 = numeric(1,2)/I*(Li(2,exp(2*Pi*I/3))-Li(2,exp(-2*Pi*I/3)));
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ex I111 = psi1/Pi*(3*Cl2-4*iterated_integral(lst{L0,eta3},qbar));

cout << "I111 = " << I111.evalf() << endl;

return 0;

}

Let us explain the code: The input is given in the line

numeric x = numeric(-1,100);

One may change this value to any other value except x /∈ {−9,−1,0}. The program computes

then the two periods ψ1 and ψ2, the modular parameter τ and the variable q̄. The line

if ((x < -1) || (x > -3+2*sqrt_3)) psi1 += 2*psi2;

corresponds to eq. (13.258).

There is a convention how mathematical software should evaluate a function on a branch cut:

Implementations shall map a cut so the function is continuous as the cut is approached coming

around the finite endpoint of the cut in a counter clockwise direction [205]. GiNaC follows this

convention. In physics, Feynman’s iδ-prescription dictates how a function should be evaluated

on a branch cut. The lines

if (x < -9) pre = -pre;

if ((x < -9) && (x < -1)) psi1 += 2*psi2;

correct for a mismatch between the standard convention for mathematical software and Feyn-

man’s iδ-prescription.

We then define the modular forms. basic_log_kernel() represents

2πi dτ =
dq̄

q̄
. (15.62)

The Eisenstein series Ek,a,b,K(τ) for Γ1(N) are defined by

Eisenstein_kernel(k, N, a, b, K);

Finally,

iterated_integral(lst{L0,eta3},qbar);

defines the iterated integral I(1,η3;τ) =−I(η0,η3;τ).
Running the code for

x = −0.01 (15.63)

yields

I111 = 2.34505440991241557114658013997777317976
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15.4 The PSLQ algorithm

The possibility to evaluate numerically transcendental functions to high precision allows us to

simplify boundary constants. Suppose the boundary value of a Feynman integral at a certain

kinematic point is given by a linear combination of harmonic polylogarithms at x = 1:

G(z1, . . . ,zr;1) , z j ∈ {−1,0,1}. (15.64)

These are just transcendental numbers. Excluding trailing zeros and leading ones we have at

weight r ≥ 2

4 ·3r−2 (15.65)

transcendental numbers. However, they are not linearly independent.

The PSLQ algorithm [425–428] may be used to find relations among a set of transcendental

numbers. The input to the PSLQ algorithm are high-precision numerical values for the tran-

scendental numbers. The PSLQ algorithm then finds integer coefficients, such that the linear

combination with these integer coefficients is close to zero within the numerical precision. This

does not provide a strict mathematical proof that the linear combination is indeed zero. How-

ever, we may increase the numerical precision and if the coefficients stay constant we may be

confident that the relation is correct.

Let us start with an example: We consider

G(−1,0,−1,−1;1) (15.66)

and we ask if there is a relation between G(−1,0,−1,−1;1) and the simpler constants

Li4

(
1

2

)
, ζ4, ζ3 ln(2), ζ2 ln2(2), ln4(2). (15.67)

We evaluate numerically all quantities to 50 digits:

G(−1,0,−1,−1;1) ≈ 0.0328931951943560413263595656028689325387,

Li4

(
1

2

)
≈ 0.517479061673899386330758161898862945618,

ζ4 ≈ 1.082323233711138191516003696541167902776,

ζ3 ln(2) ≈ 0.833202353297691993445762529661560103894,

ζ2 ln2(2) ≈ 0.790313530113954608772917335680644104204,

ln4(2) ≈ 0.230835098583083451887497717767812771517. (15.68)

The PSLQ algorithm gives then

8G(−1,0,−1,−1;1)−24Li4

(
1

2

)
+24ζ4−22ζ3 ln(2)+6ζ2 ln2(2)− ln4(2) = 0
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and therefore

G(−1,0,−1,−1;1) = 3Li4

(
1

2

)
−3ζ4 +

11

4
ζ3 ln(2)− 3

4
ζ2 ln2(2)+

1

8
ln4(2). (15.69)

We may repeat the calculation with a higher number of digits. The empirical relation will stay

the same. This gives us confidence that the relation is correct.

On the other hand, if no relation exists, the PSLQ algorithm will tell us that no relation with

integer coefficients smaller than a certain bound exists. The bound depends on the numerical

precision.

The input to the PSLQ algorithm is a vector x = (x1, . . . ,xn) ∈ Rn of real numbers, given

as floating-point numbers to a certain precision. An integer relation is given by a vector m =
(m1, . . . ,mn) ∈ Zn of integer numbers such that

m1x1 +m2x2 + · · ·+mnxn = 0. (15.70)

The name of the PSLQ algorithm derives from the partial sums

sk =

√
n

∑
j=k

x2
j (15.71)

and the LQ-decomposition of matrices: Any (n×m)-matrix M may be written as

M = L ·Q, (15.72)

where L is a lower trapezoidal (n×m)-matrix and Q is an orthogonal (m×m)-matrix (i.e. Q−1 =
QT ). A (n×m)-matrix L is called a lower trapezoidal matrix, if

Li j = 0 for i < j. (15.73)

The PSLQ algorithm is not too complicated to state. For the proof why the algorithm works we

refer to the literature [426,427]. In order to state the algorithm we denote for a real number x by

[x] the rounded value to the nearest integer. The PSQL algorithm depends on two parameters γ
and δ. The first parameter γ is chosen as

γ ≥
√

4

3
(15.74)

and determines the weighting of the diagonal elements of a matrix H in the first iteration step

below. The second parameter δ defines the detection threshold for an integer relation. As a

rule of thumb, if we expect an integer relation between n input number x1, . . . ,xn with integer

coefficients of maximum size d digits, we should work with a precision of (n ·d) digits (i.e. the

input numbers x j have to be given with this precision, and all internal arithmetic has to be carried

out with this precision). In order to tolerate numerical rounding errors, we set the detection

threshold a few orders of magnitude greater than 10−nd , e.g.

δ = 10−nd+o, (15.75)

where o is a small positive integer. Let us now state the algorithm:
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Algorithm 3. The PSLQ algorithm

The algorithm is divided into an initialisation phase and an iteration phase.

Initialisation:

1. Initialise two integer (n×n)-matrices A and B by

A = 1n×n, B = 1n×n. (15.76)

2. Initialise sk by eq. (15.71) and set

yk =
xk

s1
, 1≤ k ≤ n. (15.77)

3. Initialise a lower trapezoidal n× (n−1)-matrix H by

Hi j =





− xix j
s js j+1

, i > j,
s j+1

s j
, i = j,

0, i < j.

(15.78)

4. Reduce H:

for i = 2 to n do

for j = i−1 to 1 step −1 do

t← [Hi j/H j j]
y j← y j + tyi

for k = 1 to j do

Hik← Hik− tH jk

end for

for k = 1 to n do

Aik← Aik− tA jk

Bk j← Bk j− tBki

end for

end for

end for

Iteration:

1. Select l such that γi|Hii| is maximal for i = l.

2. Exchange the entries of y indexed l and (l + 1), the corresponding rows of A
and H, and the corresponding columns of B.

3. Remove corner:

if l ≤ n−2 then
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t0←
√

H2
ll +H2

l(l+1)

t1← Hll
t0

t2←
Hl(l+1)

t0
for i = l to n do

t3←Hil

t4←Hi(l+1)

Hil← t1t3 + t2t4
Hi(l+1)←−t2t3 + t1t4

end for

end if

4. Reduce H:

for i = l+1 to n do

for j = min(i−1, l+1) to 1 step −1 do

t← [Hi j/H j j]
y j← y j + tyi

for k = 1 to j do

Hik← Hik− tH jk

end for

for k = 1 to n do

Aik← Aik− tA jk

Bk j← Bk j− tBki

end for

end for

end for

5. Termination test: If the largest entry of A exceeds the numerical precision,
then no relation exists where the Euclidean norm of the vector m is less than
1/max j |H j j|. If the smallest entry of the vector y is less than the detection
threshold δ, return the corresponding column of B. Otherwise go back to step
1 of the iteration.

The PSLQ algorithm is implemented in many commercial computer algebra systems.
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Chapter 16

Final project

In the last chapter of this book, let’s do a final project. In this way we are going to review many

techniques introduced in the previous chapters.

16.1 A two-loop penguin integral

We are going to compute the Feynman integral of the penguin graph shown in fig. 16.1. We are

going to neglect all light quark masses (ms =mb = 0) and only keep the heavy masses mW ,mH ,mt

non-zero. The integral corresponding to the graph shown in fig. 16.1 has six loop propagators

(and one tree-like propagator: the gluon propagator drawn by a curly line at the bottom). We

notice that two of the six loop propagators are identical: These are the W -boson propagators

making up the left and the right shoulder of the penguin. The momenta flowing through these

lines is the same, as is the internal mass (i.e. mW ). Thus we actually only need to consider a two-

loop integral with five loop propagators, where one propagator is raised to the power two. The

corresponding diagram (a distorted penguin) is shown in fig 16.2. In fig. 16.2 we also indicated

the external momenta. As usual our convention is to take all momenta as outgoing, therefore

momentum conservation reads

p1 + p2 + p3 + p4 = 0. (16.1)

The external particles are assumed to be on the mass-shell, and since we assumed mb = ms = 0

we have

p2
1 = m2

b = 0, p2
2 = p2

3 = p2
4 = m2

s = 0. (16.2)

It is clear from the diagram that the scalar Feynman integrals will only depend on p1, p2,(p3 +
p4), but not on p3 nor p4 individually. Thus the only non-vanishing Lorentz invariant is

s = (p1 + p2)
2 = (p3 + p4)

2 . (16.3)

Therefore our kinematic variables are

x1 =
−s

µ2
, x2 =

m2
W

µ2
, x3 =

m2
H

µ2
, x4 =

m2
t

µ2
. (16.4)

539
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b s

s s

t t

W

H

Figure 16.1: A two-loop penguin diagram.



16.1. A TWO-LOOP PENGUIN INTEGRAL 541

p1 p2

p3 p4

Figure 16.2: The distorted penguin: A two-loop diagram with five loop propagators.
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p1

p2

−p1 − p2

Figure 16.3: A two-loop three-point function. A green line denotes a propagator with mass mt ,

a red line denotes a propagator with mass mW , a blue line denotes a propagator with mass mH . A

thick black external line indicates that p2 = s, a thin black external line indicates that p2 = 0.

In our calculation we may set (temporarily) µ to any value we want, and in particular the choice

µ = mt sets the last variable equal to one: x4 = 1. As µ enters only as a trivial prefactor the defi-

nition of Feynman integrals, the µ dependence can be restored at the end of the calculation. We

therefore have a problem with three kinematic variables x1,x2,x3 and NB = 3 (see the discussion

in section 2.5.1 and in section 6.4.2).

We recall from section 4.3 that all tensor integrals can be reduced to scalar integrals. There-

fore we only need to consider the relevant scalar integrals. In fig. 16.3 we draw the relevant

Feynman graph in a more standard way: We are interested in a two-loop three-point function

with five propagators as shown in fig. 16.3.

We are going to use integration-by-parts identities. We have two linear independent external

momenta (p1 and p2) and two independent loop momenta (which we label k1 and k2). Therefore

we have (see section 2.5.5)

NV =
1

2
l (l +1)+ el = 7 (16.5)

linear independent scalar products involving the loop momenta. We therefore consider an auxil-

iary graph with seven loop propagators, such that any scalar product involving the loop momenta

can be expressed as a linear combination of the propagators and a constant and vice versa. This is

to say that we seek an auxiliary graph such that eq. (2.225) holds. This is not too complicated, the

double-box graph G̃ shown in fig. 16.4 will do the job. Note that this double-box graph depends

only on two linear independent external momenta.

We set µ = mt and we consider the family of Feynman integrals

Iν1ν2ν3ν4ν5ν6ν7
(D,x1,x2,x3) = e2εγE

(
m2

t

)ν−D
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

7

∏
j=1

1(
−q2

j +m2
j

)ν j
, (16.6)
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−p1 − p2

p1 −p1

p1 + p2

q1 q4 q7

q2 q5

q3 q6

Figure 16.4: The auxiliary graph G̃ with seven propagators. The arrow indicate the momentum

flow. The colour coding is as in fig. 16.3.

with

q1 = k1 + p1 + p2, m1 = mt ,

q2 = k1 + p2, m2 = mW ,

q3 = k1, m3 = mt ,

q4 = k1 + k2, m4 = mW ,

q5 = k2− p2, m5 = mH ,

q6 = k2, m6 = mt ,

q7 = k2− p1− p2, m7 = mt . (16.7)

We are interested in the integrals with ν6 ≤ 0,ν7 ≤ 0, these correspond to the topology shown in

fig. 16.3.

16.2 Deriving the differential equation

We first determine the two graph polynomials U and F of the graph G̃ with the help of the meth-

ods from chapter 3. The first graph polynomial can actually be copied directly from eq. (2.164),

for the second graph polynomial we have to take into account that our kinematic configuration is

different. We obtain

U = (a1 +a2 +a3)(a5 +a6 +a7)+a4 (a1 +a2 +a3 +a5 +a6 +a7) ,

F = x1 [a1a3 (a4 +a5 +a6 +a7)+a6a7 (a1 +a2 +a3 +a4)+a1a4a6 +a3a4a7]

+[a1 +a3 +a6 +a7 + x2 (a2 +a4)+ x3a5]U. (16.8)
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In the next step we generate the integration-by-parts identities. We do this with the help of a
computer program, like Fire [111,112], Reduze [113,114] or Kira [115,116]. We may modify
the set-up from exercise 44. For example, if we are using Kira the file integralfamilies.yaml
should now read

integralfamilies:

- name: "doublebox"

loop_momenta: [k1, k2]

top_level_sectors: [31]

propagators:

- [ "k1+p1+p2", "mt2" ]

- [ "k1+p2", "mW2" ]

- [ "k1", "mt2" ]

- [ "k1+k2", "mW2" ]

- [ "k2-p2", "mH2" ]

- [ "k2", "mt2" ]

- [ "k2-p1-p2", "mt2" ]

and the file kinematics.yaml should read

kinematics :

incoming_momenta: []

outgoing_momenta: [p1, p2, p3]

momentum_conservation: [p3,-p1-p2]

kinematic_invariants:

- [s, 2]

- [mW2,2]

- [mH2,2]

- [mt2,2]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[p1+p2,p1+p2], s]

symbol_to_replace_by_one: mt2

Running an integration-by-parts reduction program we also obtain a list of master integrals. This

list is not unique and will depend on the chosen ordering criteria for the Laporta algorithm (see

section 6.1). A possible basis of master integrals is tabulated in table 16.1. We have 15 master

integrals, hence Nmaster = 15. There are 12 sectors. The sectors (or master topologies) are shown

in fig. 16.5. Eleven sectors have only one master integral per sector, while one sector (with sector

id Nid = 29) has four master integrals.

We set

~I = (I1001000, I0101000, I1000100, I0100100, I1011000, I1010100, I1001100, I0101100,

I1111000, I1110100, I1011100, I1(−1)11100, I10111(−1)0, I1(−2)11100, I1111100

)T
. (16.9)

In the next step one derives the differential equation for ~I, as explained in section 6.3. For the

derivatives with respect to x1,x2,x3 we may use eq. (6.46). As we are considering a two-loop

integral we get from F ′x j
(1+, . . . ,nint

+) three raising operators and we therefore need integration-

by-parts reduction identities for up to three dots. We also need the dimensional shift relations,
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number of block sector master integrals master integrals kinematic

propagators basis~I basis ~J dependence

2 1 9 I1001000 J1 x2

2 10 I0101000 J2 x2

3 17 I1000100 J3 x3

4 18 I0100100 J4 x2,x3

3 5 13 I1011000 J5 x1,x2

6 21 I1010100 J6 x1,x3

7 25 I1001100 J7 x2,x3

8 26 I0101100 J8 x2,x3

4 9 15 I1111000 J9 x1,x2

10 23 I1110100 J10 x1,x2,x3

11 29 I1011100, I1(−1)11100, J11,J12,J13,J14 x1,x2,x3

I10111(−1)0, I1(−2)11100

5 12 31 I1111100 J15 x1,x2,x3

Table 16.1: Overview of the set of master integrals. The first column denotes the number of

propagators, the second column labels consecutively the sectors or topologies, the third column

gives the sector id Nid (defined in eq. (6.16)), the fourth column lists the master integrals in the

basis ~I, the fifth column the corresponding ones in the basis ~J. The last column denotes the

kinematic dependence.
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J1 J2 J3

J4 J5 J6

J7 J8 J9

J10 J11 − J14 J15

Figure 16.5: The master topologies.
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which involves U(1+, . . . ,nint
+). As for a two-loop graph U is homogeneous of degree 2, this

leads to two raising operators and requires integration-by-parts reduction identities for up to two

dots. These are a subset of the ones required for up to three dots.

For this particular example the full differential equation can actually be derived with reduc-

tion identities for only one dot. This saves quite some computer memory and CPU time. The

trick is as follows: We do not set µ = mt in the beginning and first compute the derivatives with

respect to x2,x3,x4. These are the derivatives with respect to the internal masses and we may use

eq. (6.50). This involves only one raising operator (and no dimensional shift), therefore reduc-

tion identities for one dot are sufficient. The derivative with respect to x1 is then obtained from

the scaling relation eq. (6.51). Having obtained the derivatives with respect to x1,x2,x3 we may

set µ = mt .

In this way we obtain the differential equation

(d +A)~I = 0, (16.10)

where

d =
3

∑
j=1

dx j
∂

∂x j
, A =

3

∑
j=1

dx j Ax j , (16.11)

and the Ax j are (15×15)-matrices, whose entries are rational functions of x1,x2,x3 and ε. These

matrices are not in a form to be printed here, but they may be computed in a straightforward way

and stored on a computer. The matrices Ax1
,Ax2

,Ax3
have to satisfy the integrability condition of

eq. (6.57). Spelled out in components we must have

∂x1
Ax2
−∂x2

Ax1
+[Ax1

,Ax2
] = 0,

∂x1
Ax3
−∂x3

Ax1
+[Ax1

,Ax3
] = 0,

∂x2
Ax3
−∂x3

Ax2
+[Ax2

,Ax3
] = 0, (16.12)

where [A,B] = A ·B−B ·A denotes the commutator of the two matrices A and B. It is highly

recommended to check these relations at this stage.

16.3 Fibre transformation

Let us set D = 4− 2ε. In the next step we perform a fibre transformation, e.g. we redefine the

master integrals

~J = U (ε,x)~I. (16.13)

We seek a transformation U such that in the transformed differential equation

(
d+A′

)
~J = 0, A′ = UAU−1+UdU−1 (16.14)
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the dimensional regularisation parameter ε appears only as a prefactor of A′. To this aim we

define a new basis of master integrals

~J = (J1,J2, . . . ,J15)
T

(16.15)

such that the Ji’s are of uniform weight. Expressing the new Ji’s as a linear combination of the

old basis~I = (I1, . . . , I15)
T defines the matrix U :

Ji =
15

∑
j=1

Ui jI j. (16.16)

We may use the methods of chapter 7 to construct the Ji’s. However, it is usually the case that the

first few Ji’s may already be obtained from known examples. This is also the case here. The first

four master integrals are each products of two one-loop tadpole integrals. The tadpole integral

was the first Feynman integral we calculated and from eq. (2.125) we know that ε T1(2−2ε) is

of uniform weight. We have set D = 4−2ε, hence we may write

ε T1 (2−2ε) = ε D−T1 (4−2ε) . (16.17)

From the dimensional shift relation eq. (2.126) we have T1(2−2ε) = T2(4−2ε) and therefore

ε T1 (2−2ε) = ε D−T1 (4−2ε) = ε T2 (4−2ε) . (16.18)

Thus the first four master integrals of uniform weight are

J1 = ε2 D−I1001000 = ε2 I2002000,

J2 = ε2 D−I0101000 = ε2 I0202000,

J3 = ε2 D−I1000100 = ε2 I2000200,

J4 = ε2 D−I0100100 = ε2 I0200200. (16.19)

The next two sectors (sectors 13 and 21) are again products of one-loop integrals, in this case

the product of a tadpole integral and a bubble integral. The bubble integral is the one discussed

as example 1 in section 6.3.1. In eq. (6.277) we have given the corresponding master integral of

uniform weight. This involves the root

r1 =
√

x1 (4+ x1) =
1

m2
t

√
−s
(
4m2

t − s
)
. (16.20)

Thus

J5 = −ε2r1 D−I1011000 = 2ε2 r1

4+ x1
[(1− ε) I1002000 +(1−2ε) I1012000] ,

J6 = −ε2r1 D−I1010100 = 2ε2 r1

4+ x1
[(1− ε) I1000200 +(1−2ε) I1010200] . (16.21)
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The sectors 25 and 26 are genuine two-loop topologies. In order to find master integrals of

uniform weight we look at maximal cuts and constant leading singularities (see section 7.1.7).

For the sector 25 the maximal cut in D = 2 space-time dimensions is given by

MaxCut I1001100(2) =
(2πi)3 m2

t

π2

∫

CMaxCut

dz2
1

(
z2 +m2

t −m2
W

)√
4m2

Hm2
W −

(
z2 +m2

H

)2

=
∫

CMaxCut

ϕ. (16.22)

The last equation defines the integrand ϕ. We now replace the integration domain CMaxCut by a

simpler integration domain C , given by a small anti-clockwise circle around z2 = m2
W −m2

t . This

gives

〈ϕ|C 〉 =
16π2

√
−λ(x2,x3,1)

, (16.23)

where λ(x,y,z) denotes the Källén function

λ(x,y,z) = x2 + y2 + z2−2xy−2yz−2zx. (16.24)

The analysis for sector 26 is similar and gives instead of λ(x2,x3,1) the expression λ(x2,x3,x2).
We introduce two new square roots

r2 =
√
−λ(x2,x3,1) =

√
2x2x3 +2x2 +2x3− x2

2− x2
3−1 =

1

m2
t

√
−λ
(
m2

W ,m2
H ,m

2
t

)
,

r3 =
√
−λ(x2,x3,x2) =

√
4x2x3− x2

3 =
1

m2
t

√
m2

H

(
4m2

W −m2
H

)
. (16.25)

Our tentative guess for J7 and J8 is

J7 =
1

2
ε2r2 D−I1001100,

J8 =
1

2
ε2r3 D−I0101100. (16.26)

This guess is obtained (apart from irrelevant rational prefactors) by dividing I7 and I8 by the

appropriate period 〈ϕ|C 〉 and by replacing π by ε−1. There may be additional terms proportional

to sub-topologies. In these two examples we verify a posteriori that there are no additional terms

and J7 and J8 define master integrals of uniform weight.

The sectors 15 and 23 are again products of one-loop integrals. We need the one-loop triangle

of uniform weight, which again can be obtained from the maximal cut. Proceeding as above we

obtain

J9 = ε3x1 I1112000,

J10 = ε3x1 I1110200. (16.27)
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We now come to sector 29. This is the most challenging sector, as it has four master integrals.

We started from an ISP-basis, where we chose

I1011100, I1(−1)11100, I10111(−1)0, I1(−2)11100 (16.28)

as a basis for this sector. We could have chosen a dot-basis, in which case

I1011100, I1011200, I1012100, I1021100 (16.29)

would be an appropriate basis. Our strategy is to put first the (4× 4)-diagonal block into an

ε-form and to treat the off-diagonal blocks (corresponding to sub-topologies) in a second stage.

For the diagonal block we may work on the maximal cut. For the maximal cut we use the loop-

by-loop approach (see section 2.5.5), this yields a one-fold integral representation in the Baikov

variable z2 for the maximal cut. We look at the maximal cuts for various sets of indices ν j and

various values of the space-time dimension. In these integral representations we recognise in the

denominators a few recurring expressions:

P1 = z2−m2
W ,

P2 =
(
z2 +m2

t −m2
W

)2− s
(
z2−m2

W

)
,

R =

√
4m2

W m2
H−

(
z2 +m2

H

)2
. (16.30)

P1 is a linear polynomial in z2, P2 is a quadratic polynomial in z2 and R is the square root of a

quadratic polynomial in z2. In terms of maximal cuts we have for example

MaxCut I1012100 (4) = 4π2i
∫

CMaxCut

m2
t

(
m2

H − z2

)
dz2

sP1R
,

MaxCut I1011200 (4) = 4π2i
∫

CMaxCut

m2
t

(
2m2

W −m2
H− z2

)
dz2

sP1R
.

1

ε
MaxCut I1011100 (2) = −8π2i

∫

CMaxCut

m4
t dz2

P2R
, (16.31)

where the z2-dependent expressions in the denominator are P1, P2 and R. We have four master

integrals for this sector, hence we look for four master contours C1, . . . ,C4. The four master

contours have to be independent. We recall that on a Riemann sphere with 5 punctures we may

define four independent contours as small circles around four of the five punctures. The small

circle around the fifth puncture is equivalent to minus the sum of the first four contours.

We may also count a square root
√

(z−a)(z−b) as a deformed puncture: Consider for

simplicity the square root f =
√

x
√

4+ x with the usual branch cut of the square root along the

negative real axis. The function f is single valued for x ∈ C\[−4,0]. The essential point is

that f is single valued in a neighbourhood of the negative real axis for x < −4, the two sign

ambiguities cancel each other. Thus we may define
√

(z−a)(z−b) as a single-valued function
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∞

m2
W

z+2

z−2

b

a

C1

C2

C4

C3

Figure 16.6: The integration contours C1, . . . ,C4 on the Riemann sphere. Note that a small

counter clockwise circle around z−2 is equivalent to (−C1−·· ·−C4).

on C\[a,b], where [a,b] denotes a slit between a and b. The situation is shown in fig. 16.6

Let us now investigate which integrands give constant residues. We start with the square root√
(z−a)(z−b). Let C be an anticlockwise closed contour around the slit [a,b]. Then

∫

C

dz√
(z−a)(z−b)

= 2πi. (16.32)

For the combination of the square root
√

(z−a)(z−b) with a simple pole (z− c) in the denom-

inator one finds that the integrand

1

2πi

√
(c−a)(c−b)

(z− c)
√

(z−a)(z−b)
(16.33)

gives ±1, when integrated around a small circle at z = c or along a cycle around the slit [a,b].
Let us now turn to quadratic polynomials in the denominator. We consider the quadratic

polynomial

z2−2cz+ c2− r2 = (z− c− r)(z− c+ r) , (16.34)

which we may factorise at the expense of introducing the z-independent square root r. We con-

sider integrals of the form

∫

C

(az+b)dz

(z− c− r)(z− c+ r)
(16.35)

where C = n+C++ n−C− is a Z-linear combination of small anticlockwise circles around the

two poles z = c+ r (contour C+) and z = c− r (contour C−). For C = C++C− the square root r
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will not show up in the final result:
∫

C++C−

(az+b)dz

(z− c− r)(z− c+ r)
= 2πi a. (16.36)

However, on a punctured Riemann sphere this contour is equivalent to minus the sum of all

other contours and hence not independent of those. We need the integral around one pole (or the

difference between them). We have
∫

C+−C−

(az+b)dz

(z− c− r)(z− c+ r)
= 2πi

ac+b

r
. (16.37)

Dividing the integrand on the left-hand side by the right-hand side we obtain an integrand with

unit residue.

Let us now return to sector 29 of our example. We denote the two roots of P2 by

z±2 =
1

2

[
2m2

W −2m2
t + s±

√
−s
(
4m2

t − s
)]

. (16.38)

We will need the value of R at z2 = z±2 . We introduce

r4 =

√

−λ(x2,x3,1)−
x2

1

2
− x1 (2− x2− x3)+ r1

(
1+

x1

2
− x2− x3

)
,

r5 =

√

−λ(x2,x3,1)−
x2

1

2
− x1 (2− x2− x3)− r1

(
1+

x1

2
− x2− x3

)
, (16.39)

Then R(z+2 ) = m2
t r4 and R(z−2 ) = m2

t r5. With these preparations it is now clear from eq. (16.30)

and eq. (16.31) that a suitable set of master contours is

C1 : small anticlockwise circle around z2 = m2
W . (16.40)

C2 : small anticlockwise circle around z2 = ∞.

C3 : anticlockwise cycle around the slit [−m2
H−2mHmW ,−m2

H +2mHmW ].

C4 : small anticlockwise circle around z2 = z+2 .

The integration contours are sketched in fig. 16.6. Inspecting eq. (16.31) we define (note that

kinematic independent algebraic prefactors don’t matter here)

ϕ1 = iπ2ε3

(
m2

H− z2

)

P1R
dz2,

ϕ2 = iπ2ε3

(
2m2

W −m2
H − z2

)

P1R
dz2,

ϕ3 = π2ε3 m2
t r4

(
z2− z−2

)

P2R
dz2,

ϕ4 = π2ε3 m2
t r5

(
z2− z+2

)

P2R
dz2. (16.41)
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Note that the singularities of ϕi are all as in eq. (16.32) and eq. (16.33). In particular we have

P2 = (z2− z+2 )(z2− z−2 ). Hence the factor (z2− z−2 ) in the numerator in the definition of ϕ3

cancels the same factor of P2 in the denominator, leaving just a single factor (z2− z+2 ) in the

denominator.

We verify that 〈ϕi|C j〉 is a constant of weight zero and that the so defined (4×4)-matrix is

invertible. Indeed, we have

〈
ϕi|C j

〉
= 2iπ3ε3




1 1 −2 0

−1 1 0 0

0 0 −1 1

0 0 −1 0


 . (16.42)

As the matrix is invertible, ϕ1, . . . ,ϕ4 form a basis. We now look for Feynman integrals, whose

maximal cut on the sector 29 gives the differential forms of eq. (16.41) up to irrelevant kinematic

independent algebraic prefactors (that is to say we do not care about prefactors like 2, i or
√

3).

We do however care about kinematic dependent prefactors (like x1). Comparing eq. (16.41) with

eq. (16.31) we see that ϕ1 matches MaxCut I1012100(4) and ϕ2 matches MaxCut I1011200(4). The

last two cases (ϕ3 and ϕ4) are only slightly more complicated: We first see that the denominator

of ϕ3 and ϕ4 matches the one of MaxCut I1011100(2). A factor z2 in the numerator of ϕ3 or ϕ4

corresponds to an irreducible scalar product in the Feynman integral and translates to ν2 = −1.

We therefore deduce

J11 = ε3x1I1012100,

J12 = ε3x1I1011200,

J13 = ε2r4

[
D−I1(−1)11100 +

(
1+

1

2
x1− x2 +

1

2
r1

)
D−I1011100

]
,

J14 = ε2r5

[
D−I1(−1)11100 +

(
1+

1

2
x1− x2−

1

2
r1

)
D−I1011100

]
. (16.43)

Note that

z±2 = −m2
t

(
1+

1

2
x1− x2∓

1

2
r1

)
. (16.44)

As we work on the maximal cut, there might be corrections corresponding to sub-topologies.

Also in this case we are lucky and we verify (by inspecting A′) that no correction terms are

required.

It remains to treat the last sector. The sector 31 has again only one master integral, and we

first consider the maximal cut. The steps are similar to what we did for J7 and J8. From the

maximal cut we obtain the tentative guess

Jtentative
15 = ε2r3

[
(1− x2)

2− x1x2

]
D−I1111100. (16.45)

Again, there might be corrections due to sub-topologies (which are not detected at the maximal

cut). In this case there are actually corrections. We could use the methods of section 7.1 to
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systematically obtain them. However, with an educated guess we might reach our goal faster:

From the differential equation for Jtentative
15 we see that we need correction terms proportional to

the master integrals of sector 29. In eq. (16.45) we recognise (1−x2)
2−x1x2 as the constant part

of the polynomial P2:

P2|z2=0 = m4
t

[
(1− x2)

2− x1x2

]
. (16.46)

Terms proportional to z2 cancel the second propagator of I1111100 and correspond to Feynman

integrals from sector 29. Therefore we take for the educated guess the terms proportional to z2

and z2
2 of P2 into account:

J15 = ε2r3

{[
(1− x2)

2− x1x2

]
D−I1111100 +(2+ x1−2x2)D−I1011100 +D−I1(−1)11100

}
.

(16.47)

Plugging this ansatz into the differential equation we verify that this guess factorises ε out. We

obtain
(
d +A′

)
~J = 0 (16.48)

with

A′ = ε
25

∑
j=1

C jω j, ω j = d ln f j. (16.49)

The f j are algebraic functions of the kinematic variables. Some of them are polynomials in the

kinematic variables. These define the rational part of the alphabet:

f1 = x1, f2 = x1 +4, f3 = x2, (16.50)

f4 = x2−1, f5 = x3, f6 = (1− x2)
2− x1x2,

f7 = 4x2− x3, f8 =−λ(x2,x3,1) , f9 = [x1 (x2 + x3)−λ(x2,x3,1)]
2−4x1 (4+ x1)x2x3.

The algebraic part of the alphabet can be taken as

f10 = 2+ x1− r1, f11 = 2+ x1−2x2− r1, (16.51)

f12 =−λ(x2,x3,1)− x1−
(

1+
x1

2
− x2− x3

)
(x1− r1) , f13 = 1+ x2− x3− ir2,

f14 = 1− x2 + x3− ir2, f15 = x3− ir3,

f16 = 1− x2 + ir2 + ir3, f17 = 1+
x1

2
+ x2− x3−

r1

2
− ir4,

f18 = 1+
x1

2
− x2 + x3−

r1

2
− ir4, f19 = 1+

x1

2
+ x2− x3 +

r1

2
− ir5,

f20 = 1+
x1

2
− x2 + x3 +

r1

2
− ir5, f21 = (r1− ir4− ir5)(r1 + ir4 + ir5) ,

f22 = x1− r1−2ir2−2ir4, f23 = 1+
x1

2
− x2−

r1

2
+ ir3− ir4,

f24 = x1 + r1−2ir2−2ir5, f25 = 1+
x1

2
− x2 +

r1

2
+ ir3− ir5.
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Note that the choice of the ω j’s and of the f j’s is not unique. For example, we may always

transform the ω j’s by a GLNL(Q)-transformation.

Note further that all roots are included in our alphabet:

r2
1 = f1 f2, r2

2 = f8, r2
3 = f5 f7, r2

4 = f12, r2
5 =

f9

f12
. (16.52)

Rewriting the ω j’s as dlog-forms is not entirely straightforward. The exercises 123 (for the poly-

nomial case) and 125 (for the algebraic case) show how to do this.

Exercise 123: Rewrite the differential one-form

ω = − (1− x2)
2 dx1

x1

[
(1− x2)

2− x1x2

] − x1 (1+ x2)dx2

(1− x2)
[
(1− x2)

2− x1x2

] (16.53)

as a dlog-form.

The C j are 15× 15 matrices, whose entries are of the form Q+ iQ. They are usually sparse

matrices. As an example we have

C1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 1
2

1
2

0

0 0 0 0 0 0 −2 0 0 0 0 0 1
2

1
2

0

0 0 0 0 0 0 0 −2 0 0 0 0 0 0 1




. (16.54)

The matrix C1 accompanies the differential one-form ω1 = dx1/x1. From the lists in eq. (16.50)

and eq. (16.51) one may check that we have chosen the remaining ω j’s such that they do not have

a pole on x1 = 0. For the family of Feynman integrals under consideration we do not expect for

the master integrals J1-J15 any logarithmic singularities in the limit x1→ 0. This translates into

the requirement that there should be no trailing zeros with respect to the integration in x1. From

eq. (16.54) we see that trailing zeros in the x1-integration are absent if

0 = lim
x1→0

J9 = lim
x1→0

J10 = lim
x1→0

J11 = lim
x1→0

J12

= lim
x1→0

(J13 + J14−4J7) = lim
x1→0

(J15−2J8) . (16.55)
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With our choice of the ω j’s as in eq. (16.50) and eq. (16.51) only ω1 has a pole along x1 = 0.

We may always choose the remaining ω j’s such that they do not have a pole along x1 = 0. The

following exercise shows that this is not entirely trivial:

Exercise 124: Let

f̃1 = λ(x2,x3,1)+8x3− x1 (x2− x3)− r4r5,

f̃2 = λ(x2,x3,1)+8x2 + x1 (x2− x3)− r4r5,

f̃3 = λ(x2,x3,1)− x1 (x2− x3)+ r4r5,

f̃4 = λ(x2,x3,1)+ x1 (x2− x3)+ r4r5, (16.56)

Show that

ω̃ = d ln

(
f̃1 f̃2

f̃3 f̃4

)
(16.57)

has a pole along x1 = 0, while

ω = d ln

(
x2

1

f̃1 f̃2

f̃3 f̃4

)
(16.58)

does not.

16.4 Base transformation

The differential equation eq. (16.48) for the Feynman integrals involve dlog-forms with algebraic

arguments (square roots). A sufficient but not necessary criteria to express the result in terms of

multiple polylogarithms is the possibility to rationalise simultaneously all occurring square roots.

Unfortunately, we are not so lucky here: With the methods of section 7.2 we may rationalise

four out the five square roots r1-r5. One square root (either r4 or r5) remains unrationalised.

Nevertheless it is instructive to see how four of the square roots are rationalised.

The root r1 occurs frequently in Feynman integrals and we encountered this root already

before in sections. 6.4.3 and 6.4.4. The transformation (see eq. (6.249))

x1 =
(1− x′1)

2

x′1
(16.59)

rationalises the root r1:

r1 =
1− x′21

x′1
. (16.60)

We note that in terms of the new variable x′1 the roots r4 and r5 are given by

r4 =
√
−λ
(
x2,x3,x′1

)
, r5 =

√
−λ

(
x2,x3,

1

x′1

)
. (16.61)
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The roots r2 and r3 depend only on x2 and x3. With the help of the methods from section 7.2 one

finds that these roots are rationalised simultaneously for example by

x2 =

(
1+ x′22

)(
2− x′3

)

x′3
(
3−2x′3− x′22

) , x3 =
4
(
2− x′3

)

x′3
(
3−2x′3− x′22

) . (16.62)

We have

r2 =
2i
(
3−4x′3− x′22 + x′23

)

x′3
(
3−2x′3− x′22

) , r3 =
4x′2
(
2− x′3

)

x′3
(
3−2x′3− x′22

) . (16.63)

This leaves us with the roots r4 and r5. From eq. (16.61) it is clear that the argument of the square

root r4 or r5 is quadratic in x′1. It is therefore straightforward to rationalise in addition either r4

or r5 (but not both). For example, r4 is rationalised by

x′1 =

[
x′24 − (x2− x3)

2
]

2
(
x′4− x2− x3

) , r4 = i
λ(x2,x3,x′4)

2
(
x′4− x2− x3

) , (16.64)

while r5 is rationalised by

x′1 =
2
(
x′5− x2− x3

)
[
x′25 − (x2− x3)

2
] , r5 = i

λ
(
x2,x3,x′5

)

2
(
x′5− x2− x3

) . (16.65)

The variables (x′2,x
′
3,x
′
4) rationalise simultaneously the roots {r1,r2,r3,r4}, the variables (x′2,x

′
3,x
′
5)

rationalise simultaneously the roots {r1,r2,r3,r5}.
Rationalisations are also helpful to convert the ω j’s to dlog-forms, as the following exercise

shows:

Exercise 125: Rewrite the differential one-form

ω = − (2−2x2− x1x2)r1dx1

x1 (4+ x1)
[
(1− x2)

2− x1x2

] − r1dx2[
(1− x2)

2− x1x2

] (16.66)

where r1 =
√

x1(4+ x1) as a dlog-form.

16.5 Boundary values

In order to solve the differential equation we need boundary values for the master integrals ~J. A

convenient boundary point is the point

x1 = 0, x2 = 1, x3 = 1. (16.67)

At this point we have

r1 = 0, r2 = r3 = r4 = r5 =
√

3. (16.68)
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At the boundary point, the four tadpole integrals J1-J4 are all equal and given by

J1 = J2 = J3 = J4 = 1+ζ2ε2− 2

3
ζ3ε3 +

7

4
ζ4ε4 +O

(
ε5
)
. (16.69)

The master integrals J5 and J6 vanish at the boundary point (due to the prefactor r1):

J5 = J6 = 0. (16.70)

The master integrals J7 and J8 are equal at the boundary point. The value is given by the value

of the equal mass sunrise integral at zero external momentum squared (times a trivial prefactor).

Let us introduce the following linear combination of harmonic polylogarithms

Hm1...mk (x) = Hm1...mk (x)−Hm1...mk

(
x−1
)
. (16.71)

Then [352]

J7 = J8 =
3

2i

{
ε2H2

(
e

2πi
3

)
+ ε3

[
−2H2,1

(
e

2πi
3

)
−H3

(
e

2πi
3

)
− ln(3)H2

(
e

2πi
3

)]

+ε4

[
4H2,1,1

(
e

2πi
3

)
−2H3,1

(
e

2πi
3

)
+H4

(
e

2πi
3

)
+

2

9
π2H2

(
e

2πi
3

)

+ ln(3)
[
2H2,1

(
e

2πi
3

)
+H3

(
e

2πi
3

)]
+

1

2
ln2 (3)H2

(
e

2πi
3

)]}

+O
(

ε5
)
. (16.72)

The master integrals J9 and J10 vanish again at the boundary point and so do the master integrals

J11 and J12:

J9 = J10 = 0,

J11 = J12 = 0. (16.73)

From the definition of the master integrals J13, J14 and J15 it follows that they are equal at the

boundary point:

J13 = J14 = J15 = ε2
√

3 D−I1(−1)11100. (16.74)

The integral I1(−1)11100 reduces at the boundary point to the equal mass sunrise integral at zero

external momentum squared and we find

J13 = J14 = J15 = 2J7, (16.75)

with J7 given by eq. (16.72).

Note that boundary information on the master integrals J9−J15 can already be extracted from

the matrix C1 in eq. (16.54). In fact, this matrix does not only give information on the boundary

point (x1,x2,x3) = (0,1,1), but on the complete hyperplane x1 = 0. Assuming that the master

integrals do not have any logarithmic singularities at x1 = 0 and using the fact that J13 and J14 are

equal for x1 = 0 (this follows from the definition of J13 and J14), it follows that in the hyperplane

x1 = 0 we have (compare with eq. (16.55))

J9 = J10 = J11 = J12 = 0, J13 = J14 = 2J7, J15 = 2J8. (16.76)
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16.6 Integrating the differential equation

With the differential equation and the boundary values we have everything at hand to solve for the

master integrals ~J in terms of iterated integrals. Let γ : [0,1]→ C3 be a path from the boundary

point γ(0) = (0,1,1) to the point of interest γ(1) = (x1,x2,x3). We integrate the differential

equation order by order in ε as described in section 6.3.3. Thus we may express any master

integral as a linear combination of iterated integrals along the path γ. For example

J1 = 1− Iγ (ω3)ε+
[
Iγ (ω3,ω3)+ζ2

]
ε2 +O

(
ε3
)
. (16.77)

It remains to express these iterated integrals in terms of more commonly used functions.

For the master integrals J1-J10 this is straightforward: The roots r4 and r5 do not enter these

master integrals. The master integrals J1-J10 depend only on the roots r1, r2 and r3. These roots

can be rationalised simultaneously and we may express the master integrals J1-J10 to any order

in ε in terms of multiple polylogarithms. A trivial example is

J1 = 1− ln(x2)ε+

[
1

2
ln2 (x2)+ζ2

]
ε2 +O

(
ε3
)
. (16.78)

The situation is more complicated for the master integrals J11-J15. These involve all five roots

r1 =
√

x1 (4+ x1), r2 =
√
−λ(x2,x3,1), r3 =

√
−λ(x2,x3,x2),

r4 =
√
−λ
(
x2,x3,x′1

)
, r5 =

√
−λ

(
x2,x3,

1

x′1

)
, x′1 =

1

2
(2+ x1− r1) . (16.79)

For x1 = 0 (corresponding to x′1 = 1) we have

r1 = 0, r4 = r5 = r2. (16.80)

This means that on the hyperplane x1 = 0 we only deal with two square roots r2 and r3, which

can be rationalised simultaneously. Thus for the special kinematic configuration x1 = 0 we may

express all master integrals in terms of multiple polylogarithms. For a generic kinematic con-

figuration with x1 6= 0 we are left with an (iterated) integration along the x1-direction. From

section 16.4 we know that we may rationalise four of the five square roots. We may treat the

variable x1 for the variable x′4. In the variables (x′2,x
′
3,x
′
4) only the square root r5 remains unra-

tionalised. In these variables r5 is the square root of a quartic polynomial in x′4. Thus we are in

the situation that we have an integration in a single variable (x′4) involving a single square root of

a quartic polynomial.

With the methods of section 13.4 we may transform these iterated integrals to elliptic multiple

polylogarithms. This does not exclude the possibility that the (first few terms of the ε-expansion

of the) master integrals can be expressed in terms of simpler functions (i.e. multiple polyloga-

rithms).

We may search for a representation in terms of multiple polylogarithms with the help of the

bootstrap approach described in section 11.5.
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Exercise 126: Let

g =
2+ x1− r1

2+ x1 + r1

. (16.81)

Express g and (1−g) as a power product in the letters of the alphabet defined by eq. (16.50), eq. (16.51)
and the constant f0 = 2.

Exercise 127: The master integral J15 starts at order O(ε2). The weight two term of J15 is given in
terms of iterated integrals by

J(2)15 = 2iIγ (2ω15−ω3−ω5,ω5−ω3;1)+2J(2)7 (0,1,1), (16.82)

where J(2)7 (0,1,1) denotes the boundary value of eq. (16.72):

J(2)7 (0,1,1) =
3

2i
H2

(
e

2πi
3

)
=

3

2i

[
Li2

(
e

2πi
3

)
−Li2

(
e−

2πi
3

)]
. (16.83)

Express J(2)15 in terms of multiple polylogarithms.

16.7 Final result

Let’s now return to our original problem: The scalar Feynman integral corresponding to the

penguin diagram in fig. 16.1 is I1211100. As a pedagogical example we work out the first non-

vanishing term in the ε-expansion of this Feynman integral. This illustrates the general proce-

dure. (Of course, if we are only interested in this particular coefficient, there are simpler ways to

obtain the result.)

Using integration-by-parts identities we may express the integral I1211100 as a linear combi-

nation of the master integrals~I. By using

~I = U−1~J (16.84)

we express I1211100 as a linear combination of the master integrals ~J. The integral I1211100(4−2ε)
has a Laurent expansion in the dimensional regularisation parameter starting with ε−1:

I1211100 (4−2ε,x1,x2,x3) =
∞

∑
j=−1

ε j I( j)
1211100 (x1,x2,x3) . (16.85)

Let’s focus on the first non-vanishing coefficient I(−1)
1211100. For the master integrals we have a

similar expansion in ε

Ji (4−2ε,x1,x2,x3) =
∞

∑
j=0

ε j J( j)
i (x1,x2,x3) . (16.86)
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In terms of the master integrals ~J we obtain for I(−1)
1211100

I(−1)
1211100 =

1[
(1− x2)

2− x1x2

]
{
(1+ x2)(2x2− x3)

2x2 (1− x2)

(
J(1)2 − J(1)1

)
+

(1+ x2)x3

2x2 (1− x2)

(
J(1)4 − J(1)3

)

+
(2x2− x3)r1

4x1x2
J(1)5 +

x3r1

4x1x2
J(1)6

}
+

(x2− x3)

2x1x2
2

(
J(2)9 − J(2)10

)

+
(3x2− x3)r3

2x1x2
2 (4x2− x3)

(
J(2)15 −2J(2)8

)
(16.87)

We then substitute the results for ~J and obtain

I(−1)
1211100 =

1[
(1− x2)

2− x1x2

]
{√

4+ x1

x1
Iγ (ω10)−

1+ x2

1− x2
Iγ (ω3)

}
. (16.88)

With

ω3 = d ln(x2) , ω10 = d ln(2+ x1− r1) =
1

2
d ln

(
2+ x1− r1

2+ x1 + r1

)
(16.89)

we finally obtain

I1211100 (4−2ε,x1,x2,x3) = (16.90)

1

ε

1[
(1− x2)

2− x1x2

]
{

1

2

√
4+ x1

x1
ln

(
2+ x1− r1

2+ x1 + r1

)
− 1+ x2

1− x2
ln(x2)

}
+O

(
ε0
)
.

Note that I(−1)
1211100 is finite in the (x1 → 0)-limit and in the (x2 → 1)-limit. Note further that

eq. (16.90) does not contain any weight two terms. Although we might expect from eq. (16.87)

terms of weight two, they cancel out in this order. Finally note that I(−1)
1211100 is independent of

x3. The 1/ε-term I(−1)
1211100 originates from the ultraviolet divergence of the sub-graph formed by

propagators 4 and 5. The ultraviolet divergence is independent of the masses propagating in the

sub-graph. As x3 (or m2
H) enters only this sub-graph, the result for I(−1)

1211100 is independent of

x3. Essentially, I(−1)
1211100 is given by the pole term of the sub-graph times a one-loop three-point

function obtained by contracting the sub-graph to a point.

Let’s plug in some numbers: With

(x1,x2,x3) =

(
52

1732
,

802

1732
,
1252

1732

)
(16.91)

we obtain

I(−1)
1211100

(
25

29929
,

6400

29929
,
15625

29929

)
≈ 0.61751141179432938382213384. (16.92)

It is always recommended to perform an independent cross check. Sector decomposition offers
the possibility to check a Feynman integral at a specific kinematic point. The following C++
code uses the program sector_decomposition [238]:
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#include <iostream>

#include <stdexcept>

#include <vector>

#include <ginac/ginac.h>

#include "sector_decomposition/sector_decomposition.h"

int main()

{

using namespace sector_decomposition;

using namespace GiNaC;

symbol eps("eps");

int n = 5;

int loops = 2;

int order = -1;

int D_int_over_2 = 2;

std::vector<ex> nu = {1,2,1,1,1};

ex x1 = numeric(25,29929);

ex x2 = numeric(6400,29929);

ex x3 = numeric(15625,29929);

// --------------------------------------------------------------

int verbose_level = 0;

CHOICE_STRATEGY = STRATEGY_C;

monte_carlo_parameters mc_parameters = monte_carlo_parameters( 5, 15, 100000, 1000000 );

// --------------------------------------------------------------

symbol a1("a1"), a2("a2"), a3("a3"), a4("a4"), a5("a5");

std::vector<ex> parameters = { a1, a2, a3, a4, a5 };

ex U = a1*a4+a1*a5+a4*a3+a5*a3+a2*a4+a5*a4+a5*a2;

ex F = a1*a3*(a4+a5)*x1 + U*( (a2+a4)*x2 + a5*x3 + (a1+a3) );

std::vector<ex> poly_list = {U,F};

std::vector<exponent> nu_minus_1(n);

for (int i1=0; i1<n; i1++) nu_minus_1[i1] = exponent(nu[i1]-1,0);

std::vector<exponent> c(poly_list.size());

c[0] = exponent( n-(loops+1)*D_int_over_2, loops+1 );

c[1] = exponent( -n+loops*D_int_over_2, -loops );

for (int k=0; k<n; k++)

{

c[0].sum_up(nu_minus_1[k]);
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c[1].subtract_off(nu_minus_1[k]);

}

integrand my_integrand = integrand(nu_minus_1, poly_list, c);

// --------------------------------------------------------------

integration_data global_data(parameters, eps, order);

monte_carlo_result res =

do_sector_decomposition(global_data, my_integrand, mc_parameters, verbose_level);

std::cout << "Order " << pow(eps,order) << ": " << res.get_mean()

<< " +/- " << res.get_error() << std::endl;

return 0;

}

Running this program will print out

Order eps^(-1): 0.617517 +/- 9.57571e-06

in agreement with eq. (16.92).
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Appendix A

Spinors

In this appendix we summarise properties of spinors in four space-time dimensions. Although

we use dimensional regularisation throughout this book, four-dimensional formulae can be used

for the external kinematic and within some variants of dimensional regularisation like the FDH-

scheme. Note that some formulae (like the Schouten identity) are specific to four space-time

dimensions.

A.1 The Dirac equation

The Lagrange density for a Dirac field in four space-time dimensions depends on four-component

spinors ψα(x) (α = 1,2,3,4) and ψ̄α(x) =
(
ψ†(x)γ0

)
α

:

L(ψ, ψ̄,∂µψ) = iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x) (A.1)

Here, the (4×4)-Dirac matrices satisfy the anti-commutation rules

{γµ,γν}= 2gµν1, {γµ,γ5}= 0, γ5 = iγ0γ1γ2γ3 =
i

24
εµνρσγµγνγργσ. (A.2)

The Dirac equations read

(
iγµ∂µ−m

)
ψ(x) = 0, ψ̄(x)

(
iγµ
←
∂ µ +m

)
= 0. (A.3)

It is useful to have an explicit representation of the Dirac matrices. There are several widely used

representations. A particular useful one is the Weyl representation of the Dirac matrices:

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
(A.4)

Here, the 4-dimensional σµ-matrices are defined by

σ
µ
AḂ

= (1,−~σ) , σ̄µȦB = (1,~σ) . (A.5)

565
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and~σ = (σx,σy,σz) are the standard Pauli matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (A.6)

The σµ-matrices satisfy the Fierz identities

σ
µ
AȦ

σ̄ḂB
µ = 2δ B

A δ Ḃ
Ȧ , σ

µ
AȦ

σµBḂ = 2εABεȦḂ, σ̄µȦAσ̄ḂB
µ = 2εȦḂεAB. (A.7)

Let us now look for plane wave solutions of the Dirac equation. We make the ansatz

ψ(x) =

{
u(p)e−ipx, p0 > 0, p2 = m2, incoming fermion,
v(p)e+ipx, p0 > 0, p2 = m2, outgoing anti-fermion.

(A.8)

u(p) describes incoming particles, v(p) describes outgoing anti-particles. Similar,

ψ̄(x) =

{
ū(p)e+ipx, p0 > 0, p2 = m2, outgoing fermion,
v̄(p)e−ipx, p0 > 0, p2 = m2, incoming anti-fermion,

(A.9)

where

ū(p) = u†(p)γ0, v̄(p) = v†(p)γ0. (A.10)

ū(p) describes outgoing particles, v̄(p) describes incoming anti-particles. Then

(p/−m)u(p) = 0, (p/+m)v(p) = 0,

ū(p)(p/−m) = 0, v̄(p)(p/+m) = 0, (A.11)

There are two solutions for u(p) (and the other spinors ū(p), v(p), v̄(p)). We will label the

various solutions with λ. The degeneracy is related to the additional spin degree of freedom. We

require that the two solutions satisfy the orthogonality relations

ū(p, λ̄)u(p,λ) = 2mδλ̄λ,

v̄(p, λ̄)v(p,λ) = −2mδλ̄λ,

ū(p, λ̄)v(p,λ) = v̄(λ̄)u(λ) = 0, (A.12)

and the completeness relations

∑
λ

u(p,λ)ū(p,λ) = p/+m, ∑
λ

v(p,λ)v̄(p,λ) = p/−m. (A.13)

A.2 Massless spinors in the Weyl representation

Let us now try to find explicit solutions for the spinors u(p), v(p), ū(p) and v̄(p). The simplest

case is the one of a massless fermion:

m = 0. (A.14)
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In this case the Dirac equation for the u- and the v-spinors are identical and it is sufficient to

consider

p/u(p) = 0, ū(p)p/= 0. (A.15)

In the Weyl representation p/ is given by

p/ =

(
0 pµσµ

pµσ̄µ 0

)
, (A.16)

therefore the 4×4-matrix equation for u(p) (or ū(p)) decouples into two 2×2-matrix equations.

We introduce the following notation: Four-component Dirac spinors are constructed out of two

Weyl spinors as follows:

u(p) =

(
|p+〉
|p−〉

)
=

(
|p〉
|p]

)
=

(
pA

pḂ

)
=

(
u+(p)
u−(p)

)
. (A.17)

Bra-spinors are given by

u(p) = ( 〈p−| , 〈p+| ) = ( 〈p| , [p| ) =
(

pA, pḂ

)
= ( ū−(p), ū+(p) ) . (A.18)

In the literature there exists various notations for Weyl spinors. Eq. (A.17) and eq. (A.18) show

four of them and the way how to translate from one notation to another notation. By a slight

abuse of notation we will in the following not distinguish between a two-component Weyl spinor

and a Dirac spinor, where either the upper two components or the lower two components are

zero. If we define the chiral projection operators

P+ =
1

2
(1+ γ5) =

(
1 0

0 0

)
, P− =

1

2
(1− γ5) =

(
0 0

0 1

)
, (A.19)

then (with the slight abuse of notation mentioned above)

u±(p) = P±u(p), ū±(p) = ū(p)P∓. (A.20)

The two solutions of the Dirac equation

p/u(p,λ) = 0 (A.21)

are then

u(p,+) = u+(p), u(p,−) = u−(p). (A.22)

We now have to solve

pµσ̄µ |p+〉= 0, pµσµ |p−〉 = 0,

〈p+| pµσ̄µ = 0, 〈p−| pµσµ = 0. (A.23)
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It it convenient to express the four-vector pµ = (p0, p1, p2, p3) in terms of light-cone coordinates:

p+ =
1√
2

(
p0 + p3

)
, p− =

1√
2

(
p0− p3

)
, p⊥ =

1√
2

(
p1 + ip2

)
, p⊥∗ =

1√
2

(
p1− ip2

)
.

Note that p⊥∗ does not involve a complex conjugation of p1 or p2. For null-vectors one has

p⊥∗p⊥ = p+p−. (A.24)

Then the equation for the ket-spinors becomes

(
p− −p⊥∗

−p⊥ p+

)
|p+〉 = 0,

(
p+ p⊥∗

p⊥ p−

)
|p−〉= 0, (A.25)

and similar equations can be written down for the bra-spinors. This is a problem of linear algebra.

Solutions for ket-spinors are

|p+〉= pA = c1

(
p⊥∗

p−

)
, |p−〉 = pȦ = c2

(
p−

−p⊥

)
, (A.26)

with some yet unspecified multiplicative constants c1 and c2. Solutions for bra-spinors are

〈p+| = pȦ = c3

(
p⊥, p−

)
, 〈p−|= pA = c4

(
p−,−p⊥∗

)
, (A.27)

with some further constants c3 and c4. Let us now introduce the 2-dimensional antisymmetric

tensor:

εAB =

(
0 1

−1 0

)
, εBA =−εAB (A.28)

Furthermore we set

εAB = εȦḂ = εAB = εȦḂ. (A.29)

Note that these definitions imply

εACεBC = δA
B, εȦĊεḂĊ = δȦ

Ḃ. (A.30)

We would like to have the following relations for raising and lowering a spinor index A or Ḃ:

pA = εABpB, pȦ = εȦḂ pḂ,

pḂ = pȦεȦḂ, pB = pAεAB. (A.31)

Note that raising an index is done by left-multiplication, whereas lowering is performed by right-

multiplication. Postulating these relations implies

c1 = c4, c2 = c3. (A.32)
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In addition we normalise the spinors according to

〈p±|γµ|p±〉= 2pµ. (A.33)

This implies

c1c3 =

√
2

p−
, c2c4 =

√
2

p−
. (A.34)

Eq. (A.31) and eq. (A.33) determine the spinors only up to a scaling

pA→ λpA, pȦ→
1

λ
pȦ. (A.35)

This scaling freedom is referred to as little group scaling. Keeping the scaling freedom, we

define the spinors as

|p+〉= pA =
λp2

1
4

√
p−

(
p⊥∗

p−

)
, |p−〉= pȦ =

2
1
4

λp
√

p−

(
p−

−p⊥

)
,

〈p+|= pȦ =
2

1
4

λp
√

p−

(
p⊥, p−

)
, 〈p−|= pA =

λp2
1
4

√
p−

(
p−,−p⊥∗

)
. (A.36)

Popular choices for λp are

λp = 1 : symmetric,

λp = 2
1
4

√
p− : pA linear in pµ,

λp =
1

2
1
4

√
p−

: pȦ linear in pµ. (A.37)

Note that all formulae in this sub-section (A.2) work not only for real momenta pµ but also for

complex momenta pµ. This will be useful later on, where we encounter situations with complex

momenta. However there is one exception: The relations p†
A = pȦ and pA† = pȦ (or equivalently

ū(p) = u(p)†γ0) encountered in previous sub-sections are valid only for real momenta pµ =
(p0, p1, p2, p3). If on the other hand the components (p0, p1, p2, p3) are complex, these relations

will in general not hold. In the latter case pA and pȦ are considered to be independent quantities.

The reason, why the relations p†
A = pȦ and pA† = pȦ do not hold in the complex case lies in the

definition of p⊥∗: We defined p⊥∗ as p⊥∗ = (p1− ip2)/
√

2, and not as (p1− i(p2)∗)/
√

2. With

the former definition p⊥∗ is a holomorphic function of p1 and p2. There are applications where

holomorphicity is more important than nice properties under hermitian conjugation.
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A.3 Spinor products

Let us now make the symmetric choice λp = 1. Spinor products are defined by

〈pq〉 = 〈p−|q+〉= pAqA =

√
2√

p−
√

q−

(
p−q⊥∗−q−p⊥∗

)
,

[qp] = 〈q+ |p−〉= qȦpȦ =

√
2√

p−
√

q−

(
p−q⊥−q−p⊥

)
, (A.38)

where the last expression in each line used the choice λp = λq = 1. We have

〈pq〉 [qp] = 2pq. (A.39)

If pµ and qµ are real we have

[qp] = 〈pq〉∗ sign(p0) sign(q0). (A.40)

The spinor products are anti-symmetric

〈qp〉=−〈pq〉, [pq] =−[qp]. (A.41)

From the Schouten identity for the 2-dimensional antisymmetric tensor

εABεCD+ εBCεAD+ εCAεBD = 0. (A.42)

one derives

〈p1p2〉〈p3p4〉+ 〈p2p3〉〈p1p4〉+ 〈p3p1〉〈p2p4〉 = 0,

[p1 p2] [p3p4]+ [p2p3] [p1 p4]+ [p3 p1] [p2 p4] = 0. (A.43)

The Fierz identity reads

〈p1 + |γµ|p2+〉〈p3−|γµ|p4−〉 = 2[p1p4]〈p3p2〉. (A.44)

Note that with our slight abuse of notation we identify a two-component Weyl spinor with a

Dirac spinor, where the other two components are zero. Therefore

〈p1 + |γµ|p2+〉 = 〈p1 + |σ̄µ|p2+〉, 〈p3−|γµ|p4−〉 = 〈p3−|σµ|p4−〉. (A.45)

We further have the reflection identities

〈p±|γµ1...γµ2n+1|q±〉 = 〈q∓|γµ2n+1...γµ1|p∓〉,
〈p±|γµ1...γµ2n|q∓〉 = −〈q±|γµ2n...γµ1|p∓〉. (A.46)
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A.4 Massive spinors

As in the massless case, a massive spinor satisfying the Dirac equation has a two-fold degeneracy.

We will label the two different eigenvectors by “+” and “-”. Let p be a massive four-vector with

p2 = m2, and let q be an arbitrary light-like four-vector. With the help of q we can construct a

light-like vector p♭ associated to p:

p♭ = p− p2

2p ·qq. (A.47)

We define [429–431]

u(p,+) =
1

〈p♭+ |q−〉 (p/+m) |q−〉, v(p,−) = 1

〈p♭+ |q−〉 (p/−m) |q−〉,

u(p,−) = 1

〈p♭−|q+〉 (p/+m) |q+〉, v(p,+) =
1

〈p♭−|q+〉 (p/−m) |q+〉. (A.48)

For the conjugate spinors we have

ū(p,+) =
1

〈q−|p♭+〉〈q−|(p/+m) , v̄(p,−) = 1

〈q−|p♭+〉〈q−|(p/−m) ,

ū(p,−) = 1

〈q+ |p♭−〉〈q+ |(p/+m) , v̄(p,+) =
1

〈q+ |p♭−〉〈q+ |(p/−m) . (A.49)

These spinors satisfy the Dirac equations of eq. (A.11), the orthogonality relations of eq. (A.12)

and the completeness relations of eq. (A.13). We further have

ū(p, λ̄)γµu(p,λ) = 2pµδλ̄λ, v̄(p, λ̄)γµv(p,λ) = 2pµδλ̄λ. (A.50)

In the massless limit the definition reduces to

u(p,+) = v(p,−) = |p+〉, ū(p,+) = v̄(p,−) = 〈p+ |,
u(p,−) = v(p,+) = |p−〉, ū(p,−) = v̄(p,+) = 〈p−|, (A.51)

and the spinors are independent of the reference spinors |q+〉 and 〈q+ |.



572 APPENDIX A. SPINORS



Appendix B

Scalar one-loop integrals

In this appendix we list the basic scalar integrals for massless theories in D = 4−2ε dimensions

as an expansion in the dimensional regularisation parameter ε up to and including the O(ε0) term.

The basic scalar integrals consist of the scalar two-point, the scalar three-point and the scalar

four-point functions. The scalar one-point function vanishes in dimensional regularisation. Since

we restrict ourselves to massless quantum field theories, all internal propagators are massless

and we only have to distinguish the momentum configurations of the external momenta. We

call an external momentum p “massive” if p2 6= 0. All scalar integrals have been known for a

long time in the literature. Classical papers on scalar integrals are [95, 432]. Scalar integrals

within dimensional regularization are treated in [89, 433]. Useful information on the three-mass

triangle can be found in [434–436]. The scalar boxes have been recalculated in [437, 438]. The

compilation given here is based on [101].

The basic scalar integrals with internal masses constitute a longer list. These integrals can be

found in the literature [439, 440].

B.1 Massless scalar one-loop integrals

The two-point function

The scalar two-point function is given by

I2(p2
1,µ

2) =
1

ε
+2− ln

(−p2
1

µ2

)
+O(ε). (B.1)

Three-point functions

For the three-point functions we have three different cases: One external mass, two external

masses and three external masses. The one-mass scalar triangle with p2
1 6= 0, p2

2 = p2
3 = 0 is

given by

I1m
3 (p2

1,µ
2) =

1

ε2 p2
1

− 1

εp2
1

ln

(−p2
1

µ2

)
+

1

2p2
1

ln2

(−p2
1

µ2

)
− 1

2p2
1

ζ2 +O(ε). (B.2)
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The two-mass scalar triangle with p2
1 6= 0, p2

2 6= 0 and p2
3 = 0 is given by

I2m
3 (p2

1, p2
2,µ

2) =
1

ε

1(
p2

1− p2
2

)
[
− ln

(−p2
1

µ2

)
+ ln

(−p2
2

µ2

)]

+
1

2(p2
1− p2

2)

[
ln2

(−p2
1

µ2

)
− ln2

(−p2
2

µ2

)]
+O(ε). (B.3)

The three-mass scalar triangle with p2
1 6= 0, p2

2 6= 0 and p2
3 6= 0: This integral is finite and we have

I3m
3

(
p2

1, p2
2, p2

3,µ
2
)

= −
1∫

0

d3α
δ(1−α1−α2−α3)

−α1α2 p2
1−α2α3p2

2−α3α1p2
3

+O(ε). (B.4)

With the notation

δ1 = p2
1− p2

2− p2
3, δ2 = p2

2− p2
3− p2

1, δ3 = p2
3− p2

1− p2
2,

∆3 =
(

p2
1

)2
+
(

p2
2

)2
+
(

p2
3

)2−2p2
1p2

2−2p2
2 p2

3−2p2
3 p2

1, (B.5)

the three-mass triangle I3m
3 is expressed in the region p2

1, p2
2, p2

3 < 0 and ∆3 < 0 by

I3m
3 =− 2√

−∆3

×
[

Cl2

(
2arctan

(√−∆3

δ1

))
+Cl2

(
2arctan

(√−∆3

δ2

))
+Cl2

(
2arctan

(√−∆3

δ3

))]

+O(ε). (B.6)

The Clausen function Cl2(θ) is defined by

Cl2(θ) =
1

2i

[
Lin

(
eiθ
)
−Lin

(
e−iθ

)]
(B.7)

and discussed in more detail in chapter 8.

In the region p2
1, p2

2, p2
3 < 0 and ∆3 > 0 as well as in the region p2

1, p2
3 < 0, p2

2 > 0 (for which

∆3 is always positive) the integral I3m
3 is given by

I3m
3 =

1√
∆3

Re

[
2(Li2(−ρx)+Li2(−ρy))+ ln(ρx) ln(ρy)+ ln

(y
x

)
ln

(
1+ρx
1+ρy

)
+

π2

3

]

+
iπθ(p2

2)√
∆3

ln

((
δ1 +
√

∆3

)(
δ3 +
√

∆3

)
(
δ1−
√

∆3

)(
δ3−
√

∆3

)
)
+O(ε), (B.8)

where

x =
p2

1

p2
3

, y =
p2

2

p2
3

, ρ =
2p2

3

δ3 +
√

∆3

. (B.9)

The step function θ(x) is defined as θ(x) = 1 for x > 0 and θ(x) = 0 otherwise.
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Four-point functions

For the four-point function we use the invariants

s = (p1 + p2)
2 , t = (p2 + p3)

2
(B.10)

together with the external masses m2
i = p2

i .

The zero-mass box (m2
1 = m2

2 = m2
3 = m2

4 = 0):

I0m
4

(
s, t,µ2

)
=

4

ε2st
− 2

εst

[
ln

(−s

µ2

)
+ ln

(−t

µ2

)]

+
1

st

[
ln2

(−s

µ2

)
+ ln2

(−t

µ2

)
− ln2

(−s

−t

)
−8ζ2

]
+O(ε). (B.11)

The one-mass box (m2
1 = m2

2 = m2
3 = 0):

I1m
4

(
s, t,m2

4,µ
2
)
=

2

ε2st
− 2

εst

[
ln

(−s

µ2

)
+ ln

(−t

µ2

)
− ln

(−m2
4

µ2

)]
+

1

st

[
ln2

(−s

µ2

)

+ ln2

(−t

µ2

)
− ln2

(−m2
4

µ2

)
− ln2

(−s

−t

)
−2 Li2

(
1− (−m2

4)

(−s)

)
−2 Li2

(
1− (−m2

4)

(−t)

)

−3ζ2]+O(ε). (B.12)

The easy two-mass box (m2
1 = m2

3 = 0):

I2me
4

(
s, t,m2

2,m
2
4,µ

2
)
=

− 2

ε
(
st−m2

2m2
4

)
[

ln

(−s

µ2

)
+ ln

(−t

µ2

)
− ln

(−m2
2

µ2

)
− ln

(−m2
4

µ2

)]

+
1

st−m2
2m2

4

[
ln2

(−s

µ2

)
+ ln2

(−t

µ2

)
− ln2

(−m2
2

µ2

)
− ln2

(−m2
4

µ2

)
− ln2

(−s

−t

)

−2 Li2

(
1− (−m2

2)

(−s)

)
−2 Li2

(
1− (−m2

2)

(−t)

)
−2 Li2

(
1− (−m2

4)

(−s)

)

−2 Li2

(
1− (−m2

4)

(−t)

)
+2 Li2

(
1− (−m2

2)

(−s)

(−m2
4)

(−t)

)]
+O(ε). (B.13)

The hard two-mass box (m2
1 = m2

2 = 0):

I2mh
4

(
s, t,m2

3,m
2
4,µ

2
)
=

1

ε2st
− 1

εst

[
ln

(−s

µ2

)
+2ln

(−t

µ2

)
− ln

(−m2
3

µ2

)
− ln

(−m2
4

µ2

)]

+
1

st

[
3

2
ln2

(−s
µ2

)
+ ln2

(−t
µ2

)
− 1

2
ln2

(−m2
3

µ2

)
− 1

2
ln2

(−m2
4

µ2

)
− ln2

(−s
−t

)

− ln

(−s

µ2

)
ln

(−m2
3

µ2

)
− ln

(−s

µ2

)
ln

(−m2
4

µ2

)
+ ln

(−m2
3

µ2

)
ln

(−m2
4

µ2

)

−2 Li2

(
1− (−m2

3)

(−t)

)
−2 Li2

(
1− (−m2

4)

(−t)

)
− 1

2
ζ2

]
+O(ε). (B.14)
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The three-mass box (m2
1 = 0):

I3m
4

(
s, t,m2

2,m
2
3,m

2
4,µ

2
)
= (B.15)

− 1

ε
(
st−m2

2m2
4

)
[

ln

(−s

µ2

)
+ ln

(−t

µ2

)
− ln

(−m2
2

µ2

)
− ln

(−m2
4

µ2

)]

+
1

st−m2
2m2

4

[
3

2
ln2

(−s

µ2

)
+

3

2
ln2

(−t

µ2

)
− 1

2
ln2

(−m2
2

µ2

)
− 1

2
ln2

(−m2
4

µ2

)
− ln2

(−s

−t

)

− ln

(−s

µ2

)
ln

(−m2
3

µ2

)
− ln

(−s

µ2

)
ln

(−m2
4

µ2

)
+ ln

(−m2
3

µ2

)
ln

(−m2
4

µ2

)

− ln

(−t
µ2

)
ln

(−m2
2

µ2

)
− ln

(−t
µ2

)
ln

(−m2
3

µ2

)
+ ln

(−m2
2

µ2

)
ln

(−m2
3

µ2

)

−2 Li2

(
1− (−m2

2)

(−s)

)
−2 Li2

(
1− (−m2

4)

(−t)

)
+2 Li2

(
1− (−m2

2)

(−s)

(−m2
4)

(−t)

)]
+O(ε).

The four-mass box:

I4m
4

(
s, t,m2

1,m
2
2,m

2
3,m

2
4,µ

2
)

= I3m
3 (st,m2

1m2
3,m

2
2m2

4,µ
2)+K(s, t,m2

1,m
2
3,m

2
2,m

2
4), (B.16)

where

K(s1, t1,s2, t2,s3, t3) =−
2πi

λ

3

∑
i=1

θ(−si)θ(−ti)

×
[

ln

(
∑
j 6=i

s jt j− (siti−λ)(1+ iδ)

)
− ln

(
∑
j 6=i

s jt j− (siti +λ)(1+ iδ)

)]
, (B.17)

and

λ =

√
(s1t1)

2 +(s2t2)
2 +(s3t3)

2−2s1t1s2t2−2s2t2s3t3−2s3t3s1t1. (B.18)

δ > 0 is an infinitesimal quantity.

B.2 Analytic continuation

In one-loop integrals the functions

ln

(−s

−t

)
, Li2

(
1− (−s)

(−t)

)
(B.19)

and generalizations thereof occur. The analytic continuation is defined by giving all quantities a

small imaginary part, e.g.

s→ s+ iδ, (B.20)
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with δ > 0 being an infinitesimal quantity. Explicitly, the imaginary parts of the logarithm and

the dilogarithm are given by

ln

(−s

−t

)
= ln

(∣∣∣s
t

∣∣∣
)
− iπ [θ(s)−θ(t)] ,

Li2

(
1− (−s)

(−t)

)
= ReLi2

(
1− s

t

)
− iθ

(
−s

t

)
ln
(

1− s

t

)
Imln

(−s

−t

)
. (B.21)

This generalizes as follows:

ln

(
(−s1)

(−t1)

(−s2)

(−t2)

)
= ln

(∣∣∣∣
s1s2

t1t2

∣∣∣∣
)
− iπ [θ(s1)+θ(s2)−θ(t1)−θ(t2)] ,

Li2

(
1− (−s1)

(−t1)
(−s2)

(−t2)

)
= ReLi2

(
1− s1s2

t1t2

)
− i ln

(
1− (−s1)

(−t1)
(−s2)

(−t2)

)
Imln

(
(−s1)

(−t1)
(−s2)

(−t2)

)
,

where

ln

(
1− (−s1)

(−t1)

(−s2)

(−t2)

)
= ln

∣∣∣∣1−
s1s2

t1t2

∣∣∣∣−
1

2
iπ [θ(s1)+θ(s2)−θ(t1)−θ(t2)]θ

(
s1s2

t1t2
−1

)
.
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Appendix C

Transcendental functions

In this appendix we summarise definitions and properties of a few transcendental functions.

We start with hypergeometric functions in one variable in section C.1. Appell functions are

generalisations to two variables and discussed in section C.2. Lauricella functions are particular

generalisations to n variables and briefly discussed in section C.3. The general case with n
variables is known as Horn functions. These are introduced in section C.4.

In defining these functions, the Pochhammer symbol occurs frequently. The Pochhammer

symbol (a)n is defined by

(a)n =
Γ(a+n)

Γ(a)
. (C.1)

C.1 Hypergeometric functions

The generalised hypergeometric function AFB (or hypergeometric function for short) is defined

by

AFB(a1, . . . ,aA;b1, . . . ,bB;x) =
∞

∑
n=0

(a1)n . . .(aA)n

(b1)n . . .(bB)n

xn

n!
. (C.2)

We are mainly interested in the case A+1FA. The case 1F0 is trivial

1F0(a; ;x) = (1− x)−a . (C.3)

The first non-trivial case in the family A+1FA is the function

2F1(a1,a2;b1;x) =
∞

∑
n=0

(a1)n(a2)n

(b1)n

xn

n!
. (C.4)

This function is sometimes referred to as “the” hypergeometric function or the Gauß hypergeo-

metric function. In this book we will call any function of the form as in eq. (C.2) a hypergeomet-
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ric function. From the definition it is easy to verify that

A+1FB+1(a1, . . . ,aA,aA+1;b1, . . . ,bB,bB+1;x) =
Γ(bB+1)

Γ(aA+1)Γ(bB+1−aA+1)

×
1∫

0

dt taA+1−1(1− t)bB+1−aA+1−1
AFB(a1, . . . ,aA;b1, . . . ,bB; tx). (C.5)

This allows us to deduce a A-fold integral representation for A+1FA. In particular

2F1(a1,a2;b1;x) =
Γ(b1)

Γ(a2)Γ(b1−a2)

1∫

0

dt ta2−1(1− t)b1−a2−1(1− tx)−a1, (C.6)

3F2(a,b1,b2;c1,c2;x) =
Γ(c1)

Γ(b1)Γ(c1−b1)

Γ(c2)

Γ(b2)Γ(c2−b2)
1∫

0

du

1∫

0

dv ub1−1(1−u)c1−b1−1vb2−1(1− v)c2−b2−1(1−uvx)−a.

C.2 Appell functions

In this section we discuss the four Appell functions and the Kampé de Fériet function [441,442].

They are generalisations of the hypergeometric function from one variable x to two variables x1

and x2.

The Appell function of the first kind is defined by

F1(a,b1,b2;c;x1,x2) =
∞

∑
m1=0

∞

∑
m2=0

(a)m1+m2
(b1)m1

(b2)m2

(c)m1+m2

xm1
1

m1!

xm2
2

m2!
. (C.7)

The Appell function of the second kind is defined by

F2(a,b1,b2;c1,c2;x1,x2) =
∞

∑
m1=0

∞

∑
m2=0

(a)m1+m2
(b1)m1

(b2)m2

(c1)m1
(c2)m2

xm1
1

m1!

xm2
2

m2!
. (C.8)

The Appell function of the third kind is defined by

F3(a1,a2,b1,b2;c;x1,x2) =
∞

∑
m1=0

∞

∑
m2=0

(a1)m1
(a2)m2

(b1)m1
(b2)m2

(c)m1+m2

xm1
1

m1!

xm2
2

m2!
. (C.9)

The Appell function of the fourth kind is defined by

F4(a,b;c1,c2;x1,x2) =
∞

∑
m1=0

∞

∑
m2=0

(a)m1+m2
(b)m1+m2

(c1)m1
(c2)m2

xm1
1

m1!

xm2
2

m2!
. (C.10)
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The generalized Kampé de Fériet function S1 is defined by

S1(a1,a2,b1;c,c1;x1,x2) =
∞

∑
m1=0

∞

∑
m2=0

(a1)m1+m2
(a2)m1+m2

(b1)m1

(c)m1+m2
(c1)m1

xm1

1

m1!

xm2

2

m2!
. (C.11)

We have the following integral representations:

F1(a,b1,b2;c;x1,x2) =
Γ(c)

Γ(a)Γ(c−a)

1∫

0

dy ya−1(1− y)c−a−1 (1− x1y)−b1 (1− x2y)−b2

=
Γ(c)

Γ(b1)Γ(b2)Γ(c−b1−b2)

∫
d3y δ(1−

3

∑
j=1

y j) yb1−1
1 yb2−1

2 yc−b1−b2−1
3 (1− x1y1− x2y2)

−a ,

F2(a,b1,b2;c1,c2;x1,x2) =
Γ(c1)

Γ(b1)Γ(c1−b1)

Γ(c2)

Γ(b2)Γ(c2−b2)

×
1∫

0

du

1∫

0

dv ub1−1 (1−u)c1−b1−1 vb2−1 (1− v)c2−b2−1 (1−ux1− vx2)
−a ,

F3(a1,a2,b1,b2;c;x1,x2) =
Γ(c)

Γ(b1)Γ(b2)Γ(c−b1−b2)

×
∫

d3y δ(1−
3

∑
j=1

y j) yb1−1
1 yb2−1

2 yc−b1−b2−1
3 (1− x1y1)

−a1 (1− x2y2)
−a2 ,

F4(a,b;c1,c2;x1(1− x2),x2(1− x1)) =
Γ(c1)

Γ(a)Γ(c1−a)

Γ(c2)

Γ(b)Γ(c2−b)

×
1∫

0

du

1∫

0

dv ua−1 (1−u)c1−a−1 vb−1 (1− v)c2−b−1 (1−ux1)
a−c1−c2+1 (1− vx2)

b−c1−c2+1

·(1−ux1− vx2)
c1+c2−a−b−1 ,

S1(a1,a2,b1;c,c1;x1,x2) =
Γ(c)

Γ(a1)Γ(c−a1)

Γ(c1)

Γ(b1)Γ(c1−b1)
1∫

0

du

1∫

0

dv ua1−1 (1−u)c−a1−1 vb1−1 (1− v)c1−b1−1 (1−uvx1−ux2)
−a2 . (C.12)

Note that in the equation above the arguments of the fourth Appell function are x1(1− x2) and

x2(1− x1).



582 APPENDIX C. TRANSCENDENTAL FUNCTIONS

C.3 Lauricella functions

The Lauricella functions are generalisations to n variables x1, . . . ,xn. The four Lauricella func-

tions are defined by [443]

FA(a,b1, . . . ,bn;c1, . . . ,cn;x1, . . . ,xn) =
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b1)m1
. . .(bn)mn

(c1)m1
. . .(cn)mn

xm1

1

m1!
. . .

xmn
n

mn!
,

FB(a1, . . . ,an,b1, . . . ,bn;c;x1, . . . ,xn) =
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a1)m1
. . .(an)mn(b1)m1

. . .(bn)mn

(c)m1+···+mn

xm1

1

m1!
. . .

xmn
n

mn!
,

FC(a,b;c1, . . . ,cn;x1, . . . ,xn) =
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b)m1+···+mn

(c1)m1
. . .(cn)mn

xm1

1

m1!
. . .

xmn
n

mn!
,

FD(a,b1, . . . ,bn;c;x1, . . . ,xn) =
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b1)m1
. . .(bn)mn

(c)m1+···+mn

xm1

1

m1!
. . .

xmn
n

mn!
. (C.13)

C.4 Horn functions

In his original publication, Jakob Horn extended the list of hypergeometric functions in two vari-

ables (examples are the four Appell functions and the Kampé de Fériet function from section C.2)

to 34 functions [444]. There is no point in listing them all here.

In the modern literature the name “Horn-type hypergeometric function” is used for a function

of the following type: With the multi-index notation

x = (x1, . . . ,xn), i = (i1, . . . , in), xi = xi1
1 · · · · · xin

n (C.14)

a Horn-type hypergeometric function is defined by

H = ∑
i∈Nn

0

Cix
i,

Ci =

p
∏
j=1

Γ

(
n
∑

k=1

A jkik +u j

)

q
∏
j=1

Γ

(
n
∑

k=1

B jkik + v j

) , (C.15)

with A jk,B jk ∈ Z and u j,v j ∈ C. Let us denote

i+ e j =
(
i1, . . . , i j−1, i j +1, i j+1, . . . , in

)
. (C.16)
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It follows from Γ(z+1) = zΓ(z) that the ratio Ci+e j/Ci is a rational function in i1, . . . , in:

Ci+e j

Ci

=
Pj (i)

Q j (i)
, (C.17)

with Pj(i) and Q j(i) being polynomials in (i1, . . . , in). Let us denote the Euler operators by

θθθ = (θ1, . . . ,θn)
T =

(
x1

∂

∂x1
, . . . ,xn

∂

∂xn

)T

. (C.18)

The function H(x) satisfies the differential equation

(
1+θ j

)[
Q j (θ)

1

x j
−Pj (θ)

]
H (x) = 0, j = 1, . . . ,n. (C.19)

Exercise 128: Prove eq. (C.19).

As
n
∑

k=1

A jkik is an integer we may use the reflection identity eq. (2.112) to write

Γ

(
n

∑
k=1

A jkik +u j

)
= (−1)

n
∑

k=1

A jkik Γ
(
u j
)

Γ
(
1−u j

)

Γ

(
−

n
∑

k=1

A jkik +1−u j

) . (C.20)

This converts the series representation of the Horn functions of eq. (C.15) into a form similar to

the Gamma series defined in eq. (9.99).

Note that the Horn functions define a rather large class of functions: If we consider the system

of differential equations they satisfy, this system may not be holonomic [445]. This implies that

the space of local solutions of the system of differential equations may be infinite dimensional.

The relation of Feynman integrals with Horn-type hypergeometric function is discussed in

[446–448].
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Appendix D

Lie groups and Lie algebras

In this appendix we give a short introduction to the theory of Lie groups and Lie algebras. Lie

groups figure prominently as symmetry groups in particle physics, and we assume that most

readers have already come across Lie groups and Lie algebras. The main point of this appendix

is the classification of the simple Lie algebras.

Lie groups and Lie algebras are treated in many textbooks, examples are the books by Hel-

gason [449], Fulton and Harris [450], Bourbaki [451] and Weyl [452].

D.1 Definitions

We start with the definitions:

Lie group:

A Lie group G is a group which is also an analytic manifold such that the mapping (a,b)→
ab−1 of the product manifold G×G into G is analytic.

Lie algebra:

A Lie algebra g over a field F is a vector space together with a bilinear mapping [·, ·] :

g×g→ g, (X ,Y )→ [X ,Y ] such that for X ,Y,Z ∈ g:

[X ,X ] = 0,

[[X ,Y ] ,Z]+ [[Y,Z] ,X ]+ [[Z,X ] ,Y ] = 0. (D.1)

Exercise 129: Show that [X ,X ] = 0 implies the anti-symmetry of the Lie bracket [X ,Y ] = −[Y,X ].
Show further that also the converse is true, provided char F 6= 2. Explain, why the argument does not work
for char F= 2.

We are mainly interested in the case where the ground field are the real numbers R or the complex

numbers C.

585
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Let g be a Lie algebra and X1, ...,Xn a basis of g as a vector space. [Xa,Xb] is again in g and

can be expressed as a linear combination of the basis vectors X k:

[
Xa,Xb

]
=

n

∑
c=1

cabcX c. (D.2)

The coefficients cabc are called the structure constants of the Lie algebra. For matrix algebras

the Xa’s are anti-hermitian matrices.

The notation above is mainly used in the mathematical literature. In physics a slightly differ-

ent convention is often used (which corresponds for matrix algebras to having hermitian matrices

as a basis): Denote by T 1, ...,Tn a basis of g as a (complex) vector space and write

[
T a,T b

]
= i

n

∑
c=1

f abcT c. (D.3)

We can get from one convention to the other one by letting

T a = iXa. (D.4)

In this case we have

f abc = cabc. (D.5)

The standard normalisation of the generators is

Tr
(

T aT b
)

=
1

2
δab. (D.6)

The relation between Lie groups and Lie algebras is as follows: Let G be a Lie group. It is

therefore a manifold and a group. Let n be the dimension of G as a manifold. Choose a local

coordinate system with coordinates (θ1, . . . ,θn), such that the identity element e is given by

e = g(0, . . . ,0). (D.7)

In a neighbourhood of e we may write

g(0, . . . ,θa, . . . ,0) = g(0, . . . ,0, . . . ,0)+θaXa +O(θ2)

= g(0, . . . ,0, . . . ,0)− iθaT a +O(θ2), (D.8)

where

Xa = lim
θa→0

g(0, . . . ,θa, . . . ,0)−g(0, . . . ,0, . . . ,0)

θa
,

T a = i lim
θa→0

g(0, . . . ,θa, . . . ,0)−g(0, . . . ,0, . . . ,0)

θa
. (D.9)

The T a’s (and the Xa’s) are called the generators of the Lie group G.
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Theorem 21. The generators T a of a Lie group are a basis of a Lie algebra g, in particular the
commutators of the generators are linear combinations of the generators:

[
T a,T b

]
= i

n

∑
c=1

f abcT c. (D.10)

g is called the Lie algebra of the Lie group G.

We will often use Einstein’s summation convention and write eq. (D.10) as

[
T a,T b

]
= i f abcT c. (D.11)

We have seen that given a Lie group G we obtain its Lie algebra from eq. (D.9). We may now

ask if the converse is also possible: Given a Lie algebra g, can we reconstruct the Lie group G ?

The answer is that this can almost be done. Note that a Lie group need not be connected. Given a

Lie algebra we have information about the connected component in which the identity lies. The

exponential map takes us from the Lie algebra into the group, more precisely into the connected

component in which the identity lies. In a neighbourhood of the identity we have

g(θ1, . . . ,θn) = exp

(
−i

n

∑
a=1

θaT a

)
. (D.12)

A few examples of Lie groups are:

1. SU(n,C): The group of special unitary (n×n)-matrices defined through

UU† = 1 and det(U) = 1. (D.13)

The group SU(n,C) has n2−1 real parameters.

2. SO(n,R): The group of special orthogonal (n×n)-matrices defined through

RRT = 1 and det(R) = 1. (D.14)

The group SO(n,R) has n(n−1)/2 real parameters.

3. Sp(n,R): The symplectic group is the group of (2n×2n)-matrices satisfying

MT
(

0 1

−1 0

)
M =

(
0 1

−1 0

)
, (D.15)

where 0 denotes the (n× n)-zero matrix and 1 denotes the (n× n)-identity matrix. The

group Sp(n,R) has (2n+ 1)n real parameters. The group Sp(n,R) can also be defined

as the transformation group of a real (2n)-dimensional vector space with coordinates

(x1, . . . ,xn,xn+1, . . . ,x2n), which preserves the inner product

n

∑
j=1

(
x jy j+n− x j+ny j

)
. (D.16)
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The corresponding Lie algebras are denotes su(n), so(n) and sp(n), respectively.

Let us now focus on Lie algebras. Let g be the Lie algebra of a Lie group G.

Definition 22. The rank of a Lie algebra is the number of simultaneously diagonalisable gen-
erators.

Definition 23. A Casimir operator is an operator, which commutes with all the generators of
the group.

Theorem 24. The number of independent Casimir operators is equal to the rank of the Lie
algebra.

Definition 25. A Lie algebra is called simple if it is non-Abelian and has no non-trivial ideals.
(g and {0} are the two trivial ideals every Lie algebra has.)

Definition 26. A Lie algebra is called semi-simple if it has no non-trivial Abelian ideals.

Theorem 27. A Lie algebra g is semi-simple if and only if

det(g) 6= 0, (D.17)

where

gab = f acd f bcd . (D.18)

Definition 28. A Lie algebra is called reductive if it is the sum of a semi-simple and an Abelian
Lie algebra.

A simple Lie algebra is also semi-simple and a semi-simple Lie algebra is also reductive. Let

us look at a few examples: The Lie algebras

su(n), so(n), sp(n) (D.19)

are simple. Semi-simple Lie algebras are sums of simple Lie algebras, for example

su(n1)⊕ su(n2). (D.20)

Reductive Lie algebras may have in addition an Abelian part, for example

u(1)⊕ su(2)⊕ su(3). (D.21)

The Abelian Lie algebras are rather trivial, they only have one-dimensional irreducible represen-

tations. Therefore the classification of all reductive Lie algebras essentially boils down to the

classification of all simple Lie algebras.
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D.2 The Cartan basis and root systems

We now take the complex numbers C as the ground field. Consider A,X ∈ g with X 6= 0 and

assume that

[A,X ] = ρX , ρ ∈ C. (D.22)

ρ is called a root of the Lie algebra g. We write

A =
n

∑
a=1

caT a, X =
n

∑
a=1

xaT a. (D.23)

For a non-trivial solution X 6= 0 of eq. (D.22) we must have

det
(

cai f abc−ρδbc
)

= 0. (D.24)

Eq. (D.24) is called the secular equation. In general the secular equation will give a n-th order

polynomial in ρ. Solving for ρ one obtains n roots. One root may occur more than once. The

degree of degeneracy is called the multiplicity of the root.

Exercise 130: Derive eq. (D.24) from eq. (D.22).

Theorem 29. If A is chosen such that the secular equation has the maximum number of distinct
roots, then only the root ρ = 0 is degenerate. Further if r is the multiplicity of that root, there
exist r linearly independent generators Hi, which mutually commute

[
Hi,H j

]
= 0, i, j ∈ {1, . . . ,r} . (D.25)

The multiplicity r of the root ρ = 0 equals the rank of the Lie algebra.

The generators H1, . . . ,Hr generate an Abelian sub-algebra of g. This sub-algebra is called

the Cartan sub-algebra of g.

It is a standard convention to use Latin indices i ∈ {1, . . . ,r} to denote the r mutually com-

muting generators Hi and greek indices and the letter E to denote the remaining (n−r) generators

Eα.

Theorem 30. For any semi-simple Lie algebra, non-zero roots occur in pairs of opposite sign
and are denoted Eα and E−α with α ∈ {1, . . . , 1

2
(n− r)}.

We thus have the Cartan standard form or Cartan basis:

[
Hi,H j

]
= 0,

[Hi,Eα] = ρ(α, i)Eα. (D.26)

We write αi = ρ(α, i). With this notation the last equation may be written as

[Hi,Eα] = αiEα. (D.27)
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The standard normalisation for the Cartan basis is

1
2 (n−r)

∑
α=1

αiα j = δi j. (D.28)

For a fixed generator Eα we collect the r numbers α1, . . . ,αr into one vector

~α = (α1, . . . ,αr)
T . (D.29)

The vector ~α is called the root vector of Eα. The set of root vectors ~α for all Eα is called the

root system of g.

Exercise 131: Consider the Lie algebra su(2): Start from the generators

I1 =
1

2

(
0 1

1 0

)
, I2 =

1

2

(
0 −i
i 0

)
, I3 =

1

2

(
1 0

0 −1

)
. (D.30)

These generators are proportional to the Pauli matrices and normalised as

Tr
(

IaIb
)

=
1

2
δab. (D.31)

The commutators are given by
[
Ia, Ib

]
= iεabcIc, (D.32)

whereεabc denotes the totally antisymmetric tensor. Start from A = I3. Determine for this choice the roots,
the Cartan standard form and the root vectors.

Let us look at an example: The Cartan basis for su(3) is

H1 =
1√
6




1 0 0

0 −1 0

0 0 0


 , H2 =

1

3
√

2




1 0 0

0 1 0

0 0 −2


 , (D.33)

E1 =
1√
3




0 1 0

0 0 0

0 0 0


 , E2 =

1√
3




0 0 1

0 0 0

0 0 0


 , E3 =

1√
3




0 0 0

0 0 1

0 0 0


 ,

E−1=
1√
3




0 0 0

1 0 0

0 0 0


 , E−2=

1√
3




0 0 0

0 0 0

1 0 0


 , E−3=

1√
3




0 0 0

0 0 0

0 1 0


 .

The roots of E1, E2 and E3 are

[H1,E1] =
1

3

√
6E1, [H2,E1] = 0,

[H1,E2] =
1

6

√
6E2, [H2,E2] =

1

2

√
2E2

[H1,E3] = −
1

6

√
6E3, [H2,E3] =

1

2

√
2E3, (D.34)
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60◦

Figure D.1: The root system of su(3) (or equivalently of A2).

and similar for E−1, E−2 and E−3. For the root vectors we obtain

~α(E1) =

(
1
3

√
6

0

)
, ~α(E2) =

(
1
6

√
6

1
2

√
2

)
, ~α(E3) =

(
−1

6

√
6

1
2

√
2

)
,

~α(E−1)=

(
−1

3

√
6

0

)
, ~α(E−2)=

(
−1

6

√
6

−1
2

√
2

)
, ~α(E−3)=

(
1
6

√
6

−1
2

√
2

)
. (D.35)

Figure D.1 shows the root system for su(3).
There are a few theorems on root vectors:

Theorem 31. If~α is a root vector, so is −~α, (since roots always occur in pairs of opposite sign).

Theorem 32. If~α and~β are root vectors then

2~α ·~β
|~α|2 and

2~α ·~β
|~β|2

(D.36)

are integers.

Theorem 33. If~α and~β are root vectors so is

~γ = ~β− 2~α ·~β
|~α|2 ~α (D.37)

Let us now investigate the implications of these theorems. We start with theorem 32. Denote

the two integers by p and q, i.e.

2~α ·~β
|~α|2 = p,

2~α ·~β
|~β|2

= q. (D.38)

Then

(
~α ·~β

)2

|~α|2|~β|2
=

pq

4
= cos2 θ ≤ 1, (D.39)
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where θ denotes the angle between the root vectors~α and~β. Therefore

pq ≤ 4. (D.40)

As p and q are integers, this puts strong constraints on the angle between ~α and~β and the ratio

of their lengths. We have

cos2 θ ∈
{

0,
1

4
,
1

2
,
3

4
,1

}
. (D.41)

This restricts the angle between two root vectors to

0◦,30◦,45◦,60◦,90◦,120◦,135◦,150◦,180◦. (D.42)

This is a finite list. Let’s go through all possibilities:

• Case cos2 θ = 1: This implies cosθ = ±1 and the angle is either θ = 0◦ or θ = 180◦. We

further have |~α|= |~β| and therefore either~α =~β or~α =−~β.

• Case cos2 θ = 3
4
: This implies cosθ =±1

2

√
3 and the angle is either θ = 30◦ or θ = 150◦.

We have pq = 3 and therefore either p = 1,q = 3 or p = 3,q = 1. Let us first discuss

p = 1,q = 3. This means

2~α ·~β
|~α|2 = 1,

2~α ·~β
|~β|2

= 3. (D.43)

Therefore

|~α|2

|~β|2
= 3. (D.44)

The case p = 3,q = 1 is similar and in summary we obtain

|~α|2

|~β|2
∈
{

1

3
,3

}
. (D.45)

• Case cos2 θ = 1
2
: This implies cosθ =±1

2

√
2 and the angle is either θ = 45◦ or θ = 135◦.

We have pq = 2 and either p = 1,q = 2 or p = 2,q = 1. It follows

|~α|2

|~β|2
∈
{

1

2
,2

}
. (D.46)

• Case cos2 θ = 1
4
: This implies cosθ =±1

2
and the angle is either θ = 60◦ or θ = 120◦. We

have pq = 1 and hence p = 1,q = 1. It follows

|~α|2

|~β|2
= 1. (D.47)
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• Case cos2 θ = 0: This implies cosθ = 0 and the angle is θ = 90◦. In this case we have

p = 0 and q = 0. This leaves the ratio |~α|2/|~β|2 undetermined.

Let us now explore theorem 33. We have already seen that if if~α and~β are root vectors so is

~γ = ~β− 2~α ·~β
|~α|2 ~α (D.48)

Let us now put this a little bit more formally. For any root vector α we define a mapping Wα

from the set of root vectors to the set of root vectors by

Wα(β) = ~β− 2~α ·~β
|~α|2 ~α. (D.49)

Wα can be described as the reflection by the plane Ωα perpendicular to α. It is clear that this

mapping is an involution: After two reflections one obtains the original root vector again. The

set of all these mappings Wα generates a group, which is called the Weyl group.

Since Wα maps a root vector to another root vector, we have the following corollary:

Corollary 34. The set of root vectors is invariant under the Weyl group.

For root vectors we define an ordering as follows: ~α is said to be higher than ~α′ if the rth

component of (~α−~α′) is positive (if zero look at the (r− 1)th component etc.). If ~α is higher

than~α′ we write~α >~α′.

Definition 35. A root vector~α is called positive, if~α >~0.

Therefore the set of non-zero root vectors R decomposes into

R = R+∪R−, (D.50)

where R+ denotes the positive roots and R− denotes the negative roots.

Definition 36. The (closed) Weyl chamber relative to a given ordering is the set of points~x in
the r-dimensional space of root vectors, such that

2
~x ·~α
|~α|2 ≥ 0 ∀~α ∈ R+. (D.51)

An example of a root system, the positive roots and the Weyl chamber is shown for the Lie

algebra su(3) in fig. D.2.

Let us summarise: The root system R of a Lie algebra g has the following properties:

1. R is a finite set.

2. If~α ∈ R, then also −~α ∈ R.

3. For any~α ∈ R the reflection Wα maps R to itself.
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The root system The positive roots The Weyl chamber

Figure D.2: The root system, the positive roots and the Weyl chamber for su(3) (or equivalently

A2).

Figure D.3: The root system A1.

4. If~α and~β are root vectors then 2~α ·~β/|α|2 is an integer.

This puts strong constraints on the geometry of a root system. Before we embark on the general

classification, let us investigate the possible root systems of rank 1 and 2. For rank 1 the root

vectors are one-dimensional and the only possibility is the one shown in fig. D.3. This is the root

system of su(2).
For rank 2 we first note that due to property (3) the angle between two roots must be the same

for any pair of adjacent roots. It will turn out that any of the four angles 90◦, 60◦, 45◦ and 30◦

can occur. Once this angle is specified, the relative lengths of the roots are fixed except for the

case of right angles.

Let us start with the case θ= 90◦. Up to rescaling the root system is the one shown in fig. D.4.

This corresponds to su(2)⊕ su(2). This Lie algebra is semi-simple, but not simple.

For the angle θ = 60◦ we have the root system shown in fig. D.5. This is the root system of

su(3).
For the angle θ = 45◦ we have the root system shown in fig. D.6. This is the root system of

Figure D.4: The root system A1×A1.
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Figure D.5: The root system A2.

Figure D.6: The root system B2.

so(5).

Finally, for θ = 30◦ we have the root system shown in fig. D.7. This is the root system of the

exceptional Lie group G2.

D.3 Dynkin diagrams

Let us try to reduce further the data of a root system. We already learned that with the help of

an ordering we can divide the non-zero root vectors into a disjoint union of positive and negative

roots:

R = R+∪R−. (D.52)

Definition 37. A positive root vector is called simple if it is not the sum of two other positive
roots.

We illustrate this for the Lie algebra su(3) in fig. D.8. The angle between the two simple

roots is θ = 120◦.
The Dynkin diagram of the root system is constructed by drawing one vertex ◦ for each

simple root and joining two vertices by a number of lines depending on the angle θ between the

two roots:
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Figure D.7: The root system G2.

root system positive roots simple roots

Figure D.8: The root system, the positive roots and the simple roots for su(3) (or equivalently

A2).
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no lines if θ = 90◦

one line if θ = 120◦

two lines if θ = 135◦

three lines if θ = 150◦

When there is one line, the roots have the same length. If two roots are connected by two or three

lines, an arrow is drawn pointing from the longer to the shorter root.

Example: The Dynkin diagram of su(3) is

We have the following theorems:

Theorem 38. Two complex semi-simple Lie algebras are isomorphic if and only if they have the
same Dynkin diagram.

Theorem 39. A complex semi-simple Lie algebra is simple if and only if its Dynkin diagram is
connected.

Theorem 40. Classification of simple Lie algebras: The connected Dynkin diagrams can be
grouped into four families (An, Bn, Cn, Dn) and a set of five exceptional Dynkin diagrams. The
four families are

• An for n≥ 1

· · ·α1 α2 α3 αn−1 αn

• Bn for n≥ 2

· · ·α1 α2 α3 αn−1 αn

• Cn for n≥ 3

· · ·α1 α2 α3 αn−1 αn

• Dn for n≥ 4

· · ·α1 α2 α3 αn−2

αn−1
αn

The exceptional Dynkin diagrams are

• E6
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α1 α2 α3 α5 α6

α4

• E7

α1 α2 α3 α5 α6 α7

α4

• E8

α1 α2 α3 α5 α6 α7 α8

α4

• F4

α1 α2 α3 α4

• G2

α1 α2

Up to now we considered Lie algebras over the complex numbers C. We are also interested

in real Lie groups, whose Lie algebra is a real Lie algebra. Starting from a real simple Lie

algebra g we consider the complexification gC of g. The latter is classified by theorem 40. Thus

a classification of all real simple Lie algebras amounts to a classification of all real forms of the

complex simple Lie algebras gC from theorem 40.

The types of the Lie algebras of the classical real compact simple Lie groups are

SU(n+1) : An,

SO(2n+1) : Bn,

Sp(n) : Cn,

SO(2n) : Dn. (D.53)

In order to prove theorem 40 we have to show that the only possible connected Dynkin diagrams

are the ones mentioned in theorem 40 and that for every connected Dynkin diagrams from the

list of theorem 40 there is a simple Lie algebra corresponding to it.

For the first part of the proof it is sufficient to consider only the angles between the simple

roots, the relative lengths do not enter the proof. We may therefore drop the arrows in the Dynkin

diagrams. Such diagrams, without the arrows to indicate the relative lengths, are called Coxeter

diagrams. Let us now consider a Coxeter diagram with n vertices. Two vertices are connected

by either 0, 1, 2 or 3 lines. We call a Coxeter diagram admissible if there are n independent unit

vectors~e1, . . . ,~en in an Euclidean space with the angle θ between~ei and~e j as follows:

no lines if θ = 90◦

one line if θ = 120◦

two lines if θ = 135◦

three lines if θ = 150◦
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We prove theorem 40 with the help of the following proposition:

Proposition 41. The only connected admissible Coxeter graphs are the ones listed in theorem 40
(without the arrows).

To prove this proposition, we will first prove the following four lemmata:

Lemma 42. Any sub-diagram of an admissible diagram, obtained by removing some vertices
and all lines attached to them, will also be admissible.

Proof. Suppose we have an admissible diagram with n vertices. By definition there are n vectors

~e j, such that the angle between a pair of vectors is in the set

{90◦,120◦,135◦,150◦} (D.54)

Removing some of the vectors~e j does not change the angles between the remaining ones. There-

fore any sub-diagram of an admissible diagram is again admissible.

Lemma 43. There are at most (n−1) pairs of vertices that are connected by lines. The diagram
has no loops.

Proof. We have

2~ei ·~e j ∈ {0,−1,−
√

2,−
√

3} (D.55)

Therefore if~ei and~e j are connected we have θ > 90◦ and

2~ei ·~e j ≤ −1. (D.56)

Now

0 <

(
∑

i

~ei

)
·
(

∑
j

~ei

)
= n+2 ∑

i< j

~ei ·~e j < n−# connected pairs. (D.57)

Therefore

# connected pairs < n. (D.58)

Connecting n vertices with (n−1) connections (of either 1, 2 or 3 lines) implies that there are no

loops.

Lemma 44. No vertex has more than three lines attached to it.

Proof. We first note that

(
2~ei ·~e j

)2
= # number of lines between~ei and~e j. (D.59)
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Consider the vertex~e1 and let~e2, . . .~e j, be the vertices connected to~e1. We want to show

j

∑
i=2

(2~e1 ·~ei)
2 < 4. (D.60)

Since there are no loops, no pair of~e2,. . . ,~e j is connected. Therefore~e2, . . . ,~e j are perpendicular

unit vectors. Further, by assumption~e1,~e2,. . . ,~e j are linearly independent vectors. Therefore~e1

is not in the span of~e2,. . . ,~e j. It follows

1 = (~e1 ·~e1)
2 >

j

∑
i=2

(~e1 ·~ei)
2 (D.61)

and therefore

j

∑
i=2

(~e1 ·~ei)
2 < 1 and

j

∑
i=2

(2~e1 ·~ei)
2 < 4. (D.62)

Lemma 45. In an admissible diagram, any chain of vertices connected to each other by one
line, with none but the ends of the chain connected to any other vertices, can be collapsed to one
vertex, and the resulting diagram remains admissible.

Proof. Let us consider a chain of r vertices:

1 2 r
→ (D.63)

If~e1, . . . ,~er are the unit vectors corresponding to the chain of vertices as indicated above, then

~e′ = ~e1 + · · ·+~er (D.64)

is a unit vector since

~e′ ·~e′ = (~e1 + · · ·+~er)
2 = r+2~e1 ·~e2 +2~e2 ·~e3 + · · ·+2~er−1 ·~er

= r− (r−1) = 1. (D.65)

Furthermore,~e′ satisfies the same conditions with respect to the other vectors since~e′ ·~e j is either

~e1 ·~e j or~er ·~e j.

With the help of these lemmata we can now prove proposition 41:
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Proof. From lemma 44 it follows that the only connected diagram with a triple line is G2.

Furthermore we cannot have a diagram with two double lines, otherwise we would have a sub-

diagram, which we could contract as

. . . → (D.66)

contradicting again lemma 44. By the same reasoning we cannot have a diagram with a double

line and a vertex with three single lines attached to it:

. . . → (D.67)

Again this contradicts lemma 44.

To finish the case with double lines, we rule out the diagram

1 2 3 4 5
(D.68)

Consider the vectors

~v =~e1 +2~e2, ~w = 3~e3 +2~e4 +~e5. (D.69)

We find

(~v ·~w)2 = 18, |~v|2 = 3, |~w|2 = 6. (D.70)

This violates the Cauchy-Schwarz inequality

(~v ·~w)2 < |~v|2 · |~w|2 . (D.71)

By a similar reasoning one rules out the following (sub-) graphs with single lines:

(D.72)

(D.73)

(D.74)

These sub-diagrams rules out all graphs not in the list of theorem 40. To finish the proof of the

proposition it remains to show that all graphs in the list are admissible. This is equivalent to show

that for each Dynkin diagram in the list there exists a corresponding Lie algebra. (The simple
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root vectors of such a Lie algebra will then have automatically the corresponding angles of the

Coxeter diagram.)

To prove the existence it is sufficient to give for each Dynkin diagram an example of a Lie

algebra corresponding to it. For the four families An, Bn, Cn and Dn we have already seen that

they correspond to the Lie algebras of su(n+ 1), so(2n+ 1), sp(n) and so(2n) In addition one

can write down explicit matrix representations for the Lie algebras corresponding to the five

exceptional groups E6, E7, E8, F4 and G2.



Appendix E

Dirichlet characters

E.1 Definition

Let N be a positive integer. A Dirichlet character modulo N is a function

χ : (Z/NZ)×→ C× (E.1)

that is a homomorphism of groups, i.e.

χ(nm) = χ(n)χ(m) for all n,m ∈ (Z/NZ)×. (E.2)

We may extend χ to a function χ : Z/NZ→ C by setting χ(n) = 0 if gcd(n,N) > 1 and then

further extend to a function χ : Z→ C by setting χ(n) = χ(n mod N). By abuse of notation we

denote both extensions again by χ. This function satisfies

(i) χ(n) = χ(n+N) ∀ n ∈ Z,

(ii) χ(n) = 0 if gcd(n,N)> 1,

χ(n) 6= 0 if gcd(n,N) = 1,

(iii) χ(nm) = χ(n)χ(m) ∀ n,m ∈ Z. (E.3)

Property (ii) and (iii) imply for any Dirichlet character χ:

χ(1) = 1. (E.4)

Let’s look at a few examples of Dirichlet characters with modulus N ∈ {1,2,3,4,5,6}.

Modulus 1: For N = 1 there is only the trivial character

n 0

χ1,1(n) 1

Modulus 2: There is one character modulo 2

603
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n 0 1

χ2,1(n) 0 1

Modulus 3: There are two characters modulo 3

n 0 1 2

χ3,1(n) 0 1 1

χ3,2(n) 0 1 −1

Modulus 4: There are two characters modulo 4

n 0 1 2 3

χ4,1(n) 0 1 0 1

χ4,2(n) 0 1 0 −1

Modulus 5: There are four characters modulo 5

n 0 1 2 3 4

χ5,1(n) 0 1 1 1 1

χ5,2(n) 0 1 i −i −1

χ5,3(n) 0 1 −1 −1 1

χ5,4(n) 0 1 −i i −1

Modulus 6: There are two characters modulo 6

n 0 1 2 3 4 5

χ6,1(n) 0 1 0 0 0 1

χ6,2(n) 0 1 0 0 0 −1

We denote by χN,1 the trivial character modulo N (with χN,1(n)= 1 if gcd(n,N)= 1 and χN,1(n)=
0 otherwise). If no confusion with the modulus arises, we simply write χ1 instead of χN,1. The

trivial character modulo 1 is denoted by 1 = χ1,1 (we have χ1,1(n) = 1 for all n, hence the nota-

tion).

The conductor of χ is the smallest positive divisor d|N such that there is a character χ′

modulo d with

χ(n) = χ′(n) ∀ n ∈ Z with gcd(n,N) = 1. (E.5)

A Dirichlet character is called primitive, if its modulus equals its conductor.

To give an example, the Dirichlet character χ4,1 of modulus 4 from the examples above has

conductor 1, since

χ4,1(1) = χ1,1(1), χ4,1(3) = χ1,1(3). (E.6)

On the other hand, χ4,2 has conductor 4 and is therefore a primitive Dirichlet character.
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If χ is a Dirichlet character modulo N and M a positive integer, χ induces a Dirichlet character

χ̃ with modulus (M ·N) by setting

χ̃(n) =

{
χ(n), if gcd(n,M ·N) = 1,

0, if gcd(n,M ·N) 6= 1.
(E.7)

We call χ̃ the induced character of modulus N induces by χ. In the examples above χN,1 (the

trivial character modulo N) is the induced character of modulus N induced by χ1,1 (the trivial

character modulo 1).

In the other direction we may associate to a Dirichlet character χ with modulus N and conduc-

tor d a primitive Dirichlet character χ̄ with modulus d as follows: We first note if gcd(n,d) = 1

there exists an integer n′ such that gcd(n′,N) = 1 and n′ ≡ n mod d. We set

χ̄(n) =

{
χ(n′), if gcd(n,d) = 1,

0, if gcd(n,d) 6= 1.
(E.8)

χ̄ is called the primitive character associated with χ.

E.2 The Kronecker symbol

In this section we introduce the Kronecker symbol

(a

n

)
. (E.9)

(There is an overloading of the name “Kronecker symbol”: In this section we mean the symbol

as in eq. (E.9), not δi j. The two symbols are not related.) The Kronecker symbol defines a

Dirichlet character, which takes values {−1,0,1}. In addition, we may give a criteria under

which condition this Dirichlet character is primitive.

Let a be an integer and n a non-zero integer with prime factorisation n = upα1

1 pα2

2 ...pαk
k ,

where u ∈ {1,−1} is a unit. The Kronecker symbol is defined by

(a

n

)
=

(a

u

)( a

p1

)α1
(

a

p2

)α2

...

(
a

pk

)αk

. (E.10)

The individual factors are defined as follows: For a unit u we define

(a

u

)
=





1, u = 1,
1, u =−1, a≥ 0,
−1, u =−1, a < 0.

(E.11)

For p = 2 we define

(a

2

)
=





1, a≡±1 mod 8,
−1, a≡±3 mod 8,

0, a even.
(E.12)
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For an odd prime p we have

(
a
p

)
= a

p−1
2 mod p =





1, a≡ b2 mod p,
−1, a 6≡ b2 mod p,

0, a≡ 0 mod p.
(E.13)

We further set

(a

0

)
=

{
1, a =±1

0, otherwise.
(E.14)

For any non-zero integer a the mapping

n →
(a

n

)
(E.15)

is a Dirichlet character, which we denote by χa:

χa (n) =
(a

n

)
. (E.16)

If a is the discriminant of a quadratic field, then it is a primitive Dirichlet character with conductor

|a|. One may give a condition for a being the discriminant of a quadratic field [334]. We first set

for p being a prime number, −1 or −2

p∗ =





p, if p≡ 1 mod 4,
−p, if p≡−1 mod 4 and p 6=−1,
−4, if p =−1,

8, if p = 2,
−8, if p =−2.

(E.17)

Then an integer a is the discriminant of a quadratic field if and only if a is a product of distinct

p∗’s.

Including the trivial character (for which a = 1) the possible values for a with smallest abso-

lute value are

1,−3,−4,5,−7,8,−8,−11,12, . . . (E.18)



Appendix F

The moduli space Mg,n

In this appendix we discuss the moduli space of a smooth algebraic curve of genus g with n
marked points. This moduli space is denoted by Mg,n.

We start in section F.1 from configuration spaces of n points in a topological space X and mod

out configurations which are isomorphic. This gives us the moduli space. We are in particular

interested in the case, where the space X is a smooth complex algebraic curve of genus g. These

complex curves, and their equivalence to real Riemann surfaces are discussed in section F.2.

With these preparations, we specialise in section F.3 to the main topic of this appendix: The

moduli space Mg,n of a smooth algebraic curve of genus g with n marked points. This moduli

space is non-compact, and one is interested in its compactification M g,n. The compactification

includes configurations, where points and/or the algebraic curve degenerates.

The cases of genus zero and genus one are the most important ones for applications towards

Feynman integrals. We discuss the moduli space M0,n in section F.4 and the moduli space M1,n

in section F.5

F.1 Configuration spaces

Let X be a topological space. The configuration space of n ordered points in X is

Confn (X) =
{
(x1, . . . ,xn) ∈ Xn|xi 6= x j for i 6= j

}
. (F.1)

Please note that we require that the points are distinct: xi 6= x j. As a simple example consider the

configuration space of 2 ordered points in R:

Conf2 (R) =
{
(x1,x2) ∈ R2

∣∣x1 6= x2

}
. (F.2)

Conf2(R) is the plane R2 with the diagonal x1 = x2 removed. It is a two-dimensional space.

As a second example consider the configuration space of 2 ordered points in the complex

projective space CP1 (i.e. the Riemann sphere):

Conf2

(
CP1

)
=

{
(z1,z2) ∈

(
CP1

)2
∣∣∣ z1 6= z2

}
. (F.3)

607
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This is again a two-dimensional space. A Möbius transformation

z′ =
az+b

cz+d
(F.4)

transforms the Riemann sphere into itself. These transformations form the group PSL(2,C).
Usually we are not interested in configurations

(z1, . . . ,zn) ∈ Confn
(
CP1

)
and (z′1, . . . ,z

′
n) ∈ Confn

(
CP1

)
, (F.5)

which differ only by a Möbius transformation. This brings us to the definition of the moduli

space of the Riemann sphere with n marked points:

M0,n = Confn
(
CP1

)
/PSL(2,C) . (F.6)

We may use the freedom of Möbius transformations to fix three points (usually 0, 1 and ∞).

Therefore

dim
(
Confn

(
CP1

))
= n,

dim(M0,n) = n−3. (F.7)

F.2 Complex algebraic curves and Riemann surfaces

We are mainly interested in the situation, where the topological space X is a Riemann surface C.

Let us start with a compact, connected and smooth Riemann surface C.

On the one hand, we may view C as a two-dimensional real surface (hence Riemann surface)

with a complex structure.

On the other hand we may view C as an algebraic curve (i.e. of complex dimension one) in

CP2: There exists a homogeneous polynomial P(z1,z2,z3) such that

C :
{
[z1 : z2 : z3] ∈ CP2

∣∣P(z1,z2,z3) = 0
}

(F.8)

If d is the degree of the polynomial P(z1,z2,z3), the arithmetic genus of C is given by

g =
1

2
(d−1)(d−2) . (F.9)

Example:

y2z− x3− xz2 = 0 (F.10)

is a smooth curve of genus 1. The fact that we may view C either as a Riemann surface (of real

dimension two) or as a complex algebraic curve is illustrated in fig. F.1.

The requirement that the curve is smooth is a little bit too restrictive and we consider the

generalisation towards nodal curves. A node of a curve is a singularity isomorphic to

xy = 0 in C2. (F.11)
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real surface ⇔ complex curve

Figure F.1: We may view C either as a Riemann surface (a two-dimensional real surface) or as

a complex algebraic curve (of complex dimension one, corresponding to two real dimensions).

real surface a

b

⇔
a

b

complex curve

Figure F.2: A nodal curve, shown as a real surface (left) or as a complex curve (right).

ungluing

=⇒

smoothing

=⇒

Figure F.3: On a node we may perform the operations of ungluing (top) and smoothing (bottom).
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geometric genus = 1

arithmetic genus = 1

geometric genus = 0

arithmetic genus = 1

geometric genus = 1

arithmetic genus = 2

Figure F.4: The arithmetic genus and the geometric genus for various examples.

A nodal curve is a compact, connected curve which is smooth except for a finite number of

points, which are nodes. Fig. F.2 shows an example.

There are two operations, which we may perform on a node: We may unglue a node or we

may smoothen a node. These two operations are illustrated in fig. F.3.

For a nodal curve we have to distinguish the geometric genus and the arithmetic genus. The

geometric genus of an irreducible nodal curve is its genus once all of the nodes are unglued,

and the geometric genus of a (reducible) nodal curve is the sum of the geometric genera of

the irreducible components. The arithmetic genus of a nodal curve is the genus of the curve

obtained by smoothing. Fig. F.4 shows a few examples.

If the curve C has s nodes and k irreducible components the relation between the arithmetic

genus garithm and the geometric genus ggeom is

garithm = ggeom +1+ s− k. (F.12)

Let us now consider nodal curves with n marked points. An example with three marked points is

shown in fig. F.5. To a nodal curve we may associate a dual graph as follows:

• The irreducible components of the curve C are drawn as vertices, labelled with their geo-

metric genera.

• The nodes are drawn as edges.

• The marked points are drawn as half-edges.
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real surface
z1

z2

z3 ⇔ z2

z1

z3

complex curve

Figure F.5: A (smooth) curve with three marked points. The left picture shows the real surface,

the right picture the complex curve.

⇔
1 0

⇔
0 1

Figure F.6: The correspondence between a nodal curve and its dual graph.
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Fig. F.6 shows a few examples. We call a nodal curve with marked points a stable curve, if in

the dual graph

• each genus 0 vertex has valence ≥ 3,

• each genus 1 vertex has valence ≥ 1.

This definition implies that smooth curves of genus g with n marked points are not stable if

(g,n) ∈ {(0,0) ,(0,1) ,(0,2) ,(1,0)} . (F.13)

The smooth stable curves with n marked points are the ones with

χ = 2−2g−n < 0. (F.14)

χ is the Euler characteristic of the smooth curve with n marked points.

Let us remark that for a smooth curve the arithmetic genus equals the geometric genus, there-

fore just using “genus” is unambiguous in the smooth case.

F.3 The moduli space of a curve of genus g with n marked

points

Let us now consider a smooth curve C of genus g with n marked points. Two such curves

(C;z1, . . . ,zn) and (C′;z′1, . . . ,z
′
n) are isomorphic if there is an isomorphism

φ : C→C′ such that φ(zi) = z′i. (F.15)

The moduli space

Mg,n (F.16)

is the space of isomorphism classes of smooth curves of genus g with n marked points.

For g≥ 1 the isomorphism classes do not only depend on the positions of the marked points,

but also on the “shape” of the curve. For g = 0 there is only one “shape”, the Riemann sphere.

The dimension of Mg,n is

dim(Mg,n) = 3g+n−3. (F.17)

The Euler characteristic of Mg,n is

χ(Mg,n) = (−1)n (2g+n−3)!

2g(2g−2)!
B2g, (F.18)

where B j are the Bernoulli numbers.

The moduli space is not compact. We are interested in a specific compactification, the Deligne-

Mumford-Knudsen compactification [453–456], which we denote by M g,n. The space M g,n

is the moduli space of stable nodal curves of arithmetic genus g with n marked points. Mg,n is an

open subset in M g,n. A generic element of M g,n is drawn in the dual graph picture as
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g

If the curve is smooth, the grey blob corresponds to a single genus g vertex. If the curve is non-

smooth, the grey blob represents the appropriate sub-graph.

Stratification: Let Γ be the dual graph of a stable curve. We denote by MΓ the subset of

M g,n of stable curves with dual graph Γ. The various MΓ’s give a stratification of M g,n. The

dense open set Mg,n is one stratum, all other strata are called boundary strata. The closure of

the codimension 1 strata are called boundary divisors. The divisors meet transversely along

smaller strata. Let us denote the number of internal edges of Γ by ne. Then

dim(MΓ) = 3g+n−3−ne. (F.19)

Let us look at a few examples:

Γ1 =
0 0

⇒ dim(MΓ1
) = 0

Γ2 =

0 0

0 0

⇒ dim(MΓ2
) = 0

Γ3 =
0

0

0

⇒ dim(MΓ3
) = 1

Γ4 =
0 0

⇒ dim(MΓ4
) = 2

Of course we may also consider dual graphs with vertices of higher genus:

Γ5 =
0 1

⇒ dim(MΓ5
) = 3

The forgetful morphism: Consider a stable nodal curve with n marked points (and assume n> 0,

(g,n) 6= (0,3),(1,1)). We may forget the n-th point. This gives a nodal curve with (n−1) marked
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points. This curve may not be stable. One stabilises the curve by contracting all components to

a point, which correspond to genus 0 vertices of valency 2. This gives the forgetful morphism

M g,n → M g,n−1. (F.20)

Example:

z1

z2z3

z4 ⇔
0 1

z1

z2z3

z4

⇓ forget z4 ⇓

z1

z2z3
⇔

0 1

z1

z2

z3

⇓ stabilise ⇓

z1

z2z3
⇔

1

z1

z2

z3

Gluing morphisms: There are two gluing morphisms

M g1,n1+1×M g2,n2+1 → M g1+g2,n1+n2
,

M g,n+2 → M g+1,n. (F.21)

We may represent them graphically as

g1 ×
g2 → g1 g2

g → g
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Note that the images of these morphisms are necessarily non-smooth.

Remark: We are not restricted to forget the last marked point in the forgetful morphism, nor

are we restricted to glue the last two points together in the gluing morphisms. We therefore have

various forgetful morphisms and gluing morphisms, which we may index by the point, which we

forget, or by the two points which are glued together, respectively.

F.4 The genus zero case

Let us now consider a Riemann surface of genus 0, i.e. the Riemann sphere. Such a surface is

isomorphic to CP1 and the group of Möbius transformations PSL (2,C)

z → az+b

cz+d
(F.22)

acts as an automorphism. We mark on the Riemann sphere n points. The moduli space is denoted

by M0,n.

M0,n =
{
(z1, . . . ,zn) | zi ∈ CP1,zi 6= z j

}
/PSL(2,C) . (F.23)

This is an affine variety of dimension

dim M0,n = n−3. (F.24)

We may use the freedom of PSL(2,C)-transformations to fix three points. The standard choice

will be z1 = 0, zn−1 = 1 and zn = ∞. Thus

M0,n =
{
(z2, . . . ,zn−2) ∈ Cn−3 : zi 6= z j, zi 6= 0, zi 6= 1

}
. (F.25)

The variables z2, . . . ,zn−2 are called simplicial coordinates. We denote the set of real points by

M0,n(R):

M0,n (R) =
{
(z2, . . . ,zn−2) ∈ Rn−3 : zi 6= z j, zi 6= 0, zi 6= 1

}
. (F.26)

Let us look at a few examples.

1. For n = 3 we have dim M0,3 = 0 and M0,3 consists of a single point. We may use

PSL (2,C)-invariance to take

(z1,z2,z3) = (0,1,∞) (F.27)

as a representative of this point.

2. For n = 4 we have dim M0,4 = 1 and elements of M0,4 can be represented by

(z1,z2,z3,z4) = (0,z,1,∞) (F.28)
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X

0 1 ∞

0

1

∞

X

0 1 ∞

0

1

∞

Figure F.7: The moduli space M0,5(R) (left). The region X is bounded by z2 = 0, z3 = 1 and

z2 = z3. The right figure shows M 0,5(R), obtained from M0,5(R) by blowing up the points

(z2,z3) = (0,0), (z2,z3) = (1,1) and (z2,z3) = (∞,∞).

with

z ∈ CP1\{0,1,∞} . (F.29)

Thus

M0,4 ≃ CP1\{0,1,∞} ≃ C\{0,1} . (F.30)

3. For n = 5 we have dim M0,5 = 2 and M0,5 is isomorphic to

M0,5 ≃ {(z1,z2) | zi ∈ C, zi 6= 0,1, z1 6= z2} . (F.31)

Thus M0,5 is isomorphic to the complement of the five lines z1 = 0, z1 = 1, z2 = 0, z2 = 1

and z1 = z2 in C2.

In fig. (F.7) we sketch the moduli space M0,5(R). In fig. F.7 we indicated in red a region

X of M0,5(R). This region is bounded by z2 = 0, z3 = 1 and z2 = z3. In general there will

be points, where the boundaries do not cross normally. For the region X in the example

above this occurs for (z2,z3) = (0,0) and (z2,z3) = (1,1). We denote by M 0,n the blow-

up of M0,n in all those points, such that in M 0,n all boundaries cross normally. In this

way the region X of our example transforms from a triangle in M0,5(R) into a pentagon in

M 0,5(R).

For a set of points {zi,z j,zk,zl} ⊆ {z1,z2, . . . ,zn} we define a cross-ratio as follows

[i, j|k, l] =
(zi− zk)

(
z j− zl

)

(zi− zl)
(
z j− zk

) . (F.32)
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The cross-ratios are invariant under Möbius transformations PSL(2,C). We have the relations

[i, j|k, l] = [i, j|l,k]−1 ,

[i, j|k, l] = [ j, i|l,k]−1 ,

[i, j|k, l] = [k, l|i, j] ,

[i, j|k, l] = 1− [i,k| j, l] . (F.33)

F.4.1 The Deligne-Mumford-Knudsen compactification

Let us now review a systematic way to construct M 0,n. There is a smooth compactification

M0,n ⊂M 0,n, (F.34)

known as the Deligne-Mumford-Knudsen compactification [453–456], such that M 0,n\M0,n is a

smooth normal crossing divisor. In order to describe M 0,n we follow ref. [457].

Let π = (π1, . . . ,πn) be a permutation of (1, . . . ,n). A cyclic order is defined as a per-

mutation modulo cyclic permutations (π1,π2, . . . ,πn)→ (π2, . . . ,πn,π1). We may represent a

cyclic order by an n-gon, where the edges of the n-gon are indexed clockwise by π1, π2, . . . ,

πn. A dihedral structure is defined as a permutation modulo cyclic permutations and reflection

(π1,π2, . . . ,πn)→ (πn, . . . ,π2,π1). We may represent a dihedral structure by an n-gon, where the

edges of the n-gon are indexed either clockwise or anti-clockwise by π1, π2, . . . , πn.

The construction of M 0,n proceeds through intermediate spaces M π
0,n, labelled by a dihedral

structure π, such that

M0,n ⊂M π
0,n ⊂M 0,n. (F.35)

Let z = (z1, . . . ,zn) denote the (ordered) set of the n marked points on the curve. In the following

we will use the notation

M0,z (F.36)

for M0,n. This notation allows us to distinguish M0,z′ from M0,z′′ if z′ and z′′ are two non-identical

subsets of z with k elements each (i.e. z′ 6= z′′ but |z′|= |z′′| = k). Let π denote a permutation of

(1, . . . ,n), which defines a dihedral structure. We may draw a regular n-gon, where the edges

are labelled by zπ1
, zπ2

, . . . , zπn in this order. In order to keep the notation simple let us assume

that π = (1,2, . . . ,n). Then the edges are labelled by z1, z2, . . . , zn.

We may think of the n-gon as the “dual graph of the dual graph”, as shown in fig. F.8. The

words “of the dual graph” refers to the dual graph of a nodal curve introduced in section F.2, the

words “dual graph of” refer to the construction of a dual graph from a planar graph as discussed

in section 3.4. In this example one starts from a Riemann sphere with six marked points z1-z6.

The dual graph is given by a genus-0 vertex with six external legs. Choosing a dihedral structure

defines in particular a cyclic order and we draw the dual graph with this cyclic order in the plane.

We then construct the dual graph of the dual graph, this gives the hexagon. Please note that
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z1

z2 z3

z4

z5z6

Figure F.8: An example of the relation between the dual graph (red) and the n-gon (black).

the term “dual graph” is used with two different meanings: Once we mean the graph dual to a

Riemann sphere with marked points, the second meaning refers to the dual of a graph drawn in a

plane.

A chord of the polygon connects two non-adjacent vertices and may be specified by giving

the two edges preceding the two vertices in the clockwise orientation. Thus (i, j) denotes the

chord from the vertex between edge zi and zi+1 to the vertex between the edge z j and z j+1. There

are

1

2
n(n−3) (F.37)

chords for a regular n-gon. We denote by χ(z,π) the set of all chords of the n-gon defined by the

set z and the dihedral structure π. Each chord defines a cross-ratio as follows (for the dihedral

structure π = (1,2, . . . ,n)):

ui, j = [i, i+1| j+1, j] =

(
zi− z j+1

)(
zi+1− z j

)
(
zi− z j

)(
zi+1− z j+1

) (F.38)

For an arbitrary dihedral structure π we set

uπ
i, j =

[
πi,πi+1|π j+1,π j

]
=

(
zπi− zπ j+1

)(
zπi+1
− zπ j

)
(
zπi− zπ j

)(
zπi+1
− zπ j+1

) . (F.39)

As already mentioned, the cross-ratio is invariant under PSL(2,C)-transformations. Each cross-

ratio defines a function

M0,z → CP1\{0,1,∞}, (F.40)

or equivalently

M0,z → C\{0,1}. (F.41)



F.4. THE GENUS ZERO CASE 619

If a cross-ratio takes a value from the set {0,1,∞}, one can show that two points of the zi’s

coincide (which contradicts the assumption that all marked points are distinct). The set of all

cross-ratios for a given dihedral structure π defines an embedding

M0,z → Cn(n−3)/2. (F.42)

We may now consider the Zariski closure of the image of this embedding and take the Zariski

closure as a chart of the dihedral extension M π
0,z. This defines the dihedral extension M π

0,z. Since

the chart and the dihedral extension M π
0,z are homeomorphic, one usually does not distinguish

between the two. The Deligne-Mumford-Knudsen compactification is obtained by gluing these

charts together:

M 0,z =
⋃
π

M π
0,z, (F.43)

where π ranges over the (n−1)!/2 inequivalent dihedral structures.

Example 1: The simplest case is n = 4 and from (z1,z2,z3,z4) = (0,z,1,∞) we concluded that

M0,4 ≃ CP1\{0,1,∞} ≃ C\{0,1} . (F.44)

For n = 4 there are three inequivalent dihedral structures, which we may take as

π1 = (1,2,3,4) , π2 = (2,3,1,4) , π3 = (3,1,2,4) . (F.45)

For each dihedral structure there are two chords. Let’s start with π1. We have

uπ1

1,3 = [1,2|4,3] = 1− z, uπ1

2,4 = [2,3|1,4] = z. (F.46)

The embedding is given by

M0,4 = C\{0,1} → C2,

z →
(

1− z
z

)
. (F.47)

Taking the closure of the image, we add the points

(
1

0

)
,

(
0

1

)
. (F.48)

Therefore

M π1

0,4 = C = CP1\{∞} . (F.49)

The point at infinity has not been added. In order to get the point at infinity we look at the other

dihedral extensions. We have

uπ2

1,3 = [2,3|4,1] =
1

z
, uπ2

2,4 = [3,1|2,4] = 1− 1

z
, (F.50)
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and therefore

M π2

0,4 = CP1\{0} . (F.51)

Furthermore

uπ3

1,3 = [3,1|4,2] = 1− 1

1− z
, uπ3

2,4 = [1,2|3,4] =
1

1− z
, (F.52)

and hence

M π3

0,4 = CP1\{1} . (F.53)

In total we find

M 0,4 = CP1, M 0,4\M0,4 = {0,1,∞} . (F.54)

We have constructed three charts for M 0,4, indexed by the dihedral structures π1, π2 and π3. A

single chart does not cover M 0,4, we need at least two of them. The boundary divisor M 0,4\M0,4

consists of three points. This is a particular simple example, where blow-ups do not yet enter.

Example 2: In order to see how blow-ups enter the game, we discuss the next more compli-

cated example given by n = 5. With (z1,z2,z3,z4,z5) = (0,z2,z3,1,∞) we have

M0,5 ≃ {(z2,z3) | zi ∈ C, zi 6= 0,1, z2 6= z3} . (F.55)

There are now 12 inequivalent dihedral structures. Let us take π=(1,2,3,4,5). For each dihedral

structure we have 5 chords. We have

u1,3 = [1,2|4,3] =
z3− z2

(1− z2)z3
,

u1,4 = [1,2|5,4] = 1− z2,

u2,4 = [2,3|5,4] =
1− z3

1− z2
,

u2,5 = [2,3|1,5] =
z2

z3
,

u3,5 = [3,4|1,5] = z3. (F.56)

The five cross-ratios define the embedding

M0,5 → C5, (F.57)

the image of this embedding is contained in a plane. The image does not include five lines, given

by the intersection of the plane with one of the hyperplanes defined by

u1,3 = 0, u1,4 = 0, u2,4 = 0, u2,5 = 0, u3,5 = 0. (F.58)
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✲

✻

z2

z3

=

✲

✻

z2

z3

+

✲

✻

z2

z3

=

✲

✻

z2

z′3

+

✲

✻

z′2

z3

Figure F.9: The blow-up of the point (z2,z3) = (0,0).

One checks, that the intersection of the plane with one of the hyperplanes defined by

u1,3 = 1, u1,4 = 1, u2,4 = 1, u2,5 = 1, u3,5 = 1 (F.59)

does not give new lines, for example u3,5 = 1 is equivalent to u2,4 = 0. For the Zariski closure we

add these five lines back. Let us now understand how we get from the red triangle X in the left

picture of fig. F.7 to the pentagon in the right picture. It is clear that we have away from critical

values the correspondence

u1,3 = 0 ⇒ z2 = z3,

u2,5 = 0 ⇒ z2 = 0,

u2,4 = 0 ⇒ z3 = 1. (F.60)

This gives us three edges of the pentagon. Let us now see what happens, if we blow-up the

point (z2,z3) = (0,0) by CP1. For CP1 we need two charts. In the first chart (z2 6= 0) we use

coordinates (z2,z′3), where z′3 is related to the old coordinates by

z3 = z2z′3 ⇔ z′3 =
z3

z2
. (F.61)

In the second chart (z3 6= 0) we use coordinates (z′2,z3), where z′2 is related to the old coordinates

by

z2 = z3z′2 ⇔ z′2 =
z2

z3
. (F.62)
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Graphically this is shown in fig. F.9. Note that the procedure for the blow-up of this point is

completely analogous to the discussion in chapter 10. The condition u3,5 = 0 gives in the second

chart the line z3 = 0, i.e. the blow-up of the point (0,0).
A similar argumentation holds for the blow-up of the point (z2,z3) = (1,1) and the condition

u1,4 = 0.

F.4.2 The associahedron

Let us discuss the dihedral extension M π
0,z in more detail. We recall that the construction of M π

0,z
requires the specification of a dihedral structure π (i.e. a permutation up to cyclic permutations

and reflection). We will need a few properties of the dihedral extension M π
0,z [457]:

1. The complement M π
0,z\M0,z is a normal crossing divisor, whose irreducible components

are

Di j =
{

ui, j = 0
}
, (F.63)

indexed by the chords (i, j) ∈ χ(z,π).

2. Each divisor is again a product of spaces of the same type: Let us consider a chord (i, j).
This chord decomposes the original polygon (z,π) into two smaller polygons, as shown in

fig. F.10. We denote the new edge by ze. The set of edges for the two smaller polygons are

z′∪{ze} and z′′∪{ze}, where z = z′∪ z′′ and z′∩ z′′ = /0. The two smaller polygons inherit

their dihedral structures π′ and π′′ from π and the chord (i, j). We have

Di j
∼= M π′

0,z′∪{ze}×M π′′
0,z′′∪{ze}. (F.64)

This factorisation translates to the dual graphs, as shown in fig. F.11. Iteration of this

procedure corresponds to a triangulation of the n-gon or equivalently to a dual tree graph

with three-valent vertices only.

Let us now consider the space of real points. For a given set z and dihedral structure π we set

Xπ
0,z =

{
ui, j > 0 : (i, j) ∈ χ(z,π)

}
(F.65)

and

X
π
0,z =

{
ui, j ≥ 0 : (i, j) ∈ χ(z,π)

}
. (F.66)

One has

M0,n(R) =
⊔
π

Xπ
0,z, (F.67)

where π ranges again over the (n−1)!/2 inequivalent dihedral structures.

For a given set z and dihedral structure π the cell X
π
0,z is called a Stasheff polytope or associ-

ahedron [458–461]. The associahedron has the properties
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z1

z2 z3

z4

z5z6

z1

z2 z3

z4

z5z6

z1

z2 z3

z4

z5z6

ze ze

Figure F.10: A hexagon, where the edges are labelled by the cyclic ordered variables

(z1,z2, . . . ,z6) (left picture). The middle picture shows the chord (2,5). Right picture: A chord

divides the hexagon into two lower n-gons, in this case two quadrangles.

Figure F.11: The limit ui, j → 0 leads to a factorisation of the dual graph (left). A complete

triangulation of the n-gon leads to a dual graph with trivalent vertices only (right).
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1. Its facets (i.e. codimension one faces)

Fi j =
{

ui, j = 0
}
, (F.68)

are indexed by the chords (i, j) ∈ χ(z,π).

2. From eq. (F.64) it follows that each facet is a product

Fi j = X
π′
0,z′∪{ze}×X

π′′
0,z′′∪{ze}. (F.69)

3. Two facets Fi j and Fkl meet if and only if the chords (i, j) and (k, l) do not cross.

4. Faces of codimension k are given by sets of k non-crossing chords. In particular, the set

of vertices of X
π
0,z are in one-to-one correspondence with the set of triangulations of the

n-gon defined by the set z and the dihedral structure π.

Properties (1) and (2) are the analogues of eq. (F.63) and eq. (F.64), respectively. The associahe-

dron for n = 5 is shown in fig. F.12.

Let us now have a closer look at coordinates on M π
0,z. We already introduced the simplicial

coordinates (z2, . . . ,zn−2) in eq. (F.25). Let us fix a dihedral structure π. Without loss of gener-

ality we may take the cyclic order to be (1,2, . . . ,n). Let us consider a chord from χ(z,π). Due

to cyclic invariance we may limit ourselves to chords of the form (i,n). With the gauge choice

z1 = 0, zn−1 = 1 and zn = ∞ we have

u2,n =
z2

z3
, . . . u(n−3),n =

zn−3

zn−2
, u(n−2),n = zn−2, (F.70)

and hence

zi =
n−2

∏
j=i

u j,n, i ∈ {2, . . . ,n−2}. (F.71)

Thus we may use as coordinates on M π
0,z instead of the (n− 3) coordinates (z2, . . . ,zn−2) the

(n−3) cross-ratios (u2,n, . . . ,un−2,n). We have

dn−3z =

(
n−2

∏
j=3

u j−2
j,n

)
dn−3u. (F.72)

Let us further set

x j = u−1
j,n, 2≤ j ≤ n−2. (F.73)

The x j’s are called cubical coordinates.

Exercise 132: Let (z2, . . . ,zn−2) be simplicial coordinates and (x2, . . . ,xn−2) the corresponding cubi-
cal coordinates. Show that

Limn−2...m3m2
(xn−2, . . . ,x3,x2) = (−1)n−3 Gmn−2...m3m2

(zn−2, . . . ,z3,z2;1) (F.74)
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Figure F.12: The associahedron for n = 5 (blue). For the Riemann sphere with n marked points

the associahedron is a (n− 3)-dimensional object. The codimension k faces are either indexed

by an n-gon with k non-crossing chords (black) or by dual graphs with k internal edges (red).
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z1

z2 z3

z4

z5z6

Figure F.13: The three chords (2,6), (3,6) and (4,6) define cross-ratios u2,6, u3,6 and u4,6,

which may be used as coordinates on M π
0,6 (for π = (1,2,3,4,5,6)).

Let us now fix i0 ∈ {2, . . . ,n− 2}. We will study the limit ui0,n → 0. The chord (i0,n) splits

the polygon into two smaller polygons. We set z′ = (z1,z2, . . . ,zi0) and z′′ = (zi0+1, . . . ,zn). As

before we label the new edge by ze. One of the two smaller polygons has the edges z′∪{ze} and

the dihedral structure π′ = (1,2, . . . , i0,e), the other smaller polygon has the edges z′′∪{ze} and

the dihedral structure π′′ = (e, i0 +1, i0 +2, . . . ,n). In the limit ui0,n→ 0 we have

lim
ui0,n→0

ui, j = 1 (F.75)

for any chord (i, j) ∈ χ(z,π) which crosses the chord (i0,n) ∈ χ(z,π).

F.5 The genus one case

Let us now turn to the genus one case. We use the genus one case to introduce fine and coarse

moduli spaces.

F.5.1 Fine and coarse moduli spaces

A moduli space is a space (or a scheme or a stack), whose points represent isomorphism classes

of algebro-geometric objects.

Let us now introduce the concepts of a fine moduli space and of a coarse moduli space. For

a fine moduli space M we require that

• there is a universal family of objects C →M , such that the fibre over z ∈M is the object

the point z is parametrising.

Example: If we consider the moduli space Mg of genus g curves, the fibre over z would be

given by the corresponding curve C.

• for any family of objects, parametrised by some base B, say CB→ B, we require that there

is a map

f : B→M , (F.76)
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and CB is isomorphic to f ∗C .

CB Cy
y

B
f−−−→ M

(F.77)

For a coarse moduli space M we require that

• for any family of objects, parametrised by some base B, say CB→ B, we require that there

is a map

f : B → M, (F.78)

which sends the fibres of B to their isomorphism classes.

A coarse moduli space does not necessarily carry any family of appropriate objects, let alone a

universal one. In other words, a fine moduli space includes both a base space M and an universal

family C →M , while a coarse moduli space only has the base space M.

F.5.2 Framed elliptic curves

We recall that an elliptic curve is a cubic curve in CP2 with a marked (rational) point. Equiva-

lently, we may represent an elliptic curve as the quotient of C by a lattice Λ:

C/Λ. (F.79)

The origin of C corresponds to the marked point.

A framed elliptic curve is an elliptic curve E together with an ordered basis γ1, γ2 of

H1(E,Z) such that the intersection number γ1 · γ2 = 1. A framing of a lattice Γ in C is an ordered

basis ψ1, ψ2 such that

Im

(
ψ2

ψ1

)
> 0. (F.80)

We may think of a framed elliptic curve as C/Λ together with the choice of an ordered basis ψ1,

ψ2 satisfying eq. (F.80). Two elliptic curves are isomorphic if there is a c ∈ C∗ such that

Λ′ = cΛ. (F.81)

Let Λ be generated by (ψ1,ψ2). We may therefore rescale the lattice such that ψ1 = 1 and

Im(ψ2) > 0. We label the basis vectors (1,τ). The same lattice is generated if we perform a

SL(2,Z)-transformation. Thus we are tempted to consider as a set

M1,1
∼= H/SL(2,Z) . (F.82)
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We will later see that this is just a coarse moduli space, not a fine one. In order to get a fine

moduli space we have to consider the orbifold

M1,1
∼= H�SL (2,Z) . (F.83)

We will define orbifolds in a second. But let us first discuss why the set M1,1 is just a coarse

moduli space. All points of M1,1 have a non-trivial stabiliser group. The stabiliser group (or

isotropy group or little group) of the point τ is

{γ ∈ SL(2,Z) |γ(τ) = τ} . (F.84)

There is an isomorphism between the stabilizer group at the point τ and the automorphism group

of the corresponding elliptic curve:

Aut(C/Λτ,0) ∼= {γ ∈ SL(2,Z) |γ(τ) = τ} . (F.85)

Each point in H is invariant under

γ =

(
−1 0

0 −1

)
. (F.86)

In addition, the point τ = i is invariant under S, while the point τ = r3 = exp(2πi/3) is invariant

under U = ST , where S and T are the usual generators of SL(2,Z):

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
, (F.87)

and hence

U =

(
0 −1

1 1

)
. (F.88)

The element S is of order 4, the element U is of order 6. Furthermore, S2 =U3 =−I. Thus

SL(2,Z) =
〈

S,T |S2 = (ST )3 ,S4 = I
〉
. (F.89)

We therefore have

Aut(C/Λτ,0) ∼= Z2, τ 6= i,r3, (F.90)

and

Aut(C/Λi,0) ∼= Z4, Aut(C/Λr3
,0) ∼= Z6. (F.91)
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F.5.3 The universal family of framed elliptic curves

We first discuss framed elliptic curves, i.e. elliptic curves together with a fixed choice of an

ordered basis ψ1,ψ2. We may construct a universal family of framed elliptic curves: Let us

consider C×H with an Z2-action given by

(n2,n1) : (z,τ) → (z+n2τ+n1,τ) . (F.92)

The Z2-action corresponds to the translation of z by a lattice vector. We set

CH = (C×H)/Z2. (F.93)

There is a projection

π : CH → H,

(z,τ) → τ (F.94)

such that the fibre over τ is C/Λτ.

A family of elliptic curves is framed, if it has a locally constant framing. This means that

the cycles γ1,γ2 ∈ H1(E,Z) defining the framing vary smoothly. The family CH→H is framed.

Let CB→ B be a family of framed elliptic curves. We have a function

f : B →H,

t →

∫
γ2(t)

ωt

∫
γ1(t)

ωt
, (F.95)

where ωt is any non-zero holomorphic differential one form on Ct . This mapping is called the

period mapping. The period mapping is holomorphic. Furthermore, CB is isomorphic to f ∗CH.

Thus H is a fine moduli space for families of framed elliptic curves.

Let us now try to remove the framing. In other words, we not only allow for z translations

by lattice vectors, but also allow a change of basis of the lattice vectors by a modular transforma-

tion. We consider again C×H, but now with the action of the semi-direct product SL (2,Z)⋉Z2.

We denote elements of this group by

(γ,~n) , γ ∈ SL(2,Z) , ~n = (n2,n1) ∈ Z2. (F.96)

The group composition is given by

(γ1,~n1)(γ2,~n2) , = (γ1γ2,~n1γ2 +~n2) . (F.97)

The group SL(2,Z)⋉Z2 acts on C×H as

z′ =
z+n2τ+n1

cτ+d
, τ′ =

aτ+b

cτ+d
. (F.98)
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In order to grasp the point of what follows, the following simple exercise is helpful:

Exercise 133: Let

γ =

(
−1 0

0 −1

)
, ~n = (0,0) . (F.99)

Work out z′ and τ′.

Let us now consider

CM1,1 = (C×H)/
(
SL (2,Z)⋉Z2

)
,

M1,1 = H/SL (2,Z) . (F.100)

There is a projection π : CM1,1 → M1,1 given by (z,τ)→ τ, but CM1,1 → M1,1 is not a universal

elliptic curve. To see this, let us consider the fibre above τ ∈M1,1. We have

π−1 (τ) = (C/Λτ,0)/Aut(C/Λτ,0) . (F.101)

For a generic value of τ we have Aut(C/Λτ,0)∼= Z2 and Z2 acts on z (see exercise 133) by

z′ = −z. (F.102)

This additional symmetry makes π−1(τ) isomorphic to the Riemann sphere CP1. In order to see

this, consider first the parallelogram spanned by 1 and τ. The additional Z2-symmetry identifies

the points

z and 1+ τ− z. (F.103)

Thus, we have to consider only half of the points, i.e. for example just the triangle as shown in

the figure below.

Along the edges of the triangle we then identify points which are symmetric around the mid-

point, as shown by the points of the same colour in the figure above. This gives a sphere.

In particular, no fibre of CM1,1 is an elliptic curve. Thus, CM1,1 →M1,1 is not a universal elliptic

curve and M1,1 is just a coarse moduli space.

F.5.4 Orbifolds

In order to get a fine moduli space, we have to introduce orbifolds. We start with the definition

of an orbifold chart (also called uniformising system) [462, 463]. Let Ui be a non-empty

connected topological space. An orbifold chart of dimension n for Ui is a quadruple (Vi,Γi,ρi,φi),
where
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• Vi is a connected and simply connected open subset of Rn,

• Γi is a finite group,

• ρi : Γi→ Aut(Vi) is a (not necessarily injective) homomorphism from Γi to the group of

smooth automorphisms of Vi. We set

Ker(Γi) = Ker(ρi) ⊆ Γi, Γred
i = ρi (Γi) ⊆ Aut(Vi) . (F.104)

• φi : Vi → Ui is a continuous and surjective map from Vi to Ui invariant under Γi, which

defines a homeomorphism

Vi/Γred
i → Ui. (F.105)

Note that we do not require that Γi acts effectively on Vi.

The chart (Vi,Γi,ρi,φi) is called linear, if the Γi-action on Rn is linear.

Next we define embeddings [464]: Let us consider Ui⊂U j, this defines an inclusion ι : Ui→U j.

Let (Vi,Γi,ρi,φi) be a chart for Ui and let (Vj,Γ j,ρ j,φ j) be a chart of U j. An embedding is given

by a pair (ψ ji,ρ ji), where

• ρ ji : Γi → Γ j is an injective group homomorphism, which induces a group isomorphism

ρ ji : Ker(Γi)→Ker
(
Γ j
)
,

• ψ ji : Vi→Vj is a homeomorphism, called gluing map, of Vi onto an open subset of Vj,

• the gluing map is compatible with the chart:

Vi
ψ ji−−−→ Vj

φi

y
yφ j

Ui
ι−−−→ U j

φ j ◦ψ ji = ι◦φi. (F.106)

• the gluing map is equivariant:

Vi
ψ ji−−−→ Vj

ρi(γi)

y
yρ j(ρ ji(γi))

Vi
ψ ji−−−→ Vj

ψ ji (ρi (γi) · x) = ρ j
(
ρ ji (γi)

)
·ψ ji (x) (F.107)

In order to simplify the notation we drop the maps ρi and ρ j (which are understood im-

plicitly), thus

ψ ji (γi · x) = ρ ji (γi) ·ψ ji (x) . (F.108)
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• the gluing map ψ ji is unique up to a right action of Γi and a left action of Γ j.

An orbifold atlas on X is a family of orbifold charts, which cover X and are compatible in the

following sense: Given a chart (Vi,Γi,ρi,φi) of Ui and a chart (Vj,Γ j,ρ j,φ j) of U j, and given any

x ∈Ui∩U j, there exists an open neighbourhood Uk ⊂Ui∩U j and a chart (Vk,Γk,ρk,φk) of Uk,

such there are embeddings

(Vk,Γk,ρk,φk) → (Vi,Γi,ρi,φi) ,

(Vk,Γk,ρk,φk) →
(
Vj,Γ j,ρ j,φ j

)
. (F.109)

Two such atlases are said to be equivalent, if they have a common refinement.

An orbifold O is the space X together with an equivalence class of orbifold atlases. The space X
is called the underlying space. An orbifold contains more information than just its underlying

space X .

Let M be a manifold and Γ a finite group acting properly on M. This defines an orbifold, which

we denote by M �Γ with underlying space M/Γ.

If x ∈ X and v ∈ φ−1(x) is a point in the inverse image of x in some local chart, then the sta-

biliser group at v is independent of the chart. We call this group the local group at x and denote

it by Γx. The singular points of an orbifold are the points x∈ X with a non-trivial local group Γx.

Example 1: The circle S1, defined by

x2 + y2 = 1, (F.110)

together with the group Γ : y→−y. Then S1 � Γ is an orbifold. The singular points are (−1,0)
and (1,0).

Example 2: The complex upper-half plane H with the group PSL (2,Z). Then

H�PSL (2,Z) (F.111)

is an orbifold. The singular points are τ = i and τ = r3.

Example 3: The complex upper-half plane H with the group SL(2,Z). Then

H�SL (2,Z) (F.112)

is an orbifold. All points of H/SL(2,Z) are singular points of the orbifold, since

(
−1 0

0 −1

)
(F.113)



F.5. THE GENUS ONE CASE 633

acts trivially.

Let O1 and O2 be two orbifolds. A smooth map between O1 and O2 is defined as follows:

There is a continuous map

f : X1 → X2 (F.114)

between the underlying spaces such that for any point x1 ∈ X1 there is a chart (V1,Γ1,ρ1,φ1)
around x1 and a chart (V2,Γ2,ρ2,φ2) around f (x1) together with a group homomorphism ρ :

Γ1→ Γ2 with the properties that f maps φ1(V1) into φ2(V2) and can be lifted to a smooth map

f̃ : V1 → V2 (F.115)

such that

φ2 ◦ f̃ = f ◦φ1,

f̃ (γ1 · x) = ρ(γ1) · f̃ (x) . (F.116)

In terms of commutative diagrams:

V1
f̃−−−→ V2

φ1

y
yφ2

U1
f−−−→ U2

V1
f̃−−−→ V2

γ1

y
yρ(γ1)

V1
f̃−−−→ V2

(F.117)

Let us discuss an example: We consider O1 = (C×C)� (Z2×Z2) and O2 = C�Z2, where

Z2 = {1,−1} denotes the multiplicative group, together with the group actions

O1 : (λ1,λ2) · (z1,z2) = (λ1z1,λ2z2) ,

O2 : λ · z = λz. (F.118)

An orbifold map O1→O2 is defined by

f : (C×C)/(Z2×Z2) → C�Z2,

(z1,z2) → z1, (F.119)

and

ρ : Z2×Z2 → Z2,

(λ1,λ2) → λ1. (F.120)

This is a projection and the fibre above the point [±z1] is given by the second factor O3 =C�Z2.
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Now let us discuss a slight modification of this example: We consider the case that some groups

act trivially:

Õ1 : (λ1,λ2) · (z1,z2) = (z1,λ2z2) ,

Õ2 : λ · z = z. (F.121)

Note that Õ1 is not identical to O1 and Õ2 is not identical to O2, as the group actions are different.

We consider an orbifold map Õ1→ Õ2 with f and ρ as in eq. (F.119) and eq. (F.120), respectively.

This is again a projection, where the fibre above the point [z1] is given by the second factor

Õ3 = C�Z2. Note that λ1 acts trivially on Õ1 and (through ρ) trivially on Õ2, but does not act

on Õ3.

F.5.5 The universal family of elliptic curves

With the preparation on orbifolds we are now in a position to present the universal family of

elliptic curves (without any framing). We set

C = (C×H)�
(
SL(2,Z)⋉Z2

)
,

M1,1 = H�SL (2,Z) . (F.122)

The projection C×H→H, given by (z,τ)→ τ, induces an orbifold morphism

C → M1,1. (F.123)

In more detail, this orbifold morphism is given by

f : (C×H)/
(
SL (2,Z)⋉Z2

)
→H/SL(2,Z) ,

(z,τ) → τ, (F.124)

and

ρ : SL(2,Z)⋉Z2 → SL (2,Z) ,

(γ,~n) → γ. (F.125)

The fibre above τ is C�Z2, i.e. an elliptic curve, and C →M1,1 is a fine moduli space of smooth

genus one curves with one marked point.

F.5.6 Compactification of M1,1

The moduli space M1,1 parametrises equivalence classes of smooth genus one curves with one

marked point, i.e. smooth elliptic curves. For the compactification M 1,1 we add one point,

corresponding to a nodal genus one curve with one marked point (the marked point does not

coincide with the node). Technically this is done as follows: We denote by D the (open) unit disc

D = { q̄ ∈ C | |q̄|< 1 } (F.126)
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and by D∗ the punctured unit disc

D∗ = D\{0} . (F.127)

We construct M 1,1 with the help of two charts. The first chart

M1,1 = H�SL (2,Z) (F.128)

covers M1,1 and has been discussed above. The second chart is given by

D�Z2, (F.129)

where Z2 acts trivially on D and is the relict of the modular transformation

(
−1 0

0 −1

)
(F.130)

The mapping between the coordinate τ on M1,1 and q̄ on D�Z2 is given by

q̄ = exp(2πiτ) . (F.131)

The two charts overlap on D∗�Z2.

We call an action of a group Γ on a space X virtually free, if Γ has a finite index subgroup

Γ′, that acts freely.

Let Γ be a discrete group which acts virtually free and properly discontinuous on X . Let Γ′

be the finite index normal subgroup, which acts freely. The orbifold Euler characteristic is

defined by

χ(X �Γ) =
1

[Γ : Γ′]
χ
(
X/Γ′

)
. (F.132)

For the two moduli spaces M1,1 and M 1,1 one finds the orbifold Euler characteristics

χ(M1,1) = − 1

12
, χ

(
M 1,1

)
=

5

12
. (F.133)
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Appendix G

Algebraic geometry

In the main part of this book we made no reference to sheaves or schemes, although they are

fundamental concepts in algebraic geometry. As mathematicians always aim to state theorems as

general as possible, this inevitably involves generalisations and abstraction, leading to sheaves

and schemes. It is therefore no surprise that one will encounter these terms in the mathematical

literature quite frequently. While physicists are certainly familiar with concrete examples of

sheaves and schemes, the abstract language makes it sometimes difficult to read mathematical

literature. In this appendix we give a short introduction to sheaves and schemes. This appendix

may serve as a survival kit for reading the mathematical literature.

References for sheaves and schemes are the books of Hartshorne [465], Eisenbud and Har-

ris [466] and Holme [467].

G.1 Topology

We start with the definition of a topology:

Let X be a set and T a collection of subsets of X . T is called a topology of X if

1. /0 ∈ T and X ∈ T ,

2. U1,U2 ∈ T ⇒U1∩U2 ∈ T ,

3. Uα ∈ T for all α ∈ I⇒ ⋃
α∈I

Uα ∈ T .

The pair (X ,T ) is called a topological space. A subset U ⊆ X is called open if U ∈ T . A

subset A⊆ X is called closed if the complement X\A is open. For closed sets we have

1. /0 and X are closed sets,

2. if A and B are closed, then A∪B is closed,

3. if Aα is closed, where α ∈ I, then
⋂

α∈I
Aα is closed.

637
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The closure of an open set U is denoted by U . We defined a topological space by its open sets.

Alternatively, we may define a topological space by its closed sets and the requirement that the

closed sets satisfy items 1-3 for closed sets.

A map between topological spaces is called continuous if the pre-image of any open set is

again open. A bijective map which is continuous in both directions is called a homeomorphism.

A topological space is called Hausdorff if for any two distinct points x1,x2 ∈ X there exist

open sets U1,U2 ∈ T with

p1 ∈U1, p2 ∈U2, U1∩U2 = /0. (G.1)

For a subset X ′ ⊆ X we define the induced topology by

T ′ =
{

U ′|U ′ =U ∩X ′,U ∈ T
}
. (G.2)

Note that U ′ is open in X only if X ′ is open in X .

A topological space X is called irreducible, if it cannot be expressed as the union of two

proper closed subsets, otherwise the topological space is called reducible.

Let Y ⊆ X . Y is called an irreducible component of X if Y is irreducible (within the relative

topology T ′) and if Y is maximal (i.e. Y ⊆ Y ′ and Y ′ irreducible implies Y = Y ′). Note that if Y
is an irreducible component of X , then Y = Y .

Let X be a topological space. The dimension of X is defined to be the supremum of all

integers n such that there exists a chain

Y0 ⊂ Y1 ⊂ ...⊂ Yn (G.3)

of distinct irreducible subsets of X .

Theorem 46. A topological space X is the union of irreducible components Yα:

X =
⋃
α

Yα (G.4)

A topological space X is called a Noetherian space, if each ascending chain of open sets

U1 ⊆U2 ⊆ ... becomes stationary, i.e. there exists a k ∈ N with U j = Uk for all j ≥ k. This is

equivalent to the requirement that each descending chain of closed sets A1 ⊇ A2 ⊇ ... becomes

stationary. A third equivalent formulation is, that each non-empty set of open sets contains a

maximal element.

Theorem 47. Let X be a Noetherian topological space. Then X has only a finite number of
irreducible components Y1,Y2, ...,Yr:

X = Y1∪Y2∪ ...∪Yr. (G.5)

If we require Yi 6⊆Yj, this decomposition is unique up to ordering.

G.2 Rings

Rings play an essential part in the the theory of schemes. In this section we recall the most

important facts and definitions.
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A set (R,+, ·) is called a ring if

(R1) : (R,+) is an Abelian group,

(R2) : the operation · is associative: a · (b · c) = (a ·b) · c,

(R3) : the operation · is distributive with respect to the operation +:

a · (b+ c) = (a ·b)+(a · c),
(a+b) · c = (a · c)+(a ·b). (G.6)

The trivial ring (or zero ring) is the ring consisting of one element 0 with 0+ 0 = 0 and

0 ·0 = 0. The trivial ring is denoted by {0}.
If there is a neutral element 1 for the operation ·, the ring is called a ring with 1. Other

names for a ring with 1 are unital ring, ring with unity or ring with identity.

A ring (R,+, ·) is called commutative if the operation · is commutative :

a ·b = b ·a. (G.7)

Let R be a ring with 1. An element a ∈ R is called invertible or unit in R, if a has a left-inverse

and a right-inverse with respect to multiplication. We denote the set of invertible elements by R∗.
R∗ is a group with respect to multiplication.

An element a ∈ R, a 6= 0 is called zero-divisor, if there is a b ∈ R, b 6= 0 such that ab = 0 or

ba = 0.

A non-trivial commutative ring with 1 and with no zero-divisors is called an integral domain.

Of particular importance are ideals of a ring:

A sub-group I of (R,+) is called an ideal (or two-sided ideal), if

(I1) : r ·a ∈ I for all r ∈ R and a ∈ I (or short RI ⊆ I),

(I2) : a · r ∈ I for all r ∈ R and a ∈ I (or short IR⊆ I).

If a sub-group I of (R,+) satisfies only RI⊆ I, we call I a left-ideal. Similar, if a sub-group

I of (R,+) satisfies only IR⊆ I, we call I a right-ideal.

Every ring R has the ideals {0} and R. We call a non-trivial ring simple, if these are the only

ideals. An ideal I is called a proper ideal, if I 6= R.

An ideal I is called a principal ideal, if it is generated by one element:

I = 〈a〉 . (G.8)

R is called a principal ideal ring if every ideal I of R is a principal ideal. If R is an integral

domain and every ideal I of R is a principal ideal, then R is called a principal ideal domain.
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Let R be a commutative ring with 1. An ideal P is called a prime ideal, if P is a proper ideal

and

a ·b ∈ P ⇒ a ∈ P or b ∈ P. (G.9)

An ideal P in a commutative ring R with 1 is prime if and only if R/P is an integral domain.

An ideal M is called a maximal ideal, if M is a proper ideal and for any other ideal I with

M ⊆ I ⊆ R (G.10)

it follows that I = M or I = R. Every ring with 1 contains a maximal ideal. An ideal M in a

commutative ring R with 1 is maximal if and only if R/M is a field. Every maximal ideal M in a

commutative ring R with 1 is a prime ideal.

The height of a prime ideal P is the supremum of all integers n such that there exists a chain

P0 ⊂ P1 ⊂ ...⊂ Pn = P (G.11)

of distinct prime ideals. The dimension or Krull dimension of the ring R is defined to be the

supremum of the heights of all prime ideals.

Let R be a commutative ring with 1. R is called a local ring if R contains exactly one maximal

ideal. In order to check if a ring is local, the following theorem is useful:

Theorem 48. Let R be a commutative ring with 1. R is a local ring if and only if the set of
non-invertible elements N = R\R∗ is an ideal in R. If N is an ideal in R then N is a maximal
ideal and the only maximal ideal in R.

The concept of localisation is of central importance for the theory of schemes: Let R be

a commutative ring with 1 and S a subset of R closed under multiplication together with the

conditions 1 ∈ S and 0 /∈ S. One defines the quotient ring

RS =

{ [r

s

]
| r ∈ R,s ∈ S :

r1

s1
∼ r2

s2
⇔ ∃ s ∈ S such that s(s2r1− s1r2) = 0

}
(G.12)

The ring R is a subring of RS via the identification

r =
[ r

1

]
. (G.13)

If P is a prime ideal of R, we may consider SP = R\P. By definition of a prime ideal this set is

closed under multiplication. The quotient ring RSP is a local ring. We denote the maximal ideal

by PSP . One often simplifies the notation and writes

RP = RSP , P = PP = PSP . (G.14)

Exercise 134: Let R be a commutative ring with 1 and P a prime ideal. Set SP = R\P. Show that SP is
closed under multiplication.
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Exercise 135: Consider the commutative ring Z and the prime ideal P = 〈5〉. Define SP = Z\〈5〉.
Describe the quotient ring RSP and its maximal ideal PSP .

Finally, let us introduce Noetherian rings and Artinian rings:

A ring R is called a Noetherian ring if one of the following conditions is satisfied:

1. Every ascending sequence I1⊆ I2⊆ ... of ideals I j of R becomes stationary, i.e. there

exists a k ∈ N with I j = Ik for all j ≥ k.

2. Every non-empty set of ideals of R, partially ordered by inclusion, has a maximal

element with respect to set inclusion.

3. Every ideal I of R is finitely generated.

A ring R is called a Artinian ring if every descending sequence I1 ⊇ I2 ⊇ ... of ideals I j

of R becomes stationary, i.e. there exists a k ∈ N with I j = Ik for all j ≥ k.

G.3 Algebraic varieties

Affine algebraic varieties

Let A be an algebraically closed field. The set of all n-tuples of elements of A defines the affine

n-space over A, which we denote by An. An element x ∈ An will be called a point, and if

x = (x1, ...,xn) with xi ∈ A, then the xi will be called the coordinates of x.

Let T = (t1, ..., tn) be an n-tuple of independent variables, A[T ] = A[t1, ..., tn] the ring of

polynomials over the field A and let A⊂ A[T ]. An affine algebraic set is given by

V (A) = { x ∈ An | f (x) = 0 ∀ f ∈ A }. (G.15)

Note that V (A) = V (A), where A = 〈A〉 is the ideal generated by A in A[T ]. Note further that

A[T ] is a Noetherian ring, therefore every ideal is generated by a finite set of polynomials. If

A = 〈 f 〉 is a principal ideal, e.g. generated by one element f , then V ( f ) is called a hyperplane

in An. V is antiton, i.e.

A ⊆ B ⇒ V (B)⊆V (A). (G.16)

The empty set /0 and the whole space An are algebraic sets:

/0 = V (〈1〉) , An = V ({0}) . (G.17)

We further have

V (A)∪V (B) = V (AB) = V (A ∩B),⋂
i∈I

V (Ai) = V (∑
i∈I

Ai). (G.18)
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Thus the algebraic sets can be viewed as closed sets. The open sets are then given as the comple-

ments of the closed sets. This defines the Zariski topology.

An affine algebraic variety is an irreducible closed subset of An (within the induced

topology). An open subset of an affine algebraic variety is called a quasi-affine algebraic

variety.

Note that the terminology differs in the literature: Some authors use the term “affine algebraic

variety” for an affine algebraic set and indicate explicitly if they refer to an irreducible set.

Let’s look at an example: We take A = C and consider the affine line A1 = C1. The proper

irreducible closed subsets of C1 are sets {x} consisting of a single point x. The non-trivial open

sets are the complements: C1\{x}. Please note that the affine line C1 together with the Zariski

topology is not a Hausdorff space: It is impossible to find open sets U1 and U2 with x1 ∈ U1,

x2 ∈U2 and U1∩U2 = /0.

The annihilation ideal of a set Y ⊆ An is defined by

I(Y ) = { f ∈ A[T ] | f (x) = 0 ∀x ∈ Y }. (G.19)

We have

I( /0) = A[T ], I(An) = {0} , (G.20)

and

Y1 ⊆Y2 ⇒ I(Y2)⊆ I(Y1). (G.21)

For any two subsets Y1,Y2 ⊆ An we have

I (Y1∪Y2) = I (Y1)∩ I (Y2) . (G.22)

We have for any ideal A

I (V (A)) = RadA , (G.23)

where RadA denotes the radical of A :

RadA = { f ∈ A[T ] | f r ∈ A for some r ∈ N } . (G.24)

We further have for any set Y ⊆ An

V (I (Y )) = Y . (G.25)

There is a one-to-one inclusion-reversing correspondence between algebraic sets in An and radi-

cal ideals (i.e. ideals which are equal to their own radical) in A[T ], given by

Y → I(Y ), A →V (A) . (G.26)

Furthermore, an algebraic set is irreducible if and only if its ideal is a prime ideal.

Let Y be an affine algebraic set. The affine coordinate ring of Y is defined by

A[T ]/I (Y ) . (G.27)

If Y is an affine algebraic set, then the dimension of Y is equal to the dimension of its affine

coordinate ring.
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Projective algebraic varieties

Let’s now consider the projective case. We denote by Pn(A) (or Pn for short) the n-dimensional

projective space over the field A. Points x ∈ Pn will be denoted by x = [x0 : x1 : ... : xn]. We now

consider homogeneous polynomials f ∈ A[t0, ..., tn]. We denote by Ah[T ] the set of homoge-

neous polynomials in A[t0, ..., tn]. Let A⊆ Ah[T ]. A projective algebraic set is given by

V (A) = { x ∈ Pn | f (x) = 0 ∀ f ∈ A }. (G.28)

A projective algebraic variety is an irreducible projective algebraic set. An open subset

of a projective algebraic variety is a quasi-projective variety.

As in the affine case the algebraic sets are the closed sets within the Zariski topology. The

annihilation ideal of a set Y ⊆ Pn is defined by

I(Y ) = { f ∈ Ah[T ] | f (x) = 0 ∀x ∈ Y }. (G.29)

Note that all f ’s are homogeneous polynomials.

Let Y be a projective algebraic set. The homogeneous coordinate ring of Y is defined by

A[T ]/I (Y ) . (G.30)

If Y is a projective algebraic set, then the dimension of Y is equal to the dimension of its homo-

geneous coordinate ring minus one.

Every affine variety is also a quasi-projective variety. Furthermore the complement of an

algebraic set in an affine variety is a quasi-projective variety. In the following we will take

“variety” to mean either an affine, a quasi-affine, a projective or a quasi-projective variety.

Regular functions

Let X be a quasi-affine algebraic variety in An. We consider functions

f : X → A. (G.31)

A function f : X→A is regular at a point x if there is an open neighbourhood U with x∈U ⊆ X ,

and polynomials p,q ∈ A[T ], such that q is nowhere zero on U , and

f =
p

q
(G.32)

on U . The function f is regular on X if it is regular at every point of X .

Let X be now a quasi-projective algebraic variety in Pn. A function f : X →A is regular at

a point x if there is an open neighbourhood U with x ∈U ⊆ X , and homogeneous polynomials

p,q ∈ A[t0, t1, ..., tn] of the same degree, such that q is nowhere zero on U , and

f =
p

q
(G.33)
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on U . The function f is regular on X if it is regular at every point of X .

Let X be a variety. We denote by O(X) the ring of all regular functions on X .

Let x be a point of X . We define the local ring Ox of x on X to be the ring of germs of

regular functions on X near x. In other words, an element of Ox is a pair (U, f ), where U is an

open subset of X containing x, and f is a regular function on U , and we identify two such pairs

(U1, f1) and (U2, f2) if f1 = f2 on U1∩U2. Ox is a local ring: its maximal ideal M is the set of

germs of regular functions which vanish at x. The residue field Ox/M is isomorphic to A.

The function field A(X) of X is defined as follows: an element of A(X) is an equivalence

class of pairs (U, f ), where U is a non-empty open subset of X , f is a regular function on U , and

where we identify two pairs (U1, f1) and (U2, f2) if f1 = f2 on U1∩U2. The elements of A(X)
are called rational functions on X .

G.4 Sheaves

The law of physics are often given locally, i.e. as differential equations. Prominent examples are

the equations of motion for a particle or – in the context of this book – the differential equations

for a family of Feynman integrals. We almost never state it explicitly, but the first step is usually

to study these systems in an open neighbourhood of a point of interest. Thus we have open sets U
(with a time coordinate t in the case of equation of motions and with kinematic coordinates x in

the case of Feynman integrals) and we are interested in local sections with values in some space

(position space in the case of a particle or a vector space with dimension equal to the number

of master integrals in the case of Feynman integrals), giving us the trajectory of a particle as

a function of t or the values of the Feynman integrals as a function of x. Of course, the result

should not change if we restrict to a slightly smaller open set U ′ ⊂U . Furthermore, if we have

two overlapping open sets U1 and U1 the results on the intersection U1∩U2 should be compatible.

Sheaves formalise this concept. We may think of a sheaf as data attached to open sets of a

topological space, compatible with restriction to smaller open set and compatible with intersec-

tions of open sets.

Let’s now consider the definition: We start with the definition of a presheaf. Let X be a

topological space, and let C be a category. Usually C is taken to be the category of sets, the

category of groups, the category of Abelian groups or the category of commutative rings. A

presheaf F on X assigns to each open set U ⊂ X an object F (U) ∈ C , called the sections of F
over U , and to each inclusion of open sets U ⊂ V a morphism rV,U : F (V )→ F (U), called the

restriction map, satisfying:

• For every open set U ∈ X , the restriction morphism rU,U : F (U)→ F (U) is the identity.

• For any triple U ⊂V ⊂W of open sets,

rW,U = rV,U ◦ rW,V . (G.34)

By virtue of this relation, we may write σ|U for rV,U(σ) without loss of information.

A sheaf is a presheaf, which in addition satisfies the following two conditions:
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• Locality: Let (Ui) be an open covering of an open set U , and σ,τ ∈ F (U), such that

σ|Ui
= τ|Ui

for each subset Ui of the covering, then

σ = τ. (G.35)

This means that a section over U is determined by all its restrictions to subsets Ui of U .

• Gluing: Let (Ui) be an open covering of an open set U . If for each i a section σi ∈ F (Ui)
is given with the property that for any pair i, j we have

σi|Ui∩U j
= σ j

∣∣
Ui∩U j

, (G.36)

then there exists a section σ ∈ F (U) such that

σ|Ui
= σi (G.37)

for all i. This allows the passage from local data to global data: A section ρ on U may be

assembled from the local data on the subsets Ui of U .

Let F be a sheaf on X and x ∈ X a point. We define the stalk Fx at x to be the direct limit of

F (U) for all open sets U containing x

Fx = lim−→
U∋x

F (U). (G.38)

The direct limit is taken over all open subsets of X containing the point x with the restriction

map. An element σ ∈ Fx is called a germ.

Let’s look at a few examples of sheaves which occur frequently. Example of sheaves, which

take values in the category of Abelian groups, are:

O(U) holomorphic functions on U with addition,

O∗(U) holomorphic functions on U which are nowhere zero with multiplication,

M (U) meromorphic functions on U with addition,

M ∗(U) meromorphic functions on U without the zero function with multiplication,

Λp(U) p-forms on U with addition,

Ωp(U) holomorphic p-forms on U with addition,

Z(U) locally constants Z-valued functions on U with addition.

Example of sheaves, which take values in the category of commutative rings with 1, are:

O(U) holomorphic functions on U with addition and multiplication,

Z(U) locally constants Z-valued functions on U with addition and multiplication.

Example of sheaves, which take values in the category of rings with 1, are:

Λ•(U) differential forms on U with addition and the wedge product,

Ω•(U) holomorphic differential forms on U with addition and the wedge product.

The notation FU instead of F (U) is also used frequently.
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G.5 The spectrum of a ring

Let R be a commutative ring with 1. The spectrum Spec(R) of R is a pair (S,O), where S is a

set with a topology defined on it (hence a topological space) and O a sheaf on S. The sheaf O is

called the structure sheaf. By abuse of notation, the set S is also often denoted as Spec(R). It

should be clear from the context if the set S or the pair (S,O) is meant.

The set S is given as the set of all prime ideals of R:

S = Spec (R) = { P | P prime ideal of R } . (G.39)

Example:

Spec(Z) = {(0) ,(2) ,(3) ,(5) ,(7) ,(11) , ...} . (G.40)

Let I be an ideal of R. We set

V (I) = {P ∈ Spec (R) | I ⊆ P} . (G.41)

We have V (R) = /0, V ({0}) = Spec(R) and

V (I1 · I2) = V (I1)∪V (I2) ,

V

(
∑
α

Iα

)
=

⋂
α

V (Iα) . (G.42)

This defines a topology on S, where the V (I) are the closed sets.

Now let P be a prime ideal of R and denote by RP the localisation of R at P. We now define

the structure sheaf O. Let U ⊆ Spec(R) be an open set. The sheaf O(U) consists of functions

σ : U →
⊔

P∈U

RP, (G.43)

where
⊔

denotes the disjoint union, such that

1.

σ(P) ∈ RP (G.44)

2. σ is locally a quotient of elements from R: This means that for all P ∈U there exists a V
with P ∈V and V ⊆U as well as a,b ∈ R such that for all Q ∈V we have b /∈ Q and

σ(Q) =
a

b
(G.45)

in RQ.

Let’s look at an example: The structure sheaf of Spec(Z) has Q as stalk in the point (0). For a

prime number p the stalk at (p) is Z localised at (p) (see exercise 135).
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G.6 Schemes

A pair (X ,OX) of a topological space X and a sheaf of commutative rings with 1 on X is called

a ringed space. The sheaf OX is called the structure sheaf of the space. If all the stalks of the

structure sheaf are local rings, the pair (X ,OX) is called a locally ringed space.

Examples:

1. An arbitrary topological space X can be considered a locally ringed space by taking OX to

be the sheaf of real-valued (or complex-valued) continuous functions on open subsets of

X . The stalk at a point x can be thought of as the set of all germs of continuous functions

at x; this is a local ring with maximal ideal consisting of those germs whose value at x is 0.

Remark: There may exist continuous functions over open subsets of X that are not the

restriction of any continuous function over X .

2. If X is a differentiable manifold, we may take the sheaf of differentiable functions. If X is

a complex manifold, we may take the sheaf of holomorphic functions. Both of these give

rise to locally ringed spaces.

3. If X is an algebraic variety with the Zariski topology, we can define a locally ringed space

by taking OX(U) to be the ring of rational mappings defined on the open set U that do not

become infinite on U .

We now have all ingredients to define a scheme. We do this in two steps: We first define an

affine scheme and then a (general) scheme. You may think about the relation between an affine

scheme and a scheme as being similar to the relation between a coordinate patch and a manifold,

the latter being described by a collection of coordinate patches.

An affine scheme is a locally ringed space (X ,OX) which is isomorphic (as a locally

ringed space) to the spectrum of some ring R.

A scheme is a locally ringed space (X ,OX) such that every point x ∈ X has an open neigh-

bourhood U such that (U,OX |U) is an affine scheme.
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Appendix H

Algorithms for polynomial rings

In this appendix we review a few basic algorithms related to polynomial rings. We discuss

algorithms for computing a Gröbner basis, a Nullstellensatz certificate, an annihilator and the

syzygy module.

H.1 Computing a Gröbner basis

One of the essential tools is the computation of a Gröbner basis. Most computer algebra systems

offer implementations to do this. Here we review the basics. A standard reference is the book by

Adams and Loustaunau [144].

Let F be a field and F[x1, . . . ,xn] the ring of polynomials in n variables x1, . . . ,xn with coeffi-

cients from the field F. We fix a term order, which we denote by <.

Consider now f ,q1, . . . ,qr ∈ F[x1, . . . ,xn]. Using long division (almost as in primary school)

we may write

f =
r

∑
j=1

h jq j + r, (H.1)

with h jq j ≤ f , r ≤ f and no term in r is divisible by any leading term lt(q j). r is called a

remainder for f with respect to {q1, . . . ,qr}. The division algorithm proceeds as follows: We

start with one polynomial from the set q1, . . . ,qr, say q1 and check if lt(q1) divides lt( f ). If this

is the case, we reduce f , if this is not the case, we try the next polynomial q2. If none of the

leading terms lt(q j) divides lt( f ), we move lt( f ) from f to the remainder and continue with the

next term of f . Note that the result of the division algorithm is not necessarily unique. The result

may depend on the order in which we try the polynomials q1, . . . ,qr.

For two polynomials fi, f j ∈ F[x1, . . . ,xn], the S-polynomial is defined by

S
(

fi, f j
)

=
li j

lt( fi)
fi−

li j

lt
(

f j
) f j, li j = lcm

(
lt( fi) , lt

(
f j
))

. (H.2)

Consider now the ideal I generated by q1, . . . ,qr:

I = 〈q1, . . . ,qr〉 . (H.3)

649
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A basic algorithm for the computation of a Gröbner basis G of the ideal I is as follows: One

starts from G = {q1, . . . ,qr} and one computes for a pair fi, f j ∈ G the S-polynomial S( fi, f j)
and reduces S( fi, f j) with the multivariate division algorithm relative to G. If the remainder is

non-zero, it is added to G. This process is iterated until for any pair fi, f j ∈ G the S-polynomial

S( fi, f j) reduces to zero relative to G.

A Gröbner basis G for I is not necessarily unique. There are two places were choices are

made: The order of the polynomials in the multivariate division algorithm already discussed

above and the order in which pairs fi, f j ∈ G are selected.

A Gröbner basis G is called a reduced Gröbner basis, if for any fi ∈ G the coefficient of

lt( fi) is one and no term of fi is divisible by lt( f j) for any j 6= i. For a given term order, the

reduced Gröbner basis is unique.

H.2 Computing a Nullstellensatz certificate

Let F be a field and F[x1, . . . ,xn] the ring of polynomials in n variables x1, . . . ,xn with coefficients

from the field F. If a set of r polynomials q1, . . . ,qr ∈ F[x1, . . . ,xn] have a common zero, Hilbert’s

Nullstellensatz guarantees that there exist r polynomials h1, . . . ,hr ∈ F[x1, . . . ,xn] such that

r

∑
j=1

h jq j = 1. (H.4)

We may compute the h j’s as follows: Consider the ideal

I = 〈q1, . . . ,qr〉 . (H.5)

Eq. (H.4) states that 1 ∈ I. Hence, a Gröbner basis G for the ideal I is given by

G = {1} . (H.6)

Thus, we may just compute a Gröbner basis for the ideal I together with the transformation

matrix, which expresses any element of the Gröbner basis as a linear combination of the input

polynomials q1, . . . ,qr. We already know that the Gröbner basis will be {1}, and we are only

interested in the transformation matrix, which expresses the generator 1 as a linear combination

of the polynomials q1, . . . ,qr. The coefficients are the sought-after polynomials h1, . . . ,hr.

H.3 Computing an annihilator

Let F be a field and F[x1, . . . ,xn] the ring of polynomials in n variables x1, . . . ,xn with coefficients

from the field F. A set of r polynomials q1, . . . ,qr ∈ F[x1, . . . ,xn] is said to be algebraically

dependent, if there is a non-zero polynomial a(y1, . . . ,yr) ∈ F[y1, . . . ,yr] in r variables y1, . . . ,yr

with coefficients in F such that

a(q1, . . . ,qr) = 0. (H.7)
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The polynomial a(y1, . . . ,yr) is called an annihilating polynomial of q1, . . . ,qr. In order to

compute an annihilating polynomial we start from the ideal

I = 〈y1−q1, . . . ,yr−qr〉 ∈ F[x1, . . . ,xn,y1, . . . ,yr]. (H.8)

Let G be a Gröbner basis of I with respect to the lexicographic order

x1 > .. . > xn > y1 > .. . > yr. (H.9)

Set

GY = G∩F[y1, . . . ,yr]. (H.10)

GY is a Gröbner basis for the ideal I∩F[y1, . . . ,yr] and any a ∈GY is an annihilating polynomial.

H.4 Computing the syzygy module

Let F be a field and F[x1, . . . ,xn] the ring of polynomials in n variables x1, . . . ,xn with coefficients

from the field F. Consider a set of r polynomials q1, . . . ,qr ∈ F[x1, . . . ,xn] and the ideal

I = 〈q1, . . . ,qr〉 . (H.11)

A syzygy is a relation

r

∑
j=1

h jq j = 0, (H.12)

with h1, . . . ,hr ∈ F[x1, . . . ,xn]. In comparison with eq. (H.4) note that eq. (H.4) has a one on the

right-hand side, while eq. (H.12) has a zero on the right-hand side.

The difference with an annihilating polynomial as in eq. (H.7) is as follows: A syzygy is

linear in the q j’s, while an annihilating polynomial is allowed to be polynomial in the q j’s.

On the other hand, the coefficients h j of a syzygy are allowed to be in F[x1, . . . ,xn], while the

coefficients of an annihilating polynomial are in F.

The set of syzygies form a module over F[x1, . . . ,xn]. We may compute a basis of this module

as follows: We first compute a Gröebner basis for the ideal I (as outlined in section H.1). Let

therefore

G = { f1, f2, . . . , fs} (H.13)

be a Gröbner basis for I. For each pair ( fi, f j) with 1 ≤ i, j ≤ s we consider the S-polynomial

S( fi, f j). As G is a Gröbner basis, multivariate division with remainder reduces S( fi, f j) to zero

relative to G. That is to say, we find by multivariate division polynomials gi jk ∈ F[x1, . . . ,xn] such

that

S
(

fi, f j
)

=
s

∑
k=1

gi jk fk. (H.14)
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We set

ri j =
li j

lt( fi)
yi−

li j

lt
(

f j
)y j−

s

∑
k=1

gi jkyk, li j = lcm
(
lt( fi) , lt

(
f j
))

. (H.15)

The syzygy module is generated by all relations ri j with 1 ≤ i < j ≤ s. Substituting fk for yk

gives a syzygy relation of the form as in eq. (H.12). More refined algorithms to compute the

syzygy module are given in [468].

Syzygies are of interest in extending the unitarity-based methods discussed in section 5.5

from one-loop to higher loops [469–473].



Appendix I

Finite fields methods

Integration-by-parts identities and the reduction to master integrals are at the core of many Feyn-

man integral computations. On the positive side we note that this only involves linear algebra

and rational functions in the kinematic variables x and the dimension of space-time D. How-

ever, the simplification of the rational functions (i.e. cancelling common factors in the numerator

and in the denominator) is actually the bottle-neck. Finite-field methods can be used to improve

the performance. In this appendix we first discuss Euclid’s algorithm for the greatest common

divisor and gradually turn to finite field methods.

I.1 The greatest common divisor and the Euclidean algorithm

It is often required to simplify rational functions by cancelling common factors in the numerator

and denominator. As an example let us consider

(x+ y)2(x− y)3

(x+ y)(x2− y2)
= (x− y)2. (I.1)

One factor of (x+ y) is trivially removed, the remaining factors are cancelled once we noticed

that (x2− y2) = (x + y)(x− y). For the implementation in a computer algebra system this is

however not the way to proceed. The factorization of the numerator and the denominator into

irreducible polynomials is a very expensive calculation and actually not required. To cancel the

common factors in the numerator and in the denominator it is sufficient to calculate the greatest

common divisor (gcd) of the two expressions. The efficient implementation of an algorithm for

the calculation of the greatest common divisor is essential for many other algorithms. Like in

the example above, most gcd calculations are done in polynomial rings. It is therefore useful to

recall first some basic definitions from ring theory:

A commutative ring (R,+, ·) is a set R with two operations + and ·, such that (R,+) is an

Abelian group and · is associative, distributive and commutative. In addition we always assume

that there is a unit element for the multiplication. An example for a commutative ring would be

Z8, i.e. the set of integers modulo 8. In this ring one has for example 3+ 7 = 2 and 2 · 4 = 0.

653
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From the last equation one sees that it is possible to obtain zero by multiplying two non-zero

elements.

An integral domain D is a commutative ring with the additional requirement

a ·b = 0 ⇒ a = 0 or b = 0 (no zero divisors). (I.2)

Sometimes an integral domain D is defined by requiring

a ·b = a · c and a 6= 0 ⇒ b = c (cancellation law). (I.3)

It can be shown that these two requirements are equivalent. An example for an integral domain

would be the subset of the complex numbers defined by

S =
{

a+bi
√

5

∣∣∣a,b,∈ Z
}

(I.4)

An element u ∈ D is called unit or invertible if u has a multiplicative inverse in D. The only

units in the example eq. (I.4) are 1 and (−1). We further say that a divides b if there is an element

x ∈ D such that b = ax. In that case one writes a|b. Two elements a,b ∈ D are called associates

if a divides b and b divides a. In the integral domain S defined in eq. (I.4) the elements 1 and

(−1) are associates.

We can now define the greatest common divisor: An element c ∈ D is called the greatest

common divisor of a and b if c|a and c|b and c is a multiple of every other element which divides

both a and b. Closely related to the greatest common divisor is the least common multiple (lcm)

of two elements a and b: d is called least common multiple of a and b if a|d and b|d and d is a

divisor of every other element which is a multiple of both a and b. Since gcd and lcm are related

by

lcm(a,b) =
ab

gcd(a,b)
(I.5)

it is sufficient to focus on an algorithm for the calculation of the greatest common divisor.

An element p ∈ D−{0} is called prime if from p|ab it follows that p|a or p|b. An element

p ∈ D−{0} is called irreducible if p is not a unit and whenever p = ab either a or b is a unit.

In an integral domain, any prime element is automatically also an irreducible element. However,

the reverse is in general not true. This requires some additional properties in the ring.

Let us now turn to these additional properties: An integral domain D is called a unique

factorization domain if for all a ∈ D−{0}, either a is a unit or else a can be expressed as

a finite product of irreducible elements such that this factorization into irreducible elements is

unique up to associates and reordering. It can be shown that in an unique factorization domain

the notions of irreducible element and prime element are equivalent. In a unique factorization

domain the greatest common divisor exists and is unique (up to associates and reordering). The

integral domain S in eq. (I.4) is not a unique factorization domain, since for example

21 = 3 ·7 =
(

1−2i
√

5
)(

1+2i
√

5
)

(I.6)
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Field

Euclidean domain

Unique factorization domain

Integral domain

Commutative ring

Figure I.1: Hierarchy of domains. Arrows A→ B indicate that A is a specialisation of B (the
notation is borrowed from derived classes in C++).

are two factorizations into irreducible elements. An example for a unique factorization domains

is the polynomial ring Z[x] in one variable with integer coefficients.

An Euclidean domain is an integral domain D with a valuation map v : D−{0}→N0 into the

non-negative integer numbers, such that v(ab)≥ v(a) for all a,b ∈ D−{0}, and for all a,b ∈ D
with b 6= 0, there exist elements q,r ∈ D such that

a = bq+ r, (I.7)

where either r = 0 or v(r)< v(b). This means that in an Euclidean domain division with remain-

der is possible. An example for an Euclidean domain is given by the integer numbers Z.

Finally, a field is a commutative ring in which every non-zero element has a multiplicative

inverse, e.g. R−{0} is an Abelian group. Any field is automatically an Euclidean domain. Ex-

amples for fields are given by the rational numbers Q, the real numbers R, the complex numbers

C or Zp, the integers modulo p with p a prime number. Zp is a finite field, it has p elements

0,1, . . . ,(p−1).
Fig. (I.1) summarises the relationships between the various domains. Of particular impor-

tance are polynomial rings in one or several variables. Fig. (I.2) summarises the structure of

these domains. Note that a multivariate polynomial ring R[x1, . . . ,xn] can always be viewed as an

univariate polynomial ring in one variable xn with coefficients in the ring R[x1, . . . ,xn−1].
The algorithm for the calculation of the gcd in an Euclidean domain dates back to Euclid

[474]. It is based on the fact that if a = bq+ r, then

gcd(a,b) = gcd(b,r). (I.8)

This is easily seen as follows: Let c = gcd(a,b) and d = gcd(b,r). Since r = a−bq we see that

c divides r, therefore it also divides d. On the other hand d divides a = bq+ r and therefore it
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R R[x] R[x1,x2, . . . ,xn]

commutative ring commutative ring commutative ring

integral domain integral domain integral domain

unique factorization domain unique factorization domain unique factorization domain

Euclidean domain unique factorization domain unique factorization domain

field Euclidean domain unique factorization domain

Figure I.2: Structure of polynomial rings in one variable and several variables depending on the
underlying coefficient ring R.

also divides c. We now have c|d and d|c and therefore c and d are associates.

It is clear that for r = 0, e.g. a = bq we have gcd(a,b) = b. Let us denote the remainder as

r = rem(a,b). We can now define a sequence r0 = a, r1 = b and ri = rem(ri−2,ri−1) for i ≥ 2.

Then there is a finite index k such that rk+1 = 0 (since the valuation map applied to the remainders

is a strictly decreasing function). We have

gcd(a,b) = gcd(r0,r1) = gcd(r1,r2) = · · ·= gcd(rk−1,rk) = rk. (I.9)

This is the Euclidean algorithm. We briefly mention that as a side product one can find elements

s, t such that

sa+ tb = gcd(a,b). (I.10)

This is called the extended Euclidean algorithm. For the extended Euclidean algorithm one

defines three sequences ri, si and ti, starting from

r0 = a, s0 = 1, t0 = 0,

r1 = b, s1 = 0, t1 = 1, (I.11)

and updates these sequences with qi = ⌊ ri−2

ri−1
⌋ as

ri = rem(ri−2,ri−1) = ri−2−qiri−1, si = si−2−qisi−1, ti = ti−2−qiti−1. (I.12)

As before, the algorithm stops whenever rk+1 = 0. Then gcd(a,b) = rk, s = sk and t = tk. This

allows the solution of the Diophantine equation

sa+ tb = c, (I.13)

for s and t whenever gcd(a,b) divides c.

We are primarily interested in gcd computations in polynomial rings. However, polynomial

rings are usually only unique factorization domains, but not Euclidean domains, e.g. division

with remainder is in general not possible. As an example consider the polynomials a(x) = x2 +
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2x+3 and b(x)= 5x+7 in Z[x]. It is not possible to write a(x) in the form a(x)= b(x)q(x)+r(x),
where the polynomials q(x) and r(x) have integer coefficients. However in Q[x] we have

x2 +2x+3 = (5x+7)

(
1

5
x+

3

25

)
+

54

25
(I.14)

and we see that the obstruction arises from the leading coefficient of b(x). It is therefore ap-

propriate to introduce a pseudo-division with remainder. Let D[x] be a polynomial ring over a

unique factorization domain D. For a(x) = anxn + · · ·+ a0, b(x) = bmxm + · · ·+ b0 with n ≥ m
and b(x) 6= 0 there exists q(x),r(x) ∈ D[x] such that

bn−m+1
m a(x) = b(x)q(x)+ r(x) (I.15)

with deg(r(x)) < deg(b(x)). This pseudo-division property is sufficient to extend the Euclidean

algorithm to polynomial rings over unique factorization domains.

Unfortunately, the Euclidean algorithm as well as the extended algorithm with pseudo-division

have a severe drawback: Intermediate expressions can become quite long. This can be seen in

the following example, where we would like to calculate the gcd of the polynomials

a(x) = x8 + x6−3x4−3x3 +8x2 +2x−5,

b(x) = 3x6 +5x4−4x2−9x+21, (I.16)

in Z[x]. Calculating the pseudo-remainder sequence ri(x) we obtain

r2(x) = −15x4 +3x2−9,

r3(x) = 15795x2 +30375x−59535,

r4(x) = 1254542875143750x−1654608338437500,

r5(x) = 12593338795500743100931141992187500. (I.17)

This implies that a(x) and b(x) are relatively prime, but the numbers which occur in the calcula-

tion are large. An analysis of the problem shows, that the large numbers can be avoided if each

polynomial is split into a content part and a primitive part. The content of a polynomial is the

gcd of all it’s coefficients. For example we have

15795x2 +30375x−59535 = 1215
(
13x2 +25x+49

)
(I.18)

and 1215 is the content and 13x2 + 25x+ 49 the primitive part. Taking out the content of a

polynomial in each step requires a gcd calculation in the coefficient domain and avoids large

intermediate expressions in the example above. However the extra cost for the gcd calculation

in the coefficient domain is prohibitive for multivariate polynomials. The art of gcd calcula-

tions consists in finding an algorithm which keeps intermediate expressions at reasonable size

and which at the same time does not involve too much computational overhead. An acceptable

algorithm is given by the subresultant algorithm [475, 476]: Similar to the methods discussed
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original problem

simpler problem

solution of original problem

solution of simpler problem

reduction reconstruction

computation

Figure I.3: The modular approach: Starting from the original problem, one first tries to find a

related simpler problem. The solution of the simpler problem is used to reconstruct a solution of

the original problem.

above, one calculates a polynomial remainder sequence r0(x),r1(x), . . . ,rk(x). This sequence is

obtained through r0(x) = a(x), r1(x) = b(x) and

cδi+1
i ri−1(x) = qi(x)ri(x)+diri+1(x), (I.19)

where ci is the leading coefficient of ri(x), δi = deg(ri−1(x))− deg(ri(x)) and d1 = (−1)δ1+1,

di =−ci−1ψδi
i for 2≤ i≤ k. The ψi are defined by ψ1 =−1 and

ψi = (−ci−1)
δi−1 ψ

1−δi−1

i−1 . (I.20)

Then the primitive part of the last non-vanishing remainder equals the primitive part of the great-

est common divisor gcd(a(x),b(x)).

I.1.1 Heuristic methods

In order to further speed up the calculation of polynomial gcds one may resort to heuristic algo-

rithms [477]. In general a heuristic algorithm maps a problem to a simpler problem, solves the

simpler problem and tries to reconstruct the solution of the original problem from the solution

of the simpler problem. This is illustrated in fig. I.3. This approach is at the core of finite field

methods.

Let’s see how this works with a concrete example: For the calculation of polynomial gcds

one evaluates the polynomials at a specific point and one considers the gcd of the results in the

coefficient domain. Since gcd calculations in the coefficient domain are cheaper, this can lead

to a sizeable speed-up, if both the evaluation of the polynomial and the reconstruction of the

polynomial gcd can be done at reasonable cost. Let us consider the polynomials

a(x) = 6x4 +21x3 +35x2 +27x+7,

b(x) = 12x4−3x3−17x2−45x+21. (I.21)

Evaluating these polynomials at the point ξ = 100 yields a(100) = 621352707 and b(100) =
1196825521. The gcd of theses two numbers is

c = gcd(621352707,1196825521)= 30607. (I.22)
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To reconstruct the polynomial gcd one writes c in the ξ-adic representation

c = c0 + c1ξ+ · · ·+ cnξn, −ξ

2
< ci ≤

ξ

2
. (I.23)

Then the candidate for the polynomial gcd is

g(x) = c0 + c1x+ · · ·+ cnxn. (I.24)

In our example we have

30607 = 7+6 ·100+3 ·1002 (I.25)

and the candidate for the polynomial gcd is g(x) = 3x2 +6x+7. A theorem guarantees now if ξ
is chosen such that

ξ > 1+2 min(||a(x)||∞, ||b(x)||∞) , (I.26)

then g(x) is the greatest common divisor of a(x) and b(x) if and only if g(x) divides a(x) and

b(x). This can easily be checked by a trial division. In the example above, g(x) = 3x2 +6x+7

divides both a(x) and b(x) and is therefore the gcd of the two polynomials.

Note that there is no guarantee that the heuristic algorithm will succeed in finding the gcd.

But if it does, this algorithm is usually faster than the subresultant algorithm discussed previously.

Therefore, a strategy for a computer algebra system could be to try first a few times the heuristic

algorithm with various evaluation points and to fall back onto the subresultant algorithm, if the

greatest common divisor has not been found by the heuristic algorithm.

I.2 The Chinese remainder theorem

An important theorem is the Chinese remainder theorem, which allows us to use several (cheap)

calculations in the rings Zn1
,Zn2

, . . . ,Znk to obtain the corresponding result in the larger ring

Zn1·...·nk , provided no pair (ni,n j) has a common factor greater than one. This can be advanta-

geous, as the computational cost for the calculations in the rings Zn1
, . . . ,Znk plus the compu-

tational cost for the reconstruction can be significantly lower than the computational cost for a

direct calculation in the ring Zn1·...·nk .

Let’s see how this is done: Two integers n1,n2 ∈ Z are called coprime, if gcd(n1,n2) = 1.

Let n1, . . . ,nk be a set of natural numbers, which are pairwise coprime. Set

n = n1 ·n2 · . . . ·nk. (I.27)

Let N ∈ Z be an (unknown) integer. Assume that we know all remainders of N mod n j:

r j = N mod n j, 1 ≤ j ≤ k. (I.28)
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We have 0≤ r j < n j. Given the remainders r1, . . . ,rk the Chinese remainder theorem allows us

to compute the remainder r = N mod n: We first set

ñ j =
k

∏
i=1
i 6= j

ni =
n

n j
. (I.29)

The integers n j and ñ j are coprime gcd(n j, ñ j) = 1, hence there exist integers s j and t j such that

s jñ j + t jn j = 1. (I.30)

s j and t j can be obtained with the extended Euclidean algorithm. Then

r =
k

∑
j=1

r js jñ j mod n. (I.31)

In mathematical terms, the Chinese remainder theorem says that there is a ring homomorphism

Zn1
×Zn2

×·· ·×Znk
∼= Zn. (I.32)

In one direction, this isomorphism is given by eq. (I.31). In the other direction, the isomorphism

is trivially given by

r j = r mod n j. (I.33)

Exercise 136: Let r be defined by eq. (I.31). Determine

r mod ni. (I.34)

I.3 Black box reconstruction

Suppose we are given a routine, which returns the numerical value of a rational function f in sev-

eral variables x = (x1, . . . ,xn) for a choice of the input variables x. The black box reconstruction

problem asks, if it is possible to find the analytic form of the rational function f by evaluating

numerically the function f for sufficiently many distinct input values x.

A typical application in the context of Feynman integrals would be the following [478–480]:

Integration-by-parts reduction expresses any Feynman integral as a linear combination of master

integrals. The coefficients of this linear combination are rational functions in the number of

space-time dimensions D and the kinematic variables x. It is much faster to run the integration-

by-parts reduction algorithm for specific values of the kinematic variables x (and D). Doing this

several times we may reconstruct the coefficients.

The numerical evaluation is usually done with finite field arithmetic. This is exact (i.e. avoids

rounding errors) and limits the size of the numbers at intermediate stages (a finite field contains
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only finitely many numbers). On the other side, there is some loss of information, as in a finite

field there are relations (like 1+1 = 0 in Z2), which do not hold in a field of characteristic 0.

A finite field is a field with finitely many elements. It can be shown that the number of

elements must always be a power of a prime number: A finite field has pk elements, where p is

a prime number and k ∈ N. For us it is sufficient to focus on the finite fields Fp = Zp, where p is

a prime number. The field Fp has p elements

{0,1, . . . , p−1} . (I.35)

Addition, subtraction and multiplication are done modulo p. For example

2 ·3 = 1 in Z5. (I.36)

Division is only slightly more complicated: First of all, a divided by b is nothing than the mul-

tiplication of a with the inverse of b. As in characteristic zero, we assume that b 6= 0. As p is a

prime number and 1≤ b < p we have gcd(b, p) = 1. From the extended Euclidean algorithm we

find s and t such that

s ·b+ t · p = 1. (I.37)

s is the inverse of b in Zp, since

s ·b = 1 mod p. (I.38)

Let us remark that b−1 exists in Zn (with n not necessarily prime) if b and n are coprime.

Let
p
q ∈Q be a rational number and assume that we know the image

c =
p

q
mod n with gcd(q,n) = 1. (I.39)

In general, there is no inverse mapping from Zn to Q. (Zn has finitely many elements, while

Q has countable many elements.) We may use Wang’s algorithm [481] to obtain a guess for

(p,q): We use the extended Euclidean algorithm for a = c and b = n and monitor the sequence

(ri,si). We run the extended Euclidean algorithm until r2
i ≤ n/2. If in addition s2

i ≤ n/2 and

gcd(ri,si) = 1 one returns (p,q) = (ri,si). If on the other hand s2
i > n/2 or gcd(ri,si) = 1, the

reconstruction failed.

Let us look at an example: We consider the image of 2
3
∈ Q in Z37. From the extended

Euclidean algorithm we obtain

25 ·3−2 ·37 = 1, (I.40)

and hence 3−1 = 25 in Z37. Thus the image of 2
3
∈Q in Z37 is

(2 ·25) mod 37 = 50 mod 37 = 13. (I.41)
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Let us now consider the other direction: Assume we know c = 13 ∈ Z37. Can we find a rational

number
p
q ∈Q such that the image of

p
q in Z37 is c = 13? We use Wang’s algorithm from above.

We first note that

⌊√
37

2

⌋
= 4. (I.42)

From the extended Euclidean algorithm with a = 13 and b = 37 we obtain

r0 = 13, s0 = 1, t0 = 0,

r1 = 37, s1 = 0, t1 = 1,

r2 = 13, s2 = 1, t2 = 0,

r3 = 11, s3 =−2, t3 = 1,

r4 = 2, s4 = 3, t4 =−1,

r5 = 1, s5 =−17, t5 = 6,

r6 = 0, s6 = 37, t6 =−13. (I.43)

We stop with r4, as

r4 ≤
⌊√

37

2

⌋
. (I.44)

In addition we have s4 = 3 ≤ ⌊
√

37
2
⌋ and gcd(r4,s4) = gcd(2,3) = 1. Hence Wang’s algorithm

returns (p,q) = (2,3), which is the correct result.

I.3.1 Univariate polynomials

Let us start with the reconstruction of a polynomial f (x) in one variable x. A degree d polynomial

is uniquely specified by the values yi at (d +1) points xi:

yi = f (xi) , 0 ≤ i ≤ d. (I.45)

There is only a small problem: We do not know the degree of the polynomial a priori. In this

situation, a representation in terms of Newton polynomials is convenient. We write

f (x) =
d

∑
j=0

a j

j−1

∏
i=0

(x− xi)

= a0 +(x− x0)(a1 +(x− x1)(a2 +(x− x2)(· · ·+(x− xd−1)ad))) . (I.46)
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The coefficients ai are computed recursively as

a0 = y0,

a1 =
y1−a0

x1− x0
,

a2 =

(
y2−a0

x2− x0
−a1

)
1

x2− x1
,

. . .

ad =

((
yd−a0

xd− x0
−a1

)
1

xd− x1
−·· ·−ad−1

)
1

xd− xd−1

. (I.47)

This representation has the advantage that additional evaluation points will not change the values

of the already computed coefficients a j. If f is of degree d and if we probe more than (d + 1)
points, the coefficients a j with j > d will be zero. This can be used as a termination criteria: We

fix a positive integer η and terminate the algorithm if

ad+1 = ad+2 = . . . = ad+η = 0. (I.48)

This is a heuristic algorithm: It may fail if for example f is of degree (d + η + 1) and we

accidentally choose the points xi such that ad+1 = · · ·= ad+η = 0. However, it can be shown that

the probability that we obtain the correct polynomial in Zp is no less than [482, 483]

1− (d+1)

(
d

p

)η

. (I.49)

I.3.2 Univariate rational functions

For the reconstruction of a rational function f in one variable x we may use Thiele’s formula

[484], which is based on a continued fraction

f (x) = a0 +
x− x0

a1 +
x−x1

a2+
x−x2

···+ x−xd−1
ad

(I.50)

= a0 +(x− x0)


a1 +(x− x1)

(
a2 +(x− x2)

(
· · ·+ (x− xd−1)

ad

)−1
)−1



−1

.

The coefficients ai are computed recursively as

a0 = y0,

a1 =
x1− x0

y1−a0
,

a2 =

(
x2− x0

y2−a0
−a1

)−1

(x2− x1) ,

. . .

ad =

((
xd− x0

yd−a0
−a1

)−1

(xd− x1)−·· ·−ad−1

)−1

(xd− xd−1) . (I.51)
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As in the case of Newton interpolation, the coefficient a j depends only on the evaluations

0,1, . . . , j and will not change if we add additional evaluations.

It should be noted that this algorithm may lead to spurious singularities (for example if y1 =
a0) in which case the algorithm fails. In this case one may re-try with different values of the x j’s.

I.3.3 Multivariate polynomials

Let us now turn to multivariate polynomials. Let f be a polynomial in the variables x=(x1, . . . ,xn).
We denote the values of the i-th variable where we probe the function f by

xi,0,xi,1,xi,2, . . . . (I.52)

We may view a multivariate polynomial f (x1, . . . ,xn) as a univariate polynomial in the variable

xn with coefficients in the ring F[x1, . . . ,xn−1]. Thus we may reconstruct f recursively: We start

with Newton interpolation in the variable xn:

f (x1, . . . ,xn) =
d

∑
j=0

a j (x1, . . . ,xn−1)
j−1

∏
i=0

(xn− xn,i) (I.53)

The coefficients a j(x1, . . . ,xn−1) are polynomials in (n− 1) variables, i.e. one variable less.

Given a numerical black box routine for f and choices xn,0,xn,1, . . . for the last variable xn,

we immediately have a numerical black box routine for a0(x1, . . . ,xn−1) by choosing xn = xn,0.

We therefore first reconstruct a0(x1, . . . ,xn−1). Once a0(x1, . . . ,xn−1) is known, we obtain a

numerical black box routine for a1(x1, . . . ,xn−1) by using

a1 (x1, . . . ,xn−1) =
f (x1, . . . ,xn)−a0 (x1, . . . ,xn−1)

xn− xn,0
. (I.54)

By using eq. (I.47) we may continue this process to reconstruct a2(x1, . . . ,xn−1), a3(x1, . . . ,xn−1),
etc.. Each a j(x1, . . . ,xn−1) is a polynomial in (n−1) variables.

In order to reconstruct a j(x1, . . . ,xn−1) we repeat the ansatz and view a j(x1, . . . ,xn−1) as an

univariate polynomial in xn−1 with coefficients in F[x1, . . . ,xn−2]. This recursion terminates with

the reconstruction of univariate polynomials in the variable x1 with coefficients in the field F.

For sparse multivariate polynomials the algorithm above can be improved. A multivariate

polynomial in n variables and total degree d has only a finite number of coefficients. A (multi-

variate) polynomial is called sparse, if most of its coefficients are zero. The contrary of a sparse

polynomial is a dense polynomial, where most of its coefficients are non-zero. We may always

convert a polynomial from Newton’s representation as in eq. (I.46) and eq. (I.53) to the standard

monomial representation

f (x) = ∑
α

cαxα, (I.55)

where we use the multi-index notation xα = xα1

1 · · · · · xαn
n . The main idea of Zippel’s algorithm

[485, 486] for sparse polynomials is the following: Suppose we are in the recursive algorithm
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above at a stage where we reconstruct a polynomial in the variables x1, . . . ,xk (with k < n).

Assume further that the coefficient cα1...αk(xk+1, jk+1
, . . . ,xn, jn) of the monomial

cα1...αkxα1
1 · · · · · x

αk
k (I.56)

turns out to be zero for the chosen numerical values of the remaining variables xk+1, . . . ,xn.

Zippel’s algorithm assumes that this remains true in F[xk+1, . . . ,xn], e.g. the final polynomial

will not contain a term of the form as in eq. (I.56) with a coefficient cα1...αk ∈ F[xk+1, . . . ,xn].
This can lead to a significant speed-up. Let us stress that this is a guess (which may or may

not be true). In order to minimise the risk of accidental zeros, one chooses the numerical values

xk+1, jk+1
, . . . ,xn, jn with care. A typical choice is given by random values for the variables xi,0 and

the values

xi, j = (xi,0)
j+1 , (I.57)

for the remaining variables.

I.3.4 Multivariate rational functions

We finally turn to the reconstruction of multivariate rational functions. We may write a multi-

variate rational function as

f (x) =
p(x)

q(x)
, (I.58)

where p(x) and q(x) are multivariate polynomials in n variables x1, . . . ,xn. In order to make this

representation unique, one may require that the coefficient of the smallest monomial of q(x) with

respect to a chosen term order equals one. If q(x) contains a constant term, this implies that the

constant term equals one.

Let us now discuss the main ideas of the algorithm of Cuyt and Lee [487] for the reconstruc-

tion of a multivariate rational function. We focus on the ideas how this can be done in principle.

For the details how this is implemented efficiently we refer to the literature [478, 480, 487].

We introduce an auxiliary variable t and we consider the function g(t,x) defined by

g(t,x) = f (tx1, . . . , txn) . (I.59)

We view g as a function of t, depending in addition on parameters x1, . . . ,xn. Clearly

f (x) = g(1,x) . (I.60)

Let us first assume that the denominator polynomial q(x) of the rational function f (x) contains

a constant term. We choose the normalisation where this constant term equals one. Then g(t,x)
can be written as

g(t,x) =

dp

∑
r=0

pr (x) tr

1+
dq

∑
r′=1

qr′ (x) tr′
, (I.61)
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where the pr and qr are homogeneous polynomials of degree r in the variables x = (x1, . . . ,xn).
For chosen numerical values x1, j1 , . . . ,xn, jn for the variables x1, . . . ,xn we may use Thiele’s

algorithm for the reconstruction of the univariate rational function g in t. This reconstruction will

provide

1. a verification (or falsification) of our assumption that the denominator contains a constant

term,

2. the degrees dp and dq of the numerator polynomial and of the denominator polynomial,

respectively,

3. numerical black box routines for the polynomials pr and qr (given as the coefficient of tr

in the numerator and denominator, respectively).

With the numerical black box routines for the polynomials pr and qr at hand, we may use any al-

gorithm for the reconstruction of multivariate polynomials (for example the algorithm discussed

above). As we know that pr and qr are homogeneous of degree r, one usually uses a dedicated

algorithm for homogeneous polynomials.

It may happen that our initial assumption that the denominator polynomial q(x) contains a

constant term is not justified. In this case one considers first a modified function

f̃ (x1, . . . ,xn) = f (x1 + s1, . . . ,xn + sn) (I.62)

obtained by a random shift (s1, . . . ,sn). One reconstructs f̃ and obtains f (x1, . . . ,xn) = f̃ (x1−
s1, . . . ,xn− sn). The denominator polynomials q̃ of the rational function f̃ will in general have a

constant term (if accidentally this is not the case, one may try a different shift). This completes

the algorithm for the reconstruction of a multivariate rational function. However, the last step

comes with a caveat: If the numerator polynomial p and the denominator polynomial q of the

original rational function f are sparse polynomials, a random shift will in general lead to dense

polynomials p̃ and q̃ of the shifted rational function f̃ : For example, x5 is a sparse polynomial in

one variable x, while

(x+1)5 = x5 +5x4 +10x3 +10x2 +5x+1 (I.63)

is a dense polynomial.



Appendix J

Solutions to the exercises

Exercise 1: Consider a connected graph G with the notation as above. Show that momentum conservation
at each vertex of valency > 1 implies momentum conservation of the external momenta:

∑
e j∈E in

q j = ∑
e j∈Eout

q j. (J.1)

If we choose an orientation such that all external edges have a vertex of valency 1 as sink (e.g. E in = /0)
this translates to

next

∑
j=1

p j = 0. (J.2)

Solution: We proof the claim by induction on the number of internal edges nint. For nint = 0 our graph
looks like

v

(J.3)

and has exactly one vertex v of valency > 1. Momentum conservation at this vertex reads

∑
e j∈E in

q j = ∑
e j∈Eout

q j. (J.4)

and corresponds exactly to the claim.
Let us now assume that the claim is correct for (nint− 1). Consider now a graph with nint internal

edges. Pick one internal edge ei. Denote by va its source and by vb its sink. Let us write down momentum
conservation at va and vb:

va : q j + ∑
er∈Esource(va)\{e j}

qr = ∑
er∈Esink(va)

qr,

vb : ∑
er∈Esource(vb)

qr = q j + ∑
er∈Esink(vb)\{e j}

qr. (J.5)

667
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We may eliminate qi from these two equations. We obtain a single equation

v : ∑
er∈Esource(va)\{e j}

qr + ∑
er∈Esource(vb)

qr = ∑
er∈Esink(va)

qr + ∑
er∈Esink(vb)\{e j}

qr. (J.6)

The momentum q j appears at no other vertex. As far as momentum conservation is concerned, we may
replace the graph G with a new graph G̃, where the edge e j has been contracted (e.g. the edge e j is
removed and the vertices va and vb are merged to a new vertex v. Pictorially we have

e j

va vb

→ v (J.7)

The new graph G̃ has (nint−1) internal edges and we may use the induction hypothesis. As G and G̃ only
differ by the contraction of an internal edge, the claim holds for the graph G as well.

If we choose an orientation such that all external edges have a vertex of valency 1 as sink we have

E in = /0, Eout = {enint+1, . . . ,enint+next
} (J.8)

and

0 = ∑
e j∈E in

q j = ∑
e j∈Eout

q j =
next

∑
j=1

p j. (J.9)

Exercise 2: Consider the one-loop graph shown in fig. 2.4. Write down the equations expressing mo-
mentum conservation at each vertex of valency > 1. Use p1, p2, p3 as independent external momenta and
k1 = q4 as the independent loop momentum. Express all other momenta as linear combinations of these.

Solution: Momentum conservation at the four vertices v1, . . . ,v4 reads

v1 : p1 +q1 = q4,

v2 : p2 +q2 = q1,

v3 : p3 +q3 = q2,

v4 : p4 +q4 = q3. (J.10)

With k1 = q4 we express q1, q2, q3 and p4 in terms of k1, p1, p2 and p3 as

q1 = k1− p1,

q2 = k1− p1− p2,

q3 = k1− p1− p2− p3,

p4 = −p1− p2− p3. (J.11)
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Exercise 3: Prove

Tν (D) = νTν+1 (D+2) . (J.12)

Solution: The tadpole integral is given by eq. (2.123). The left-hand side of our equation equals

Tν (D) =
eεγEΓ

(
ν− D

2

)

Γ(ν)

(
m2

µ2

)D
2−ν

. (J.13)

Let’s work out the right-hand side:

νTν+1 (D+2) = ν
eεγE Γ

(
(ν+1)− D+2

2

)

Γ(ν+1)

(
m2

µ2

)D+2
2
−(ν+1)

=
eεγEΓ

(
ν− D

2

)

Γ(ν)

(
m2

µ2

)D
2
−ν

, (J.14)

where we used Γ(ν+1) = νΓ(ν).

Exercise 4: Derive eq. (2.132).

Solution: We repeat the steps from the calculation of the tadpole integral. Starting from

T̃ = eεγE
(
µ2
)ν−D

2
−a

∫
dDk

iπ
D
2

(
−k2

)a

(−Uk2 +F)ν (J.15)

we perform a Wick rotation and obtain

T̃ = eεγE
(
µ2
)ν−D

2
−a

∫
dDK

π
D
2

(
K2
)a

(UK2 +F)ν . (J.16)

We then introduce spherical coordinates and integrate over the angles. This yields

T̃ =
eεγE

(
µ2
)ν−D

2
−a

Γ
(

D
2

)
∞∫

0

dK2

(
K2
)D

2
+a−1

(UK2 +F)ν . (J.17)

We then substitute t =UK2/F. We obtain

T̃ =
eεγE

(
µ2
)ν−D

2
−a

Γ
(

D
2

) U−
D
2
−a

Fν−D
2
−a

∞∫

0

dt
t

D
2
+a−1

(t +1)ν . (J.18)

The remaining integral is again Euler’s beta integral and we finally obtain

T̃ = eεγE
(
µ2
)ν−D

2
−a Γ

(
D
2
+a
)

Γ
(

D
2

) Γ
(
ν− D

2
−a
)

Γ(ν)

U−
D
2
−a

Fν−D
2
−a

. (J.19)
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Exercise 5: Derive eq. (2.136).

Hint: Split the D-dimensional integration into a Dint-dimensional part and a (−2ε)-dimensional part.
Eq. (2.136) can be derived by just considering the (−2ε)-dimensional part.

Solution: f (k(Dint),k
2
(−2ε)) may depend arbitrarily on k0, k1, ..., kDint−1, but the dependence on kDint ,

kDint+1, ..., kD−1 is only through k2
(−2ε). We split the integration into a Dint-dimensional part and a (−2ε)-

dimensional part. We write

dDk

iπ
D
2

=
dDintk

iπ
Dint

2

d(−2ε)k

iπ−ε
. (J.20)

From eq. (2.131) and eq. (2.132) we have

∫
d(−2ε)k

iπ−ε

(
−k2

(−2ε)

)r
f
(

k(Dint),k
2
(−2ε)

)
=

Γ(r− ε)

Γ(−ε)

∫
d(−2ε+2r)k

iπ−ε+r f
(

k(Dint),k
2
(−2ε)

)
. (J.21)

Integrating then also over the Dint-dimensional part gives

∫
dDk

iπ
D
2

(
−k2

(−2ε)

)r
f
(

k(Dint),k
2
(−2ε)

)
=

Γ(r− ε)

Γ(−ε)

∫
dD+2rk

iπ
D+2r

2

f
(

k(Dint),k
2
(−2ε)

)
. (J.22)

Exercise 6: Derive eq. (2.137).

Hint: Consider the mass dimension of the integral to prove the statement for D/2+a 6= 0 and the normal-
isation of the integral measure in eq. (2.77) to prove the statement for D/2+a = 0.

Solution: We start with the case D/2+a 6= 0. The integral

∫
dDk

iπ
D
2

(
−k2

)a
(J.23)

has mass dimension (D+2a), so it must be proportional to some scale µ raised to the power of the mass
dimension:

(
µ2
)D

2
+a

. (J.24)

However, the integral is a scaleless integral. Thus there is no such scale available, hence the integral must
be zero.

Let us now turn to the case D/2+ a = 0. Let us consider a ∈ N. The space-time dimension is then
necessarily even and negative: D = −2a. For this reason, the use of eq. (2.137) is sometimes called the
negative dimension approach. After Wick rotation we have to show

∫
dDK

π
D
2

(
K2
)a

= (−1)
D
2 Γ

(
1− D

2

)
, for

D

2
+a = 0 and a ∈ N. (J.25)
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The normalisation of the integral measure reads

∫
dDK

π
D
2

exp
(
−K2

)
= 1. (J.26)

We expand the left-hand side

∫
dDK

π
D
2

exp
(
−K2

)
=

∞

∑
a=0

(−1)a

a!

∫
dDK

π
D
2

(
K2
)a
. (J.27)

We already know that integrals with D/2+a 6= 0 vanish, thus only the term a =−D/2 survives:

∫
dDK

π
D
2

exp
(
−K2

)
=

(−1)−
D
2

(
−D

2

)
!

∫
dDK

π
D
2

(
K2
)−D

2 . (J.28)

This should be equal to 1, hence

∫
dDK

π
D
2

(
K2
)−D

2 = (−1)
D
2 Γ

(
1− D

2

)
. (J.29)

This proves eq. (J.25). Analytic continuation in D (or the parameter a) on the variety D/2+ a = 0 com-
pletes the proof.

Exercise 7: Consider again the one-loop box graph shown in fig.2.4. Assume first that all internal
masses are non-zero and pairwise distinct and that the external momenta are as generic as possible. How
many kinematic variables are there?

Secondly, assume that all internal masses are zero and that the external momenta satisfy p2
1 = p2

2 =
p2

3 = p2
4 = 0. How many kinematic variables are there now?

Solution: We start with the case where all internal masses are non-zero and pairwise distinct and the
external momenta are as generic as possible. The external momenta still satisfy momentum conservation.
If we take all momenta outgoing, momentum conservation reads

p1 + p2 + p3 + p4 = 0. (J.30)

Momentum conservation allows us to eliminate p4. Thus we have

−p2
1

µ2
,
−p1 · p2

µ2
,
−p1 · p3

µ2
,
−p2

2

µ2
,
−p2 · p3

µ2
,
−p2

3

µ2
,

m2
1

µ2
,

m2
2

µ2
,

m2
3

µ2
,

m2
4

µ2
(J.31)

as kinematic variables, where m1, . . . ,m4 denote the internal masses. Due to the scaling relation in
eq. (2.144) we may set one kinematic variable to one (say the last one m2

4/µ2). This gives us NB = 9

for the most general one-loop box graph. Quite often one uses instead of the scalar products p1 · p2,
p2 · p3, p1 · p3 the Mandelstam variables

s = (p1 + p2)
2 , t = (p2 + p3)

2 , u = (p1 + p3)
2 . (J.32)

These satisfy the relation (inherited from momentum conservation)

s+ t +u = p2
1 + p2

2 + p2
3 + p2

4. (J.33)
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p1 p2 p3

q1

q2

q5

q6

q3

q4

Figure J.1: The two-loop non-planar vertex graph of fig. 2.6 drawn in an alternative way.

Thus we may either eliminate p2
4 (as we did above) or u (another popular choice).

Let us now discuss the second part, where we assume that all internal masses are zero and that the
external momenta satisfy p2

1 = p2
2 = p2

3 = p2
4 = 0. The relations p2

1 = p2
2 = p2

3 = m2
1 = m2

2 = m2
3 = m2

4 = 0

leave only

−p1 · p2

µ2
,
−p1 · p3

µ2
,
−p2 · p3

µ2
(J.34)

from the list above. However, we haven’t used p2
4 = 0 yet, which allows to eliminate another kinematic

variable. In the massless case we have s = 2p1 · p2, t = 2p2 · p3 and u = 2p1 · p3 and the Mandelstam
relation simplifies to

s+ t +u = 0. (J.35)

Thus we may trade p2
4 = 0 to eliminate u (e.g. p1 · p3/µ2). This brings us down to two kinematic variables,

which can be taken as −2p1 · p2/µ2 and −2p2 · p3/µ2. As above we may set one kinematic variable to
one, giving us NB = 1 in the massless case. It is quite common to use as kinematic variable

x =
s

t
(J.36)

in this case.

Exercise 8: Determine with the method above the graph polynomials U and F for the graph shown
in fig. 2.6 for the case where all internal masses are zero.

Solution: Let us first note that the graph shown in fig. 2.6 may equally well be drawn as in fig. J.1.
As independent loop momenta we take

k1 = q1, k2 = q5. (J.37)

Then

q2 = k1 + p1, q3 = −k1− k2, q4 = −k1− k2 + p2, q6 = k2 + p3, (J.38)
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and p3 =−p1− p2. We work out

6

∑
j=1

α j
(
−q2

j

)
= −(α1 +α2 +α3 +α4)k2

1−2(α3 +α4)k1 · k2− (α3 +α4 +α5 +α6)k2
2

+2(α4 p2−α2 p1) · k1 +2(α4 p2−α6 p3) · k2−α2 p2
1−α4 p2

2−α6 p2
3. (J.39)

In comparing with eq. (2.156) we find

M =

(
α1 +α2 +α3 +α4 α3 +α4

α3 +α4 α3 +α4 +α5 +α6

)
,

v =

(
α4 p2−α2 p1

α4 p2−α6 p3

)
,

J = α2 (−p1)
2 +α4 (−p2)

2 +α6 (−p3)
2 . (J.40)

From momentum conservation we have (p1 + p2)
2 = p2

3 and hence

2p1 · p2 = p2
3− p2

1− p2
2,

2p2 · p3 = p2
1− p2

2− p2
3,

2p3 · p1 = p2
2− p2

3− p2
1. (J.41)

Using this and eq. (2.157) we finally obtain

U = (α1 +α2)(α3 +α4)+ (α1 +α2) (α5 +α6)+ (α3 +α4)(α5 +α6) ,

F = [α1α4α6 +α2α3α5 +α1α2 (α3 +α4 +α5α6)]

(−p2
1

µ2

)

+[α3α2α6 +α4α1α5 +α3α4 (α1 +α2 +α5α6)]

(−p2
2

µ2

)

+[α5α2α4 +α6α1α3 +α5α6 (α1 +α2 +α3α4)]

(−p2
3

µ2

)
. (J.42)

Exercise 9: Prove eq. (2.171).

Solution: The attentive reader might have noticed that we (implicitly) already gave a proof of eq. (2.171)
when we we derived the Feynman parameter representation from the Schwinger parameter representation.
For clarity, let’s distil the proof here: For A j > 0 and Re(ν j)> 0 we have

1

A
ν j

j

=
1

Γ(ν j)

∞∫

0

dα j α
ν j−1

j e−αA j , (J.43)

and therefore

n

∏
j=1

1

A
ν j

j

=
1

n
∏
j=1

Γ(ν j)

∫

α j≥0

dnα

(
n

∏
j=1

α
ν j−1

j

)
exp

(
−

n

∑
j=1

α jA j

)
. (J.44)
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Clearly,
n
∑
j=1

α j ≥ 0. We insert

1 =

∞∫

0

dt δ

(
t−

n

∑
j=1

α j

)
(J.45)

and change variables according to a j = α j/t. This gives

n

∏
j=1

1

A
ν j

j

=
1

n
∏
j=1

Γ(ν j)

∫

a j≥0

dna δ

(
1−

n

∑
j=1

a j

)(
n

∏
j=1

a
ν j−1

j

) ∞∫

0

dt tν−1e
−t

n
∑

j=1
a jA j

. (J.46)

A further change of variable t→ t/(
n
∑
j=1

a jA j) yields

n

∏
j=1

1

A
ν j

j

=
1

n
∏
j=1

Γ(ν j)

∫

a j≥0

dna δ

(
1−

n

∑
j=1

a j

)(
n

∏
j=1

a
ν j−1

j

)
1(

n
∑
j=1

a jA j

)ν

∞∫

0

dt tν−1e−t . (J.47)

With

∞∫

0

dt tν−1e−t = Γ(ν) (J.48)

we arrive at

n

∏
j=1

1

A
ν j

j

=
Γ(ν)

n
∏
j=1

Γ(ν j)

∫

a j≥0

dna δ

(
1−

n

∑
j=1

a j

)(
n

∏
j=1

a
ν j−1

j

)
1(

n
∑
j=1

a jA j

)ν . (J.49)

Exercise 10: Calculate with the help of the Feynman parameter representation the one-loop triangle
integral

Iν1ν2ν3
= eεγE

(
µ2
)ν−D

2

∫
dDk

iπ
D
2

1(
−q2

1

)ν1
(
−q2

2

)ν2
(
−q2

3

)ν3
, (J.50)

shown in fig. 2.8 for the case where all internal masses are zero (m1 = m2 = m3 = 0) and for the kinematic
configuration p2

1 = p2
2 = 0, p2

3 6= 0.

Solution: The second graph polynomial is given by

F = a1a3

(−p2
3

µ2

)
(J.51)
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and the Feynman parameter representation reads

Iν1ν2ν3
=

eεγEΓ
(
ν− D

2

)

Γ(ν1)Γ(ν2)Γ(ν3)

∫

a j≥0

d3a δ(1−a1−a2−a3)
aν1−1

1 aν2−1
2 aν3−1

3

[F (a)]ν−
D
2

(J.52)

=
eεγEΓ

(
ν− D

2

)

Γ(ν1)Γ(ν2)Γ(ν3)

(−p2
3

µ2

)D
2−ν ∫

a j≥0

d3a δ(1−a1−a2−a3) a
D
2
−ν23−1

1 aν2−1
2 a

D
2
−ν12−1

3 .

The Feynman parameter integral is a generalisation of Euler’s beta function: For n ∈N we have

∫

a j≥0

dna δ

(
1−

n

∑
j=1

a j

) (
n

∏
j=1

a
ν j−1

j

)
=

n
∏
j=1

Γ(ν j)

Γ(ν1 + ...+νn)
(J.53)

and therefore

Iν1ν2ν3
=

eεγE Γ
(
ν− D

2

)
Γ
(

D
2
−ν12

)
Γ
(

D
2
−ν23

)

Γ(ν1)Γ(ν3)Γ(D−ν)

(−p2
3

µ2

)D
2−ν

. (J.54)

Exercise 11: Consider again the one-loop box graph in fig. 2.4, this time for the kinematic configuration

p2
2 = p2

4 = 0, m1 = m2 = m3 = m4 = 0. (J.55)

Write down the Feynman parameter representation as in eq. (2.170). Obtain a second integral repre-
sentation by first combining propagators 1 and 2 with a pair of Feynman parameters, then combining
propagators 3 and 4 with a second pair of Feynman parameters and finally the two results with a third
pair of Feynman parameters.

Solution: Let us start with the standard (democratic) Feynman parameter representation. The graph
polynomials are

U = a1 +a2 +a3 +a4,

F = a2a4

(−s

µ2

)
+a1a3

(−t

µ2

)
+a1a4

(−p2
1

µ2

)
+a2a3

(−p2
3

µ2

)
. (J.56)

The democratic Feynman parameter representation is then

I =
eεγEΓ

(
ν− D

2

)

4

∏
j=1

Γ(ν j)

∫

a j≥0

d4a δ

(
1−

4

∑
j=1

a j

) (
4

∏
j=1

a
ν j−1

j

)
1

F ν−D
2

. (J.57)

Note that we may ignore the U-polynomial due to the delta distribution.
Let us now follow a hierarchical approach: It will be convenient to use the following notation: ā =

1−a, b̄ = 1−b, c̄ = 1− c and νi1...ik = νi1 + · · ·+νik . We first combine propagators 1 and 2

1(
−q2

1

)ν1
(
−q2

2

)ν1
=

Γ(ν12)

Γ(ν1)Γ(ν2)

1∫

0

da aν1−1āν2−1 1(
−aq2

1− āq2
2

)ν12
, (J.58)
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then propagators 3 and 4

1(
−q2

3

)ν1
(
−q2

4

)ν1
=

Γ(ν34)

Γ(ν3)Γ(ν4)

1∫

0

db bν3−1b̄ν4−1 1(
−bq2

3− b̄q2
4

)ν34
, (J.59)

and finally the two intermediate results:

1(
−aq2

1− āq2
2

)ν12
(
−bq2

3− b̄q2
4

)ν34
=

Γ(ν1234)

Γ(ν12)Γ(ν34)

1∫

0

dc
cν12−1c̄ν34−1

(
−acq2

1− ācq2
2−bc̄q2

3− b̄c̄q2
4

)ν1234
. (J.60)

Let’s work out the denominator:

−acq2
1− ācq2

2−bc̄q2
3− b̄c̄q2

4 = (J.61)

−(k−acp1− āc(p1 + p2)−bc̄(p1 + p2 + p3))
2 + cc̄

[
āb̄(−s)+ab(−t)+ab̄

(
−p2

1

)
+ āb

(
−p2

3

)]
.

We see that the c-dependence in the second term factors out. We may now use eq. (2.133) and obtain

I =
eεγE Γ

(
ν− D

2

)

4

∏
j=1

Γ(ν j)

1∫

0

da aν1−1āν2−1

1∫

0

db bν3−1b̄ν4−1 1
[
āb̄(−s)+ab(−t)+ab̄

(
−p2

1

)
+ āb

(
−p2

3

)]ν−D
2

×
1∫

0

dc c
D
2−ν34−1c̄

D
2−ν12−1. (J.62)

The integral over c is trivial and gives Euler’s beta function. We obtain

I = (J.63)

eεγE Γ
(
ν− D

2

)
Γ
(

D
2
−ν12

)
Γ
(

D
2
−ν34

)

Γ(D−ν)
4

∏
j=1

Γ(ν j)

1∫

0

da

1∫

0

db
aν1−1āν2−1bν3−1b̄ν4−1

[
āb̄(−s)+ab(−t)+ab̄

(
−p2

1

)
+ āb

(
−p2

3

)]ν−D
2

.

This leaves two non-trivial integrations, compared to three non-trivial integrations within the standard
Feynman parameter representations.

Exercise 12: Prove eq. (2.195).

Solution: We have to prove

nint

∑
j=1

a j
∂

∂a j
f (a) = −nint f (a) . (J.64)

f (a) is a product of three factors, each factor is a homogeneous polynomial raised to some power. The
derivatives act by the product rules. It is therefore sufficient to prove

nint

∑
j=1

a j
∂

∂a j
(p(a))ν = νhp(a) (J.65)
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for a homogeneous polynomial p(a) of degree h. We may simplify the task further by noting that it is
sufficient to prove

nint

∑
j=1

a j
∂

∂a j
p(a) = hp(a) . (J.66)

Let us now write

p(a) = ∑
i

ci

nint

∏
j=1

a
νi j

j (J.67)

We assumed that p(a) is homogeneous of degree h, therefore we have for all i

nint

∑
j=1

νi j = h. (J.68)

It is easy to show that for each term we have

nint

∑
j=1

a j
∂

∂a j

(
ci

nint

∏
j=1

a
νi j

j

)
=

(
nint

∑
j=1

νi j

)(
ci

nint

∏
j=1

a
νi j

j

)
= h

(
ci

nint

∏
j=1

a
νi j

j

)
, (J.69)

which completes the proof.

Exercise 13: Show explicitly that eq. (2.198) is equivalent to eq. (2.170).

Solution: Let us denote by

∆̃ =

{
(a1, . . . ,anint−1) ∈ Rnint−1

∣∣
nint−1

∑
j=1

a j ≤ 1,a j ≥ 0

}
. (J.70)

∆̃ is a coordinate patch for the standard simplex. Let us further agree that in this exercise we always define

anint
= 1−

nint−1

∑
j=1

a j. (J.71)

The Feynman parameter representation from eq. (2.170) is then

I =
elεγE Γ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

∫

∆̃

dnint−1a

(
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (J.72)

In other words, we have used the Dirac delta distribution to integrate out anint
.

Let us now consider eq. (2.198). We work out ω for our coordinate chart: From eq. (J.71) we have

danint
= −

nint−1

∑
j=1

da j. (J.73)
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and hence

ω =
nint

∑
j=1

(−1)nint− j a j da1∧ ...∧ d̂a j∧ ...∧danint

= (−1)nint−1 a1da2∧ ·· ·∧danint−1∧ (−da1) + (−1)nint−2 a2da1∧da3∧ ·· ·∧danint−1∧ (−da2) + . . .

+ (−1)1 anint−1da1∧ ·· ·∧danint−2∧ (−danint−1) +

(
1−

nint−1

∑
j=1

a j

)
da1∧ ·· ·∧danint−2∧danint−1

= da1∧ ·· ·∧danint−1 = dnint−1a. (J.74)

Exercise 14: Prove eq. (2.200).

Solution: Let us write with Einstein’s summation convention

ω =
1

(nint−1)!
ωi2...inint

dai2 ∧ ·· ·∧dainint
, with ωi2...inint

= (−1)nint−1 εi1i2...inint
ai1 , (J.75)

where εi1i2...inint
denotes the totally antisymmetric tensor with ε12...nint

= 1. For

X = λiei (J.76)

the interior product is given by

ιX ω =
1

(nint−2)!
λi2 ωi2i3...inint

dai3 ∧ ·· ·∧dainint
. (J.77)

Integrating along the radial direction we have ai = λit, where t is the curve parameter. We then have

λi2 ωi2i3...inint
= (−1)nint−1 ai1 λi2 εi1i2i3...inint

= (−1)nint−1 λi1 λi2εi1i2i3...inint
t. (J.78)

This vanishes, as λi1 λi2 is symmetric under the exchange of i1 and i2, while εi1i2i3...inint
is antisymmetric.

Exercise 15: Prove eq. (2.201).

Solution: From Leibniz’s rule we have

d ( f ω) = (d f )∧ω+ f (dω) . (J.79)

We work out dω first:

dω =
nint

∑
j=1

(−1)nint− j da j ∧da1∧ ...∧ d̂a j∧ ...∧danint

= nint(−1)nint−1da1∧ . . .danint
. (J.80)

d f is given by

d f =
nint

∑
j=1

∂ f

∂a j
da j (J.81)
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In the wedge product with ω only a single sum survives:

(d f )∧ω =

(
nint

∑
j1=1

∂ f

∂a j1
da j1

)
∧
(

nint

∑
j2=1

(−1)nint− j2 a j2 ∧da1∧ ...∧ d̂a j2 ∧ ...∧danint

)

=
nint

∑
j=1

(−1)nint− ja j
∂ f

∂a j
da j ∧da1∧ ...∧ d̂a j∧ ...∧danint

= (−1)nint−1

(
nint

∑
j=1

a j
∂ f

∂a j

)
da1∧ ...∧danint

. (J.82)

With eq. (2.195) we have

(d f )∧ω = −nint(−1)nint−1 f da1∧ ...∧danint
. (J.83)

Exercise 16: An alternative proof of the Cheng-Wu theorem: Prove the Cheng-Wu theorem directly
from the Schwinger parameter representation by inserting

1 =

∞∫

−∞

dt δ

(
t−∑

j∈S

α j

)
=

∞∫

0

dt δ

(
t−∑

j∈S

α j

)
, (J.84)

where in the last step we used again the fact that the sum of the Schwinger parameters is non-negative.

Solution: We start from the Schwinger parameter representation

I =
elεγE

nint

∏
j=1

Γ(ν j)

∫

α j≥0

dnintα

(
nint

∏
j=1

α
ν j−1

j

)
[U (α)]−

D
2 exp

(
−F (α)

U (α)

)
(J.85)

and insert

1 =

∞∫

0

dt δ

(
t−∑

j∈S

α j

)
. (J.86)

We then change variables as a j = α j/t (for all j ∈ {1, . . . ,nint}) and obtain:

I =
elεγE

nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−∑

j∈S

a j

)(
nint

∏
j=1

a
ν j−1

j

)
[U (a)]−

D
2

∞∫

0

dt tν− lD
2 −1 exp

(
−t

F (a)
U (a)

)
. (J.87)

The remaining steps are as in the derivation of the Feynman parameter representation from the Schwinger
parameter representation and yield the result

I =
elεγE Γ

(
ν− lD

2

)
nint

∏
j=1

Γ(ν j)

∫

a j≥0

dninta δ

(
1−∑

j∈S

a j

) (
nint

∏
j=1

a
ν j−1

j

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (J.88)
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Exercise 17: Prove eq. (2.261).

Solution: We have to show

detGeucl (K,P1, ...,Pe) = K2
⊥detGeucl (P1, ...,Pe) . (J.89)

We start with the following lemma:

detGeucl (K +Pj,P1, ...,Pe) = detGeucl (K,P1, ...,Pe) , 1 ≤ j ≤ e. (J.90)

The (e+1) vectors K,P1, . . . ,Pe span at most a vector space of dimension (e+1). Let V be a vector space
of dimension (e+1) containing these vectors and define (with respect to a basis of V )

J (K,P1, ...,Pe) =




K0 K1 . . . Ke

P0
1 P1

1 . . . Pe
1

. . .
P0

e P1
e . . . Pe

e


 ,

where we labelled the coordinates with respect to the basis of V from 0 to e. It is clear that

detJ (K +Pj,P1, ...,Pe) = det J (K,P1, ...,Pe) , (J.91)

since we may always add a linear dependent row inside a determinant. We have

detGeucl (K,P1, ...,Pe) = det
(

J (K,P1, ...,Pe) · J (K,P1, ...,Pe)
T
)

(J.92)

and the lemma detGeucl(K +Pj,P1, ...,Pe) = detGeucl(K,P1, ...,Pe) follows.
Thus we have to show

det Geucl (K⊥,P1, ...,Pe) = K2
⊥detGeucl (P1, ...,Pe) . (J.93)

We are free to choose an appropriate basis of V . We choose a basis V0,V1, . . .Ve such that

〈K⊥〉 = 〈V0〉 , 〈P1, . . .Pe〉 = 〈V1, . . . ,Ve〉 . (J.94)

Then

J (K⊥,P1, ...,Pe) =




K0
⊥ 0 . . . 0

0 P1
1 . . . Pe

1

. . .
0 P1

e . . . Pe
e




and the claim follows.

Exercise 18: Perform the integration in eq. (2.269).

Solution: We have to compute

Tν (D,x) =
eγEε

(
µ2
)ν−D

2

Γ
(

D
2

)
∞∫

m2

dz1

[
z1−m2

]D
2
−1 1

zν
1

. (J.95)
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We first set s = (z1−m2)/µ2:

Tν (D,x) =
eγEε

Γ
(

D
2

)
∞∫

0

ds s
D
2−1 1

(s+ x)ν . (J.96)

A further substitution s = tx gives

Tν (D,x) =
eγEε

Γ
(

D
2

)x
D
2
−ν

∞∫

0

dt t
D
2
−1 1

(t +1)ν . (J.97)

The integral gives Euler’s beta function:

∞∫

0

dt t
D
2
−1 1

(t +1)ν =
Γ
(

D
2

)
Γ
(
ν− D

2

)

Γ(ν)
(J.98)

and we obtain

Tν (D,x) = eγEε Γ
(
ν− D

2

)

Γ(ν)
x

D
2−ν (J.99)

in agreement with eq. (2.123).

Exercise 19: Derive the Baikov representation of the graph shown in fig. 2.16 within the democratic
approach and within the loop-by-loop approach. Assume that all internal masses are non-zero and equal.

Solution: We start with the democratic approach. We have

e = dim〈p,−p〉 = 1, (J.100)

and thus

NV =
1

2
l (l+1)+ el = 5. (J.101)

For the democratic approach we need a graph G̃ with nint = 5 internal propagators, which allows us
to express any scalar products involving the loop momenta in terms of inverse propagators and terms
independent of the loop momenta. The graph G̃ shown in fig. J.2 has this property. This graph is known
as the kite graph. We denote

q1 = k1, q2 = k2− k1, q3 = −k2− p, q4 = −k1− p, q5 = k2. (J.102)

Propagators four and five are auxiliary propagators. We may associate any mass to them. The simplest
choice is that propagators four and five are massless propagators. The momentum representation of the
Feynman integral for the kite graph is

Iν1ν2ν3ν4ν5
= e2εγE

(
µ2
)ν−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

1(
−q2

1 +m2
)ν j
(
−q2

2 +m2
)ν j
(
−q2

3 +m2
)ν j
(
−q2

4

)ν j
(
−q2

5

)ν j
.

(J.103)
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p

q1

q4

q2

q5

q3

−p

Figure J.2: The two-loop kite diagram.

The original sunrise integral Sν1ν2ν3
is simply

Sν1ν2ν3
= Iν1ν2ν300. (J.104)

The detour through the kite integral is necessary to satisfy the condition that we may express any internal
inverse propagator as a linear combination of the linear independent scalar products involving the loop
momenta and terms independent of the loop momenta. The democratic Baikov representation of the kite
integral reads

Iν1ν2ν3ν4ν5
=

e2εγE
(
µ2
)ν−D (−p2

)1−D
2

8π
3
2 Γ
(

D−1
2

)
Γ
(

D−2
2

)
∫

C

d5z [B (z)]
D
2
−2

5

∏
s=1

z−νs
s , (J.105)

Here we used

detC = 8, detG(p) = −p2. (J.106)

The Baikov polynomial reads

B (z) = detG(k1,k2, p)

=
1

4
{(z1z3− z4z5)(z4 + z5− z1− z3)+ z2 (z1− z4)(z3− z5)

+[z1 (z1− z2− z4)+ z3 (z3− z2− z5)+3z1 z3 + z2 (z4 + z5)−3z5 z4]m
2

+[z2 (z2− z1− z3− z4− z5)− (z1− z5)(z3− z4)] p2− z2

(
p2
)2

+2(z1 + z3)m2 p2

+(z2−2z1−2z3)
(
m2
)2

+m2
(
m2− p2

)2
}
. (J.107)

Let us now consider the loop-by-loop approach. We start with the loop formed by the internal edges e1

and e2 in the sunrise graph. The external momenta with respect to this loop are k2 and −k2. Thus we need
for the first loop only the auxiliary edge e5, but not e4. Re-writing the measure gives us

dDk1

iπ
D
2

=
1

2
√

πΓ
(

D−1
2

) [detG(k2)]
1−D

2 [detG(k1,k2)]
D−3

2 dz1dz2. (J.108)
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Having done the first loop, we turn to the second loop. We still have the edge e3. In addition, we introduced
the auxiliary edge e5 in the previous step. Thus we deal again with a one-loop two-point function. The
loop momentum is k2, the external momenta are p and −p. Re-writing the second measure in terms of
Baikov variables gives

dDk2

iπ
D
2

=
1

2
√

πΓ
(

D−1
2

) [detG(p)]1−
D
2 [detG(k2, p)]

D−3
2 dz3dz5. (J.109)

Putting everything together we arrive at the Baikov representation within the loop-by-loop approach:

Sν1ν2ν3
= (J.110)

e2εγE
(
µ2
)ν−D (−p2

)1−D
2

4π
[
Γ
(

D−1
2

)]2
∫

C

dz1dz2dz3dz5 [detG(k2, p)]
D−3

2 [detG(k1,k2)]
D−3

2 z
1−D

2

5

3

∏
s=1

z−νs
s .

Here, we already used

detG(p) = −p2, detG(k2) = −k2
2 = z5. (J.111)

The remaining Gram determinants, expressed in terms of the Baikov variables, read

detG(k2, p) =
1

4

[
−
(
m2− p2− z3

)2
+2
(
z3− p2−m2

)
z5− z2

5

]
,

detG(k1,k2) =
1

4

[
−(z1− z2)

2 +2
(
z1 + z2−2m2

)
z5− z2

5

]
. (J.112)

It is worth noting that within the loop-by-loop approach we only have four integration variables (z1, z2,
z3, z5), compared to five integration variables in the democratic approach.

Exercise 20: Re-compute the first graph polynomial U for the graph shown in fig. 2.6 from the set
of spanning trees.

Solution: The graph shown in fig. 2.6 can alternatively be drawn as shown in fig. J.3. We have to find all
spanning trees for this graph. The graph has three chains, which we may take as

C1 = {e1,e2} , C2 = {e3,e4} , C3 = {e5,e6} . (J.113)

In order to obtain a spanning tree, we have to delete from two chains one edge each. There are three
possibilities to pick two chains out of three. For any choice of these two chains there are four possibilities
to delete one edge from each chain. Thus there are in total 3 · 4 = 12 possibilities. This is the number of
spanning trees. The first graph polynomial U contains for each spanning tree a monomial corresponding
to the edges, which have been deleted to obtain the spanning tree. Thus

U = (α1 +α2)(α3 +α4)+ (α1 +α2) (α5 +α6)+ (α3 +α4)(α5 +α6) , (J.114)

in agreement with eq. (J.42).

Exercise 21: Re-compute the first graph polynomial U for the graph shown in fig. 2.6 from the Laplacian
of the graph.
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v1 v3

v4

v2

v5

e1

e2

e5

e6

e3

e4

Figure J.3: The labelling of the internal vertices for the two-loop non-planar vertex graph of

fig. 2.6.

Solution: Let us label the internal vertices as shown in fig. J.3. The Laplacian for this graph is given
by

Lint =




a1 +a2 0 0 −a1 −a2

0 a3 +a4 0 −a3 −a4

0 0 a5 +a6 −a5 −a6

−a1 −a3 −a5 a1 +a3 +a5 0

−a2 −a4 −a6 0 a2 +a4 +a6



. (J.115)

We obtain the Kirchhoff polynomial by deleting row and column j and taking the determinant afterwards.
Here, j can be any number j ∈ {1,2,3,4,5}. Let’s take j = 5:

Kint (a1,a2,a3,a4,a5) = det Lint[5] =

∣∣∣∣∣∣∣∣

a1 +a2 0 0 −a1

0 a3 +a4 0 −a3

0 0 a5 +a6 −a5

−a1 −a3 −a5 a1 +a3 +a5

∣∣∣∣∣∣∣∣
. (J.116)

We then obtain the first graph polynomial from eq. (3.16):

U(a1,a2,a3,a4,a5) = a1a2a3a4a5 Kint

(
1

a1

,
1

a2

,
1

a3

,
1

a4

,
1

a5

)
(J.117)

= (α1 +α2) (α3 +α4)+ (α1 +α2) (α5 +α6)+ (α3 +α4)(α5 +α6) .

Again, we find agreement with eq. (J.42).

Exercise 22: Consider a massless theory. Show that in this case the Lee-Pomeransky polynomial G
satisfies for any regular edge ek the recursion

G(G) = G(G/ek)+akG(G− ek). (J.118)
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Solution: In a massless theory we have

F = F0. (J.119)

From eq. (3.53) we have for any regular edge ek the recursion

U(G) = U(G/ek)+akU(G− ek),

F0(G) = F0(G/ek)+akF0(G− ek). (J.120)

The Lee-Pomeransky polynomial G is given by

G = U +F = U +F0, (J.121)

and hence the claim follows for any regular edge ek:

G(G) = G(G/ek)+akG(G− ek). (J.122)

Exercise 23: Let G be a graph with nint edges and next edges and set n = nint + next. Label the edges
as

internal edges : {e1,e2, ...,enint
},

external edges : {enint+1,enint+2, ...,enint+next
}. (J.123)

Let Gint be the internal graph of G. Define U, K and Kint as before. Define Ũ by

Ũ (a1, ...,an) = a1...an K

(
1

a1

, ...,
1

an

)
. (J.124)

Show

Ũ (a1, ...,an) = U (a1, ...,anint
) ,

K (a1, ...,an) = anint+1 . . .anK (a1, ...,anint
) . (J.125)

Solution: The key to the solution is to realise that there is a one-to-one correspondence between the
spanning trees of G and Gint. The internal graph Gint is obtained from G by deleting all external vertices
and edges. Now consider a spanning tree of G. A spanning tree T of G is obtained from G by deleting l
edges, such that T is connected and a tree. However, we cannot delete an external edge: If we delete an
external edge, the resulting graph is disconnected. Thus, any spanning tree of G can be mapped onto a
spanning tree of Gint and vice versa. From eq. (3.14)

K (a1, ...,an) = ∑
T∈T1

∏
e j∈T

a j (J.126)

and Kint (G) = K (Gint) it follows that

K (a1, ...,an) = anint+1 . . .anK (a1, ...,anint
) . (J.127)
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The second equation

Ũ (a1, ...,an) = U (a1, ...,anint
) (J.128)

follows then from eq. (3.16) and the definition of Ũ.

Exercise 24: Determine the number of loops for K5 and K3,3.

Solution: The loop number is given by (see eq. (2.15))

l = n− r+ k, (J.129)

where n denotes the number of edges, r denotes the number of vertices and k denotes the number of
connected components. Both K5 and K3,3 are connected, hence k = 1 in both cases. It remains to count
for each graph the number of edges and vertices. The graph K5 has 10 edges and 5 vertices. We therefore
find

lK5
= 10−5+1 = 6. (J.130)

The graph K3,3 has 9 edges and 6 vertices. We therefore find

lK3,3 = 9−6+1 = 4. (J.131)

Exercise 25: Consider the two graphs G1 and G2 shown in fig. 3.19, which differ by a self-loop. For
each of the two graphs, give the Kirchhoff polynomial K and the first graph polynomial U. Show that the
cycle matroids are not isomorphic.

Solution: We may work out the Kirchhoff polynomial and the first graph polynomial from the spanning
trees (or alternatively from the Laplacian). The result is:

K (G1) = (a1 +a2) (a3 +a4)+a3a4,

K (G2) = (a1 +a2) (a3 +a4)+a3a4,

U (G1) = (a1 +a2) (a3 +a4)+a1a2,

U (G2) = [(a1 +a2)(a3 +a4)+a1a2]a5. (J.132)

The two graphs G1 and G2 have the same set of spanning trees. Hence the Kirchhoff polynomials are
equal K (G1) = K (G2). On the other hand, in the first graph polynomial U the deleted edges enter. In
the graph G2 we have to delete 3 edges to obtain a tree graph, whereas in the graph G1 we only have to
deleted two edges. Hence the first graph polynomials differ: U(G1) 6= U(G2).

Now let’s look at the cycle matroids: It is clear that we cannot transform G2 by a sequence of vertex
identifications, vertex cleavings and twistings into G1. We may detach the self-loop formed by e5 from the
rest of the graph by vertex cleaving, but we cannot delete the self-loop. From Whitney’s theorem it follows
that the cycle matroids are not isomorphic.

It is instructive to go back to the definition of a matroid: A matroid is specified by a ground set E and
the set of independent sets I . We get the ground set E and the set of independent sets I from the incidence
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matrix:

Bincidence (G1) =




1 1 1 0

0 0 1 1

1 1 0 1


 , Bincidence (G2) =




1 1 1 0 0

0 0 1 1 0

1 1 0 1 0


 . (J.133)

The column j in the incidence matrix corresponds to the edge e j. We have

E (G1) = {e1,e2,e3,e4} ,
I (G1) = { /0, {e1} , {e2} , {e3} , {e4} ,

{e1, e3} , {e1, e4} , {e2, e3} , {e2, e4} , {e3, e4}} ,
E (G2) = {e1,e2,e3,e4,e5} ,
I (G2) = { /0, {e1} , {e2} , {e3} , {e4} ,

{e1, e3} , {e1, e4} , {e2, e3} , {e2, e4} , {e3, e4}} . (J.134)

Although

I (G1) = I (G2) , (J.135)

the two cycle matroids are not isomorphic, as there is no bijection from E(G1) to E(G2). E(G2) has one
element more than E(G1).

Exercise 26: Consider first the two graphs G1 and G2 shown in fig. 3.20, both with three external
legs. Assume that all internal masses vanish. Show that

U (G1) = U (G2) , F (G1) = F (G2) . (J.136)

Consider then the graphs G3 and G4 with four external legs. Show that

U (G3) = U (G4) , (J.137)

but

F (G3) 6= F (G4) . (J.138)

Solution: Let us first show

U (G1) = U (G2) , U (G3) = U (G4) . (J.139)

Consider fig. J.4. We obtain G2 from G1 by twisting at the vertices v1 and v2 of G1. Similarly, we obtain
G4 from G3 by twisting at the vertices v1 and v2 of G3. Hence U(G1) = U(G2) and U(G3) = U(G4).

For the second graph polynomial F we have to consider the graphs Ĝ1, Ĝ2, Ĝ3 and Ĝ4. The graph
Ĝ1 is shown in the lower left part of fig. J.4. By twisting at the vertices v1 and v2 of Ĝ1 we obtain Ĝ2 and
the relation F (G1) = F (G2) follows. The graph Ĝ3 is shown in the lower right part of fig. J.4. For the
twisting operation we have to split the graph into two disjoint pieces by cleaving at exactly two vertices.
In order to obtain Ĝ4 from Ĝ3 we would have to cleave at the three vertices v1, v2 and v∞. But the twisting
operation requires cleaving at exactly two vertices. Hence we cannot obtain Ĝ4 from Ĝ3 by the operations
of vertex identifications, vertex cleavings and twisting. A short calculation shows that for generic external
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v1

v2

G1

v1

v2

G3

v1

v2

v∞Ĝ1

v1

v2

v∞ Ĝ3

Figure J.4: The upper part shows the graphs G1 and G3 with two labelled vertices. The lower

part shows the graphs Ĝ1 and Ĝ3.

momenta F (G3) 6= F (G4).

Exercise 27: Derive eq. (4.36) from eq. (4.34) and eq. (4.35).

Solution: With

Pµν ab(x) = ∂ρ∂ρgµνδab−
(

1− 1

ξ

)
∂µ∂νδab (J.140)

and

(
P−1

)ab

µν
(x) =

∫
dDq

(2π)D e−iq·x (P̃−1
)ab

µν
(q). (J.141)

we have

Pµσ ac(x)
(
P−1

)cb

σν
(x− y) =

∫
dDq

(2π)D e−iq·(x−y)q2

[
−gµσ +

(
1− 1

ξ

)
qµqσ

q2

]
δac (P̃−1

)cb

σν
(q).

This should be equal to

gµ
νδabδD(x− y) =

∫
dDq

(2π)D e−iq·(x−y)gµ
νδab. (J.142)
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We have for

Mµν =−gµν +

(
1− 1

ξ

)
qµqν

q2
and Nµν =−gµν +(1−ξ)

qµqν

q2
(J.143)

the relation

MµσNσν = gµ
ν. (J.144)

Therefore

µ,a ν,b =
i

q2

(
−gµν +(1−ξ)

qµqν

q2

)
δab. (J.145)

Exercise 28: Compute the four-gluon amplitude A
(0)
4 from the four diagrams shown in fig. 4.1. Assume

that all momenta are outgoing. Derive the Mandelstam relation

s+ t +u = 0. (J.146)

Solution: Let us start with the Mandelstam relation. Using momentum conservation and the on-shell
relations we have

0 = p2
4 = (p1 + p2 + p3)

2 = 2p1 · p2 +2p2 · p3 +2p1 · p3

= (p1 + p2)
2 +(p2 + p3)

2 +(p1 + p3)
2 = s+ t +u. (J.147)

We then turn to the computation of the amplitude. Let us first examine the colour factors. The first
diagrams has a colour factor Cs = (i f a1a2b)(i f ba3a4). The second diagram we may equally well draw
with legs 1 and 4 exchanged. The colour factor is then given by Ct = (i f a2a3b)(i f ba1a4). (If we read off
the colour factor directly from diagram 2, we find (i f a2a3b)(i f ba4a1) = −(i f a2a3b)(i f ba1a4). The minus
sign cancels with another minus sign from the kinematic part.) The third diagram has the colour factor
Cu = (i f a3a1b)(i f ba2a4). The fourth diagram with the four-gluon vertex gives three terms, one contributing
to each colour structure. We may therefore write the amplitude as

A
(0)
4 = ig2

[
(i f a1a2b)(i f ba3a4) Ns

s
+

(i f a2a3b)(i f ba1a4) Nt

t
+

(i f a3a1b)(i f ba2a4) Nu

u

]
. (J.148)

Ns is given by

Ns =
{[

gµ1µ2 (pν
1− pν

2)+gµ2ν
(

pµ1

2 − pµ1

34

)
+gνµ1

(
pµ2

34− pµ2

1

)]
gνρ

[
gµ3µ4

(
pρ

3− pρ
4

)
+gµ4ρ

(
pµ3

4 − pµ3

12

)

+gρµ3
(

pµ4

12− pµ4

3

)]
+2p1 · p2 (g

µ1µ3 gµ2µ4−gµ2µ3gµ1µ4)
}

ε
µ1

1 ε
µ2

2 ε
µ3

3 ε
µ4

4 , (J.149)

where we used the notation pi j = pi + p j. Using momentum conservation and p j · ε j = 0 we may simplify
this expression to

Ns =
{[

gµ1µ2 (pν
1− pν

2)+2gµ2ν pµ1

2 −2gνµ1 pµ2

1

]
gνρ

[
gµ3µ4

(
pρ

3− pρ
4

)
+2gµ4ρ pµ3

4 −2gρµ3 pµ4

3

]

+2p1 · p2 (g
µ1µ3 gµ2µ4−gµ2µ3gµ1µ4)}ε

µ1

1 ε
µ2

2 ε
µ3

3 ε
µ4

4 . (J.150)

The contraction of indices for long expressions is best done with the help of a computer algebra program.
Here is a short FORM program, which performs the contractions in eq. (J.150):
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* Example program for FORM

V p1,p2,p3,p4, e1,e2,e3,e4;

I mu1,mu2,mu3,mu4,nu,rho;

L Ns = ((d_(mu1,mu2)*(p1(nu)-p2(nu)) + 2*d_(mu2,nu)*p2(mu1) - 2*d_(nu,mu1)*p1(mu2))*

d_(nu,rho)*

(d_(mu3,mu4)*(p3(rho)-p4(rho)) + 2*d_(mu4,rho)*p4(mu3) - 2*d_(rho,mu3)*p3(mu4))

+2*p1(nu)*p2(nu)*(d_(mu1,mu3)*d_(mu2,mu4)-d_(mu2,mu3)*d_(mu1,mu4)))*

e1(mu1)*e2(mu2)*e3(mu3)*e4(mu4);

print;

.end

The same can be done in C++, using the GiNaC library:

// Example in C++ with GiNaC

#include <iostream>

#include <string>

#include <sstream>

#include <ginac/ginac.h>

using namespace std;

using namespace GiNaC;

string itos(int arg)

{

ostringstream buffer;

buffer << arg;

return buffer.str();

}

int main()

{

varidx mu1(symbol("mu1"),4), mu2(symbol("mu2"),4),

mu3(symbol("mu3"),4), mu4(symbol("mu4"),4),

nu(symbol("nu"),4), rho(symbol("rho"),4);

symbol p1("p1"), p2("p2"), p3("p3"), p4("p4"),

e1("e1"), e2("e2"), e3("e3"), e4("e4");

vector<ex> p_vec = { p1, p2, p3, p4 };

vector<ex> e_vec = { e1, e2, e3, e4 };

scalar_products sp;

for (int i=0; i<4; i++)

{

for (int j=i+1; j<4; j++)

{

sp.add(p_vec[i],p_vec[j],symbol( string("p")+itos(i+1)+string("p")+itos(j+1) ));

sp.add(e_vec[i],e_vec[j],symbol( string("e")+itos(i+1)+string("e")+itos(j+1) ));
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sp.add(p_vec[i],e_vec[j],symbol( string("p")+itos(i+1)+string("e")+itos(j+1) ));

sp.add(e_vec[i],p_vec[j],symbol( string("p")+itos(j+1)+string("e")+itos(i+1) ));

}

}

ex Ns = ((lorentz_g(mu1,mu2)*(indexed(p1,nu)-indexed(p2,nu))

+ 2*lorentz_g(mu2,nu)*indexed(p2,mu1) - 2*lorentz_g(nu,mu1)*indexed(p1,mu2))

* lorentz_g(nu.toggle_variance(),rho.toggle_variance())

* (lorentz_g(mu3,mu4)*(indexed(p3,rho)-indexed(p4,rho))

+ 2*lorentz_g(mu4,rho)*indexed(p4,mu3) - 2*lorentz_g(rho,mu3)*indexed(p3,mu4))

+ 2*indexed(p1,nu)*indexed(p2,nu.toggle_variance())

*(lorentz_g(mu1,mu3)*lorentz_g(mu2,mu4) - lorentz_g(mu2,mu3)*lorentz_g(mu1,mu4)))

*indexed(e1,mu1.toggle_variance())*indexed(e2,mu2.toggle_variance())

*indexed(e3,mu3.toggle_variance())*indexed(e4,mu4.toggle_variance());

Ns = Ns.expand();

Ns = Ns.simplify_indexed(sp);

cout << Ns << endl;

}

After a few additional simplifications one finds

Ns = 4(p1 · ε2)(p3 · ε4)(ε1 · ε3)−4(p1 · ε2)(p4 · ε3)(ε1 · ε4)+4(p2 · ε1)(p4 · ε3) (ε2 · ε4)

−4(p2 · ε1) (p3 · ε4) (ε2 · ε3)+4 [(p1 · ε3) (p2 · ε4)− (p1 · ε4) (p2 · ε3)] (ε1 · ε2)

+4 [(p3 · ε1)(p4 · ε2)− (p3 · ε2) (p4 · ε1)](ε3 · ε4)+2(p1 · p2)(ε1 · ε3) (ε2 · ε4)

−2(p1 · p2)(ε1 · ε4) (ε2 · ε3)−2(p2 · p3− p1 · p3) (ε1 · ε2)(ε3 · ε4) . (J.151)

The numerator Nt is obtained from the numerator Ns by the substitution (1,2,3)→ (2,3,1), the numerator
Nu is obtained from the numerator Ns by the substitution (1,2,3)→ (3,1,2).

Let us add the following remark: The colour factors satisfy (obviously) the Jacobi identity

Cs +Ct +Cu = 0. (J.152)

It is an easy exercise to check, that the numerators Ns, Nt and Nu, as determined above, satisfy the Jacobi-
like identity

Ns +Nt +Nu = 0. (J.153)

Exercise 29: Let n ∈ N. Show that the action of (j+)n on the integrand of the Schwinger parameter
representation is given by

(
j+
)n

Iν1...ν j...νnint
(D) =

elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
αn

j

U
D
2

e−
F
U . (J.154)

Solution: By definition the operator (j+)n acts on Iν1...ν j ...νnint
(D) as

(
j+
)n

Iν1...ν j...νnint
(D) = ν j (ν j +1) · . . . (ν j +n−1) · Iν1...(ν j+n)...νnint

(D)

=
Γ(ν j +n)

Γ(ν j)
Iν1...(ν j+n)...νnint

(D) . (J.155)
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For Iν1...(ν j+n)...νnint
(D) we use the Schwinger parameter representation

Iν1...(ν j+n)...νnint
(D) =

elεγE

Γ(ν j +n)
nint

∏
k=1
k 6= j

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
αn

j

U
D
2

e−
F
U . (J.156)

Thus

(
j+
)n

Iν1...ν j...νnint
(D) =

Γ(ν j +n)

Γ(ν j)
Iν1...(ν j+n)...νnint

(D)

=
elεγE

nint

∏
k=1

Γ(νk)

∫

αk≥0

dnintα

(
nint

∏
k=1

ανk−1
k

)
αn

j

U
D
2

e−
F
U , (J.157)

as claimed.

Exercise 30: Work out the corresponding formula for

∫
dDk

iπD/2
kµ1kµ2kµ3 kµ4kµ5kµ6 f (k2). (J.158)

Solution: The result must be proportional to a symmetric tensor T µ1µ2µ3µ4µ5µ6 build from the metric tensor.
Let’s first construct this tensor. It has 15 terms. This can be seen as follows: Start from index µ1: There are
five possibilities how this index can be paired with another index µ j into gµ1µ j : Any choice j ∈ {2,3,4,5,6}
is allowed. The remaining four indices must form a symmetric tensor of rank 4, such a rank 4 tensor has
three terms (compare with eq. (4.102)). Thus

T µ1µ2µ3µ4µ5µ6 = gµ1µ2gµ3µ4 gµ5µ6 +gµ1µ2 gµ3µ5gµ4µ6 +gµ1µ2gµ3µ6gµ4µ5

+gµ1µ3gµ2µ4gµ5µ6 +gµ1µ3gµ2µ5 gµ4µ6 +gµ1µ3 gµ2µ6 gµ4µ5

+gµ1µ4gµ3µ2gµ5µ6 +gµ1µ4gµ3µ5 gµ2µ6 +gµ1µ4 gµ3µ6 gµ2µ5

+gµ1µ5gµ3µ4gµ2µ6 +gµ1µ5gµ3µ2 gµ4µ6 +gµ1µ5 gµ3µ6 gµ4µ2

+gµ1µ6gµ3µ4gµ5µ2 +gµ1µ6gµ3µ5 gµ4µ2 +gµ1µ6 gµ3µ2 gµ4µ5 . (J.159)

Thus we have the ansatz

∫
dDk

iπD/2
kµ1kµ2kµ3 kµ4kµ5kµ6 f (k2) = T µ1µ2µ3µ4µ5µ6

∫
dDk

iπD/2
g(k2) f (k2) (J.160)

for some unknown function g(k2). We contract both sides with gµ1µ2
gµ3µ4

gµ5µ6
. On the left-hand side we

obtain

gµ1µ2
gµ3µ4

gµ5µ6
kµ1kµ2kµ3 kµ4kµ5kµ6 =

(
k2
)3
, (J.161)

on the right-hand side we obtain

gµ1µ2
gµ3µ4

gµ5µ6
T µ1µ2µ3µ4µ5µ6 = D(D+2)(D+4) , (J.162)
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hence

∫
dDk

iπD/2
kµ1 kµ2kµ3kµ4 kµ5kµ6 f (k2) = − T µ1µ2µ3µ4µ5µ6

D(D+2)(D+4)

∫
dDk

iπD/2

(
−k2

)3
f (k2). (J.163)

Exercise 31: Prove eqs. (4.122)-(4.124).

Solution: We start with

Tr
(

γ
µ
(4)γ

ν
(4)

)
= 4gµν

(4). (J.164)

From the cyclic property of trace and the anti-commutation relation of eq. (4.117) we have

2Tr
(

γ
µ
(4)γ

ν
(4)

)
= Tr

(
γ

µ
(4)γ

ν
(4)

)
+Tr

(
γν
(4)γ

µ
(4)

)
= 2gµν

(4)Tr 1 = 8gµν
(4). (J.165)

In order to prove

Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n

(4)

)
=

2n

∑
j=2

(−1) j g
µ1µ j

(4) Tr
(

γ
µ2

(4)...γ
µ j−1

(4) γ
µ j+1

(4) ...γ
µ2n

(4)

)
(J.166)

we anti-commute the first Dirac matrix γ
µ1

(4) from the first place to the last place, using the anti-commutation
relation of eq. (4.117). This yields

Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n

(4)

)
= 2

2n

∑
j=2

(−1) j g
µ1µ j

(4) Tr
(

γ
µ2

(4)...γ
µ j−1

(4) γ
µ j+1

(4) ...γ
µ2n

(4)

)
+Tr

(
γ

µ2

(4)...γ
µ2n

(4)γ
µ1

(4)

)
. (J.167)

From the cyclicity of the trace we have

Tr
(

γ
µ2

(4)...γ
µ2n

(4)γ
µ1

(4)

)
= Tr

(
γ

µ1

(4)γ
µ2

(4)...γ
µ2n

(4)

)
(J.168)

and the result follows. In order to show that the trace of an odd number of Dirac matrices vanishes

Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
= 0 (J.169)

we use γ2
5 = 1, the anti-commutation relations of γ5 (we anti-commute one γ5 from the second place to the

last place) and the cyclicity of the trace:

Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
= Tr

(
γ5γ5γ

µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
= −Tr

(
γ5γ

µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4) γ5

)

= −Tr
(

γ5γ5γ
µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
= −Tr

(
γ

µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
. (J.170)

Thus

2Tr
(

γ
µ1

(4)γ
µ2

(4)...γ
µ2n−1

(4)

)
= 0. (J.171)
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For traces involving γ5

Tr(γ5) = 0,

Tr
(

γ
µ1

(4)γ
µ2

(4)γ5

)
= 0,

Tr
(

γ
µ1

(4)γ
µ2

(4)γ
µ3

(4)γ
µ4

(4)γ5

)
= 4iεµ1µ2µ3µ4 (J.172)

we insert the definition of γ5

γ5 =
i

24
εν1ν2ν3ν4

γν1

(4)γ
ν2

(4)γ
ν3

(4)γ
ν4

(4). (J.173)

We then have to evaluate traces with an even number of Dirac matrices, which we can do with the rule
proven above. In the first two cases we have to evaluate a trace over four, respectively six Dirac matrices.
Each term of the result necessarily contains a factor gνiν j , which vanishes when contracted into εν1ν2ν3ν4

.
In the third case we have to evaluate a trace over eight Dirac matrices. Here, terms of the form

gµ1νπ(1)gµ2νπ(2)gµ3νπ(3)gµ4νπ(4) (J.174)

survive, where π is a permutation of (1,2,3,4). We may either work out the result by brute force, or –
more elegantly – first establish that the final result must be proportional to εµ1µ2µ3µ4 , as any symmetric part
vanishes:

Tr
(

γ
µ2

(4)γ
µ1

(4)γ
µ3

(4)γ
µ4

(4)γ5

)
= −Tr

(
γ

µ1

(4)γ
µ2

(4)γ
µ3

(4)γ
µ4

(4)γ5

)
+2gµ1µ2

(4) Tr
(

γ
µ3

(4)γ
µ4

(4)γ5

)

= −Tr
(

γ
µ1

(4)γ
µ2

(4)γ
µ3

(4)γ
µ4

(4)γ5

)
. (J.175)

Thus

Tr
(

γ
µ1

(4)γ
µ2

(4)γ
µ3

(4)γ
µ4

(4)γ5

)
= cεµ1µ2µ3µ4 (J.176)

for some constant c. We then obtain the constant by contracting with iεµ1µ2µ3µ4
/24. On the left-hand side

we find

i

24
εµ1µ2µ3µ4

Tr
(

γ
µ1

(4)γ
µ2

(4)γ
µ3

(4)γ
µ4

(4)γ5

)
= Tr(γ5γ5) = Tr(1) = 4. (J.177)

On the right-hand side we obtain (using εµ1µ2µ3µ4
εµ1µ2µ3µ4 =−24)

i

24
εµ1µ2µ3µ4

· cεµ1µ2µ3µ4 = −ic, (J.178)

and hence c = 4i.

Exercise 32: Show that with the definitions and conventions as above the rules for the traces of Dirac
matrices carry over to D dimensions. In detail, show:

1. Traces of an even number of Dirac matrices are evaluated with the rules

Tr
(

γ
µ
(D)γ

ν
(D)

)
= 4gµν

(D),

Tr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n

(D)

)
=

2n

∑
j=2

(−1) j g
µ1µ j

(D) Tr
(

γ
µ2

(D)...γ
µ j−1

(D) γ
µ j+1

(D) ...γ
µ2n

(D)

)
. (J.179)
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2. Traces of an odd number of Dirac matrices vanish:

Tr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)
= 0 (J.180)

3. For traces involving γ5 we have

Tr(γ5) = 0,

Tr
(

γ
µ
(D)γ

ν
(D)γ5

)
= 0,

Tr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
=

{
4iεµνρσ, µ,ν,ρ,σ ∈ {0,1,2,3},
0, otherwise.

(J.181)

Solution: The proof of point 1 follows exactly the proof in four space-time dimensions. Note that we
assume the normalisation as in eq. (4.126)

Tr(1) = 4, (J.182)

otherwise there would be small modifications.
In order to prove that the trace of an odd number of Dirac matrices vanishes, we proceed by induction.

For n = 1 we have

DTr
(

γ
µ
(D)

)
= Tr

(
γ
(D)
ν γν

(D)γ
µ
(D)

)
= 2gµν

(D)Tr
(

γ
(D)
ν

)
−Tr

(
γ
(D)
ν γ

µ
(D)γ

ν
(D)

)

= (2−D)Tr
(

γ
µ
(D)

)
(J.183)

and hence

2(D−1)Tr
(

γ
µ
(D)

)
= 0. (J.184)

As this has to hold for any D, we conclude

Tr
(

γ
µ
(D)

)
= 0. (J.185)

Let us now assume that a trace over (2n−3) Dirac matrices vanishes. We consider

DTr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)
= Tr

(
γ
(D)
ν γν

(D)γ
µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)

= 2
2n−1

∑
j=1

(−1) j−1
Tr
(

γ
µ j

(D)γ
µ1

(D)...γ
µ j−1

(D) γ
µ j+1

(D) ...γ
µ2n−1

(D)

)
−DTr

(
γ

µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)

= [2(2n−1)−D]Tr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)
, (J.186)

and hence

2(D−2n+1)Tr
(

γ
µ1

(D)γ
µ2

(D)...γ
µ2n−1

(D)

)
= 0, (J.187)

from which the claim follows.
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The proof of point 3 is to a large extent identical to the proof for four space-time dimensions. It
remains to show that

Tr
(

γ
µ
(D)γ

ν
(D)γ

ρ
(D)γ

σ
(D)γ5

)
= 0, (J.188)

if at least one index is not an element of {0,1,2,3}. Assume µ /∈ {0,1,2,3}. We insert the definition of γ5

γ5 = iγ0
(D)γ

1
(D)γ

2
(D)γ

3
(D) (J.189)

and evaluate a trace over eight Dirac matrices. Each term which does nor vanish for other reasons, will
contain a factor

gµτ, (J.190)

with µ /∈ {0,1,2,3} and τ ∈ {0,1,2,3}. As the metric tensor is diagonal, any non-diagonal element van-
ishes.

Exercise 33: Derive eq. (4.145).

Solution: In order to show

Tr /q1
γβ/q0

γα/q2
/k(−2ε)γ5 = k2

(−2ε) ·4iεαλβκ pλ
1 pκ

2 + . . . ,

Tr /q2
γα/q0

γβ/q1
/k(−2ε)γ5 = k2

(−2ε) ·4iεαλβκ pλ
1 pκ

2 + . . . , (J.191)

we decompose q0, q1 and q2 into a four-dimension part and a (−2ε)-dimensional part:

q0 = k(4)+ k(−2ε), q1 = k(4)+ k(−2ε)− p2, q2 = k(4)+ k(−2ε)+ p1. (J.192)

The external momenta p1 and p2 are four-dimensional. Inside the traces we already have one /k(−2ε), we
need to pick up from the substitution of q0,q1,q2 exactly one other (−2ε)-dimensional part. In all other
cases the traces vanish. Thus

Tr /q1
γβ/q0

γα/q2
/k(−2ε)γ5 = Tr /k(−2ε)γβ/k(4)γα

(
/k(4)+ /p1

)
/k(−2ε)γ5 (J.193)

+Tr
(
/k(4)− /p2

)
γβ/k(−2ε)γα

(
/k(4)+ /p1

)
/k(−2ε)γ5 +Tr

(
/k(4)− /p2

)
γβ/k(4)γα/k(−2ε)/k(−2ε)γ5.

We permute the /k(−2ε) next to each other and use eq. (4.138):

Tr /q1
γβ/q0

γα/q2
/k(−2ε)γ5 =(

k2
(−2ε)

)
·4iεαλβκ

[
kκ
(4)

(
kλ
(4)+ pλ

1

)
−
(

kκ
(4)− pκ

2

)(
kλ
(4)+ pλ

1

)
+
(

kκ
(4)− pκ

2

)
kλ
(4)

]
. (J.194)

Here we used the fact, that traces like

Tr
(
/k(4)− /p2

)
γβ

(
/k(4)+ /p1

)
/k(−2ε)γ5 = 0 (J.195)

vanish. In eq. (J.194) terms quadratic in k(4) vanish due to the contraction with the totally anti-symmetric
tensor, terms linear in k(4) vanish after integration. Thus

Tr /q1
γβ/q0

γα/q2
/k(−2ε)γ5 =

(
k2
(−2ε)

)
·4iεαλβκ pλ

1 pκ
2 + . . . . (J.196)
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The derivation of

Tr /q2
γα/q0

γβ/q1
/k(−2ε)γ5 = k2

(−2ε) ·4iεαλβκ pλ
1 pκ

2 + . . . (J.197)

follows along the same lines.

Exercise 34: Show

∫
dDk

(2π)Di

k2
(−2ε)

k2
0k2

1k2
2

= −1

2

1

(4π)2
+O (ε) . (J.198)

Solution: From eq. (2.136) it follows that

∫
dDk

(2π)Di

k2
(−2ε)

k2
0k2

1k2
2

= 4πε

∫
dD+2k

(2π)D+2i

1

k2
0k2

1k2
2

. (J.199)

The Feynman parameter representation of the integral in D+2 = 6−2ε space-time dimensions reads

∫
dD+2k

(2π)D+2i

1

k2
0k2

1k2
2

= − Γ(ε)

(4π)3−ε

(
µ2
)−ε

∫

a j≥0

d3a δ(1−a0−a1−a2)
1

[F (a)]ε
(J.200)

with

F = a0a2

(−p2
1

µ2

)
+a0a1

(−p2
2

µ2

)
+a1a2

(
−(p1 + p2)

2

µ2

)
. (J.201)

We only need the pole part. The prefactor Γ(ε) delivers a pole in ε. The Feynman parameter integral is
finite and we may therefore set ε = 0 in the exponent of F . Then the Feynman parameter integral becomes
trivial:

∫

a j≥0

d3a δ(1−a0−a1−a2)
1

[F (a)]ε
=

∫

a j≥0

d3a δ(1−a0−a1−a2)+O (ε) =
1

2
+O (ε) . (J.202)

Thus

∫
dD+2k

(2π)D+2i

1

k2
0k2

1k2
2

= − 1

2ε

1

(4π)3
+O

(
ε0
)

(J.203)

and hence we obtain in D = 4−2ε space-time dimensions

∫
dDk

(2π)Di

k2
(−2ε)

k2
0k2

1k2
2

= −1

2

1

(4π)2
+O (ε) . (J.204)

Exercise 35: Reduce the tensor integral

Aµ1µ2µ3µ4(m) = eεγE µ2ε
∫

dDk

iπD/2

kµ1 kµ2kµ3kµ4

(−k2 +m2)
(J.205)
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to A0(m).

Solution: The integral does not depend on any external momenta, so it must be proportional to a symmet-
ric tensor build from gµν:

Aµ1µ2µ3µ4(m) = (gµ1µ2gµ3µ4 +gµ1µ3gµ2µ4 +gµ1µ4gµ2µ3)A4(m). (J.206)

Contraction with gµ1µ2
gµ3µ4

yields

A4(m) =
1

D(D+2)
eεγE µ2ε

∫
dDk

iπD/2

(
k2
)2

(−k2 +m2)
. (J.207)

We further have

∫
dDk

iπD/2

(
k2
)2

(−k2 +m2)
=

(
m2
)2

∫
dDk

iπD/2

1

(−k2 +m2)
−m2

∫
dDk

iπD/2
+

∫
dDk

iπD/2
(−k2)

=
(
m2
)2

∫
dDk

iπD/2

1

(−k2 +m2)
, (J.208)

since the scaleless integrals vanish for D 6= 0,−2 (see eq. (2.137)). Thus

Aµ1µ2µ3µ4(m) =

(
m2
)2

D(D+2)
(gµ1µ2 gµ3µ4 +gµ1µ3 gµ2µ4 +gµ1µ4gµ2µ3)A0(m). (J.209)

Exercise 36: Reduce

gµ1µ2
gµ3µ4

Cµ1µ2µ3µ4(p1, p2,0,0,0) = −gµ1µ2
gµ3µ4

eεγEµ2ε
∫

dDk

iπD/2

kµ1kµ2kµ3 kµ4

k2(k− p1)2(k− p1− p2)2
(J.210)

to scalar integrals.

Solution: We have

gµ1µ2
gµ3µ4

Cµ1µ2µ3µ4(p1, p2,0,0,0) = −eεγEµ2ε
∫

dDk

iπD/2

(
k2
)2

k2(k− p1)2(k− p1− p2)2
. (J.211)

There are two powers of k2 in the numerator. One factor of k2 in the numerator cancels the factor of k2 in
the denominator:

gµ1µ2
gµ3µ4

Cµ1µ2µ3µ4(p1, p2,0,0,0) = −eεγEµ2ε
∫

dDk

iπD/2

k2

(k− p1)2(k− p1− p2)2
. (J.212)

However, there is no factor k2 left in the denominator to cancel the one in the numerator. The purpose of
this exercise is to show how to handle this case. We realise that the integral in eq. (J.212) is no longer a
three-point function, but just a two-point function. With k′ = k− p1 we have

gµ1µ2
gµ3µ4

Cµ1µ2µ3µ4(p1, p2,0,0,0) = −eεγEµ2ε
∫

dDk′

iπD/2

(k′+ p1)
2

k′2(k′− p2)2
(J.213)

= −gµ1µ2
Bµ1µ2(p2,0,0)−2p1,µ1

Bµ1(p2,0,0)− p2
1B0(p2,0,0).
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With

gµ1µ2
Bµ1µ2(p2,0,0) = 0 (J.214)

and

Bµ1(p2,0,0) =
1

2
pµ1

2 B0(p2,0,0) (J.215)

we finally obtain

gµ1µ2
gµ3µ4

Cµ1µ2µ3µ4(p1, p2,0,0,0) = −p1 · (p1 + p2)B0(p2,0,0).

Exercise 37: Determine the constants α1 and α2 in eq. (5.45) from the requirement that l1 and l2 are
light-like, i.e. l2

1 = l2
2 = 0. Distinguish the cases

(i) pi and p j are light-like.

(ii) pi is light-like, p j is not.

(iii) both pi and p j are not light-like.

Solution: We start with the case (i): If p2
i = p2

j = 0 there is not much to be done: We set α1 = α2 = 0 and

l1 = pi, l2 = p j (J.216)

is the desired solution. Let now consider the case (ii): We assume p2
i = 0 and p2

j 6= 0. (The case p2
i 6= 0,

p2
j = 0 is similar and obtained by pi↔ p j.) With

α1 = 0, α2 =
p2

j

2pi p j
(J.217)

we have

l1 = pi, l2 =−α2 pi + p j. (J.218)

We verify that l2 is light-like:

l2
2 = p2

j −2α2 pi · p j = 0. (J.219)

Let us now turn to case (iii): We assume that both pi and p j are not light-like, i.e. p2
i 6= 0 and p2

j 6= 0. For
2pi p j > 0 we set

α1 =
2pi p j−

√
∆

2p2
j

, α2 =
2pi p j−

√
∆

2p2
i

. (J.220)

For 2pi p j < 0 we set

α1 =
2pi p j +

√
∆

2p2
j

, α2 =
2pi p j +

√
∆

2p2
i

. (J.221)
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Here,

∆ = (2pi p j)
2−4p2

i p2
j . (J.222)

The signs are chosen in such away that the light-like limit p2
i → 0 (or p2

j → 0) is approached smoothly.
Note that l1, l2 are real for ∆ > 0. For ∆ < 0, l1 and l2 acquire imaginary parts.

Exercise 38: The method above does not apply to a tensor two-point function, as there is only one
linear independent external momentum. However, the tensor two-point functions is easily reduced with
standard methods to the scalar two-point function. In this exercise you are asked to work this out for the
massless tensor two-point function. The most general massless tensor two-point function is given by

Iµ1...µr ,s
2 = eεγE µ2ε

∫
dDk

iπ
D
2

(
−k2

(−2ε)

)s kµ1 ...kµr

k2(k− p)2
. (J.223)

Reduce this tensor integral to a scalar integral.

Solution: We first use Feynman parametrisation and obtain

Iµ1...µr ,s
2 = eεγE µ2ε

1∫

0

da
∫

dDk

iπ
D
2

(
−k2

(−2ε)

)s
(k+ap)µ1 ...(k+ap)µr

[
−k2 +a(1−a)

(
−p2

)]−2
.

Expanding (k+ap)µ1 ...(k+ap)µr yields terms of the form

ar−2tkµσ(1) ...kµσ(2t) pµσ(2t+1) ...pµσ(r) . (J.224)

Note that terms with an odd number of kµ’s vanish after integration (see eq. (4.101)). For terms with an
even number of kµ’s let us recall eq. (4.102) and let us generalise the formulae given there to arbitrary
even tensor rank. We find

∫
dDk

iπ
D
2

kµ1 ...kµ2w f (k2) = 2−w Γ
(

D
2

)

Γ
(

D
2
+w

) (gµ1µ2 ...gµ2w−1µ2w +permutations)
∫

dDk

iπ
D
2

(
k2
)w

f (k2).

The fully symmetric tensor structure

Sµ1....µ2w = gµ1µ2 ...gµ2w−1µ2w +permutations (J.225)

has (2w−1)!! = (2w−1)(2w−3)...1 terms. We obtain in the absence of powers of k2
(−2ε)

eεγE µ2ε

1∫

0

da ar−2t
∫

dDk

iπ
D
2

kµ1 ...kµ2t
[
−k2 +a(1−a)

(
−p2

)]−2
=

=

(
− p2

2

)t

Sµ1....µ2t
Γ(1+ r− t− ε)Γ(2−2ε)

Γ(1− ε)Γ(2+ r−2ε)
I2

=

(
− p2

2

)t

Sµ1....µ2t
(r− t)!

(r+1)!

{
1+ ε [2S1(r+1)−S1(r− t)−2]+O(ε2)

}
I2, (J.226)
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where S1(n) is a harmonic sum

S1(n) =
n

∑
j=1

1

j
, (J.227)

and I2 is the scalar two-point function:

I2 = eεγE

(−p2

µ2

)−2ε
Γ(−ε)Γ(1− ε)2

Γ(2−2ε)
=

1

ε
+2− ln

(−p2

µ2

)
+O(ε). (J.228)

Since I2 starts at 1/ε we can neglect O(ε2) terms in eq. (J.226). If powers of k2
(−2ε) are present, we obtain

if all indices are contracted into four-dimensional quantities

eεγE µ2ε

1∫

0

da ar−2t
∫

dDk

iπ
D
2

(
−k2

(−2ε)

)s
kµ1 ...kµ2t

[
−k2 +a(1−a)

(
−p2

)]−2
=

= −ε
(

p2
)s
(
− p2

2

)t

Sµ1....µ2t
(s−1)!(r+ s− t)!

(r+2s+1)!
I2 +O(ε)

+terms, which vanish when contracted into 4-dimensional quantities. (J.229)

Exercise 39: Consider a one-loop four-point function with external momenta p1, p2, p3, p4 and p2
1 =

p2
2 = p2

3 = p2
4 = 0. The external momenta satisfy momentum conservation p1 + p2 + p3 + p4 = 0. For

j ∈ {1,2,3,4} set q j = k− psum
j . Solve the equations for the quadruple cut

q2
1 = q2

2 = q2
3 = q2

4 = 0. (J.230)

Hint: Start from an ansatz

kµ = c
〈
a−|γµ|b−

〉
, (J.231)

with c ∈ C and a,b light-like.

Solution: We have q4 = k− p1 − p2 − p3 − p4 = k due to momentum conservation. The ansatz of
eq. (J.231) automatically satisfies the equation q2

4 = 0:

q2
4 = k2 = c2

〈
a−|γµ|b−

〉
〈a−|γµ|b−〉 = 2c2 〈a−|a+〉 [b+ |b−] = 0, (J.232)

as 〈a−|a+〉 = 0 and [b+ |b−] = 0. With k2 = 0 (and p2
1 = p2

2 = p2
3 = p2

4 = 0) the other three equations
which we have to satisfy reduce to

2k · p1 = 0,

2k · p2 = 2p1 · p2,

2k · p4 = 0 (J.233)

Here we used p4 = −p1− p2− p3. Let’s consider the first equation 2k · p1 = 0. If we choose a = p1 (or
b = p1) this equation is trivially satisfied:

c
〈

p1−|γµ|b−
〉

pµ
1 = c〈p1−|p1+〉 [p1 + |b−] = 0. (J.234)
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p1

p2

p3

p4 p5

p6

p7

p8

q2

q4

q6

q0

Figure J.5: A diagram in φ4 theory.

If we choose a = p1 we may then use the freedom to choose b to satisfy the third equation 2k · p4 = 0. This
will lead to the choice b = p4. We now have one remaining parameter c left in our ansatz

kµ = c
〈

p1−|γµ|p4−
〉
, (J.235)

which we use to satisfy the second equation 2k · p2 = 2p1 · p2. This yields

c =
[p2 p1]

[p2 p4]
. (J.236)

Of course, we could have chosen as well a = p4 in the beginning. This will give us the second solution. In
summary we obtain the two solutions

k+µ =
[p2 p1]

[p2 p4]

〈
p1−|γµ|p4−

〉
, k−µ =

〈p1 p2〉
〈p4 p2〉

〈
p4−|γµ|p1−

〉
. (J.237)

Exercise 40: Consider the one-loop eight-point amplitude in massless φ4 theory. Verify eq. (5.72) for
the box coefficient.

Solution: We consider the box coefficient, where the external momenta are distributed as in fig. J.5. We
first perform the calculation with standard Feynman rules. There is only one Feynman diagram contribut-

ing to the coefficient c(0)0246. This is the diagram shown in fig. J.5. The contribution of this Feynman diagram
to the one-loop amplitude is given by (including a factor (4π)−εeεγE corresponding to the MS-scheme)

iA(1)
8

∣∣∣
Box

= (iλ)4 (4π)−ε eεγE µ2ε
∫

dDk

(2π)D

i

q2
0

i

q2
2

i

q2
4

i

q2
6

=
iλ4

(4π)2
I(0246)
4 . (J.238)
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The coefficient of the box integral is therefore given by

c(0)0246 =
λ4

(4π)2
. (J.239)

Let us now consider eq. (5.72). There are four tree amplitudes. We have I1 = {1,2}, I2 = {3,4}, I3 = {5,6}
and I4 = {7,8}. In this simple example each tree amplitude equals

iA(0)
|I1 |+2

= iA(0)
|I2 |+2

= iA(0)
|I3|+2

= iA(0)
|I4|+2

= iλ4, (J.240)

and is independent of the external momenta. Thus we do not need to know the concrete solutions of the
on-shell conditions

q2
0 = q2

2 = q2
4 = q2

6 = 0, (J.241)

it suffices to know that there are two solutions. We consider a scalar theory, hence there are no spins.
Eq. (5.72) gives us then

c(0)0246 =
1

2

1

(4π)2 ∑
σ=±

A
(0)
|I1|+2

A
(0)
|I2|+2

A
(0)
|I3|+2

A
(0)
|I4|+2

=
λ4

(4π)2
, (J.242)

which agrees with our previous calculation.

Exercise 41: Show that eq. (6.2) holds for q = k.
Hint: Consider the scaling relation eq. (2.76).

Solution: The scaling relation reads

∫
dDk

iπ
D
2

f (k) = (1+λ)D
∫

dDk

iπ
D
2

f (k+λk) . (J.243)

The right-hand side has to be independent of λ. This implies in particular that the O(λ)-term has to
vanish. There are now two contributions to the O(λ)-term. On the one hand we have

(1+λ)D = 1+Dλ+O
(
λ2
)
, (J.244)

on the other hand we have

f (k+λk) = f (k)+λkµ ∂

∂kµ
f (k)+O

(
λ2
)
. (J.245)

Note that

kµ ∂

∂kµ f (k) =
∂

∂kµ [k
µ · f (k)]−D f (k) (J.246)

and in summary the O(λ)-term is given by

∫
dDk

iπ
D
2

∂

∂kµ [k
µ · f (k)] . (J.247)
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This proves eq. (6.2) for q = k.

Exercise 42: Repeat the derivation with qIBP = k and show

(D−ν1−2ν2) Iν1ν2
−ν1I(ν1+1)(ν2−1)+ν1 (2+ x) I(ν1+1)ν2

+2ν2Iν1(ν2+1) = 0. (J.248)

Solution: We have

0 = eεγE
(
m2
)ν12−D

2

∫
dDk

iπ
D
2

∂

∂kµ

kµ

(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2

= eεγE
(
m2
)ν12−D

2

∫
dDk

iπ
D
2

[
ν1

(
q2

1 +q2
2− p2

)
(
−q2

1 +m2
)ν1+1 (−q2

2 +m2
)ν2

+
2ν2q2

2(
−q2

1 +m2
)ν1
(
−q2

2 +m2
)ν2+1

+
D(

−q2
1 +m2

)ν1
(
−q2

2 +m2
)ν2

]

= ν1

[
−Iν1ν2

− I(ν1+1)(ν2−1)+(2+ x) I(ν1+1)ν2

]
+2ν2

[
−Iν1ν2

+ Iν1(ν2+1)

]
+DIν1ν2

. (J.249)

Thus

(D−ν1−2ν2) Iν1ν2
−ν1I(ν1+1)(ν2−1)+ν1 (2+ x) I(ν1+1)ν2

+2ν2Iν1(ν2+1) = 0. (J.250)

Exercise 43: Derive the integration-by-parts identity for the integral

I0ν2
= eεγE

(
m2
)ν2−D

2

∫
dDk

iπ
D
2

1

(−k2 +m2)ν2
. (J.251)

Verify the identity with the explicit result from eq. (2.123).

Solution: The tadpole integral does not depend on any external momentum, hence the only integration-
by-parts identity is

0 = eεγE
(
m2
)ν2−D

2

∫
dDk

iπ
D
2

∂

∂kµ

kµ

(−k2 +m2)ν2

= eεγE
(
m2
)ν2−D

2

∫
dDk

iπ
D
2

[
2ν2k2

(−k2 +m2)ν2+1
+

D

(−k2 +m2)ν2

]

= (D−2ν2) I0ν2
+2ν2I0(ν2+1). (J.252)

From eq. (2.123) we have

I0ν2
=

eεγEΓ
(
ν2− D

2

)

Γ(ν2)
. (J.253)

Substituting this into the integration-by-parts identity and using Γ(x+1) = xΓ(x) we obtain

(D−2ν2) I0ν2
+2ν2I0(ν2+1) = (D−2ν2)

eεγE Γ
(
ν2− D

2

)

Γ(ν2)
+2ν2

eεγEΓ
(
ν2 +1− D

2

)

Γ(ν2 +1)

= (D−2ν2)
eεγE Γ

(
ν2− D

2

)

Γ(ν2)
+2

(
ν2−

D
2

)
eεγE Γ

(
ν2− D

2

)

Γ(ν2)

= 0. (J.254)
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Exercise 44: Consider the double-box graph G shown in fig. 2.3 and the auxiliary graph G̃ with nine
propagators shown in fig. 2.11. This exercise is about the family of Feynman integrals

Iν1ν2ν3ν4ν5ν6ν7ν8ν9
(J.255)

with ν8,ν9 ≤ 0. Use the notation of the momenta as in fig. 2.11. Assume that all external momenta are
light-like (p2

1 = p2
2 = p2

3 = p2
4 = 0) and that all internal propagators are massless. Use one of the public

available computer programs Kira, Reduze or Fire to reduce the Feynman integral

I1111111(−1)(−1) (J.256)

to master integrals. For the choice of master integrals you may use the default ordering criteria of the
chosen computer program.

Solution: We are considering the integral

Iν1ν2ν3ν4ν5ν6ν7ν8ν9
= e2εγE

(
µ2
)ν−D

∫
dDk1

iπ
D
2

dDk2

iπ
D
2

9

∏
j=1

1(
−q2

j

)ν j
(J.257)

with

q1 = k1− p1, q2 = k1− p1− p2, q3 = k1,

q4 = k1 + k2, q5 = k2 + p1 + p2, q6 = k2,

q7 = k2 + p1 + p2 + p3, q8 = k1− p1− p3, q9 = k2 + p1 + p3. (J.258)

The aim of this exercise is to get acquainted with one of the integration-by-parts reduction programs Kira,
Reduze or Fire. We show how each of the three programs can be applied to the problem at hand. The
actual syntax may differ for different versions of the same program. The solutions shown below refer to
Kira version 2.0, Reduze version 2.4 and Fire version 6.4.2. In addition one should consult the manuals
of these programs. Please note that Kira and Reduze use the convention

1

q2
j −m2

j

instead of
1

−q2
j +m2

j

(J.259)

for propagators. This implies a minus sign for every integral where ν is odd between the Kira/Reduze
notation and the notation used in this book. The CPU timings refer to a standard laptop with 2.6 GHz.

We start with Kira. We prepare the following files

job.yaml

myreduction.in

config/integralfamilies.yaml

config/kinematics.yaml

The files job.yaml and myreduction.in reside in a directory. This directory also contains a subdirectory
config. The config-subdirectory contains the files integralfamilies.yaml and kinematics.yaml.

The file job.yaml is the main file and specifies what should be done:
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jobs:

- reduce_sectors:

reduce:

- {topologies: [doublebox], sectors: [127], r: 8, s: 2}

select_integrals:

select_mandatory_recursively:

- {topologies: [doublebox], sectors: [127], r: 8, s: 2}

- kira2form:

target:

- [doublebox,myreductions.in]

reconstruct_mass: true

The file myreduction.in contains the integrals, which should be reduced. In our case it only contains a
single line

doublebox[1,1,1,1,1,1,1,-1,-1]

We need to give the information on the family of Feynman integrals we are interested in. This is done in
the file integralfamilies.yaml:

integralfamilies:

- name: "doublebox"

loop_momenta: [k1, k2]

top_level_sectors: [127]

propagators:

- [ "k1-p1", 0 ]

- [ "k1-p1-p2", 0 ]

- [ "k1", 0 ]

- [ "k1+k2", 0 ]

- [ "k2+p1+p2", 0 ]

- [ "k2", 0 ]

- [ "k2+p1+p2+p3", 0 ]

- [ "k1-p1-p3", 0 ]

- [ "k2+p1+p3", 0 ]

Finally, we need to specify the kinematics. This is done in the file kinematics.yaml:

kinematics :

incoming_momenta: []

outgoing_momenta: [p1, p2, p3, p4]

momentum_conservation: [p4,-p1-p2-p3]

kinematic_invariants:

- [s, 2]

- [t, 2]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[p3,p3], 0]

- [[p1+p2,p1+p2], s]

- [[p2+p3,p2+p3], t]

- [[p1+p3,p1+p3], -s-t]

symbol_to_replace_by_one: s
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With these preparations we may now run Kira with the command

kira job.yaml

This will produce a file kira_myreductions.in.inc in the directory results/doublebox with the con-
tent

id doublebox(1,1,1,1,1,1,1,-1,-1) =

+ doublebox(1,1,1,1,1,1,1,-1,0)*((-4*t-3*s)*den(2))

+ doublebox(1,1,1,1,1,1,1,0,0)*(-t^2+(-s)*t)

+ doublebox(1,0,1,1,1,0,1,0,0)*((-18*t^2+(-27*s)*t-9*s^2)*den((2*s)*t))

+ doublebox(1,1,1,1,0,0,1,0,0)*(((12*d-36)*t+(9*d-27)*s)*den((d-4)*t))

+ doublebox(1,0,0,1,0,0,1,0,0)*(((162*d^3-1458*d^2+4356*d-4320)*t+(99*d^3-891*d^2+2662*d

-2640)*s)*den(((2*d^3-24*d^2+96*d-128)*s)*t^2))

+ doublebox(1,0,0,1,1,1,0,0,0)*(((12*d^2-76*d+120)*t^2+((66*d^2-418*d+660)*s)*t+(27*d^2

-171*d+270)*s^2)*den(((2*d^2-16*d+32)*s^2)*t))

+ doublebox(0,1,1,0,1,1,0,0,0)*(((4*d^2-16*d+12)*t+(4*d^2-16*d+12)*s)*den((d^2-8*d+16)

*s^2))

+ doublebox(0,0,1,1,1,0,0,0,0)*(((-144*d^2+864*d-1280)*t^2+((54*d^3-630*d^2+2316*d-2720)

*s)*t+(81*d^3-729*d^2+2178*d-2160)*s^2)*den(((2*d^3-24*d^2+96*d-128)*s^3)*t))

;

This gives the desired reduction in FORM notation. Kira uses by default a ISP-basis. There are eight
master integrals. The total run time on a standard laptop is about 30 s.

Let us now turn to Reduze. Using Reduze we prepare the following files:

job.yaml

myreduction.in

config/integralfamilies.yaml

config/kinematics.yaml

config/global.yaml

The syntax of Reduze is very similar to the syntax of Kira. The file job.yaml reads now

jobs:

- setup_sector_mappings: {}

- reduce_sectors:

conditional: true

sector_selection:

select_recursively: [ [doublebox, 127] ]

identities:

ibp:

- { r: [t, 8], s: [0, 2] }

lorentz:

- { r: [t, 8], s: [0, 2] }

sector_symmetries:

- { r: [t, 8], s: [0, 2] }

- select_reductions:

input_file: "myreductions.in"

output_file: "myreductions.tmp.1"

- reduce_files:

equation_files:

- "myreductions.tmp.1"
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output_file: "myreductions.tmp.2"

- export:

input_file: "myreductions.tmp.2"

output_file: "myreductions.sol"

output_format: "maple"

The file myreduction.in contains again a list of the integrals to be reduced, for the case at hand it is
given by

{

INT["doublebox",{1,1,1,1,1,1,1,-1,-1}]

}

The file integralfamilies.yaml specifies the family of Feynman integrals under consideration:

integralfamilies:

- name: "doublebox"

loop_momenta: [k1, k2]

propagators:

- [ "k1-p1", 0 ]

- [ "k1-p1-p2", 0 ]

- [ "k1", 0 ]

- [ "k1+k2", 0 ]

- [ "k2+p1+p2", 0 ]

- [ "k2", 0 ]

- [ "k2+p1+p2+p3", 0 ]

- [ "k1-p1-p3", 0 ]

- [ "k2+p1+p3", 0 ]

permutation_symmetries: []

The file kinematics.yaml is identical to the corresponding file for Kira:

kinematics :

incoming_momenta: []

outgoing_momenta: [p1,p2,p3,p4]

momentum_conservation: [p4,-p1-p2-p3]

kinematic_invariants:

- [s, 2]

- [t, 2]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[p3,p3], 0]

- [[p1+p2,p1+p2], s]

- [[p2+p3,p2+p3], t]

- [[p1+p3,p1+p3], -s-t]

symbol_to_replace_by_one: s

In addition, there is a file global.yaml containing

global_symbols:

space_time_dimension: d

paths:

fermat: /usr/local/fermat/ferl64/fer64
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The last line gives the absolute path to the Fermat-executable and should be modified accordingly. Run-
ning

reduze job.yaml

will produce a file myreductions.sol

myreductions := [

INT("doublebox",7,127,7,2,[1,1,1,1,1,1,1,-1,-1]) =

INT("doublebox",7,127,7,1,[1,1,1,1,1,1,1,-1,0]) *

(-2*t-3/2*s) +

INT("doublebox",7,127,7,0,[1,1,1,1,1,1,1,0,0]) *

(-t^2-t*s) +

INT("doublebox",5,93,5,0,[1,0,1,1,1,0,1,0,0]) *

(-9/2*(2*t^2+3*t*s+s^2)*t^(-1)*s^(-1)) +

INT("doublebox",5,79,5,0,[1,1,1,1,0,0,1,0,0]) *

(-3*(4*t-t*d)^(-1)*(3*d*s-12*t+4*t*d-9*s)) +

INT("doublebox",4,57,4,0,[1,0,0,1,1,1,0,0,0]) *

(1/2*(12*t^2*d^2+66*t*d^2*s+120*t^2-171*d*s^2-76*t^2*d+660*t*s+27*d^2*s^2+270*s^2

-418*t*d*s)*(16*t-8*t*d+t*d^2)^(-1)*s^(-2)) +

INT("doublebox",4,54,4,0,[0,1,1,0,1,1,0,0,0]) *

(-4*(16+d^2-8*d)^(-1)*(4*d*s-3*t+4*t*d-d^2*s-3*s-t*d^2)*s^(-2)) +

INT("doubleboxx123",3,28,3,0,[0,0,1,1,1,0,0,0,0]) *

(-1/2*(2662*d*s-4320*t+4356*t*d+99*d^3*s-891*d^2*s+162*t*d^3-2640*s-1458*t*d^2)

*(12*t^2*d^2+64*t^2-t^2*d^3-48*t^2*d)^(-1)*s^(-1)) +

INT("doublebox",3,28,3,0,[0,0,1,1,1,0,0,0,0]) *

(1/2*(144*t^2*d^2+630*t*d^2*s+1280*t^2-54*t*d^3*s-2178*d*s^2-864*t^2*d+2720*t*s

+729*d^2*s^2+2160*s^2-81*d^3*s^2-2316*t*d*s)*(64*t-48*t*d-t*d^3+12*t*d^2)^(-1)

*s^(-3))

];

This gives the reduction in Maple format. Reduze uses by default a ISP-basis. The running time on a
standard laptop is about 1270 s.

Let us now turn to Fire. In order to get the same number of master integrals we use it in combination
with Litered [488,489]. The program Litered provides symmetry relations to Fire and ensures that we
end up in the example under consideration with eight master integrals as above. We prepare the following
files:

prepare1.m

prepare2.m

prepare3.m

readout.m

work/data.m

work/myreductions.m

work/doublebox.config

The file data.m defines the family of Feynman integrals

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = { -(k1-p1)^2, -(k1-p1-p2)^2, -k1^2, -(k1+k2)^2, -(k2+p1+p2)^2, -k2^2,

-(k2+p1+p2+p3)^2, -(k1-p1-p3)^2, -(k2+p1+p3)^2 };

Replacements = { p1^2 -> 0, p2^2 -> 0, p3^2 -> 0, p1 p2 -> s/2, p2 p3 -> t/2,

p1 p3 -> (-s-t)/2 };
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The file myreductions.m contains the list of Feynman integrals, which we would like to reduce. For the
case at hand

{

{1,{1,1,1,1,1,1,1,-1,-1}}

}

Fire runs partly within Mathematica and partly in C++. First, three preparation steps are done within
Mathematica, specified by the files prepare1.m, prepare2.m and prepare3.m. The file prepare1.m

reads

Get["FIRE6.m"];

Get["work/data.m"];

PrepareIBP[];

Prepare[AutoDetectRestrictions -> True];

SaveStart["work/doublebox"];

Issuing in Mathematica the command

Get["prepare1.m"];

will generate the file

work/doublebox.start

The file prepare2.m reads

SetDirectory["extra/LiteRed/Setup/"];

Get["LiteRed.m"];

SetDirectory["../../../"];

Get["FIRE6.m"];

Get["work/data.m"];

CreateNewBasis[doublebox, Directory -> "work/litered"];

GenerateIBP[doublebox];

AnalyzeSectors[doublebox, {__,0,0}];

FindSymmetries[doublebox, EMs->True];

DiskSave[doublebox];

Issuing in Mathematica the command

Get["prepare2.m"];

will generate a subdirectory

work/litered

containing several files. The file prepare3.m reads

Get["FIRE6.m"];

LoadStart["work/doublebox"];

TransformRules["work/litered", "work/doublebox.lbases", 1];

SaveSBases["work/doublebox"];

Issuing in Mathematica the command

Get["prepare3.m"];
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will generate the two files

work/doublebox.lbases

work/doublebox.sbases

After these preparation step the C++ program can be called. We need a configuration file doublebox.config
containing

#threads 1

#variables d, s, t

#start

#folder work/

#problem 1 doublebox.sbases

#lbases doublebox.lbases

#integrals myreductions.m

#output myreductions.tables

Running

bin/FIRE6 -c work/doublebox

will generate the file

work/myreductions.tables

The readout is again done within Mathematica. The file readout.m reads

Get["FIRE6.m"];

LoadStart["work/doublebox", 1];

Burn[];

LoadTables["work/myreductions.tables"];

res = F[1, {1,1,1,1,1,1,1,-1,-1}];

Save["work/myreductions.out",res];

Issuing in Mathematica the command

Get["readout.m"];

will generate the file myreductions.out with

res = ((-10 + 3*d)*(-8 + 3*d)*(-1350*s^2 + 990*d*s^2 - 234*d^2*s^2 +

18*d^3*s^2 - 238*s*t - 56*d*s*t + 65*d^2*s*t - 9*d^3*s*t + 1616*t^2 -

1448*d*t^2 + 404*d^2*t^2 - 36*d^3*t^2)*

G[1, {0, 0, 1, 1, 1, 0, 0, 0, 0}])/(2*(-5 + d)^2*(-4 + d)^3*s^3*t) -

(2*(-3 + d)*(46*s - 33*d*s + 5*d^2*s + 58*t - 40*d*t + 6*d^2*t)*

G[1, {0, 1, 1, 0, 1, 1, 0, 0, 0}])/((-5 + d)*(-4 + d)^2*s^2) -

((-3 + d)*(-10 + 3*d)*(-5760*s^2 + 2772*d*s^2 - 414*d^2*s^2 +

18*d^3*s^2 - 21744*s*t + 12352*d*s*t - 2326*d^2*s*t + 145*d^3*s*t -

13152*t^2 + 8368*d*t^2 - 1768*d^2*t^2 + 124*d^3*t^2)*

G[1, {0, 1, 1, 1, 0, 0, 1, 0, 0}])/(8*(-6 + d)*(-5 + d)^2*(-4 + d)^2*

s^2*t) + (5*(-3 + d)*(-10 + 3*d)*(-8 + 3*d)*(2*s + 3*t)*

G[1, {1, 0, 0, 1, 0, 0, 1, 0, 0}])/((-4 + d)^3*s*t^2) +

(3*(-3 + d)*(64 - 18*d + d^2)*(3*s + 4*t)*

G[1, {1, 0, 0, 1, 1, 1, 1, 0, 0}])/(2*(-6 + d)*(-5 + d)*(-4 + d)*t) -

(3*(s + t)*(3*s + 5*t)*G[1, {1, 0, 1, 1, 1, 0, 1, 0, 0}])/(s*t) +

((-42*s^2 + 9*d*s^2 - 64*s*t + 14*d*s*t - 16*t^2 + 4*d*t^2)*

G[1, {1, 1, 1, 1, 1, 1, 1, 0, 0}])/(4*(-4 + d)) -

((-6 + d)*s*t*(3*s + 4*t)*G[1, {1, 1, 1, 1, 1, 1, 2, 0, 0}])/

(4*(-5 + d)*(-4 + d))
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Fire uses by default a dot-basis. The running time for the individual parts sum up to about 30 s on a
standard laptop.

Exercise 45: Consider the example of the one-loop two-point function with equal internal masses,
discussed below eq. (6.6). Let

~I =

(
I10 (D,x)
I11 (D,x)

)
(J.260)

be a basis in D space-time dimensions and

~I′ =

(
I10 (D+2,x)
I11 (D+2,x)

)
(J.261)

be a basis in (D+2) space-time dimensions. Work out the 2×2-matrices S and S−1.

Solution: For the one-loop two-point function the graph polynomial U is given by

U (α1,α2) = α1 +α2. (J.262)

Hence

I10 (D,x) = U
(
1+,2+

)
I10 (D,x) =

(
1++2+

)
I10 (D+2,x)

= I20 (D+2,x) . (J.263)

Note that

2+I10 (D+2,x) = 0 · I11 (D+2,x) = 0, (J.264)

which shows that an index, which is zero, cannot be raised. For I10 we could also have used alternatively
the graph polynomial for the one-loop one-point function, which is simpler and given by U(α1) = α1,
yielding the same result.

For the second master integral we have

I11 (D,x) = U
(
1+,2+

)
I11 (D,x) =

(
1++2+

)
I11 (D+2,x)

= I21 (D+2,x)+ I12 (D+2,x) = 2I21 (D+2,x) . (J.265)

Here we used the fact that for the equal-mass two-point function we have the symmetry Iν1ν2
= Iν2ν1

.
In the next step we reduce each of the integrals in I20(D+2,x) and I21(D+2,x) to a linear combination

of the master integrals I10(D+2,x) and I11(D+2,x). From eq. (6.14) we obtain

I20 (D+2,x) =

(
1− (D+2)

2

)
I10 (D+2,x) = −D

2
I10 (D+2,x) . (J.266)

Please note that we use eq. (6.14) with D substituted by (D+2). From eq. (6.11) we obtain

x(4+ x) I21 (D+2,x) =

= [3− (D+2)]xI11 (D+2,x)+ (2+ x) I20 (D+2,x)−2I02 (D+2,x)

= −(D−1)xI11 (D+2,x)+ xI20 (D+2,x)

= −(D−1)xI11 (D+2,x)− D

2
xI10 (D+2,x) . (J.267)
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Putting everything together we have

(
I10 (D,x)
I11 (D,x)

)
=

(
−D

2
0

− D
4+x − 2(D−1)

4+x

)(
I10 (D+2,x)
I11 (D+2,x)

)
, (J.268)

and therefore

S =

(
−D

2
0

− D
4+x − 2(D−1)

4+x

)
, S−1 =

(
− 2

D 0
1

D−1
− 4+x

2(D−1)

)
. (J.269)

Exercise 46: Show that

NB+1

∑
j=1

x j
∂

∂x j
Iν1...νnint

=

(
lD

2
−ν

)
· Iν1...νnint

. (J.270)

Hint: Consider the Feynman parameter representation.

Solution: We apply the differential operator to the Feynman parameter representation

Iν1...νnint
=

elεγE Γ
(
ν− lD

2

)
nint

∏
k=1

Γ(νk)

∫

ak≥0

dninta δ

(
1−

nint

∑
k=1

ak

) (
nint

∏
k=1

aνk−1
k

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

. (J.271)

We obtain

NB+1

∑
j=1

x j
∂

∂x j
Iν1...νnint

=

=

(
lD

2
−ν

)NB+1

∑
j=1

elεγE Γ
(
ν− lD

2

)
nint

∏
k=1

Γ(νk)

∫

ak≥0

dninta δ

(
1−

nint

∑
k=1

ak

) (
nint

∏
k=1

aνk−1
k

)
[U (a)]ν−

(l+1)D
2 x j ·F ′x j

(a)

[F (a)]ν−
lD
2
+1

=

(
lD

2
−ν

)
elεγE Γ

(
ν− lD

2

)
nint

∏
k=1

Γ(νk)

∫

ak≥0

dninta δ

(
1−

nint

∑
k=1

ak

) (
nint

∏
k=1

aνk−1
k

)
[U (a)]ν−

(l+1)D
2

[F (a)]ν−
lD
2

=

(
lD

2
−ν

)
Iν1...νnint

. (J.272)

Exercise 47: The steps from eq. (6.64) to eq. (6.65) can still be carried out by hand. Fill in the missing
details.

Solution: From eq. (6.64) we have

∂

∂x
I10 (D,x) = 0,

∂

∂x
I11 (D,x) = −I22 (D+2,x) . (J.273)
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We have to express I22(D+2,x) as a linear combination of I10(D,x) and I11(D,x). We first express I22(D+
2,x) as a linear combination of I10(D+2,x) and I11(D+2,x). Using eq. (6.11) with (D+2) we obtain

I22 (D+2,x) =
4+(4−D)x

x(4+ x)
I21 (D+2,x)− 4

x(4+ x)
I30 (D+2,x) . (J.274)

Here we used the symmetry Iν2ν1
(D+2,x) = Iν1ν2

(D+2,x). Using again eq. (6.11), this time for I21(D+
2,x) we obtain

I21 (D+2,x) =
1−D

4+ x
I11 (D+2,x)+

1

4+ x
I20 (D+2,x) . (J.275)

From eq. (6.14) we have

I20 (D+2,x) = −D

2
I10 (D+2,x) ,

I30 (D+2,x) =
D(D−2)

8
I10 (D+2,x) , (J.276)

and hence

I22 (D+2,x) =
(1−D)[4+(4−D)x]

x(4+ x)2
I11 (D+2,x)− D [2(D−1)+ x]

x(4+ x)2
I10 (D+2,x) . (J.277)

From exercise 45 we have

I10 (D+2,x) = − 2

D
I10 (D,x) ,

I11 (D+2,x) =
1

D−1
I10 (D,x)− 4+ x

2(D−1)
I11 (D,x) , (J.278)

and therefore

I22 (D+2,x) =
D−2

x(4+ x)
I10 (D,x)+

4+(4−D)x

2x(4+ x)
I11 (D,x) . (J.279)

Exercise 48: This example depends on two kinematic variables x1 and x2, hence the integrability condi-
tion is non-trivial. Check explicitly the integrability condition

dA+A∧A = 0. (J.280)

Solution: With A = Ax1
dx1 +Ax2

dx2 we have

dA = (∂x1
Ax2
−∂x2

Ax1
)dx1∧dx2,

A∧A = (Ax1
Ax2
−Ax2

Ax1
)dx1∧dx2 = [Ax1

,Ax2
]dx1∧dx2. (J.281)

The integrability condition translates to

∂x1
Ax2
−∂x2

Ax1
+[Ax1

,Ax2
] = 0. (J.282)



715

With the explicit expressions for Ax1
and Ax2

given in eq. (6.71) one verifies that this equation holds. We
have

dA = −A∧A (J.283)

=




0 0 0 0

0 0 0 0

0 0 0 0
2(D−3)(x1−x2)

x1(1−x1)x2(1−x2)(1−x1−x2)
2(D−3)(1−2x1)

x2
1(1−x1)x2(1−x1−x2)

− 2(D−3)(1−2x2)

x1x2
2(1−x2)(1−x1−x2)

0


dx1∧dx2.

Exercise 49: Let X =C2 and

Y = {x ∈ X |x1 + x2 = 0} . (J.284)

Compute

ResY

(
x1x2

2dx1∧dx2

x1 + x2

)
. (J.285)

Solution: We have

x1x2
2dx1∧dx2

x1 + x2

=
d (x1 + x2)

x1 + x2

∧
(
x1x2

2dx2

)
, (J.286)

hence

ResY

(
x1x2

2dx1∧dx2

x1 + x2

)
= x1x2

2dx2

∣∣
Y = −x3

2dx2

∣∣
Y . (J.287)

Note that alternatively we could have used

x1x2
2dx1∧dx2

x1 + x2

=
d (x1 + x2)

x1 + x2

∧
(
−x1x2

2dx1

)
(J.288)

and

ResY

(
x1x2

2dx1∧dx2

x1 + x2

)
= −x1x2

2dx1

∣∣
Y = −x3

1dx1

∣∣
Y . (J.289)

On Y we have x2 =−x1 and dx2 =−dx1. Therefore the two forms agree on Y .

Exercise 50: Let

ω = 3dx1 +(5+ x1)dx2 + x3dx3 (J.290)

and

γ : [0,1]→ C3, γ(λ) =




λ

λ2

1+λ


 . (J.291)
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λ1

λ2

=

λ1

λ2

Figure J.6: The iterated integral of depth 2 for the combined path γ2 ◦ γ1: The full integration

region (shown in grey on the left) is decomposed into three regions (shown in red, green and blue

on the right).

Compute
∫

γ

ω. (J.292)

Solution: We have

∫

γ

ω =

1∫

0

dλ

[
3

d

dλ
λ+(5+λ)

d

dλ
λ2 +(1+λ)

d

dλ
(1+λ)

]

=

1∫

0

dλ [3+2λ(5+λ)+ (1+λ)] =

1∫

0

dλ
[
4+11λ+2λ2

]

= 4+
11

2
+

2

3
=

61

6
. (J.293)

Exercise 51: Prove eq. (6.143) for the case r = 2, i.e. show

Iγ2◦γ1
(ω1,ω2;λ) = Iγ1

(ω1,ω2;λ)+ Iγ2
(ω1;λ) Iγ1

(ω2;λ)+ Iγ2
(ω1,ω2;λ) . (J.294)

Solution: Without loss of generality we take a = 0 and b = λ = 1, i.e. we consider

γ1 : [0,1] → X ,

γ2 : [0,1] → X ,

γ2 ◦ γ1 : [0,1] → X . (J.295)

We decompose the full integration region 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ λ1 of Iγ2◦γ1
(ω1,ω2;1) into three re-

gions as shown in fig. J.6. The integration over the region 0 ≤ λ1 ≤ 1/2, 0 ≤ λ2 ≤ λ1 (red region)
gives Iγ1

(ω1,ω2;1), the integration over the region 1/2 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1/2 (green region) gives
Iγ2
(ω1;1)Iγ1

(ω2;1) and the integration over the region 1/2 ≤ λ1 ≤ 1, 1/2 ≤ λ2 ≤ λ1 (blue region) gives
Iγ2
(ω1,ω2;1).
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Exercise 52: Prove eq. (6.145).

Solution: Without loss of generality we take [a,b] = [0,1]. For the path γ : [0,1]→ X and a differen-
tial one-form ω j we write for the pull-back

f j (λ)dλ = γ∗ω j. (J.296)

For the reversed path γ−1 : [0,1]→ X we write for the pull-back of ω j

f rev
j

(
λ′
)

dλ′ =
(
γ−1
)∗

ω j. (J.297)

We have

f rev
j

(
λ′
)

= − f j
(
1−λ′

)
. (J.298)

We have to consider

Iγ−1 (ω1, . . . ,ωr;1) =

1∫

0

dλ′1 f rev
1

(
λ′1
)
· · ·

λ′r−1∫

0

dλ′r f rev
r

(
λ′r
)
. (J.299)

With λ j = 1−λ′j we have for the integrand

f rev
1

(
λ′1
)
. . . f rev

r

(
λ′r
)

= (−1)r f1

(
1−λ′1

)
. . . fr

(
1−λ′r

)

= (−1)r f1 (λ1) . . . fr (λr) . (J.300)

The integration domain

0 ≤ λ′r ≤ . . . ≤ λ′1 ≤ 1 (J.301)

transforms into

0 ≤ λ1 ≤ . . . ≤ λr ≤ 1. (J.302)

Thus

Iγ−1 (ω1, . . . ,ωr;1) = (−1)r
1∫

0

dλr fr (λr)· · ·
λ1∫

0

dλ1 f1 (λ1)

= (−1)r Iγ (ωr, . . . ,ω1;1) . (J.303)

Exercise 53: Show that I′4 is given at the kinematic point (x1,x2) = (1,1) by

I′4 = eεγE
Γ(1+ ε)Γ(1− ε)2

Γ(1−2ε)

(
1−

∞

∑
k=2

ζkεk

)
. (J.304)
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Hint: Use the trick from exercise 11 and the Mellin-Barnes technique.

Solution: From exercise 11 we know that we may write I′4 with generic x1 and x2 as

I′4 =
ε2eεγE Γ(2+ ε)Γ(−ε)2

2Γ(−2ε)
x1x2

1∫

0

da

1∫

0

db
[
abx1 + āb̄x2 + āb

]−2−ε
, (J.305)

with ā = 1−a and b̄ = 1−b. Specialising to x1 = x2 = 1 we have

I′4 =
ε2eεγE Γ(2+ ε)Γ(−ε)2

2Γ(−2ε)

1∫

0

da

1∫

0

db [1−a+ab]−2−ε . (J.306)

We now use the Mellin-Barnes technique and split 1−a+ab into (1−a) and (ab):

I′4 =
ε2eεγE Γ(−ε)2

2Γ(−2ε)

1

2πi

∫
dσ Γ(−σ)Γ(σ+2+ ε)

1∫

0

da

1∫

0

db aσbσ (1−a)−σ−2−ε . (J.307)

The integrals over a and b are now easily done, yielding

I′4 =
ε2eεγE Γ(−ε)

2Γ(−2ε)

1

2πi

∫
dσ

Γ(−σ)Γ(−σ−1− ε)Γ(σ+1)2 Γ(σ+2+ ε)

Γ(σ+2)
. (J.308)

We close the contour to the right and sum up the residues from Γ(−σ) and Γ(−σ−1− ε). This yields

I′4 =
ε2eεγE Γ(−ε)

2Γ(−2ε)

{
∞

∑
n=0

(−1)n

n!

Γ(−n−1− ε)Γ(n+1)2 Γ(n+2+ ε)

Γ(n+2)

+
∞

∑
n=0

(−1)n

n!

Γ(−n+1+ ε)Γ(n− ε)2 Γ(n+1)

Γ(n+1− ε)

}
. (J.309)

With the help of

(−1)n Γ(−n−1− ε)Γ(n+2+ ε) = Γ(−1− ε)Γ(2+ ε) ,

(−1)n Γ(−n+1+ ε)Γ(n− ε) = Γ(1+ ε)Γ(−ε) , (J.310)

and

Γ(−1− ε)Γ(2+ ε) , = −Γ(1+ ε)Γ(−ε) (J.311)

this simplifies to

I′4 =
eεγEΓ(1− ε)2 Γ(1+ ε)

Γ(1−2ε)

[
1− ε

∞

∑
n=1

(
1

n
− 1

n− ε

)]
. (J.312)

Finally, expanding the geometric series

1

n− ε
=

1

n

∞

∑
k=0

( ε

n

)k
(J.313)
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we obtain

I′4 =
eεγE Γ(1− ε)2 Γ(1+ ε)

Γ(1−2ε)

[
1−

∞

∑
k=2

εk
∞

∑
n=1

1

nk

]

=
eεγE Γ(1− ε)2 Γ(1+ ε)

Γ(1−2ε)

[
1−

∞

∑
k=2

ζkεk

]
. (J.314)

Exercise 54: Show the equivalence of the O(ε2)-term of I′4 between eq. (6.177) and eq. (6.178).

Solution: We have to show that the expressions

G(0,0;x1)+G(0,0;x2)−G(1,0;x1)−G(1,0;x2)+G(0;x1)G(0;x2)+
1

2
ζ2 (J.315)

and

−Li2 (x1)−Li2 (x2)+
1

2
ln2 (x1)+

1

2
ln2 (x2)+ ln(x1) ln(x2)− ln(x1) ln(1− x1)− ln(x2) ln(1− x2)

+
1

2
ζ2 (J.316)

agree. We have

G(0;x) = ln(x) ,

G(0,0;x) =
1

2
ln2 (x) (J.317)

and

G(1,0;x) =

x∫

0

dt
ln t

t−1
=

1−x∫

1

dt
ln(1− t)

t
=

1−x∫

0

dt
ln(1− t)

t
−

1∫

0

dt
ln(1− t)

t

= ζ2−Li2 (1− x) (J.318)

From eq. (5.39) we have

Li2(x) = −Li2(1− x)+
1

6
π2− ln(x) ln(1− x), (J.319)

and therefore

G(1,0;x) = Li2(x)+ ln(x) ln(1− x). (J.320)

Plugging all expressions into eq. (J.315) shows the equivalence of eq. (J.315) with eq. (J.316).

Exercise 55: Derive eq. (6.192) from eq. (6.190).

Solution: Let γ : [a,b]→M be a curve in M with γ(0) = x. A tangent vector at x is given by

X =
d

dt
γ(t)

∣∣∣∣
t=0

(J.321)
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In order to keep the notation simple we will suppress maps between a manifold and an appropriate coor-
dinate chart. We have to show

A2 (X) =
(
UA1U

−1 +UdU−1
)
(X) , (J.322)

where A1 and A2 are defined by

A1 = σ∗1ω, A2 = σ∗2ω, (J.323)

and the sections σ1 and σ2 are related by

σ2 = σ1U
−1. (J.324)

Let us choose a local trivialisation (x,g) of P(M,G) and work out σ2∗X. With U0 =U(γ(0)) we have

σ2∗X = σ2∗

(
d

dt
γ(t)

∣∣∣∣
t=0

)
=

d

dt
(γ(t),σ2 (γ(t)))

∣∣∣∣
t=0

=
d

dt

(
γ(t),σ1 (γ(t))U (γ(t))−1

)∣∣∣∣
t=0

=

(
X ,

d
dt

σ1 (γ(t))

∣∣∣∣
t=0

U−1
0 +σ1 (γ(0))

d
dt

U (γ(t))−1

∣∣∣∣
t=0

)

= RU−1
0 ∗

(σ1∗X)+

(
0,σ2 (γ(0))U0

d

dt
U (γ(t))−1

∣∣∣∣
t=0

)
. (J.325)

We then have, using (CF1) and (CF2),

A2 (X) = ω(σ2∗X) = ω(x,σ2(γ(0)))

(
RU−1

0 ∗ (σ1∗X)
)
+ω(x,σ2(γ(0)))

(
U0

d

dt
U (γ(t))−1

∣∣∣∣
t=0

)

= U0

(
ω(x,σ1(γ(0))) (σ1∗X)

)
U−1

0 +
(
U0dU−1

)
(X)

=
(
UA1U

−1 +UdU−1
)
(X) . (J.326)

Exercise 56: Work out the maximal cut of the double box integral I111111100 shown in fig. 6.5. Use
the notation as in example 2 in section 6.3.1. To work out the maximal cut it is simpler to use the loop-by-
loop approach as discussed in section 2.5.5.

Solution: We label the internal edges as in fig. 2.11. We first consider the loop with edges e1, e2, e3

and e4 and then the second loop with edges e5, e6, e7 and an edge with momentum k2 + p1. The latter
edge is introduced by integrating out the first loop with loop momentum k1. The loop-by-loop approach
has the advantage that we only need eight Baikov variables z1-z7 and z9, the variable z8 is absent. The
Baikov representation reads

I111111100 =
e2εγE

(
µ2
)7−D

64π3Γ
(

D−3
2

)2
[G(p1, p2, p3)]

4−D
2 (J.327)

∫

C

d8z [G(p1, p2,k2)]
4−D

2 [G(k1, p1, p2,k2)]
D−5

2 [G(k2, p1, p2, p3)]
D−5

2
1

z1z2z3z4z5z6z7

.
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We have

G(p1, p2, p3) =
1

4
st (s+ t) ,

G(p1, p2,k2)|z1=z2=z3=z4=z5=z6=z7=0 =
1

4
s(s+ t− z9) (t− z9) ,

G(k1, p1, p2,k2)|z1=z2=z3=z4=z5=z6=z7=0 =
1

16
s2 (t− z9)

2 ,

G(k2, p1, p2, p3)|z1=z2=z3=z4=z5=z6=z7=0 =
1

16
s2z2

9. (J.328)

Thus

MaxCut I111111100 = (J.329)

(2πi)7 e2εγE
(
µ2
)7−D

26−2D

π3Γ
(

D−3
2

)2
sD−6t

4−D
2 (s+ t)

4−D
2

∫

C ′

dz9 zD−5
9 (t− z9)

D−6
2 (s+ t− z9)

4−D
2 . (J.330)

The integration region C ′ is obtained from the conditions

G(k2, p1, p2, p3)

G(p1, p2, p3)

∣∣∣∣
z1=z2=z3=z4=z5=z6=z7=0

=
1

4

sz2
9

t (s+ t)
> 0,

G(k1, p1, p2,k2)

G(p1, p2,k2)

∣∣∣∣
z1=z2=z3=z4=z5=z6=z7=0

=
1

4

s(t− z9)

(s+ t− z9)
> 0. (J.331)

Let’s assume t > 0 and s <−t. Then

C ′ = ]−∞,s+ t]∪ [t,∞[ , (J.332)

and

s+t∫

−∞

dz9 zD−5
9 (t− z9)

D−6
2 (s+ t− z9)

4−D
2 =

Γ
(

6−D
2

)
Γ(5−D)

Γ
(

16−3D
2

) (s+ t)D−5
2F1

(
5−D,

6−D
2

,
16−3D

2
;

t
s+ t

)
,

∞∫

t

dz9 zD−5
9 (t− z9)

D−6
2 (s+ t− z9)

4−D
2 =

−Γ
(

D−4
2

)
Γ
(

5−D
2

)
√

π
24−DtD−5

2F1

(
5−D,

D−4

2
,
6−D

2
;
s+ t

t

)
. (J.333)

Combining the results we obtain

MaxCut I111111100 (4−2ε) = (2πi)7

(
µ2
)3

4π4s2tε
+O

(
ε0
)
. (J.334)
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Exercise 57: Show that the Landau equations imply F = 0.

Solution: The graph polynomial F is homogeneous of degree (l + 1) in the Feynman parameters a j.
Hence

nint

∑
j=1

a j
∂

∂a j
F = (l +1)F . (J.335)

The Landau equations imply that the left-hand side vanishes: We either have a j = 0 (note that ∂F /∂a j

is again a polynomial in the Feynman parameters) or ∂F /∂a j = 0. Since (l+1) 6= 0 it follows that F = 0.

Exercise 58: Work out the Landau discriminant for the double box graph discussed in exercise 44.

Solution: The graph polynomial F reads

F = [a2a3 (a4 +a5 +a6 +a7)+a5a6 (a1 +a2 +a3 +a4)+a2a4a6 +a3a4a5]x+a1a4a7.(J.336)

The Landau equations for the leading Landau singularity read

a4a7 +a5a6x = 0,

[a3 (a4 +a5 +a6 +a7)+ (a4 +a5)a6)x = 0,

[a2 (a4 +a5 +a6 +a7)+ (a4 +a6)a5)x = 0,

a1a7 +(a2 +a5)(a3 +a6)x = 0,

[a6 (a1 +a2 +a3 +a4)+ (a2 +a4)a3)x = 0,

[a5 (a1 +a2 +a3 +a4)+ (a3 +a4)a2)x = 0,

a1a4 +a2a3x = 0. (J.337)

We then solve these equation for (a1, . . . ,a7,x). For the leading Landau singularity we are interested in
solutions with a j 6= 0. We find that only for x =−1 we have such a solution and hence

DLandau = {−1} . (J.338)

Exercise 59: Show that for ϕ as in eq. (6.300) and ω as in eq. (6.309) the differential n-form ϕ is closed
with respect to ∇ω:

∇ωϕ = 0. (J.339)

Solution: Let 1≤ j ≤ n. We have

∇ω =
n

∑
j=1

(
∂

∂z j
+ω j

)
dz j +

n

∑
j=1

(
∂

∂z̄ j

)
dz̄ j. (J.340)

Hence
(

∂

∂z j

q

pn1

1 . . . pnm
m

+ω j

)
dz j ∧dzn∧ ·· ·∧dz1 = 0,

(
∂

∂z̄ j

q

pn1

1 . . . pnm
m

)
dz̄ j ∧dzn∧ ·· ·∧dz1 = 0. (J.341)
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In the first line, the wedge product contains dz j∧dz j, while in the second line the derivative in the bracket
vanishes.

Exercise 60: Proof eq. (6.353) for the special case n1 = n2 = n3 = n4 = 0.

Solution: We have to show that for

ω = γ1
dz

z
− γ2

dz

1− z
(J.342)

and

ϕL =
dz

z(1− z)
, ϕR =

dz

z(1− z)
, (J.343)

we have

〈ϕL |ϕR〉ω =
(γ1 + γ2)

γ1γ2

=
1

γ1

+
1

γ2

. (J.344)

For the case at hand, ψL,1 is given by

ψL,1 =
1

γ1

+O (z) , (J.345)

and ψL,2 is given by

ψL,1 = − 1

γ2

+O (z−1) . (J.346)

We further have

ResD1
(ψL,1ϕR) = Res{0}

(
dz

γ1z(1− z)

)
=

1

γ1

,

ResD2
(ψL,2ϕR) = Res{1}

(
− dz

γ2z(1− z)

)
=

1

γ2

. (J.347)

Therefore

〈ϕL |ϕR〉ω =
1

γ1

+
1

γ2

. (J.348)

Exercise 61: Consider the monomials

p1 = x2
1x2x3, p2 = x1x3

2. (J.349)

Order the two monomials with respect to the degree lexicographic order and the degree reverse lexico-
graphic order (assuming x1 > x2 > x3).
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Solution: Both polynomials have total degree four. Let us write

p1 = x2
1x2x3 = xm1

1 xm2

2 xm3

3 ⇒ (m1,m2,m3) = (2,1,1) ,

p2 = x1x3
2 = x

m′1
1 x

m′2
2 x

m′3
3 ⇒

(
m′1,m

′
2,m

′
3

)
= (1,3,0) . (J.350)

We have

(
m1−m′1,m2−m′2,m3−m′3

)
= (1,−2,1) . (J.351)

For the degree lexicographic order we have

p1 >deglex p2, (J.352)

as m1−m′1 = 1 > 0, while for the degree reverse lexicographic order we have

p1 <degrevlex p2, (J.353)

as m′3−m3 =−1 < 0.

Exercise 62: Assume Cλ+1 =Cλ−1 = 0. Show that this implies

dimHλ+1 (M) = 0, dimHλ (M) = Cλ, dimHλ−1 (M) = 0. (J.354)

Solution: Let us denote bk = dimHk(M). We write down the Morse inequalities for (λ+1), λ, (λ−1) and
(λ−2), using Cλ+1 =Cλ−1 = 0. Multiplying in addition the first and third equation by (−1) we obtain

λ+1

∑
k=0

(−1)λ−k bk ≥ Cλ +
λ−2

∑
k=0

(−1)λ−k Ck,

λ

∑
k=0

(−1)λ−k bk ≤ Cλ +
λ−2

∑
k=0

(−1)λ−k Ck,

λ−1

∑
k=0

(−1)λ−k bk ≥
λ−2

∑
k=0

(−1)λ−k Ck,

λ−2

∑
k=0

(−1)λ−k bk ≤
λ−2

∑
k=0

(−1)λ−k Ck. (J.355)

From the first two inequalities we obtain

λ

∑
k=0

(−1)λ−k bk ≤
λ+1

∑
k=0

(−1)λ−k bk (J.356)

and therefore

0 ≤ −bλ+1. (J.357)

As bλ+1 cannot be negative, it follows that bλ+1 = dimHλ+1(M) = 0. In a similar way we obtain from the
third and fourth equation bλ−1 = dimHλ−1(M) = 0.
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Having shown bλ+1 = bλ−1 = 0, the first two equations simplify to

bλ +
λ−2

∑
k=0

(−1)λ−k bk ≥ Cλ +
λ−2

∑
k=0

(−1)λ−k Ck,

bλ +
λ−2

∑
k=0

(−1)λ−k bk ≤ Cλ +
λ−2

∑
k=0

(−1)λ−k Ck, (J.358)

and this implies

bλ +
λ−2

∑
k=0

(−1)λ−k bk = Cλ +
λ−2

∑
k=0

(−1)λ−k Ck, (J.359)

In a similar way one obtains from the third and the fourth equation

λ−2

∑
k=0

(−1)λ−k bk =
λ−2

∑
k=0

(−1)λ−k Ck. (J.360)

Hence bλ =Cλ = dimHλ(M).

Exercise 63: Derive eq. (6.417) from eq. (6.415).

Solution: The proof is similar to the previous exercise. Let us denote bk = dimHk(M). With dimM = n we
have trivially bn+1 = dimHn+1(M) = 0 and Cn+1 = 0. We write down the Morse inequalities for (n+ 1)
and n, using bn+1 =Cn+1 = 0. Multiplying in addition the first equation by (−1) we obtain

n

∑
k=0

(−1)n−k bk ≥
n

∑
k=0

(−1)n−k Ck,

n

∑
k=0

(−1)n−k bk ≤
n

∑
k=0

(−1)n−k Ck. (J.361)

Hence
n

∑
k=0

(−1)n−k bk =
n

∑
k=0

(−1)n−k Ck. (J.362)

and

χ(M) =
n

∑
k=0

(−1)k bk =
n

∑
k=0

(−1)k Ck. (J.363)

Exercise 64: Let Nmaster = 1, NB = 2 and

A = d ln

(
x1

x1 + x2

)
. (J.364)

Show that Bλ, defined as in eq. (7.29), equals zero.

Solution: We have

A = Ax1
dx1 +Ax2

dx2 =

(
1

x1

− 1

x1 + x2

)
dx1−

1

x1 + x2

dx2. (J.365)
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For α = [α1 : 1] we have

Bλ = α1

(
1

α1λ
− 1

α1λ+λ

)
− 1

α1λ+λ
= 0. (J.366)

Exercise 65: Prove the two relations in eq. (7.59).

Solution: We start with

dk

dxk = x−k
k−1

∏
j=0

(θ− j) . (J.367)

We prove this relation by induction. For k = 1 the right-hand side equals

x−1
0

∏
j=0

(θ− j) = x−1θ =
d

dx
. (J.368)

Let us now assume that the relation is correct for (k−1). We have

dk

dxk =
d

dx

dk−1

dxk−1
=

1

x
θ

[
x−k+1

k−2

∏
j=0

(θ− j)

]
. (J.369)

We further have the operator relation

θx−k+1 = x−k+1 (θ− k+1) (J.370)

and therefore

dk

dxk = x−k (θ− k+1)
k−2

∏
j=0

(θ− j) = x−k
k−1

∏
j=0

(θ− j) . (J.371)

Let us now look at

θk =
k

∑
j=1

S(k, j)x j d j

dx j . (J.372)

For k = 1 the right-hand side equals

1

∑
j=1

S(1, j)x j d j

dx j = S(1,1)x
d

dx
= θ, (J.373)

where we used S(1,1) = 1. Let us now assume that the relation is correct for (k−1). We have

θk = θθk−1 = x
d

dx

[
k−1

∑
j=1

S(k−1, j)x j d j

dx j

]

=
k−1

∑
j=1

S(k−1, j)

[
jx j d j

dx j + x j+1 d j+1

dx j+1

]

=
k

∑
j=1

[ jS(k−1, j)+S(k−1, j−1)]x j d j

dx j . (J.374)
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In the last line we used S(k− 1,0) = S(k− 1,k) = 0. The Stirling numbers of the second kind satisfy the
recurrence relation

S(k, j) = jS(k−1, j)+S(k−1, j−1) . (J.375)

With the help of this relation the claim follows:

θk =
k

∑
j=1

S(k, j)x j d j

dx j . (J.376)

Exercise 66: Rewrite

L2 = x(x+1)(x+9)
d2

dx2
+
(
3x2 +20x+9

) d

dx
+ x+3 (J.377)

in Euler operators. (This is the differential operator of eq. (7.55) multiplied with x(x+1)(x+9)).

Solution: With

d2

dx2
=

1

x2
θ(θ−1) ,

d

dx
=

1

x
θ (J.378)

we first obtain

L2 =
(x+1)(x+9)

x
θ2 +2(x+5)θ+ x+3. (J.379)

Multiplication with x gives

L̃2 = (x+1)(x+9)θ2 +2x(x+5)θ+ x(x+3) . (J.380)

Exercise 67: Consider

L̃ = (θ−α)λ . (J.381)

Show that the solution space is spanned by

xα, xα ln(x) , . . . ,
xα lnλ−1 (x)

(λ−1)!
. (J.382)

Solution: Set

f j (x) =
1

j!
xα ln j (x) . (J.383)

We have

(θ−α) f0 (x) =

(
x

d

dx
−α

)
xα = 0. (J.384)
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For j > 0 we have

(θ−α) f j (x) = f j−1 (x) , (J.385)

hence all functions in eq. (J.382) are annihilated by (θ−α)λ.

Exercise 68: Consider the differential operators

L̃a = (θ−1) (θ− x) ,

L̃b = (θ− x) (θ−1) . (J.386)

Construct for both operators two independent solutions around x0 = 0.

Solution: The indicial equation reads in both cases

(α−1)α = 0, (J.387)

hence the indicials are in both cases α1 = 0 and α2 = 1.
Let’s first consider the case L̃a. We have

L̃a = (θ−1)(θ− x) = x2 d2

dx2
− x2 d

dx
(J.388)

and it is clear that fa,1(x) = 1 is a solution. fa,1 corresponds to the indicial α1 = 0. We may view fa,1 as
a power series which terminates after the first term. We construct the second solution (corresponding to
the indicial α2 = 1) from the ansatz

x+
∞

∑
j=2

c2, jx
j (J.389)

One finds

fa,2 (x) =
∞

∑
j=1

x j

j!
= ex−1. (J.390)

Let us now look at L̃b. We have

L̃a = (θ− x) (θ−1) = x2 d2

dx2
− x2 d

dx
+ x. (J.391)

One solution is again trivial: One easily checks that

fb,2 (x) = x (J.392)

is a solution. The purpose of this exercise is to show how the solution fb,1(x), which starts at order x0, is
extended to higher orders in x. We start from the ansatz

fb,1 (x) = 1+
∞

∑
j=1

[c1, j,0 ln(x)+ c1, j,1]x
j. (J.393)
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Inserting this ansatz into the differential equation one finds

0 = x+
∞

∑
j=1

{
[ j ( j−1)c1, j,1 +(2 j−1)c1, j,0]x

j− [( j−1)c1, j,1 + c1, j,0]x
j+1

+ j ( j−1)c1, j,0x j ln(x)− ( j−1)c1, j,0x j+1 ln(x)
}
. (J.394)

The coefficients of x j and x j ln(x) have to vanish separately. From the term x1 and the logarithmic terms
we obtain

c1,1,0 = −1, c1, j,0 = 0 for j ≥ 2. (J.395)

The differential equation does not constrain c1,1,1, as this term corresponds to the second independent
solution fb,2(x). Therefore we may set c1,1,1 = 0. For the higher terms one finds c1,2,1 = −1/2 and the
recursion formula

c1, j,1 =
( j−2)

j ( j−1)
c1, j−1,1, j ≥ 3. (J.396)

Thus

fb,1 (x) = 1− x ln(x)− 1

2
x2− 1

12
x3− 1

72
x4− 1

480
x5 +O

(
x6
)
. (J.397)

Exercise 69: Show the equivalence of eq. (7.79) with eq. (7.76).

Solution: We have to show

P exp


−

x∫

0

dx1A(x1)


 = 1−

x∫

0

dx1A(x1)+

x∫

0

dx1A(x1)

x1∫

0

dx2A(x2)

−
x∫

0

dx1A(x1)

x1∫

0

dx2A(x2)

x2∫

0

dx3A(x3)+ . . . (J.398)

We start with the left-hand side and expand the exponential function:

P exp


−

x∫

0

dx1A(x1)


 = P

∞

∑
n=0

1

n!


−

x∫

0

dx1A(x1)




n

. (J.399)

The n-th term in this sum has n integrations. Let’s label the integration variables x1, . . . ,xn. The integration
region is an n-dimensional cube

[0,x]n . (J.400)

We divide the n-dimensional cube into n! simplices defined by

x ≥ xσ1
> sσ2

> .. . > xσn ≥ 0. (J.401)
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Each simplex is uniquely specified by a permutation σ ∈ Sn. For each simplex, the path ordering operator
gives

P (A(x1)A(x2) . . .A(xn)) = A(xσ1
)A(xσ2

) . . .A(xσn) . (J.402)

By a relabelling of the integration variables we see that each of the n! simplices gives exactly the same
contribution, cancelling the 1/n! factor in eq. (J.399). Thus we obtain

P exp


−

x∫

0

dx1A(x1)


 =

∞

∑
n=0

(−1)n
x∫

0

dx1A(x1)

x1∫

0

dx2A(x2)· · ·
xn−1∫

0

dxnA(xn) . (J.403)

Exercise 70: Prove eq. (7.92).

Solution: We have to show

d

dx

(
eΩ[Dx](x) eΩ[N′x](x)

)
= −(Dx (x)+Nx (x))eΩ[Dx](x) eΩ[N′x](x). (J.404)

In general, the Magnus series Ω[Ax](x) satisfies

d

dx

(
eΩ[Ax](x)

)
= −Ax (x)eΩ[Ax](x). (J.405)

Therefore

d

dx

(
eΩ[Dx](x) eΩ[N′x](x)

)
= −Dx (x)eΩ[Dx](x) eΩ[N′x ](x)− eΩ[Dx](x) N ′x (x)eΩ[N′x](x). (J.406)

We have

−eΩ[Dx](x) N ′x (x)eΩ[N′x](x) = −eΩ[Dx](x)e−Ω[Dx](x)Nx (x)eΩ[Dx](x)eΩ[N′x](x)

= −Nx (x)eΩ[Dx](x)eΩ[N′x](x) (J.407)

and therefore

−Dx (x)eΩ[Dx](x) eΩ[N′x](x)− eΩ[Dx](x) N ′x (x)eΩ[N′x](x) = −(Dx (x)+Nx (x))eΩ[Dx](x) eΩ[N′x](x). (J.408)

Exercise 71: Show that the transformation in eq. (7.94) transforms the differential equation eq. (7.95)
into eq. (7.96).

Solution: We have to show that

~I′ = U~i, U = e−Ω[A(0)
x ](x) (J.409)

transforms the differential equation
(

d

dx
+A(0)

x + εA(1)
x

)
~I = 0 (J.410)
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into
(

d
dx

+A′x

)
~I′ = 0, (J.411)

with A′x given by

A′x = εUA(1)
x U−1. (J.412)

A′x is given by

A′x = UAxU
−1 +U

d
dx

U−1. (J.413)

We have U−1 = eΩ[A(0)
x ](x) and

d

dx
U−1 = −A(0)

x eΩ[A(0)
x ](x) = −A(0)

x U−1. (J.414)

Thus

A′x = U
(

A(0)
x + εA(1)

x

)
U−1−UA(0)

x U−1 = εUA(1)
x U−1. (J.415)

Exercise 72: Assume that Ax is in Fuchsian form (i.e. of the form as in eq. (7.105)). Show that the
matrix residue at x = ∞ is given by

M∞,1 (ε) = − ∑
xi∈S′

Mxi,1 (ε) . (J.416)

Solution: We map the point x = ∞ to x′ = 0 with the transformation x′ = 1/x. We have

dx = −dx′

x′2
(J.417)

and with x′i = 1/xi

Axdx = ∑
xi∈S′

Mxi,1 (ε)
1

(x− xi)
dx = − ∑

xi∈S′
Mxi,1 (ε)

x′i
x′ (x′i− x′)

dx′

= − ∑
xi∈S′

Mxi,1 (ε)
1

x′
dx′+ . . . , (J.418)

where the dots stand for terms regular at x′ = 0. Thus

M∞,1 (ε) = − ∑
xi∈S′

Mxi,1 (ε) . (J.419)

Exercise 73: Show that P and 1−P are projectors, i.e.

P2 = P, (1−P)2 = 1−P. (J.420)
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Show further
[
(1−P)+

x− x2

x− x1

P

][
(1−P)+

x− x1

x− x2

P

]
= 1. (J.421)

Solution: We have

P2 =
~vR,x1

~vT
L,x2(

~vT
L,x2
·~vR,x1

) ·
~vR,x1

~vT
L,x2(

~vT
L,x2
·~vR,x1

) =
~vR,x1

(
~vT

L,x2
·~vR,x1

)
~vT

L,x2(
~vT

L,x2
·~vR,x1

)2
=

~vR,x1
~vT

L,x2(
~vT

L,x2
·~vR,x1

) = P. (J.422)

Further

(1−P)2 = 1−2P+P2 = 1−2P+P = 1−P. (J.423)

With

P(1−P) = (1−P)P = 0 (J.424)

we also have
[
(1−P)+

x− x2

x− x1

P

][
(1−P)+

x− x1

x− x2

P

]
=

= (1−P)2 +
x− x2

x− x1

P(1−P)+
x− x1

x− x2

(1−P)P+P2 = (1−P)+P = 1. (J.425)

Exercise 74: Consider the square roots

r1 =
√

x(4+ x) and r2 =
√

x(36+ x). (J.426)

Find a transformation, which simultaneously rationalises r1 and r2.

Solution: We rationalise the two roots sequentially. We start with the root r1. We already know that
the transformation

x =
(1− x′)2

x′
(J.427)

rationalises r1. The root r2 expressed in terms of x′ reads

r2 =
1− x′

x′

√
1+34x′+ x′2 (J.428)

We have

1+34x′+ x′2 =
(

x′+17−12
√

2
)(

x′+17+12
√

2
)

(J.429)

and eq. (7.228) gives us

x′ = −6
√

2

x′′

(
1+

17

12

√
2x′′+ x′′2

)
. (J.430)
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The variable x′′ simultaneously rationalises r1 and r2:

r1 = 12
√

2

(
x′′+
√

2
)(

2x′′+
√

2
)(

3x′′2 +4
√

2x′′+3
)

x′′
(

3x′′+2
√

2
)(

4x′′+3
√

2
) ,

r2 = 36
√

2

(
x′′+
√

2
)(

2x′′+
√

2
)(

1− x′′2
)

x′′
(

3x′′+2
√

2
)(

4x′′+3
√

2
) . (J.431)

The appearance of the root
√

2 is unaesthetic, but not a principal problem. It stems from the fact that
in using eq. (7.228) we have implicitly chosen the non-rational point (r,x′) = (0,−17− 12

√
2) on the

hypersurface

f (r,x′) = r2− x′2−34x′−1. (J.432)

This hypersurface has rational points, for example (r,x′) = (6,1). Repeating the exercise one finds for
example that the transformation

x =

(
x̃2−9

)2

x̃ (x̃+1) (x̃+9)
(J.433)

rationalises both r1 and r2

r1 =

(
x̃2−9

)(
x̃2 +2x̃+9

)

x̃ (x̃+1)(x̃+9)
, r2 =

(
x̃2−9

)(
x̃2 +18x̃+9

)

x̃ (x̃+1)(x̃+9)
, (J.434)

and only contains rational coefficients.

Exercise 75: Prove eq. (8.19).

Solution: We have to show

Lim1...mk(x1, . . . ,xk) = (−1)kGm1...mk

(
1

x1

,
1

x1x2

, . . . ,
1

x1...xk
;1

)
, (J.435)

where we may assume that
∣∣x1x2 . . .x j

∣∣≤ 1 for all j ∈ {1, . . . ,k} and (m1,x1) 6= (1,1). (J.436)

Set r = m1+ · · ·+mk. The integral representation has depth r. Let us introduce some notation to facilitate
the proof: We set

b j =
1

x1x2...x j
. (J.437)

and introduce the following notation for iterated integrals

y∫

0

dt

t− z1

◦ ...◦ dt

t− zr
=

y∫

0

dt1
t1− z1

t1∫

0

dt2
t2− z2

· · ·
tr−1∫

0

dtr
tr− zr

, (J.438)
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together with the short hand notation

y∫

0

(
dt

t
◦
)m dt

t− z
=

y∫

0

dt

t
◦ ...dt

t︸ ︷︷ ︸
m times

◦ dt

t− z
. (J.439)

The integral representation Gm1...mk(b1, . . . ,bk;1) reads then

(−1)kGm1...mk (b1, . . . ,bk;1) = (−1)k

1∫

0

(
dt

t
◦
)m1−1 dt

t−b1

◦ ...◦
(

dt

t
◦
)mk−1 dt

t−bk
. (J.440)

For all integration variables we have |t j| ≤ 1 (with j ∈ {1, . . . ,r}). We have k terms of the form 1/(t j−b j).
As |t j/b j|= |x1x2 . . .x jt j| ≤ 1 we expand the geometric series (the case x1x2 . . .x jt j = 1 is handled by first
replacing the outermost integration limit 1 by y < 1 and taking the limit y→ 1 in the end. With y < 1 we
have |t j|< 1, which is sufficient for the convergence of the geometric series. The limit y→ 1 may be taken
for (m1,x1) 6= (1,1)):

1

t j−b j
= − 1

b j

∞

∑
i=0

(
t j

b j

)i

= −
∞

∑
i=1

t i−1
j

bi
j

. (J.441)

Integrating term-by-term gives

(−1)kGm1...mk (b1, . . . ,bk;1) =
∞

∑
i1=1

· · ·
∞

∑
ik=1

1

(i1 + · · ·+ ik)
m1

1

bi1
1

. . .
1

(ik−1 + ik)
mk−1

1

bik−1

k−1

1

imk
k

1

bik
k

=
∞

∑
i1=1

· · ·
∞

∑
ik=1

xi1
1

(i1 + · · ·+ ik)
m1

. . .
(x1 . . .xk−1)

ik−1

(ik−1 + ik)
mk−1

(x1 . . .xk)
ik

imk
k

=
∞

∑
i1=1

· · ·
∞

∑
ik=1

xi1+···+ik
1

(i1 + · · ·+ ik)
m1

. . .
xik−1+ik

k−1

(ik−1 + ik)
mk−1

xik
k

imk
k

. (J.442)

Changing the summation indices according to n1 = i1 + · · ·+ ik, n2 = i2 + · · ·+ ik, . . . , nk−1 = ik−1 + ik
and nk = ik yields

(−1)kGm1...mk (b1, . . . ,bk;1) =
∞

∑
n1=1

n1−1

∑
n2=1

· · ·
nk−2−1

∑
nk−1=1

nk−1−1

∑
nk=1

xn1

1

nm1

1

xn2

2

nm2

2

. . .
xnk−1

k−1

nmk−1

k−1

xnk
k

nmk
k

= Lim1...mk(x1, . . . ,xk). (J.443)

Exercise 76: Consider the alphabet A = {l1, l2} with l1 < l2. Write down all Lyndon words of depth
≤ 3.

Solution: At depth 1 we have the words l1 and l2. Both of them are Lyndon words. At depth 2 we
have to consider the words l1l1, l1l2, l2l1 and l2l2. Out of these only

l1l2 (J.444)
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is a Lyndon word. For example w = l1l1 may be written as w = uv, u = l1, v = l1 and v < w. At depth
3 we have to consider the words l1l1l1, l1l1l2, l1l2l1, l1l2l2, l2l1l1, l2l1l2, l2l2l1 and l2l2l2. Out of these the
Lyndon words are

l1l1l2, l1l2l2. (J.445)

Exercise 77: Express the product

G2 (z;y) ·G3 (z;y) (J.446)

as a linear combination of multiple polylogarithms.

Solution: We have

G2 (z;y) = G(0,z;y) , G3 (z;y) = G(0,0,z;y) . (J.447)

We first work out the shuffle product for G(z1,z2;y) ·G(z3,z4,z5;y) and set z1 = z3 = z4 = 0 and z2 = z5 = z
in the end. We have

G(z1,z2;y) ·G(z3,z4,z5;y) =

G(z1,z2,z3,z4,z5;y)+G(z1,z3,z2,z4,z5;y)+G(z1,z3,z4,z2,z5;y)+G(z1,z3,z4,z5,z2;y)

+G(z3,z1,z2,z4,z5;y)+G(z3,z1,z4,z2,z5;y)+G(z3,z1,z4,z5,z2;y)+G(z3,z4,z1,z2,z5;y)

+G(z3,z4,z1,z5,z2;y)+G(z3,z4,z5,z1,z2;y) . (J.448)

Setting z1 = z3 = z4 = 0 and z2 = z5 = z yields

G(0,z;y) ·G(0,0,z;y) = G(0,z,0,0,z;y) +3G(0,0,z,0,z;y) +6G(0,0,0,z,z;y) , (J.449)

or

G2 (z;y) ·G3 (z;y) = G23 (z,z;y)+3G32 (z,z;y)+6G41 (z,z;y) . (J.450)

Exercise 78: Work out the quasi-shuffle product

Lim1m2
(x1,x2) ·Lim3m4

(x3,x4). (J.451)

Solution: We obtain

Lim1m2
(x1,x2) ·Lim3m4

(x3,x4).=

Lim1m2m3m4
(x1,x2,x3,x4)+Lim1m3m2m4

(x1,x3,x2,x4)+Lim1m3m4m2
(x1,x3,x4,x2)

+Lim3m1m2m4
(x3,x1,x2,x4)+Lim3m1m4m2

(x3,x1,x4,x2)+Lim3m4m1m2
(x3,x4,x1,x2)

+Li(m1+m3)m2m4
(x1 · x3,x2,x4)+Li(m1+m3)m4m2

(x1 · x3,x4,x2)+Lim1(m2+m3)m4
(x1,x2 · x3,x4)

+Lim3(m1+m4)m2
(x3,x1 · x4,x2)+Lim1m3(m2+m4)(x1,x3,x2 · x4)+Lim3m1(m2+m4)(x3,x1,x2 · x4)

+Li(m1+m3)(m2+m4)(x1 · x3,x2 · x4). (J.452)
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Exercise 79: Use the (regularised) double-shuffle relations to show

ζ2
2 =

5

2
ζ4. (J.453)

Solution: As in eq. (8.79) we set

L = − lnλ = Li1 (1−λ) = −G(1;1−λ) . (J.454)

In the quasi-shuffle algebra we have

L ·ζ3 = L ·Li3 (1) = Li13 (1−λ,1)+Li31 (1,1−λ)+Li4 (1−λ) . (J.455)

In the shuffle algebra we consider

−L ·G(0,0,1;1−λ) = G(1;1−λ) ·G(0,0,1;1−λ) (J.456)

= G(1,0,0,1;1−λ)+G(0,1,0,1;1−λ)+2G(0,0,1,1;1−λ) .

In the Li-notation this is equivalent to

L ·Li3 (1−λ) = Li13 (1−λ,1)+Li22 (1−λ,1)+2Li31 (1−λ,1) . (J.457)

We have Li3 (1−λ)−ζ3 = O (λ) and subtracting the quasi-shuffle relation from the shuffle relation

ζ22 +ζ31−ζ4 = 0 (J.458)

follows. From eq. (8.75) we know already that ζ31 =
1
4
ζ4, and therefore

ζ22 =
3

4
ζ4. (J.459)

Substituting this result into eq. (8.77) the sought-after relation

ζ2
2 =

5

2
ζ4. (J.460)

follows.

Exercise 80: Let

f0 (x) =
1

r!
lnr (x) , f1 (x) =

(−1)r

r!
lnr (1− x) . (J.461)

Determine

M0 f0 (x) , M0 f1 (x) , M1 f0 (x) , M1 f1 (x) . (J.462)

Solution: Let us first discuss the case r = 1:

h0 (x) = ln(x) , h1 (x) = − ln(1− x) . (J.463)
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We already know that (recall that ln(x) is regular at x = 1 and ln(1− x) is regular at x = 0)

M0h0 (x) = h0 (x)+2πi, M0h1 (x) = h1 (x) ,

M1h0 (x) = h0 (x) , M1h1 (x) = h1 (x)−2πi. (J.464)

We then have

M0 f0 (x) =
1

r!
[M0h0 (x)]

r
=

1

r!
[ln(x)+2πi]r ,

M0 f1 (x) =
1

r!
[M0h1 (x)]

r
= f1 (x) ,

M1 f0 (x) =
1

r!
[M1h0 (x)]

r
= f0 (x) ,

M1 f1 (x) =
1

r!
[M1h1 (x)]

r
=

1

r!
[− ln(1− x)−2πi]r . (J.465)

Exercise 81: Compute the monodromy of G(1,1;y) around y = 1.

Solution: The simple solution is as follows: As G(1,1;y) = 1
2

ln2(1− y) it follows from exercise 80 that

M1G(1,1;y) =
1

2
[− ln(1− y)−2πi]2

= G(1,1;y)+2πiG(1;y)+
1

2
(2πi)2 . (J.466)

The purpose of this exercise is to compute the monodromy with the help of eq. (8.109). Of course, we
should obtain the same result. With G(1;y) = ln(1− y) and M1G(1;y) = G(1;y)+ 2πi we obtain from
eq. (8.109) and eq. (8.111)

M1G(1,1;y) = G(1,1;y)+ lim
ε→0




∮

dy′

y′−1
G
(
1;y′
)
+

y∫

1+ε

dy′

y′−1

[
MzG

(
1;y′

)
−G

(
1;y′
)]




= G(1,1;y)+2πi lim
ε→0





1∫

0

dtG
(
1;1+ εe2πit)+

y∫

1+ε

dy′

y′−1



 . (J.467)

For the first integral we have

1∫

0

dtG
(
1;1+ εe2πit) =

1∫

0

dt ln
(
−εe2πit) = ln(−ε)+2πi

1∫

0

t dt = ln(−ε)+
1

2
(2πi) , (J.468)

the second integral gives

y∫

1+ε

dy′

y′−1
= ln(1− y)− ln(−ε) . (J.469)
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In total we obtain

M1G(1,1;y) = G(1,1;y)+2πiG(1;y)+
1

2
(2πi)2 , (J.470)

in agreement with our previous result.

Exercise 82: Prove eq. (8.37) from chapter 8.

Solution: We may write the sum representation of Lim1...0...mk(x1, . . . ,xi, . . . ,xk) as

Lim1...0...mk(x1, . . . ,xi, . . . ,xk) =
∞

∑
n1=1

xn1

1

nm1

1

. . .
ni−2−1

∑
ni−1=1

xni−1

i−1

nmi−1

i−1

Z0,mi+1,...,mk(xi,xi+1, . . . ,xk;ni−1−1). (J.471)

Consider now

Z0(xi;ni−1−1)Zmi+1,...,mk(xi+1, . . . ,xk;ni−1−1). (J.472)

On the one hand we have

Z0(xi;ni−1−1) =
xi

1− xi
− xni−1

i

1− xi
= Li0(xi)−Li0(xi)x

ni−1−1
i , (J.473)

on the other hand we may use the quasi-shuffle product for the Z-sums:

Z0(xi;ni−1−1)Zmi+1,...,mk(xi+1, . . . ,xk;ni−1−1) =

k

∑
j=i

Zmi+1...m j0m j+1...mk(xi+1, . . . ,x j,xi,x j+1, . . . ,xk;ni−1−1)

+
k

∑
j=i+1

Zmi+1...m j ...mk(xi+1, . . . ,xi · x j, . . . ,xk;ni−1−1) (J.474)

Combining these two equations and noting that

1

xi
Li0(xi) = 1+Li0(xi) (J.475)

proves eq. (8.37).

Exercise 83: Consider I111 from eq. (9.1) with µ2 = −p2
3 and x = p2

1/p2
3 in D = 4− 2ε space-time

dimensions:

I111 = eεγE
Γ(−ε)Γ(1− ε)

Γ(1−2ε)

∞

∑
n=0

Γ(n+1+ ε)

Γ(n+2)
(1− x)n . (J.476)

Expand the sum in ε and give the first two terms of the ε-expansion for the full expression.

Solution: With the substitution n→ n+1 we have

I111 = eεγE
Γ(−ε)Γ(1− ε)

Γ(1−2ε)

∞

∑
n=1

Γ(n+ ε)

Γ(n+1)
(1− x)n−1 . (J.477)
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Expanding Γ(n+ ε) according to eq. (9.11) one obtains:

I111 = eεγE
Γ(−ε)Γ(1− ε)Γ(1+ ε)

Γ(1−2ε)

1

1− x

∞

∑
n=1

εn−1H1 . . .1︸ ︷︷ ︸
n

(1− x). (J.478)

In this special case all harmonic polylogarithms can be expressed in terms of powers of the standard
logarithm:

H1 . . .1︸ ︷︷ ︸
n

(1− x) =
(−1)n

n!
(lnx)n . (J.479)

Therefore

I111 = −eεγE
Γ(1− ε)Γ(1− ε)Γ(1+ ε)

ε2Γ(1−2ε)

1

1− x

∞

∑
n=1

εn (−1)n

n!
(lnx)n . (J.480)

The expansion of the prefactor is

eεγE
Γ(1− ε)Γ(1− ε)Γ(1+ ε)

ε2Γ(1−2ε)
=

1

ε2

(
1− 1

2
ζ2ε2

)
+O (ε) . (J.481)

Thus

I111 =
1

1− x

[
1

ε
lnx− 1

2
(lnx)2

]
+O (ε) . (J.482)

The result for this example is particular simple and one recovers from eq. (J.480) the well-known all-order
result

I111 = eεγE
Γ(1− ε)2Γ(1+ ε)

Γ(1−2ε)

1

ε2

1− x−ε

1− x
, (J.483)

which (for this simple example) can also be obtained by direct integration. If we expand this result in ε we
recover eq. (J.482).

Exercise 84: Consider the k-dimensional standard simplex in Rk+1. This is the polytope with ver-
tices given by the (k+1) standard unit vectors e j ∈ Rk+1. Show that the standard simplex has Euclidean
volume 1/k! and therefore the normalised volume 1.

Solution: The Euclidean volume of the standard k-dimensional simplex ∆ is given by the integral

vol0 (∆) =

∫

α j≥0

dk+1α δ

(
1−

k+1

∑
j=1

α j

)
. (J.484)

From eq. (2.278) we have

vol0 (∆) =
1

Γ(k+1)
=

1

k!
, (J.485)
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a1

a2 a3

a4

a5 a6

a1

a2 a3

a4

a5
a6

Figure J.7: The labelling of the points for the regular triangulation of the polytope P (left) and

the non-regular triangulation of the polytope P (right).

and hence

vol (∆) = k! vol0 (∆) = 1. (J.486)

Exercise 85: Show that the left picture of fig. 9.3 defines a regular triangulation.

Solution: We label the points as in fig. J.7. In order to show that the triangulation is regular, we have to
give a height vector. The height vector

h = (1,2,3,0,0,0)T
(J.487)

does the job. This is most easily seen by drawing (ã1, ã2, ã3, ã4, ã5, ã6) ∈R4. As (a1,a2,a3,a4,a5,a6)∈R3

lie in a plane with normal vector n = (1,1,1), it is sufficient to draw the points (ã1, ã2, ã3, ã4, ã5, ã6) in R3,
with two coordinates for the plane and one coordinate the height. One easily sees that the lift is convex.
The lift is convex for h4 = h5 = h6 = 0 and

0 < h1 < h2 < h3. (J.488)

The chosen height vector fulfils this condition.

Exercise 86: Show that the right picture of fig. 9.3 defines a non-regular triangulation.

Solution: We label the points as in fig. J.7. Let us look at the points a1, a2, a4 and a5. These points
satisfy

a1−a2−4a4 +4a5 = 0. (J.489)

This is easily verified by plugging in the defining coordinates. Now consider the simplex σ125, i.e. the
triangle with vertices a1, a2 and a5. Let r125 ∈ R3 be the vector such that

r125 ·a j = h j j ∈ {1,2,5} ,
r125 ·a j < h j j ∈ {3,4,6} . (J.490)
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Contracting eq. (J.489) with r125 we obtain

0 = h1−h2−4r125 · r4 +4h5 > h1−h2−4h4 +4h5 (J.491)

and hence

h1−h2−4h4 +4h5 < 0. (J.492)

Repeating the argumentation for the points a2, a3, a5, a6 and the triangle σ236 we obtain

h2−h3−4h5 +4h6 < 0. (J.493)

Repeating once more the argumentation for the points a1, a3, a4, a6 and the triangle σ134 we obtain

h3−h1−4h6 +4h4 < 0. (J.494)

Adding up eq. (J.492), eq. (J.493) and eq. (J.494) we obtain

0 < 0, (J.495)

this is a contradiction, hence a height vector does not exist and the triangulation is non-regular.

Exercise 87: In this exercise we are going to prove theorem 13. Let G(z,x′) = G(z1, . . . ,znint
,x′1, . . . ,x

′
n)

be a generalised Lee-Pomeransky polynomial such that the associated (nint + 1)× n-matrix A satisfies
eq. (9.90). Consider the integral

I = C
∫

z j≥0

dnint z

(
nint

∏
j=1

z
ν j−1

j

)
[
G
(
z,x′
)]−D

2 . (J.496)

Show that I satisfies the differential equations in eq. (9.92) and eq. (9.93) with c=(−D/2,−ν1, . . . ,−νnint
)T .

Solution: The entries ai j of A define G(z,x′):

G
(
z,x′
)

=
n

∑
j=1

x′j z
a1 j

1 . . . z
anint j
nint . (J.497)

We have

∂

∂x′j
G
(
z,x′
)

= z
a1 j

1 . . . z
anint j
nint . (J.498)

We have to verify the set of equations in eq. (9.92) and eq. (9.93). These equations are equivalent to
eq. (9.96) and eq. (9.98). We start with eq. (9.96). Let u,v ∈ Nn

0 with Au = Av and set

|u| =
n

∑
j=1

u j, |v| =
n

∑
j=1

v j. (J.499)
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Then

∂uI =
Γ
(
1− D

2

)

Γ
(
1− D

2
−|u|

)C
∫

z j≥0

dnintz

(
nint

∏
j=1

z
ν j+a jkuk−1

j

)
[
G
(
z,x′
)]−D

2
−|u|

,

∂vI =
Γ
(
1− D

2

)

Γ
(
1− D

2
−|v|

)C
∫

z j≥0

dnintz

(
nint

∏
j=1

z
ν j+a jkvk−1

j

)
[
G
(
z,x′
)]−D

2
−|v|

. (J.500)

From Au = Av we have a jkuk = a jkvk (a sum over k is implied). The first row of A is (1, . . . ,1). This
implies |u|= |v|. Hence

∂uI = ∂vI. (J.501)

Let us now turn to eq. (9.98). We start with the first row of A with the entries a01 = · · ·= a0n = 1: We have

n

∑
j=1

x′j
∂

∂x′j
I = −D

2
C

∫

z j≥0

dnintz

(
nint

∏
j=1

z
ν j−1

j

)
[
G
(
z,x′
)]−D

2 = −D

2
I. (J.502)

We then consider the other rows (1≤ i≤ nint): We first have

n

∑
j=1

ai jx
′
j

∂

∂x′j
G
(
z,x′
)

=
n

∑
j=1

ai jx
′
j z

a1 j

1 . . . z
anint j
nint = zi

∂

∂zi
G
(
z,x′
)
. (J.503)

Hence

n

∑
j=1

ai jx
′
j

∂

∂x′j
I = C

∫

z j≥0

dnintz

(
nint

∏
j=1

z
ν j−1

j

)
zi

∂

∂zi

[
G
(
z,x′
)]−D

2

= −νiC
∫

z j≥0

dnintz

(
nint

∏
j=1

z
ν j−1

j

)
[
G
(
z,x′
)]−D

2

= −νiI, (J.504)

where we used partial integration. Therefore we have with c = (−D/2,−ν1, . . . ,−νnint
)T

(Aθθθ− c) I = 0. (J.505)

Exercise 88: Show that for a Feynman integral as in eq. (10.2) we have in any primary sector c = 0

and therefore the additional factor is absent.

Solution: For the Feynman integral in the Feynman parameter representation of eq. (10.2) we have

ai + εbi = νi−1, 1 ≤ i ≤ nint (J.506)

and r = 2. We take P1 = U and P2 = F . We have

c1 + εd1 = ν− (l +1)D

2
, c2 + εd2 =

lD

2
−ν. (J.507)
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We further know that U is homogeneous of degree h1 = l and F is homogeneous of degree h2 = (l + 1).
Thus

c = −nint−
nint

∑
i=1

(ai + εbi)−
2

∑
j=1

h j (c j + εd j)

= −nint− (ν−nint)− l

(
ν− (l+1)D

2

)
− (l +1)

(
lD

2
−ν

)

= 0. (J.508)

Exercise 89: Show that the convolution product is associative:

(ϕ1 ∗ϕ2)∗ϕ3 = ϕ1 ∗ (ϕ2 ∗ϕ3) . (J.509)

Solution: Let a ∈C. We have

((ϕ1 ∗ϕ2)∗ϕ3) (a) = ·((ϕ1 ∗ϕ2)⊗ϕ3)∆(a) = ·(·(ϕ1⊗ϕ2)∆⊗ϕ3)∆(a)

= ·(·⊗ id)(ϕ1⊗ϕ2⊗ϕ3)(∆⊗ id)∆(a)

= ·(id⊗·)(ϕ1⊗ϕ2⊗ϕ3)(id⊗∆)∆(a)

= ·(ϕ1⊗·(ϕ2⊗ϕ3)∆)∆(a) = ·(ϕ1⊗ (ϕ2 ∗ϕ3))∆(a)

= (ϕ1 ∗ (ϕ2 ∗ϕ3))(a) . (J.510)

Exercise 90: Show that 1Hom = eē ∈Hom(C,A) is a neutral element for the convolution product, i.e.

ϕ∗1Hom = 1Hom ∗ϕ = ϕ. (J.511)

Solution: Let a ∈C and write ∆(a) = a(1)⊗a(2), using Sweedler’s notation. We have

(ϕ∗1Hom)(a) = · (ϕ⊗ eē)∆(a) = · (ϕ⊗ eē)
(

a(1)⊗a(2)
)
. (J.512)

Using the axiom of the counit in eq. (11.14) this equals

(ϕ∗1Hom) (a) = · (ϕ⊗ e)(a⊗1) , (J.513)

where 1 denotes the unit in R. We obtain

(ϕ∗1Hom)(a) = · (ϕ(a)⊗ e(1)) = ϕ(a) . (J.514)

The proof for 1Hom ∗ϕ = ϕ is similar.

Exercise 91: Show that ϕ−1 = ϕS is an inverse element to ϕ ∈ AlgHom(H,A).

Solution: We have to show that

ϕ∗ϕ−1 = ϕ−1 ∗ϕ = 1AlgHom. (J.515)
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We have

(
ϕ∗ϕ−1

)
(a) = · (ϕ⊗ (ϕS))∆(a) = · (ϕ⊗ϕ)(id⊗S)∆(a)

= ϕ · (id⊗S)∆(a) . (J.516)

In the last step we used the fact that ϕ is an algebra homomorphism. Using the axiom of the antipode
eq. (11.24) we have

(
ϕ∗ϕ−1

)
(a) = ϕeH ē(a) = eAē(a) = 1AlgHom (a) , (J.517)

since ϕ(eH) = eA. The proof of ϕ−1 ∗ϕ = 1AlgHom is similar.

Exercise 92: Which rooted trees are primitive elements in the Hopf algebra of rooted trees?

Solution: For a primitive element tprim the coproduct has to be

∆
(
tprim

)
= tprim⊗ e+ e⊗ tprim. (J.518)

For a rooted tree t, the coproduct is in general

∆(t) = t⊗ e+ e⊗ t+ ∑
adm.cuts Cof t

PC(t)⊗RC(t), (J.519)

thus for a primitive rooted tree the sum over all admissible cuts has to be absent. This is the case if the
rooted tree consists only of a single vertex, the root.

Exercise 93: Show that the map R in eq. (11.85) fulfils the Rota-Baxter equation (11.84).

Solution: Let

a1 =
∞

∑
j=−L1

b jε
j ∈ A, a2 =

∞

∑
k=−L2

ckεk ∈ A. (J.520)

Then

R(a1a2)+R(a1)R(a2)−R(a1R(a2))−R(R(a1)a2) =

= ∑
j+k<0

b jckε j+k + ∑
j<0,k<0

b jckε j+k− ∑
j+k<0,k<0

b jckε j+k− ∑
j+k<0, j<0

b jckε j+k

= 0. (J.521)

Exercise 94: Resolve the operator overloading: In eq. (11.118) the symbols “·”, ē and ∆ appear in
various places. Determine for each occurrence to which operation they correspond.

Solution: We start with the equation

·(ē⊗ id)∆(v) = v. (J.522)
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We read the left-hand side right-to-left. ∆(v) with v ∈ M corresponds to the map ∆ : M → C⊗M of
eq. (11.116). Let us write

∆(v) = a(1)⊗ v(2), a(1) ∈ C, v,v(2) ∈ M. (J.523)

Then

(ē⊗ id)∆(v) = ē
(

a(1)
)
⊗ v(2), (J.524)

and ē :C→R denotes the counit in C (there is no other counit). Finally, as ē(a)∈R, the final multiplication
“·” is the scalar multiplication of the R-module: · : R×M→M.

Let us now turn to

(∆⊗ id)∆(v) = (id⊗∆)∆(v) . (J.525)

Again, we read both sides right-to-left. The first operation ∆(v) is the operation ∆ : M → C⊗M of
eq. (11.116). With eq. (J.523) our original equation becomes

∆
(

a(1)
)
⊗ v(2) = a(1)⊗∆

(
v(2)
)
. (J.526)

On the left-hand side ∆(a(1)) refers to the comultiplication in C, i.e. ∆ : C→C⊗C. On the right-hand
side ∆(v(2)) refers again to the operation ∆ : M→C⊗M of eq. (11.116).

Exercise 95: Work out ∆(lnm(x)). Note that lnm(x) = Im(1;0;x).

Solution: From eq. (11.140) we have

∆(Im(1;0;x)) = IdR(1;0;x)⊗1+1⊗ Im(1;0;x), (J.527)

and therefore

∆(lnm(x)) = lndR(x)⊗1+1⊗ lnm(x). (J.528)

Exercise 96: Consider

I (0;x,x;y) = G(x,x;y) = G11

(
1,1;

y

x

)
= Li11

(y

x
,1
)

= H11

(y

x

)
. (J.529)

With the techniques of chapter 8 it is not too difficult to show that the derivatives with respect to x and y
are

∂

∂x
I (0;x,x;y) =

y

x(x− y)
ln

(
x− y

x

)
,

∂

∂y
I (0;x,x;y) =

1

y− x
ln

(
x− y

x

)
. (J.530)
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Re-compute the derivatives using eq. (11.156).

Solution: We first compute the coaction

∆(Im (0;x,x;y)) = 1⊗ Im (0;x,x;y)+
(

IdR (0;x;x)+ IdR (x;x;y)
)
⊗ Im (0;x;y)+ IdR (0;x,x;y)⊗1,

(J.531)

and therefore

∆1,1 (I
m (0;x,x;y)) =

(
IdR (0;x;x)+ IdR (x;x;y)

)
⊗ Im (0;x;y)

=
(
− lndR (−x)+ lndR (y− x)

)
⊗ lnm

(
x− y

x

)
. (J.532)

We then have

∂

∂x
Im (0;x,x;y) = ·

(
∂

∂x
⊗1

)
∆1,1 (I

m (0;x,x;y))

= ·
(

∂

∂x
⊗1

)[(
− lndR (−x)+ lndR (y− x)

)
⊗ lnm

(
x− y

x

)]

= ·
[(
−1

x
− 1

y− x

)
⊗ lnm

(
x− y

x

)]
=

y

x(x− y)
lnm
(

x− y

x

)
. (J.533)

In a similar way we obtain

∂

∂y
Im (0;x,x;y) = ·

(
∂

∂y
⊗1

)
∆1,1 (I

m (0;x,x;y))

= ·
(

∂

∂x
⊗1

)[(
− lndR (−x)+ lndR (y− x)

)
⊗ lnm

(
x− y

x

)]

=
1

y− x
lnm
(

x− y

x

)
. (J.534)

Exercise 97: Work out the symbols

S(− ln(x)) and S(ln(−x)) . (J.535)

Solution: We start with S(− ln(x)). We have

S(− ln(x)) = −S(ln(x)) = −(x) . (J.536)

On the other hand, we have for S(ln(−x))

S(ln(−x)) = S(ln(x)) = (x) . (J.537)
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Exercise 98: Fill in the details for the derivation of svm(Lim1 (x)) and svm(Lim2 (x)).

Solution: We start with Lim1 (x). From eq. (11.138) we have

∆
(

LidR1 (x)
)

= LidR1 (x)⊗1+1⊗LidR1 (x). (J.538)

Eq. (11.139) gives us

S
(

LidR1 (x)
)

= −LidR1 (x). (J.539)

We have

∆m
(

LidR1 (x)
)

= Lim1 (x)⊗1+1⊗Lim1 (x), (J.540)

and

Σ(1) = 1,

Σ(Lim1 (x)) = Lim1 (x). (J.541)

Thus

svm (Lim1 (x)) = period (Lim1 (x))+period(F∞Lim1 (x)) = Li1 (x)+Li1 (x) . (J.542)

Let us now turn to Lim2 (x). From eq. (11.138) we have

∆
(

LidR2 (x)
)

= LidR2 (x)⊗1+1⊗LidR2 (x)+ lndR(x)⊗LidR1 (x). (J.543)

Eq. (11.139) gives us

S
(

LidR2 (x)
)

= −LidR2 (x)+ lndR(x)LidR1 (x). (J.544)

We work out

(id⊗F∞Σ)∆m
(

LidR2 (x)
)
=

= (id⊗F∞Σ) [Lim2 (x)⊗1+1⊗Lim2 (x)+ lnm(x)⊗Lim1 (x)]

= Lim2 (x)⊗1+1⊗F∞ (−Lim2 (x)+ lnm(x)Lim1 (x))+ lnm(x)⊗ (F∞Lim1 (x)) , (J.545)

and therefore

svm (Lim2 (x)) = Li2 (x)−Li2 (x)+ ln(x)Li1 (x)+ ln(x) ·Li1 (x)

= Li2 (x)−Li2 (x)+ ln
(
|x|2
)
·Li1 (x) . (J.546)

Exercise 99: Show that eq. (11.228) and eq. (11.253) agree in a neighbourhood of x = 0.
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Solution: We have to show that

I′2,a
(2) (x) = 2

[
G
(
0,0;x′

)
−2G

(
−1,0;x′

)
−ζ2

]
,

I′2,b
(2) (x) = −4 Li2 (y1)+2ln2 (y2)− ln2 ( f1)+2ζ2 (J.547)

agree in a neighbourhood of x = 0. I′2,a
(2)(x) and I′2,b

(2)(x) are functions of a single variable x. Two
functions are identical, if their derivatives are identical and the two functions have the same value at a
single point.

We first check the value at x = 0 (corresponding to x′ = 1 and y1 = y2 = 1/2):

I′2,a
(2) (0) = 0, I′2,b

(2) (0) = 0. (J.548)

In the second step we check the derivatives. We set r =
√

x(4+ x). Carrying out the derivatives and
collecting terms we first obtain

d

dx
I′2,a

(2) (x) = 2
x− r

r (4+ x− r)
ln

(
2+ x− r

2

)
,

d

dx
I′2,b

(2) (x) = −2

r
ln

(
y2

1− y1

)
− 2

4+ x
ln((1− y1)y2 (4+ x)) . (J.549)

We then simplify these expressions. We first make the denominator of dI′2,a
(2)/dx rational. We multiply the

numerator and the denominator with (4+ x+ r). Noting that

(4+ x− r)(4+ x+ r) = 4(4+ x) ,

(x− r)(4+ x+ r) = −4r (J.550)

we obtain

d

dx
I′2,a

(2) (x) = − 2

(4+ x)
ln

(
2+ x− r

2

)
. (J.551)

In order to simplify dI′2,b
(2)/dx we first notice that

y2 = 1− y1. (J.552)

Thus

d

dx
I′2,b

(2) (x) = − 2

4+ x
ln
(
y2

2 (4+ x)
)
= − 2

4+ x
ln

(
2

2+ x+ r

)
= − 2

4+ x
ln

(
2+ x− r

2

)
. (J.553)

Exercise 100: Let f1, f2,g1,g2 be algebraic functions of the kinematic variables x. Determine the symbols
of

Li21 ( f1, f2) and G21 (g1,g2;1) . (J.554)

Assume then g1 = 1/ f1 and g2 = 1/( f1 f2). Show that in this case the two symbols agree.
From the two symbols deduce the constraints on the arguments f1, f2 of Li21( f1, f2) and on the argu-

ments g1,g2 of G21(g1,g2;1).
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Solution: We start with G21(g1,g2;1). According to eq. (8.8) we have

dG21 (g1,g2;1) = dG(0,g1,g2;1) = −G(g1,g2;1)d ln(g1)+G(0,g2;1)d ln

(
g1

g2−g1

)

+G(0,g1;1)d ln

(
g2−g1

g2

)
, (J.555)

and therefore

S(G21 (g1,g2;1)) = (J.556)

−(g1⊗S(G(g1,g2;1)))−
(
(g2−g1)

g1

⊗S(G(0,g2;1))

)
+

(
(g2−g1)

g2

⊗S(G(0,g1;1))

)
.

The symbols of the functions of weight two are

S(G(g1,g2;1)) =

(
(1−g1)

(g2−g1)
⊗ (1−g2)

g2

)
+

(
(g2−g1)

g2

⊗ (1−g1)

g1

)
,

S(G(0,g2;1)) = −
(

g2⊗
(1−g2)

g2

)
,

S(G(0,g1;1)) = −
(

g1⊗
(1−g1)

g1

)
. (J.557)

Putting everything together we obtain

S(G21 (g1,g2;1)) =

(
g1⊗

(g2−g1)

(1−g1)
⊗ (1−g2)

g2

)
+

(
(g2−g1)

g1

⊗g2⊗
(1−g2)

g2

)

−
(

g1⊗
(g2−g1)

g2

⊗ (1−g1)

g1

)
−
(
(g2−g1)

g2

⊗g1⊗
(1−g1)

g1

)
(J.558)

Let us now turn to Li21( f1, f2). According to eq. (8.34) we have

dLi21 ( f1, f2) = Li11 ( f1, f2)d ln( f1)+Li20 ( f1, f2)d ln( f2) . (J.559)

We may rewrite Li20 with the help of eq. (8.37) as

Li20 ( f1, f2) = Li0 ( f2)Li2 ( f1)−Li2 ( f1 f2)−Li0 ( f2)Li2 ( f1 f2) . (J.560)

This generates terms with Li0. We haven’t defined the symbol of a weight zero function. Let’s work out the
prescription: We consider Li1(x). We know its symbol from eq. (11.175):

S(Li1 (x)) = S(− ln(1− x)) = −(1− x) . (J.561)

On the other hand, eq. (8.34) gives us

dLi1 (x) = Li0 (x)d ln(x) . (J.562)

Since

Li0 (x) =
x

1− x
(J.563)
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we have

Li0 (x)d ln(x) =
x

1− x
· dx

x
=

dx

1− x
= −d ln(1− x) . (J.564)

Hence we have

dLi1 (x) = −d ln(1− x) ,

S(Li1 (x)) = −(1− x) . (J.565)

Thus we combine any Li0 function with the accompanying dlog-form. This gives

S(Li21 ( f1, f2)) = ( f1⊗S(Li11 ( f1, f2)))− ( f2⊗S(Li2 ( f1 f2)))

+((1− f2)⊗S(Li2 ( f1 f2)−Li2 ( f1))) . (J.566)

With

S(Li11 ( f1, f2)) = ((1− f2)⊗ (1− f1))+

(
(1− f1) f2

(1− f2)
⊗ (1− f1 f2)

)
(J.567)

we arrive at

S(Li21 ( f1, f2)) = ( f1⊗ (1− f2)⊗ (1− f1))+ ((1− f2)⊗ f1⊗ (1− f1))

+

(
f1⊗

(1− f1) f2

(1− f2)
⊗ (1− f1 f2)

)
+

(
f2

1− f2

⊗ f1 f2⊗ (1− f1 f2)

)
. (J.568)

Now let us substitute g1 = 1/ f1 and g2 = 1/( f1 f2) in eq. (J.558):

S

(
G21

(
1

f1

,
1

f1 f2

;1

))
=

(
f1⊗

(1− f1) f2

(1− f2)
⊗ (1− f1 f2)

)
−
(

1− f2

f2

⊗ f1 f2⊗ (1− f1 f2)

)

+( f1⊗ (1− f2)⊗ (1− f1))+ ((1− f2)⊗ f1⊗ (1− f1)) . (J.569)

This agrees with eq. (J.568).
Let’s assume that f1 and f2 are power products of the letters of the alphabet. From the symbol of

Li21( f1, f2) we deduce that then

1− f1, 1− f2, 1− f1 f2 (J.570)

should also be power products of the letters of the alphabet.
Assuming that g1 and g2 are power products of the letters of the alphabet, we deduce from the symbol

of G21(g1,g2;1) that

1−g1, 1−g2, g2−g1 (J.571)

should also be power products of the letters of the alphabet.

Exercise 101: Show that the mutation of the matrix B at a fixed vertex vk is an involution, i.e. mu-
tating twice at the same vertex returns the original matrix B.
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Solution: We mutate the matrix B at the vertex vk twice. We denote the matrix after the first mutation
by B′, the one after the second mutation by B′′. For i = k or j = k we have

b′′i j = −b′i j = bi j. (J.572)

For i 6= k and j 6= k we have

b′′i j = b′i j + sign
(
b′ik
)
·max

(
0,b′ikb′k j

)

= bi j + sign(bik) ·max
(
0,bikbk j

)
+ sign(−bik) ·max

(
0,bikbk j

)
= bi j. (J.573)

Exercise 102: Derive the transformation in eq. (12.9) from eq. (12.8), eq. (12.7) and eq. (12.6).

Solution: We start with the case j = k: We have

x′k = ∏
i

(
a′i
)b′ik = ∏

i

(ai)
−bik =

1

xk
. (J.574)

The case j 6= k requires more work:

x′j = ∏
i

(
a′i
)b′i j =

(
a′k
)b′k j ∏

i6=k

(
a′i
)b′i j

= a
bk j

k

(

∏
i | bik>0

abik
i + ∏

i | bik<0

a−bik
i

)−bk j

∏
i6=k

a
bi j+sign(bik)·max(0,bikbk j)
i

= x j

(
∏

i | bik>0

abik
i + ∏

i | bik<0

a−bik
i

)−bk j

∏
i6=k

a
sign(bi j)·max(0,bi jbk j)
i

= x j

(
∏

i

abik
i +1

)−bk j
(

∏
i | bik<0

a
bikbk j

i

)(
∏
i6=k

a
sign(bik)·max(0,bikbk j)
i

)

= x j (1+ xk)
−bk j

(

∏
i | bik<0

a
bikbk j

i

)(

∏
i6=k

a
sign(bik)·max(0,bikbk j)
i

)
. (J.575)

We now distinguish the cases bk j > 0 and bk j < 0. For bk j > 0 we have
(

∏
i | bik<0

a
bikbk j

i

)(

∏
i6=k

a
sign(bik)·max(0,bikbk j)
i

)
= ∏

i

a
bikbk j

i = x
bk j

k , (J.576)

while for bk j < 0 we have
(

∏
i | bik<0

a
bikbk j

i

)(

∏
i6=k

a
sign(bik)·max(0,bikbk j)
i

)
= 1. (J.577)

We therefore obtain

x′j =





x j

(
xk

1+xk

)bk j

= x j

(
1+ 1

xk

)−bk j

, bk j > 0,

x j (1+ xk)
−bk j , bk j < 0.

(J.578)
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v1
v2

v3

v4

v5v6v7

Q′

v2−−−−→ v1
v2

v3

v4

v5v6v7

Q′′

Figure J.8: The mutation of the ice quiver Q′ at the vertex v2 yields the ice quiver Q′′.

Combining the two cases into one formula we find

x′j = x j

(
1+ x

−sign(bk j)
k

)−bk j

. (J.579)

Note that we never used the anti-symmetry of bi j.

Exercise 103: Determine the cluster A-variables for the ice quiver Q′ of fig. 12.3 in terms of the cluster
variables of the ice quiver Q.

Solution: We have

a′1 =
a3a6 +a2a7

a1

,

a′2 = a2. (J.580)

The frozen A-variables are not changed.

Exercise 104: Mutate the ice quiver Q′ of fig. 12.3 at the vertex v2 to obtain an ice quiver Q′′. De-
termine the cluster A-variables for the ice quiver Q′′ in terms of the cluster variables of the ice quiver Q.

Solution: The mutated quiver Q′′ is shown in fig. J.8. For the cluster A-variables we have

a′′1 = a′1 =
a3a6 +a2a7

a1

,

a′′2 =
a′3a′5 +a′1a′4

a′2
=

a1a3a5 +a2a4a7 +a3a4a6

a1a2

(J.581)

Exercise 105: The B2-cluster algebra: Determine the cluster variables from the initial seed

B =

(
0 −1

2 0

)
, a = (a1,a2) . (J.582)
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Solution: We start from the seed (B,a). As two mutations on the same vertex will give us back the
original seed, we alternate the vertices where we perform mutations. The exchange matrix B changes sign
under each mutation. We start with a mutation at v1. This yields

(
a′1,a

′
2

)
=

(
1+a2

2

a1

,a2

)
. (J.583)

We set a3 = (1+a2
2)/a1. We then mutate at vertex v2. This yields

(
a′′1 ,a

′′
2

)
=

(
1+a2

2

a1

,
1+a1 +a2

2

a1a2

)
. (J.584)

We set a4 = (1+a1 +a2
2)/(a1a2). Continuing in this way we obtain

an+1 =

{
1+a2

n
an−1

, if n is even,
1+an
an−1

, if n is odd.
(J.585)

This will give a sequence with period 6:

an+6 = an. (J.586)

The first six terms are the cluster variables:

a1, a2,
1+a2

2

a1

,
1+a1 +a2

2

a1a2

,
1+2a1 +a2

1 +a2
2

a1a2
2

,
1+a1

a2

. (J.587)

Exercise 106: Consider the elliptic curve y2 = 4x3−g2x−g3 . Show that

dz =
dx

y
, (J.588)

where y =
√

4x3−g2x−g3. This shows that dx/y is a holomorphic differential.

Solution: The variables z and x are related by eq. (13.16):

z =

x∫

∞

dt√
4t3−g2t−g3

. (J.589)

We therefore have

dz =
dx√

4x3−g2x−g3

=
dx

y
. (J.590)

Exercise 107: Determine two independent periods for the elliptic curve defined by a quartic polyno-
mial:

y2 = (x− x1)(x− x2)(x− x3)(x− x4) . (J.591)
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∞ 0 λ 1

xl xi xj xk

δ1 δ2

Figure J.9: Branch cuts and cycles for the computation of the periods of an elliptic curve.

Solution: We would like to express y as the square root of the right hand side of eq. (J.591). We denote
by [xi,x j] the line segment from xi to x j in the complex plane. We may express y as a single-valued and
continuous function on C\([xl ,xi]∪ [x j,xk]) through

y = ±(xi− xl)(xk− x j)

√
x− xl

xi− xl

√
x− xi

xi− xl

√
x− x j

xk− x j

√
x− xk

xk− x j
. (J.592)

For a given choice (i, j,k, l) of branch cuts [xl,xi] and [x j,xk] the transformation

T (x) =
(xk− xl)

(xk− xi)

(x− xi)

(x− xl)
(J.593)

maps the points xi, xk, xl to 0, 1, ∞, respectively. The point x j is then mapped to

λ =
(xk− xl)

(xk− xi)

(x j− xi)

(x j− xl)
. (J.594)

We denote the cross-ratio by

[ j,k|i, l] =
(xk− xl)

(xk− xi)

(x j− xi)

(x j− xl)
. (J.595)

The cross-ratios satisfy

[i, j|k, l] = [k, l|i, j] ,

[i, j|k, l] = [ j, i|l,k] ,
[i, j|k, l] = [i, j|l,k]−1 ,

[i, j|k, l]+ [i,k| j, l] = 1. (J.596)

Let δ1 and δ2 be two independent cycles as shown in fig. J.9. The cycles δ1 and δ2 have intersection
number +1. We define the periods by

ψ1 = 2

x j∫

xi

dx

y
=

4√
(x j− xl) (xk− xi)

K

(√
(x j− xi) (xk− xl)

(x j− xl)(xk− xi)

)
,

ψ2 = 2

x j∫

xk

dx

y
=

4i√
(x j− xl) (xk− xi)

K

(√
(xi− xl)(xk− x j)

(x j− xl)(xk− xi)

)
. (J.597)
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For ψ2 the square root y is evaluated in the complex x-plane below the cut. Let us now discuss the
possibilities of choosing xi,x j,xk,xl: Due to the symmetries [i, j|k, l] = [k, l|i, j] and [i, j|k, l] = [ j, i|l,k] we
may fix xl = x4. This leaves six possibilities for λ. These are

(i, j,k, l) = (2,3,1,4) : [3,1|2,4] = λ =
(x1− x4)

(x1− x2)

(x3− x2)

(x3− x4)
,

(i, j,k, l) = (2,1,3,4) : [1,3|2,4] = 1

λ
,

(i, j,k, l) = (3,1,2,4) : [1,2|3,4] = λ−1

λ
,

(i, j,k, l) = (3,2,1,4) : [2,1|3,4] = λ

λ−1
,

(i, j,k, l) = (1,2,3,4) : [2,3|1,4] = 1

1−λ
,

(i, j,k, l) = (1,3,2,4) : [3,2|1,4] = 1−λ. (J.598)

It is worth noting that we have three possibilities for λ(1−λ). These are

[3,1|2,4] · [3,2|1,4] = λ(1−λ) ,

[1,2|3,4] · [1,3|2,4] = −(1−λ)

λ2
,

[2,3|1,4] · [2,1|3,4] = − λ

(1−λ)2
. (J.599)

Exercise 108: Express the modulus squared k2 and the complementary modulus squared k′2 as a quotient
of eta functions.

Solution: From eq. (13.74) and eq. (13.75) we have

k2 =
θ4

2 (0,q)

θ4
3 (0,q)

= 16
η
(

τ
2

)8
η(2τ)16

η(τ)24
(J.600)

and

k′2 =
θ4

4 (0,q)

θ4
3 (0,q)

=
η
(

τ
2

)16
η(2τ)8

η(τ)24
. (J.601)

Exercise 109: Show that

( f |kγ1) |kγ2 = f |k (γ1γ2) . (J.602)

Solution: Let

γ1 =

(
a1 b1

c1 d1

)
, γ2 =

(
a2 b2

c2 d2

)
, γ12 =

(
a12 b12

c12 d12

)
(J.603)
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with γ12 = γ1 · γ2. From matrix multiplication we have

c12 = c1a2 +d1c2, d12 = c1b2 +d1d2. (J.604)

On the one hand we have

( f |kγ1) |kγ2 =
(
(c1τ+d1)

−k f (γ1 (τ))
)
|kγ2

= (c2τ+d2)
−k (c1γ2 (τ)+d1)

−k f (γ1 (γ2 (τ)))

= ((c1a2 +d1c2)τ+ c1b2 +d1d2)
−k f (γ1 (γ2 (τ)))

= (c12τ+d12)
−k f (γ12 (τ)) . (J.605)

On the other hand we have

f |k (γ1γ2) = f |kγ12 = (c12τ+d12)
−k · f (γ12 (τ)) . (J.606)

Exercise 110: Let f ∈Mk(Γ(N)) and γ ∈ SL2(Z)\Γ(N). Show that f |kγ ∈Mk(Γ(N)).

Solution: Let γ1 ∈ Γ(N). We have to show

( f |kγ) |kγ1 = f |kγ. (J.607)

As Γ(N) is a normal subgroup of SL2(Z) there exist for γ ∈ SL2(Z) and γ1 ∈ Γ(N) a γ2 ∈ Γ(N) such that

γγ1 = γ2γ. (J.608)

As γ2 ∈ Γ(N) we have

f |kγ2 = f . (J.609)

We have with ( f |kγ1)|kγ2 = f |k (γ1γ2)

( f |kγ) |kγ1 = ( f |k (γγ1)) = ( f |k (γ2γ)) = ( f |kγ2) |kγ = f |kγ. (J.610)

Exercise 111: Let χ be a Dirichlet character with modulus N and f ∈Mk(N,χ). Let further γ1,γ2 ∈Γ0(N)
and set γ12 = γ1γ2. Show that

f (γ1 (γ2 (τ))) = f (γ12 (τ)) . (J.611)

Solution: Let

γ1 =

(
a1 b1

c1 d1

)
, γ2 =

(
a2 b2

c2 d2

)
, γ12 =

(
a12 b12

c12 d12

)
. (J.612)

Since γ12 = γ1 · γ2 we have

c12 = c1a2 +d1c2, d12 = c1b2 +d1d2. (J.613)
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Let us set τ′ = γ2(τ). We have

f (γ1 (γ2 (τ))) = χ(d1)
(
c1τ′+d1

)k
f
(
τ′
)
= χ(d1)χ(d2)

(
c1τ′+d1

)k
(c2τ+d2)

k f (τ)

= χ(d1)χ(d2)(c12τ+d12)
k f (τ) . (J.614)

On the other hand

f (γ12 (τ)) = χ(d12)(c12τ+d12)
k f (τ) . (J.615)

Thus we see that f (γ12(τ)) = f (γ1(γ2(τ))) requires χ(d12) = χ(d1)χ(d2). Since γ1 ∈ Γ0(N) we have c1 = 0

mod N and therefore

χ(d12) = χ(c1b2 +d1d2) = χ(d1d2) = χ(d1)χ(d2) . (J.616)

Exercise 112: Consider

f (τ) = e2 (τ)−2e2 (2τ) (J.617)

and work out the transformation properties under γ ∈ Γ0(2).

Solution: Let

γ =

(
a b
c d

)
= Γ0(2). (J.618)

This implies that c is even and hence
(

a 2b
c
2

d

)
∈ SL2(Z). (J.619)

We have

τ′ =
aτ+b

cτ+d
and 2τ′ =

a(2τ)+2b
c
2
(2τ)+d

. (J.620)

Hence

f
(
τ′
)

= e2

(
τ′
)
−2e2

(
2τ′
)

= (cτ+d)2 e2 (τ)−2πic(cτ+d)−2

[( c

2
(2τ)+d

)2

e2 (2τ)−2πi
c

2

( c

2
(2τ)+d

)]

= (cτ+d)2 [e2 (τ)−2e2 (2τ)] = (cτ+d)2 f (τ) . (J.621)

This shows that f (τ) is a modular form of weight 2 for Γ0(2).

Exercise 113: Show eq. (13.156).

Solution: Let us introduce the short-hand notation

∑
n1∈Z

f (n1) = lim
N1→∞

N1

∑
n1=−N1

f (n1) . (J.622)
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Then we may write Eisenstein’s summation prescription as

∑e
(n1,n2)∈Z2

f (z+n1 +n2τ) = lim
N2→∞

N2

∑
n2=−N2

(
lim

N1→∞

N1

∑
n1=−N1

f (z+n1 +n2τ)

)

= ∑
n2∈Z

(
∑

n1∈Z
f (z+n1 +n2τ)

)
. (J.623)

Let’s now turn to the problem at hand. We split the outer n2-summation into n2 = 0 and n2 6= 0 and obtain

∑e
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

(n1 +n2τ)k = Lik

(
e2πi s

N

)
+(−1)k

Lik

(
e−2πi s

N

)

+
∞

∑
n2=1

∑
n1∈Z

e
2πi
N (n1s−n2r)+(−1)k e−

2πi
N (n1s−n2r)

(n1 +n2τ)k . (J.624)

The essential trick is the following identity

∑
n1∈Z

1

n1 + τ
= πcot (πτ) = −2πi

[
1

2
+

∞

∑
n=1

q̄n

]
, q̄ = e2πiτ. (J.625)

Taking (k−1)-times the derivative with respect to τ gives for k ≥ 2

∑
n1∈Z

1

(n1 + τ)k =
(−2πi)k

(k−1)!

∞

∑
n=1

nk−1q̄n. (J.626)

Let us first consider the case k ≥ 2. We apply eq. (J.626) to

∑
n1∈Z

(
e2πi s

N
)n1

(n1 +n2τ)k . (J.627)

For k≥ 2 the sum is absolutely convergent and we may reorder the terms. For N ∈N, s∈N0 the numerator
is periodic with period N. We therefore have

∑
n1∈Z

(
e2πi s

N
)n1

(n1 +n2τ)k =
N−1

∑
c1=0

∑
n′1∈Z

(
e2πi s

N
)n′1N+c1

(n′1N + c1 +n2τ)k

=
1

Nk

N−1

∑
c1=0

e2πi
sc1
N ∑

n′1∈Z

1
(
n′1 +

c1

N + n2τ
N

)k

=
(−2πi)k

(k−1)!Nk

N−1

∑
c1=0

∞

∑
d=1

dk−1e
2πi
(

sc1
N +

c1d
N +

n2d
N τ
)
. (J.628)

Thus

1

2

(k−1)!

(2πi)k ∑e
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

(n1 +n2τ)k =
1

2

(k−1)!

(2πi)k

(
Lik

(
e2πi s

N

)
+(−1)k

Lik

(
e−2πi s

N

))

+
1

2

(−1)k

Nk

∞

∑
n2=1

N−1

∑
c1=0

∞

∑
d=1

dk−1

[
e

2πi
(

sc1
N −

n2r
N +

c1d
N +

n2d
N τ
)
+(−1)k e

2πi
(
− sc1

N +
n2r
N +

c1d
N +

n2d
N τ
)]

. (J.629)
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The first term on the right-hand side yields with eq. (8.32)

a0 =
1

2

(k−1)!

(2πi)k

(
Lik

(
e2πi s

N

)
+(−1)k

Lik

(
e−2πi s

N

))
= − 1

2k
Bk

( s

N

)
. (J.630)

The second term on the right-hand side of eq. (J.629) we may rearrange as follows:

1

2

(−1)k

Nk

∞

∑
n2=1

N−1

∑
c1=0

∞

∑
d=1

dk−1

[
e

2πi
(

sc1
N −

n2r
N +

c1d
N +

n2d
N τ
)
+(−1)k e

2πi
(
− sc1

N +
n2r
N +

c1d
N +

n2d
N τ
)]

=
(−1)k

2Nk

∞

∑
n=1

N−1

∑
c1=0

∑
d|n

dk−1

[
e

2πi
(

sc1
N − nr

dN +
c1d
N

)
+(−1)k e

2πi
(
− sc1

N + nr
dN +

c1d
N

)]
q̄n

N

=
1

2Nk

∞

∑
n=1

N−1

∑
c1=0

∑
d|n

dk−1
[
e

2πi
N (r n

d−(s−d)c1) + (−1)k e−
2πi
N (r n

d−(s+d)c1)
]

q̄n
N . (J.631)

For k = 1 we have to be more careful about absolute convergence and reordering of terms. The easiest
approach is to consider eq. (J.628) for k = 2 and to integrate in τ′ = n2τ. This yields

∑
n1∈Z

(
e2πi s

N
)n1

n1 +n2τ
= C̃− 2πi

N

N−1

∑
c1=0

∞

∑
d=1

e
2πi
(

sc1
N +

c1d
N +

n2d
N τ
)
, (J.632)

with some unknown constant C̃. We then repeat the steps as in eq. (J.629) and eq. (J.631) and obtain

1

2

1

2πi ∑e
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

n1 +n2τ
= a0 +

1

2N

∞

∑
n=1

N−1

∑
c1=0

∑
d|n

[
e

2πi
N (r n

d−(s−d)c1)− e−
2πi
N (r n

d−(s+d)c1)
]

q̄n
N , (J.633)

with another unknown constant a0. We determine a0 by evaluating both sides at τ = i∞. On the right-
hand side only a0 survives. On the left-hand side we consider the three cases (i) s = r = 0 mod N, (ii)
s = 0 mod N, r 6= 0 mod N and (iii) s 6= 0 mod N. We start with case (i): We have

lim
τ→i∞

1

2

1

2πi ∑e
(n1,n2)∈Z2\(0,0)

1

n1 +n2τ
= lim

τ→i∞

1

2

1

2πi
e1 (τ) = 0, (J.634)

and therefore a0 = 0. In the case (ii) we have

lim
τ→i∞

1

2

1

2πi ∑e
(n1,n2)∈Z2\(0,0)

e−2πi r
N n2

n1 +n2τ
= lim

τ→i∞

1

2

1

2πi

∞

∑
n2=1

[
e−2πi r

N n2 ∑
n1∈Z

1

n1 +n2τ
+ e2πi r

N n2 ∑
n1∈Z

1

n1−n2τ

]

= lim
τ→i∞

1

4i

∞

∑
n2=1

[
e−2πi r

N n2− e2πi r
N n2

]
cot (πτn2)

= −1

4

∞

∑
n2=1

[
e−2πi r

N n2− e2πi r
N n2

]
=

i

2

∞

∑
n2=1

sin
(

2π
r

N
n2

)

=
i

4
cot
(

π
r

N

)
, (J.635)

and therefore a0 =
i
4

cot( r
N π). In the case (iii) one first shows that

lim
τ→i∞

∑
n1∈Z

e2πi s
N n1

n1 +n2τ
= 0. (J.636)
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Then

lim
τ→i∞

1

2

1

2πi ∑e
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

n1 +n2τ
=

1

4πi

∞

∑
n1=1

e2πi s
N n1− e−2πi s

N n1

n1

=
1

4πi

[
Li1

(
e2πi s

N

)
−Li1

(
e−2πi s

N

)]

=
1

2π
Gl1

(
2π

s

N

)
=

1

4
− s

2N
, (J.637)

and therefore a0 =
1
4
− s

2N .

Exercise 114: Prove eq. (13.162) for the case k ≥ 3.

Solution: Let

τ′ =
aτ+b

cτ+d
. (J.638)

We set

γ =

(
a b
c d

)
, γ−1 =

(
d −b
−c a

)
. (J.639)

In this exercise we only consider the case k ≥ 3. In this case the sums are absolutely convergent and we
may drop the Eisenstein summation prescription. We consider

2
(2πi)k

(k−1)!
(hk,N,r,s|kγ) (τ) = (cτ+d)−k ∑

(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

(n1 +n2τ′)k . (J.640)

We have

n1 +n2τ′ =
1

cτ+d
(n2,n1)

(
a b
c d

)(
τ

1

)
. (J.641)

Thus

(cτ+d)−k ∑
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

(n1 +n2τ′)k = ∑
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

[
(n2,n1)

(
a b
c d

)(
τ

1

)]k . (J.642)

For k ≥ 3 the sum is absolutely convergent and we may sum over the individual terms in a different order.
We set

(
n′2,n

′
1

)
= (n2,n1)

(
a b
c d

)
, (n2,n1) =

(
n′2,n

′
1

)( d −b
−c a

)
(J.643)

and sum over (n′1,n
′
2). Then

(cτ+d)−k ∑
(n1,n2)∈Z2\(0,0)

e
2πi
N (n1s−n2r)

(n1 +n2τ′)k = ∑
(n′1,n

′
2)∈Z2\(0,0)

e
2πi
N [n′1(as+cr)−n′2(bs+dr)]

(n′1 +n′2τ)k . (J.644)
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Thus we have shown for k ≥ 3

(hk,N,r,s|kγ)(τ) = hk,N,(rd+sb) mod N,(rc+sa) mod N (τ) . (J.645)

Exercise 115: Show that a relative boundary is a relative cycle.

Solution: Elements in the relative chain group Ck(B,A) are equivalence classes in Ck(B). If ck ∈Ck(B)
we denote the corresponding equivalence class by [ck] = ck +A.

Now, let us consider a boundary [bk] ∈ Bk(B,A). By definition, there exists a ck+1 ∈Ck+1(B,A) such
that

bk−∂ck+1 ∈ A. (J.646)

We have to show that [bk] is a relative cycle, i.e. ∂bk ∈ A. As A is a subcomplex, we have for any ak ∈ A
that ∂ak ∈ A. From eq. (J.646) we have then

∂(bk−∂ck+1) = ∂bk−∂∂ck+1 ∈ A. (J.647)

Since ∂∂ck+1 = 0 we have ∂bk ∈ A.

Exercise 116: We now have two bases of H1
dR(E): on the one hand (ω1,ω2), on the other hand (dz,dz̄).

We already know ω1 = dz. Work out the full relation between the two bases.

Solution: We first relate (ω1,ω2) to (γ∗1,γ
∗
2): We make the ansatz ωi = ci,1γ∗1 + ci,2γ∗2. Integrating over

γ j gives

〈
ωi,γ j

〉
= ci,1

〈
γ∗1,γ j

〉
+ ci,2

〈
γ∗2,γ j

〉
. (J.648)

Using eq. (14.130) we find

(
ω1

ω2

)
=

(
ψ1 ψ2

φ1 φ2

)(
γ∗1
γ∗2

)
. (J.649)

As dz = ω1 we have
(

dz
dz̄

)
=

(
ψ1 ψ2

ψ1 ψ2

)(
γ∗1
γ∗2

)
. (J.650)

The inverse of the period matrix is

(
ψ1 ψ2

φ1 φ2

)−1

=
1

2πi

(
φ2 −ψ2

−φ1 ψ1

)
(J.651)

and we obtain
(

dz
dz̄

)
=

(
1 0

1
2πi (ψ1φ2−ψ2φ1) − 1

2πi (ψ1ψ2−ψ2ψ1)

)(
ω1

ω2

)
. (J.652)
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V 0,−4 V −1,−3 V −2,−2 V −3,−1 V −4,0

V 0,−3 V −1,−2 V −2,−1 V −3,−0

V 0,−2 V −1,−1 V −2,0

V 0,−1 V −1,0

V 0,0

W−4

W−3

W−2

W−1

W0

F 1 F 0 F−1 F−2 F−3 F−4F 1F 0F−1F−2F−3F−4

Figure J.10: For n = 2 the four conditions W0VQ =VQ, W−2n−1VQ = 0, F1VC = 0 and F1VC = 0

allow only the shown V p,q (shown in red and black) to be non-zero. In the text we then show that

only the V p,q shown in red are non-zero.

Exercise 117: Work out all V p,q and show that VQ is mixed Tate.

Solution: The four conditions

W0VQ =VQ, W−2n−1VQ = 0, F1VC = 0, F1VC = 0 (J.653)

allow only a finite number of V p,q’s to be non-zero, namely the ones with

p ≤ 0, q ≤ 0, p+q ≥ −2n. (J.654)

For n = 2 these are shown in fig. J.10. We have over C

GrW
0 VC = W0VC/W−1VC = 〈v0,v1,v2, . . . ,vn〉/〈v1,v2, . . . ,vn〉= 〈e0,v1,v2, . . . ,vn〉/〈v1,v2, . . . ,vn〉

∼= 〈e0〉 ,
GrW
−1VC = W−1VC/W−2VC = 〈v1,v2, . . . ,vn〉/〈v1,v2, . . . ,vn〉

∼= 0,

GrW
−2VC = W−2VC/W−3VC = 〈v1,v2, . . . ,vn〉/〈v2, . . . ,vn〉= 〈2πie1,v2, . . . ,vn〉/〈v2, . . . ,vn〉

∼= 〈2πie1〉 , (J.655)

and more generally for 0≤ j ≤ n

GrW−2 jVC
∼=
〈
(2πi) j e j

〉
, GrW

−2 j−1VC
∼= 0. (J.656)

Let’s look at the even weights (−2 j): As the e j’s are independent we have

(2πi) je j /∈ F j−1VC = 〈e0,e−1, . . . ,e− j+1〉 (J.657)
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and therefore V p,q = 0 for p > q and p+q =−2 j. From V q,p =V p,q it follows then that also V p,q = 0 for
p < q and p+ q = −2 j. This shows that at weight (−2 j) only V− j,− j can be non-zero. This proves that
VQ is mixed Tate and we have

V− j,− j ∼=
〈
(2πi) j e j

〉
. (J.658)

Exercise 118: Derive eq. (14.162).

Solution: The starting point is ∇v j = 0 for 0 ≤ j ≤ n together with the relation of the v j’s to the e− j’s
given in eq. (14.154). We prove eq. (14.162) recursively, starting with e−n. As vn = (2πi)ne−n, the equation
∇vn = 0 implies

∇e−n = 0. (J.659)

We further have

vn−1 = (2πi)n−1 [e−n+1 + ln(x)e−n] (J.660)

and ∇vn−1 = 0 implies

0 = ∇ [e−n+1 + ln(x)e−n] = ∇e−n+1 +
dx

x
e−n, (J.661)

and therefore

∇e−n+1 = −dx

x
e−n. (J.662)

Let now assume that

∇e− j = −dx

x
e− j−1 (J.663)

for j ∈ {n,n− 1, . . . ,k+ 1} and k > 0. We show that eq. (J.663) holds also for j = k: From ∇vk = 0 we
have

0 = ∇

[
n

∑
j=k

ln j−k(x)

( j− k)!
e− j

]
= ∇e−k +

n

∑
j=k+1

ln j−k−1(x)dx

( j− k−1)!x
e− j−

n−1

∑
j=k+1

ln j−k(x)dx

( j− k)!x
e− j−1

= ∇e−k +
dx

x
e− j. (J.664)

In a similar way one derives from ∇v0 = 0

0 = ∇

[
e0−

n

∑
j=1

Li j(x)e− j

]
= ∇e0−

n

∑
j=1

Li j−1(x)dx

x
e− j +

n−1

∑
j=1

Li j(x)dx

x
e− j−1

= ∇e0−
Li0(x)dx

x
e−1 = ∇e0 +

dx

x−1
e−1. (J.665)

Exercise 119: Consider X = C\{0} and Y = /0. Take ω = dx/x as a basis of H1
alg dR(X) and let γ be a
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small counter-clockwise circle around x = 0. γ is a basis of HB
1 (X). Denote by γ∗ the dual basis of H1

B(X).
Work out

F∞ (γ∗) . (J.666)

Solution: Let’s first work out the comparison isomorphism

comparison : H1
alg dR (X)⊗C→ H1

B (X ,Q)⊗C (J.667)

The period is

p =
∫

γ

ω = 2πi. (J.668)

We then have with eq. (14.21)

comparison (ω) = 2πiγ∗. (J.669)

Let us now consider ω⊗1 ∈ H1
alg dR (X)⊗C. On the one hand we have

comparison
(
conjalg dR (ω⊗1)

)
= comparison (ω⊗1)

= γ∗⊗ (2πi) . (J.670)

On the other hand we have

(F∞⊗ id) conjB (comparison (ω⊗1)) = (F∞⊗ id) conjB (γ
∗⊗ (2πi))

= (F∞⊗ id) (γ∗⊗ (−2πi))

= −F∞ (γ∗)⊗ (2πi) . (J.671)

This should be equal to γ∗⊗ (2πi) and therefore

F∞ (γ∗) = −γ∗. (J.672)

The dual of (−γ∗) is (−γ), a small circle in the clockwise direction around x = 0.

Exercise 120: Let F be a sub-field of C. Show that GLn(F) (the group of (n× n)-matrices with en-
tries from F and non-zero determinant) can be defined by a polynomial equation.

Solution: An element g ∈GLn(F) is given by n2 elements zi j ∈ F

g =




z11 z12 . . . z1n
...

...
...

zn1 zn2 . . . znn


 , (J.673)

such that

detg 6= 0. (J.674)
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The determinant detg is a polynomial in the zi j’s. In order to convert this inequality to a polynomial

equation, we introduce another variable z0 ∈ F. GLn(F) is then isomorph to the set of points in Fn2+1

satisfying the polynomial equation

z0 detg−1 = 0. (J.675)

Exercise 121: Consider the one-loop two-point function with equal internal masses

I11 (2,x) =

∫
d2k

iπ

m2

(
−q2

1 +m2
1

)(
−q2

2 +m2
2

) , x = − p2

m2
. (J.676)

Derive with the methods of this section the differential equation for I11(2,x) with respect to the kinematic
variable x.

Solution: The Feynman parametrisation reads

I11 (2,x) =
∫

∆

ω

F
, (J.677)

with

F = a1a2x+(a1 +a2)
2 , ω = a1da2−a2da1, ∆ = RP1

≥0. (J.678)

We set

ϕ =
ω

F
. (J.679)

We first look for a differential equation of the form

L(r)ϕ = dβ, (J.680)

where

L(r) =
r

∑
j=0

R j (x)
d j

dx j , Rr (x) = 1. (J.681)

is a Picard-Fuchs operator of order r. For the example of the one-loop two-point function β is a 0-form,
depending on the Feynman parameters ai. The differential d is with respect to the Feynman parameters
ai. For β we make the following ansatz

β =
1

F r (a1q2−a2q1) , (J.682)

where the qi are homogeneous polynomials of degree (2r− 1) in the variables ai. The ansatz is based
on the fact, that the singularities of the integrand ϕ are given by powers of the graph polynomial F .
Acting with L(r) on the integrand ϕ will only increase the power of F in the denominator by r, but will
not introduce singularities on new algebraic varieties. Each polynomial qi contains only a finite number
of monomials in the Feynman parameters with a priori unknown coefficients. We therefore take these
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coefficients and the variables R0, ..., Rr−1 as the set of our unknown variables. Plugging the ansatz (J.682)
in eq. (J.680) gives a linear system of equations for the unknown variables. This system may or may not
have a solution. In order to find the differential equation of minimal order we start at r = 1 and try to
solve the linear system of equations. If no solution is found, we increase r by one and repeat the exercise,
until a solution is found. This is then the solution of minimal order r.

For the case of the one-loop two-point function we obtain a solution for r = 1. Thus we obtain the
Picard-Fuchs operator

L(1) =
d

dx
+

x+2

x(x+4)
(J.683)

and a possible solution for β is given by

β =
1

F

1

x(x+4)

[
(x+2)a1a2 +2a2

2

]
. (J.684)

The boundary of ∆ is given by the two points [1 : 0] and [0 : 1]. The integration of the inhomogeneous term
yields

∫

∂∆

β =
2

x(x+4)
. (J.685)

Putting everything together, we obtain the differential equation
[

x(x+4)
d

dx
+ x+2

]
I11 (2,x) = 2. (J.686)

This agrees with eq. (6.65) if we use the result for the tadpole integral

I10 (2−2ε,x) =
1

ε
+O

(
ε0
)
. (J.687)

Exercise 122: Derive eq. (15.5).

Solution: We start from the integral representation, substitute t = 1− e−z̃, expand and integrate term-
by-term:

Li2(x) = −
x∫

0

dt

t
ln(1− t) =

z∫

0

dz̃
z̃

ez̃−1
=

z∫

0

dz̃
∞

∑
j=0

B j

j!
z̃ j =

∞

∑
j=0

B j

( j+1)!
z j+1. (J.688)

Exercise 123: Rewrite the differential one-form

ω = − (1− x2)
2 dx1

x1

[
(1− x2)

2− x1x2

] − x1 (1+ x2)dx2

(1− x2)
[
(1− x2)

2− x1x2

] (J.689)

as a dlog-form.
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Solution: We first look at the polynomials which appear in the denominator of ω: There are three distinct
polynomials

p1 = x1, p2 = x2−1, p3 = (1− x2)
2− x1x2. (J.690)

We then make the ansatz

ωansatz = d ln
(

pn1

1 pn2

2 pn3

3

)
, n1,n2,n3 ∈ Z. (J.691)

Let’s now study ω−ωansatz. We partial fraction the terms proportional to dx1 with respect to x1, and the
terms proportional to dx2 with respect to x2. This yields

ω−ωansatz =

[
−1+n1

x1

− x2 (1−n3)

(1− x2)
2− x1x2

]
dx1 +

[
−2+n2

x2−1
− (1−n3)(2+ x1−2x2)

(1− x2)
2− x1x2

]
dx2.

(J.692)

This gives the linear system of equations

1+n1 = 0,

2+n2 = 0,

1−n3 = 0, (J.693)

whose unique solution is (n1,n2,n3) = (−1,−2,1). Hence

ω = d ln p3−d ln p1−2d ln p2. (J.694)

Exercise 124: Let

f̃1 = λ(x2,x3,1)+8x3− x1 (x2− x3)− r4r5,

f̃2 = λ(x2,x3,1)+8x2 + x1 (x2− x3)− r4r5,

f̃3 = λ(x2,x3,1)− x1 (x2− x3)+ r4r5,

f̃4 = λ(x2,x3,1)+ x1 (x2− x3)+ r4r5, (J.695)

Show that

ω̃ = d ln

(
f̃1 f̃2

f̃3 f̃4

)
(J.696)

has a pole along x1 = 0, while

ω = d ln

(
x2

1

f̃1 f̃2

f̃3 f̃4

)
(J.697)

does not.
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Solution: There are several ways to show this: We may compute the residue of ω̃ and ω along Y =
{x1 = 0}. One finds

ResY (ω̃) = −2, ResY (ω) = 0. (J.698)

Alternatively we may compute the limits x1→ 0 of f̃1- f̃4:

f̃1 f̃2 = 4
[
1− (x2− x3)

2
]2

+O (x1) ,

f̃3 f̃4 = 4x2
1x2x3

[
1− (x2− x3)

2

λ(x2,x3,1)

]2

+O
(
x3

1

)
. (J.699)

The simple pole of ω̃ along x1 = 0 originates from f̃3 f̃4, which vanishes as x2
1 in the limit x1→ 0.

Exercise 125: Rewrite the differential one-form

ω = − (2−2x2− x1x2)r1dx1

x1 (4+ x1)
[
(1− x2)

2− x1x2

] − r1dx2[
(1− x2)

2− x1x2

] (J.700)

where r1 =
√

x1(4+ x1) as a dlog-form.

Solution: We use the rationalisation

x1 =
(1− x′1)

2

x′1
, x′1 =

1

2
(2+ x1− r1) . (J.701)

We have

dx1 = −
(
1− x′21

)

x′21
dx′1 (J.702)

and

ω =

[
1

x′1
+

1

x′1− x2

+
x2

1− x′1x2

]
dx′1 +

[
1

x2− x′1
+

x′1
1− x′1x2

]
dx2. (J.703)

We are now back to the rational case and we find

ω = d ln

(
x′1 (x

′
1− x2)

(1− x′1x2)

)
. (J.704)

We substitute back from x′1 to x1 and obtain

ω = d ln

(
2+ x1−2x2− r1

2+ x1−2x2 + r1

)
= 2d ln (2+ x1−2x2− r1)−d ln

(
(1− x2)

2− x1x2

)
. (J.705)

Exercise 126: Let

g =
2+ x1− r1

2+ x1 + r1

. (J.706)
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Express g and (1−g) as a power product in the letters of the alphabet defined by eq. (16.50), eq. (16.51)
and the constant f0 = 2.

Solution: We start with g: We multiply the numerator and the denominator with (2+ x1 + r1):

g =
2+ x1− r1

2+ x1 + r1

=
(2+ x1− r1)

2

(2+ x1 + r1) (2+ x1− r1)
. (J.707)

The third binomial formula gives

(2+ x1 + r1)(2+ x1− r1) = (2+ x1)
2− r2

1 =
(
4+4x1 + x2

1

)
− x1 (4+ x1) = 4. (J.708)

Hence

g =
(2+ x1− r1)

2

4
= f−2

0 f10. (J.709)

Let us now turn to (1−g). We have

1−g = 1− 2+ x1− r1

2+ x1 + r1

=
2r1

2+ x1 + r1

=
2r1 (2+ x1− r1)

4
(J.710)

From eq. (16.52) we have r2
1 = f1 f2 and therefore

1−g = f−1
0 f1 f2 f10. (J.711)

Thus g is an allowed argument of Lin.

Exercise 127: The master integral J15 starts at order O(ε2). The weight two term of J15 is given in
terms of iterated integrals by

J(2)15 = 2iIγ (2ω15−ω3−ω5,ω5−ω3;1)+2J(2)7 (0,1,1), (J.712)

where J(2)7 (0,1,1) denotes the boundary value of eq. (16.72):

J(2)7 (0,1,1) =
3

2i
H2

(
e

2πi
3

)
=

3

2i

[
Li2

(
e

2πi
3

)
−Li2

(
e−

2πi
3

)]
. (J.713)

Express J(2)15 in terms of multiple polylogarithms.

Solution: We have to convert the iterated integral Iγ(2ω15 −ω3−ω5,ω5−ω3;1) to multiple polylog-
arithms. We have

2ω15−ω3−ω5 = d ln

(
f 2
15

f3 f5

)
, ω5−ω3 = d ln

(
f5

f3

)
(J.714)

and

f 2
15

f3 f5

= −2
(2x2− x3 + ir3)

x2

,
f5

f3

=
x3

x2

. (J.715)
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This involves only the square root r3, which we may rationalise. With the rationalisation of eq. (16.62) we
obtain

2ω15−ω3−ω5 = d ln
(
x′2 + i

)
−d ln

(
x′2− i

)
,

ω5−ω3 = −d ln
(
x′2 + i

)
−d ln

(
x′2− i

)
. (J.716)

We are in the lucky situation that after the change of variables (x2,x3)→ (x′2,x
′
3) the integrand depends

only on x′2 but not on x′3. The inverse transformation is given by

x′2 =

√
4x2− x3

x3

. (J.717)

The boundary point (x2,x3) = (1,1) corresponds to x′2 =
√

3. Thus we have to integrate in x′2-space from√
3 to the final value x′2. We obtain

Iγ (2ω15−ω3−ω5,ω5−ω3;1) =

x′2∫
√

3

dt1

(
1

t1− i
− 1

t1 + i

) t1∫
√

3

dt2

(
1

t2− i
+

1

t2 + i

)
. (J.718)

This is not quite yet the standard definition of multiple polylogarithms, the lower integration boundary
equals

√
3, not 0. However this is easily adjusted, for example

t1∫
√

3

dt2
t2− i

=

t1∫

0

dt2
t2− i

−

√
3∫

0

dt2
t2− i

(J.719)

and we obtain

Iγ (2ω15−ω3−ω5,ω5−ω3;1) =

G
(
i, i;x′2

)
−G

(
−i, i;x′2

)
+G

(
i,−i;x′2

)
−G

(
−i,−i;x′2

)

−
[
G
(

i;
√

3
)
+G

(
−i;
√

3
)][

G
(
i;x′2
)
−G

(
−i;x′2

)]

+G
(

i, i;
√

3
)
+G

(
−i, i;

√
3
)
−G

(
i,−i;

√
3
)
−G

(
−i,−i;

√
3
)
. (J.720)

We could stop here, as we managed to express everything in terms of multiple polylogarithms. However
it is instructive to consider also the bootstrap approach. As a benefit, this will allow us to simplify the
expression above. The symbol of Iγ(2ω15−ω3−ω5,ω5−ω3;1) is

S
(
Iγ (2ω15−ω3−ω5,ω5−ω3;1)

)
=

f 2
15

f3 f5

⊗ f5

f3

. (J.721)

We expect 1± ix′2 to be possible arguments of the Lin-functions. Let us check if they are allowed. We
extend the alphabet by the constants f−1 =−1 and f0 = 2. We have

ix′2 = f
1
2

−1 f
1
2

7 f
− 1

2

5 , 1− ix′2 = f−1
5 f15, 1+ ix′2 = f 2

0 f3 f−1
15 . (J.722)
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In a similar way one checks that also (1+ ix′2)/(1− ix′2) and (1− ix′2)/(1+ ix′2) are admissible arguments
of the Lin-functions. We calculate a few symbols:

S
[
2Li2

(
1− ix′2

)
−2Li2

(
1+ ix′2

)]
=

(
f15

f3 f5

⊗ f5

f7

)
,

S

[
Li2

(
1+ ix′2
1− ix′2

)
−Li2

(
1− ix′2
1+ ix′2

)]
=

(
f15

f3 f5

⊗ f7

f3

)
. (J.723)

We see that the sum of the two terms matches the symbol. We then check the derivative with respect to x′2.
This requires us to add the term

iπ ln
(
x′2

2 +1
)

(J.724)

to our ansatz. Finally we check the value at a specific point. This will instruct us that we should add the
constant

iC(2)
7 (J.725)

to our ansatz for Iγ(2ω15−ω3−ω5,ω5−ω3;1). Putting everything together we arrive at

J(2)15 = 2i

[
2Li2

(
1− ix′2

)
−2Li2

(
1+ ix′2

)
+Li2

(
1+ ix′2
1− ix′2

)
−Li2

(
1− ix′2
1+ ix′2

)
+ iπ ln

(
x′2

2 +1
)]

. (J.726)

Exercise 128: Prove eq. (C.19).

Solution: Pj(θ) acts on a monomial xi = xi1
1 · · · · · xin

n as

Pj (θ)xi = Pj (i)xi. (J.727)

Therefore

(1+θ j)Pj (θ)H (x) = ∑
i∈Nn

0

Ci (1+θ j)Pj (θ)xi = ∑
i∈Nn

0

Ci (1+ i j)Pj (i)xi. (J.728)

Let’s now study

(1+θ j)Q j (θ)
1

x j
H (x) = ∑

i∈Nn
0

Ci (1+θ j)Q j (θ)xi−e j = ∑
i∈Nn

0

Ci i j Q j (i− e j)xi−e j . (J.729)

Due to the factor i j all terms with i j = 0 vanish and the sum over i j starts at i j = 1. The substitution
i j→ i j−1 transforms the summation range back to N0. We thus have

(1+θ j)Q j (θ)
1

x j
H (x) = ∑

i∈Nn
0,i j≥1

Ci i j Q j (i− e j)xi−e j = ∑
i∈Nn

0

Ci+e j (1+ i j) Q j (i)xi. (J.730)

Hence

(1+θ j)

[
Q j (θ)

1

x j
−Pj (θ)

]
H (x) = ∑

i∈Nn
0

(1+ i j)
[
Ci+e j Q j (i)−Ci Pj (θ)

]
xi. (J.731)
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From eq. (C.17) we have

Ci+e j Q j (i)−Ci Pj (θ) = 0 (J.732)

and therefore

(1+θ j)

[
Q j (θ)

1

x j
−Pj (θ)

]
H (x) = 0. (J.733)

Exercise 129: Show that [X ,X ] = 0 implies the anti-symmetry of the Lie bracket [X ,Y ] =−[Y,X ]. Show
further that also the converse is true, provided char F 6= 2. Explain, why the argument does not work for
char F= 2.

Solution:

0 = [X +Y,X +Y ] = [X ,Y ]+ [Y,X ] (J.734)

and therefore [X ,Y ] = −[Y,X ]. Now let us consider the other direction. Assuming [X ,Y ] = −[Y,X ] we
have for X = Y the relation [X ,X ] =−[X ,X ] or equivalently

2 [X ,X ] = 0. (J.735)

For char F 6= 2 it follows that [X ,X ] = 0. For char F = 2 we have 2 = 0 mod 2 and eq. (J.735) does not
give any constraint on [X ,X ].

Exercise 130: Derive eq. (D.24) from eq. (D.22).

Solution: Substituting

A =
n

∑
a=1

caT a, X =
n

∑
a=1

xaT a (J.736)

into eq. (D.22) we obtain

icaxb f abcT c = ρxcT c. (J.737)

This is equivalent to
(

caxbi f abc−ρxc

)
= 0 (J.738)

and
(

cai f abc−ρδbc
)

xb = 0. (J.739)

Exercise 131: Consider the Lie algebra su(2): Start from the generators

I1 =
1

2

(
0 1

1 0

)
, I2 =

1

2

(
0 −i
i 0

)
, I3 =

1

2

(
1 0

0 −1

)
. (J.740)
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These generators are proportional to the Pauli matrices and normalised as

Tr
(

IaIb
)

=
1

2
δab. (J.741)

The commutators are given by
[
Ia, Ib

]
= iεabcIc, (J.742)

whereεabc denotes the totally antisymmetric tensor. Start from A = I3. Determine for this choice the roots,
the Cartan standard form and the root vectors.

Solution: A root satisfies the equation

[
I3,X

]
= ρX . (J.743)

The secular equation reads

det
(

iε3bc−ρδbc
)

= 0. (J.744)

Working this out yields
∣∣∣∣∣∣

−ρ i 0

−i −ρ 0

0 0 −ρ

∣∣∣∣∣∣
= 0,

−ρ3 +ρ = 0,

ρ
(
ρ2−1

)
= 0. (J.745)

Therefore the roots are 0,±1. We have

ρ = 0 :
[
I3,X

]
= 0 ⇒ X = I3 = H1,

ρ = 1 :
[
I3,X

]
= X ⇒ X =

1√
2

(
I1 + iI2

)
= E1,

ρ =−1 :
[
I3,X

]
=−X ⇒ X =

1√
2

(
I1− iI2

)
= E−1. (J.746)

Thus we obtain the Cartan standard form of su(2):

H1 =
1

2

(
1 0

0 −1

)
, E1 =

1√
2

(
0 1

0 0

)
, E−1 =

1√
2

(
0 0

1 0

)
. (J.747)

The roots are

[H,E1] = E1, [H,E−1] =−E1. (J.748)

The Lie algebra su(2) has rank 1 (there is one generator denoted by H) and the root vectors are one-
dimensional. They are given by

~α(E1) = (1) , ~α (E−1) = (−1) . (J.749)
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Exercise 132: Let (z2, . . . ,zn−2) be simplicial coordinates and (x2, . . . ,xn−2) the corresponding cubical
coordinates. Show that

Limn−2...m3m2
(xn−2, . . . ,x3,x2) = (−1)n−3 Gmn−2...m3m2

(zn−2, . . . ,z3,z2;1) (J.750)

Solution: Let’s first work out the relation between the simplicial coordinates z j and the cubical coor-
dinates x j. From eq. (F.71) and eq. (F.73) we have

zi =
1

n−2

∏
j=i

x j

, i ∈ {2, . . . ,n−2}. (J.751)

Hence, we have to show

Limn−2...m3m2
(xn−2, . . . ,x3,x2) = (−1)n−3 Gmn−2...m3m2

(
1

xn−2

, . . . ,
1

x3 . . .xn−2

,
1

x2 . . .xn−2

;1

)

(J.752)

However, this follows immediately from eq. (8.19).

Exercise 133: Let

γ =

(
−1 0

0 −1

)
, ~n = (0,0) . (J.753)

Work out z′ and τ′.

Solution: Let start with τ′: With a =−1,b = 0,c = 0,d =−1 we have

τ′ =
aτ+b

cτ+d
=
−τ+0

−1
= τ. (J.754)

Let’s now work out z′. We have in addition n1 = n2 = 0 and therefore

z′ =
z+n2τ+n1

cτ+d
=

z

−1
= −z. (J.755)

Thus we see that the variable z changes sign.

Exercise 134: Let R be a commutative ring with 1 and P a prime ideal. Set SP = R\P. Show that
SP is closed under multiplication.

Solution: Let a ∈ SP and b ∈ SP. Assume that a ·b /∈ SP. This means

a ·b ∈ P. (J.756)
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However, P is assumed to be a prime ideal. This implies if a · b ∈ P then either a ∈ P or b ∈ P. This
contradicts our assumption that a /∈ P and b /∈ P. Hence a · b ∈ SP and we have shown that SP is closed
under multiplication.

Exercise 135: Consider the commutative ring Z and the prime ideal P = 〈5〉. Define SP = Z\〈5〉.
Describe the quotient ring RSP and its maximal ideal PSP .

Solution: The prime ideal P = 〈5〉 consists of all integer numbers (zero included), which are divisible
by 5. The set SP is then the set of all integer numbers, which are not divisible by 5. We have 0 /∈ SP. The
ring Z is an integral domain, hence the condition

s(s2r1− s1r2) = 0, s,s1,s2 ∈ SP, r1,r2 ∈ Z, (J.757)

implies that either s = 0 or s2r1− s1r2 = 0. As 0 /∈ S it follows that s2r1− s1r2 = 0. Hence RSP is the set

RSP =

{
p
q
| p ∈ Z, q ∈N, gcd(p,q) = 1, 5 ∤ q

}
⊂ Q. (J.758)

In plain text: RSP is the set of rational numbers p/q where q is not divisible by 5 (and in order to have a
unique representative we require gcd(p,q) = 1 and q > 0).

Now let’s look at the non-invertible elements in the ring RSP: These are all elements, where p in the
numerator is divisible by 5: If we would invert these elements in Q, we would get a prime factor 5 in the
denominator, however these inverses are not in RSP . Let’s define

PSP =

{
p
q
| p ∈ Z, q ∈ N, gcd(p,q) = 1, 5|p, 5 ∤ q

}
. (J.759)

One easily shows that PSP is an ideal. From theorem 48 we conclude that PSP is the only maximal ideal in
RSP . It is easy to see that PSP is generated by 5 = 5

1
in RSP:

PSP = 〈5〉 . (J.760)

This motivates the abuse of notation P = PSP . Note that

〈5〉 ⊂ Z : 〈5〉 = { 5r | r ∈ Z} ,
〈5〉 ⊂ RSP : 〈5〉 = { 5r | r ∈ RSP } . (J.761)

Exercise 136: Let r be defined by eq. (I.31). Determine

r mod ni. (J.762)

Solution: We have with siñi + tini = 1

r mod ni =

(
k

∑
j=1

r js jñ j mod n

)
mod ni =

k

∑
j=1

r js jñ j mod ni

= risiñi mod ni = ri (1− tini) mod ni = ri mod ni

= ri. (J.763)
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List of symbols

a j Feynman parameter

α j Schwinger parameter

B Baikov polynomial

c speed of light

D dimension of space-time

Dint (integer) expansion point within dimensional regularisa-

tion

ε dimensional regularisation parameter

F second Symanzik polynomial

G Lee-Pomeransky polynomial

γE Euler-Mascheroni constant

Grp category of groups

~ reduced Planck constant

Hom morphisms of a category

HS category of (pure) Hodge structures

K Kirchhoff polynomial

l loop number

MHS category of mixed Hodge structures

MixMot category of mixed motives

ModR category of finitely generated R-modules

n number of edges

NB number of kinematic variables

Ncohom dimension of the twisted cohomology group

next number of external edges

nint number of internal edges

NL number of letters

Nmaster number of master integrals

NV number of Baikov variables

Obj objects of a category

ProjR category of finitely generated projective R-modules

PureMot category of pure motives

r number of vertices

rint number of internal vertices
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Set category of sets

SmProjQ category of smooth projective varieties over Q
U first Symanzik polynomial

u j Lee-Pomeransky variable

VarQ category of algebraic varieties defined over Q
VectF category of finite-dimensional F-vector spaces

ζn zeta value

z j Baikov variable
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D-module, 327

S-sum, 317

Z-sum, 316

Γ-series, 330

|kγ operator, 425

F-linear category, 483

A-hypergeometric system, 329

’t Hooft-Veltman scheme, 127

Abelian category, 484

Abelian differential, 414

Abelian variety, 518

abstract period, 351

additive category, 483

ADE singularity, 280

admissible Coxeter diagram, 598

admissible cut of a rooted tree, 364

affine algebraic group, 500

affine algebraic set, 641

affine algebraic variety, 642

affine coordinate ring, 642

affine hypersurface, 271

affine scheme, 647

algebraic curve, 409

algebraic form, 474

algebraic multiplicity of an eigenvalue, 257

algebraically independent polynomials, 264

all-minors matrix-tree theorem, 80

alphabet, 170, 289

alphabet, algebraic part, 391

alphabet, rational part, 391

amoeba, 326

analytification, 352

annihilation ideal, 643

annihilator of a set of polynomials, 264, 651

antipode, 357

arithmetic genus, 410, 608, 610

Artinian ring, 641

associated primitive character, 605

associated quotient ring of a hypersurface, 280

associates in an integral domain, 654

associativity constraint in a monoidal category,

481

automorphic factor, 425

Baikov polynomial, 59

Baikov variables, 58

bar construction, 183

Barnes’ lemmata, 69

base space, 190

basis of an ideal, 223

Bernoulli number, 253, 442

Bernoulli polynomial, 288, 435

Bernstein-Sato polynomial, 336

Betti cohomology, 470

Betti number, first, 16

bi-algebra, 356

Bogoliubov’s R-operation, 367

bootstrap approach, 390

boundary divisor of a moduli space, 613

boundary of a k-chain, 471

boundary strata, 613

bridge, 85

Calabi-Yau manifold, 515

canonical bundle, 517

canonical master integral, 39

Cartan matrix of finite type, 404

Cartan standard form, 589

Cartan sub-algebra, 589

Cartier divisor, 215

Casimir operator, 588
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Catalan’s constant, 287

category, 478

chain complex, 471

chain graph, 60

character of a Hopf algebra, 359

characteristic ideal, 328

characteristic variety, 328

Cheng-Wu theorem, 53

Chern class, 517

chord, 618

Chow group, 486

classical polylogarithms, 286

Clausen function, 287

closed form, 175

closed set, 637

cluster, 401

cluster A-coordinates, 399

cluster X -coordinates, 399

cluster algebra, 401

cluster variables, 401

coaction, 373

coamoeba, 326

coarse moduli space, 627

coassociative, 354

coboundary, 472

coboundary operator, 472

cochain, 471

cocommutative, 356

cocycle, 472

coefficient group of cochains, 472

cokernel of a morphism, 483

collinear divergence, 33

commutative ring, 639, 653

commutativity constraint in a tensor category,

482

comodule, 373

comodule algebra, 374

complementary modulus of an elliptic curve,

418

complete fan, 325

complex manifold, 190

complex upper half-plane, 417

complex vector bundle, 191

comultiplication, 354

conductor, 604

cone, 321

configuration space, 607

congruence subgroup, 426

conjugated letter with respect to a square root,

391

connection, 191

connection one-form, 192

constant leading singularities, 267

content of a polynomial, 657

continuous map, 638

contravariant functor, 480

conventional dimensional regularisation scheme,

127

convolution product, 358

coordinate neighbourhood, 190

coprime, 659

cotangent bundle, 191

counit, 354

covariant derivative, 193, 213

covariant functor, 479

Coxeter diagrams, 598

critical point, 220

cross-ratio, 616

cubical coordinates, 624

curvature two-form, 193

cusp form, 426, 427

cut, 204

cycle in singular homology, 471

cycle matroid, 97

cyclic order, 617

cyclomatic number, 16

cyclotomic harmonic polylogarithms, 287

de Rham cohomology, 175, 473

de Rham multiple polylogarithms, 376

decomposable Cartan matrix, 404

deconcatenation coproduct, 363

decorated rooted tree, 366

Dedekind eta function, 420

degree lexicographic order, 225

degree of a divisor, 214
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degree of a hypersurface, 271

degree reverse lexicographic order, 225

Deligne-Mumford-Knudsen compactification, 612

democratic approach, Baikov representation, 66

democratic approach, Feynman parameter, 49

dense polynomial, 664

depth, 181, 284, 285, 316

differentiable manifold, 189

dihedral structure, 617

dilogarithm, 143

dimension of a topological space, 638

dimensional reduction, 127

dimensional regularisation schemes, 128

dimensional-shift operator, 123

Diophantine equation, 656

direct sum, 483

Dirichlet character, 603

divergence, infrared, 28

divergence, ultraviolet, 28

divisor, 211, 214

dlog-form, 170

dot, 15

double lattice, 412

double-shuffle relations, 295

Drinfeld associator, 303

Du Val singularity, 280

dual basis, 220

dual category, 479

dual graph of a nodal curve, 610

Dynkin diagram, 595

edge, external, 15

edge, internal, 15

edge, regular, 85

effective divisor, 214

effective motivic periods, 499

effective period, 350

elliptic curve, 410

elliptic functions, 412

elliptic integrals, 413

elliptic multiple polylogarithms, 444

embedding of orbifold charts, 631

Enriques surface, 518

equivalent categories, 480

Euclidean domain, 655

Euclidean region, 42

Euler characteristic of a smooth curve, 612

Euler operator, 249, 329

Euler’s beta function, 37

Euler’s gamma function, 35

Euler-Mascheroni constant, 24

Euler-Zagier sum, 316

exact form, 175

exact functor, 484

exact sequence, 507

exceptional divisor, 344

exchange matrix, 398

extended Euclidean algorithm, 656

extended exchange matrix, 402

face, 322

facet, 322

faithful functor, 480

fan, 325

Feynman parameter, 47

Feynman rules, 23, 116

Feynman’s iδ-prescription, 22

fibre, 190

fibre bundle, 190

fibre functor, 484

field, 655

fine moduli space, 626

finite field, 655, 661

flatness, 193

forest, 16

forgetful morphism, 613

four-dimensional helicity scheme, 128

frame, 191

framed elliptic curve, 417, 627

framed family of elliptic curves, 629

Frobenius basis, 251

frozen vertex, 402

Fuchsian form, 242, 246, 256

full functor, 480

fully faithful functor, 480

functorial isomorphism, 480
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Gauß-Manin connection, 197

generalised Bernoulli numbers, 433

generalised eigenvector, 257

generalised Eisenstein series, 432

generators of a Lie group, 586

geometric genus, 410, 610

geometric multiplicity of an eigenvalue, 257

germ, 645

GKZ hypergeometric system, 329

Glaisher function, 287

global residue, 179

gluing morphisms, 614

Gröbner basis, 224

Gröbner deformation, 329

graded bi-algebra, 357

graded connected bi-algebra, 357

graph polynomials, 44

greatest common divisor, 653, 654

Grothendieck group, 31

Grothendieck residue, 178

group-like element in a coalgebra, 355

H-motive, 498

Hölder convolution, 524

harmonic polylogarithms, 286, 300

harmonic sum, 317

Hausdorff space, 638

height of a prime ideal, 640

hierarchical approach, Feynman parameter, 49

Hilbert’s Nullstellensatz, 263

Hodge filtration, 488, 492

Hodge numbers, 488

holomorphic vector bundle, 191

holonomic, 328

holonomic rank, 328

holonomy group, 517

homeomorphism, 638

homogeneous coordinate ring, 643

homogeneous coordinates in projective space,

50

homogenisation, 271

homotopic, 182

homotopy functional, 182

Hopf algebra, 357

horizontal subspace, 191

hyperplane, 641

ice quiver, 401

ideal, 223, 639

incidence matrix, 95

incident number of simplices, 470

indecomposable Cartan matrix, 404

indicial, 250

indicial equation, 250

indicial ideal, 329

induced character, 605

induced topology, 638

infrared divergence, 207, 208

infrared-safe observable, 107

initial form, 328

initial ideal, 328

integrable word, 184

integral k-chain, 471

integral domain, 639, 654

interior product, 52

internal graph, 72

invertible element in a ring, 639

irreducible component, 638

irreducible differential operator, 248

irreducible elements, 654

irreducible scalar product, 60

irreducible topological space, 638

isogenic elliptic curves, 417

isomorphic curves, 612

isomorphic elliptic curves, 417

isomorphism, 479

iterated integrals of modular forms, 429

Jacobi theta functions, 420

K3 surface, 516

Kähler manifold, 488

kernel of a morphism, 483

kinematic variables, 41

Kirchhoff polynomial, 77

Klein’s j-invariant, 436

Knizhnik-Zamolodchikov equation, 301
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Kodaira dimension, 517

Kronecker symbol, 605

Krull dimension, 640

Landau discriminant, 209

Landau singularities, 207

Laplacian of a graph, 77

Laporta algorithm, 160

Laurent polynomial, 333

leading Landau singularity, 209

leading term, 223

least common multiple, 654

Lee-Pomeransky variables, 57

Lefschetz thimble, 226

Legendre relation, 415

Leray residue, 176

letter, 170, 289

level of a congruence subgroup, 426

lexicographic order, 223

line bundle, 191

lineality space of a cone, 322

local coordinates, 190

local exponent, 250

local group, 632

local residue, 178

local ring, 640

local system, 197

local trivialisation, 190

localisation, 640

locally ringed space, 647

locally small category, 479

long exact sequence, 508

loop number, 16

loop-by-loop approach, Baikov representation,

66

Lorentz index, 14

Lorentz invariant, 14

lower trapezoidal matrix, 535

LQ-decomposition of matrices, 535

Lyndon word, 290

Magnus series, 253

Mandelstam variables, 671

master integrals, 39, 158, 160

matrix-tree theorem, 79

matroid, 97

maximal cut, 205

maximal ideal, 640

maximal independent set of a matroid, 97

Minkowski metric, 14

Minkowski scalar product, 14

Minkowski sum, 321

mixed Hodge structure, 492

mixed Tate Hodge structure, 492

modified minimal subtraction, 118

modular discriminant, 420

modular form, 425

modular group, 425

modular lambda function, 436

modular transformation, 425

module algebra, 374

modulus of an elliptic curve, 418

Morse function, 229

Morse index, 229

motive associated to a Feynman integral, 506

motivic coaction, 502

motivic de Rham periods, 502

motivic Galois group, 502

motivic multiple polylogarithms, 375

multi-index notation, 321

multiple edge, 78

multiple zeta values, 287, 303

multiplicity of a point, 271

multiplicity of a root of a Lie algebra, 589

mutation, 398

mutation equivalent, 398

natural equivalence of functors, 480

natural transformation of functors, 480

natural units, 13

negative dimension approach, 670

neutral Tannakian category, 484

Newton polytope, 326

Nielsen polylogarithms, 286

nodal curve, 610

node, 608
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Noetherian ring, 641

Noetherian space, 638

nome, 418

non-degenerate critical point, 220

non-leading Landau singularity, 209

normal cone, 325

normal crossing divisor, 476

normal fan, 325

Nullstellensatz certificate, 264

numerical period, 349, 351

on-shell scheme, 118

open chart, 189

open set, 637

orbifold, 628, 630, 632

orbifold atlas, 632

orbifold chart, 630

orbifold Euler characteristic, 635

ordering of root vectors, 593

overall ultraviolet divergence, 208

path ordering operator, 252

period, 412

period map, 375

period mapping, 629

period matrix, 415

period of an elliptic curve, 414

Picard-Fuchs operator, 246, 416

plurigenus, 517

point of maximal unipotent monodromy, 251

pointed cone, 322

polarisation of a pure Hodge structure, 490

polarisation vector, 114

polygon matroid, 97

polyhedron, 321

polytope, 321

positive real projective space, 51

positive root vector, 593

presheaf, 644

primary polytope, 325

prime elements, 654

prime ideal, 640

primitive Dirichlet character, 604

primitive element in a coalgebra, 355

primitive part of a polynomial, 657

principal divisor, 215

principal ideal, 639

principal ideal domain, 639

principal ideal ring, 639

principal part of an ice quiver, 402

principle congruence subgroup, 426

projection, 190

projective algebraic set, 643

projective closure, 271

projective hypersurface, 271

projective space, 50

propagator, Feynman rule, 111

proper critical point, 220

proper ideal, 639

pseudo-division with remainder, 657

pure Hodge structure, 488

quasi-affine algebraic variety, 642

quasi-period, 415

quiver, 15, 398

radical, 642

raising operator, 123

rank function for a matroid, 102

rank of a Lie algebra, 588

rank of a vector bundle, 191

rational fan, 325

rational terms, 146, 148

real Frobenius, 388, 498

reduced coproduct, 358

reduced Gröbner basis, 650

reductive Lie algebra, 588

regular n-gon, 617

regular function, 643

regular point, 272

regular triangulation, 323

regularised shuffle relation, 296

relative cohomology groups, 472

relative homology groups, 472

renormalisation, 118

renormalisation scale, 118
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renormalisation scheme, 118, 367

restriction map, 644

Ricci form, 517

Riemann P-symbol, 251

Riemann surfaces, 410

rigid monoidal category, 482

ring, 639

ring of formal power series, 280

ring with 1, 639

ringed space, 647

root of a Lie algebra, 589

root system, 590

root vector, 590

same type singularities, 280

scalar integral, 117, 123

scattering amplitude, 107

scheme, 647

Schwinger parameter, 43

secondary fan, 326

secondary polytope, 325

section, global, 191

section, local, 191

section, sheaf, 644

secular equation, 589

seed, 400

self-loop, 78

semi-simple Lie algebra, 588

set of real points of M0,n, 615

short exact sequence, 508

simple lattice, 412

simple Lie Algebra, 588

simple normal crossing divisor, 476

simple ring, 639

simple root vector, 595

simple singularity, 280

simplicial complex, 470

simplicial coordinates, 615

single-value projection, 389

single-valued zeta values, 390

singular cohomology, 470

singular point, 249, 272

singular points of an orbifold, 632

singular value decomposition, 141

sink, 15

small category, 479

smooth map of orbifolds, 633

smoothing of a node, 610

soft divergence, 33

source, 15

spanning forest, 72

spanning sub-graph, 88

spanning tree, 72

sparse polynomial, 664

spinor, 114

split short exact sequence, 508

stable curve, 612

stalk, 645

standard simplex, 52

stratification, 613

structure constants of a Lie algebra, 586

structure group, 190

structure sheaf, 646, 647

subresultant algorithm, 657

Sweedler’s notation, 355

Symanzik polynomial, 44

symbol, 382

symmetrisable generalised Cartan matrix, 404

tangent bundle, 191

Tannakian category, 484

Tate Hodge structure, 489

Tate twist, 490

tensor functor, 482

tensor integral, 117, 122

term order, 224

terminal form, 87

threshold singularity, 210

topological space, 637

topology, 637

total space, 190

trailing zero, 184, 284, 529

transition function, 190

tree, 16

triangulation, 323

triangulation of a topological space, 470
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trivial ring, 639

tubular neighbourhood, 177

twist, 212

twisted cohomology group, 213

ultraviolet divergence, 207

ultraviolet sub-divergence, 208

ungluing of a node, 610

uniform weight, 38, 175

unimodular triangulation, 325

unique factorization domain, 654

unit element in an integral domain, 654

unit in a ring, 639

unital ring, 639

universal enveloping algebra of a Lie algebra,

360

universal family of framed elliptic curves, 629

valency, 15

variety, 643

vector bundle, 191

vertex, 322

vertex, Feynman rule, 112

vertical subspace, 191

virtually free group action, 635

weakly modular, 426

Weierstrass normal form, 410

Weierstrass’s ℘-function, 412

weight, 38, 284, 285, 316

weight filtration, 492

weight vector for the Weyl algebra, 327

weighted projective space, 279

Weil divisor, 215

Weyl algebra, 326

Weyl chamber, 593

Weyl group, 593

word, 289

Wronskian, 419

Zariski topology, 642

zero-divisor, 639

zeta value, 36, 296
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