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| NTRODUCTI ON

This series of articles is a tutorial on the theory and practice
of devel opi ng | anguage parsers and conpil ers. Before we are
finished, we wll have covered every aspect of conpiler
construction, designed a new programrng |anguage, and built a
wor ki ng conpil er.



Though I am not a conputer scientist by education (my Ph.D. is in
a different field, Physics), | have been interested in conpilers
for many years. | have bought and tried to digest the contents
of virtually every book on the subject ever witten. | don't
mnd telling you that it was sl ow going. Conpiler texts are
written for Conmputer Science mjors, and are tough sl edding for
the rest of us. But over the years a bit of it began to seep in.
What really caused it to jell was when | began to branch off on
my own and begin to try things on ny own conputer. Now | plan to

share with you what | have [ earned. At the end of this series
you will by no neans be a conputer scientist, nor will you know
all the esoterics of conpiler theory. | intend to completely
ignore the nore theoretical aspects of the subject. Wat you
WLL_ knowis all the practical aspects that one needs to know

to build a wor ki ng system

This is a "learn-by-doing" series. |In the course of the series |
will be performing experiments on a conputer. You will be
expected to follow along, repeating the experinents that | do,
and performing some on your own. | wll be using Turbo Pasca
4.0 on a PC clone. I will periodically insert exanples witten
in TP. These will be executable code, which you will be expected
to copy into your own conputer and run. If you don't have a copy
of Turbo, you wll be severely Iimted in how well you will be
able to follow what's going on. |If you don't have a copy, | urge
you to get one. After all, it's an excellent product, good for

many ot her uses!

Some articles on conpilers show you exanples, or show you (as in
the case of Small-C) a finished product, which you can then copy
and wuse without a whole |ot of understanding of how it works. |
hope to do nmuch nore than that. I hope to teach you HOWt he
things get done, so that you can go off on your own and not only
reproduce what | have done, but inprove on it.

This is admttedly an anmbitious undertaking, and it won't be done

in one page. | expect to do it in the course of a nunber of
articles. Each article will cover a single aspect of conpiler
theory, and wll pretty much stand alone. If all you're
interested in at a given time is one aspect, then you need to
|l ook only at that one article. Each article will be uploaded as
it is conplete, so you will have to wait for the |ast one before

you can consi der yourself finished. Please be patient.

The average text on conpiler theory covers a lot of ground that
we won't be covering here. The typical sequence is:

0 An introductory chapter describing what a conpiler is.

o A chapter or two on syntax equations, using Backus-Naur Form
( BNF) .

0 A chapter or two on |exical scanning, with enmphasis on
deternministic and non-determnistic finite autonata.



o Several chapters on parsing theory, beginning with top-down
recursive descent, and ending with LALR parsers.

0 A chapter on internedi ate | anguages, w th enphasis on P-code
and simlar reverse polish representations.

o Many chapters on alternative ways to handl e subroutines and
par anet er passi ng, type declarations, and such

0 A chapter toward the end on code generation, usually for sonme
i mginary CPU with a sinple instruction set. Mst readers
(and in fact, nost college classes) never nake it this far

o A final chapter or two on optimzation. This chapter often
goes unread, too.

I"I'l be taking a much different approach in this series. To
begin with, | won't dwell long on options. [|'ll be giving you
_A_way that works. |If you want to explore options, well and
good ... | encourage you to do so ... but I'Il be sticking to
what | know. | also will skip over nost of the theory that puts
people to sleep. Don't get me wong: | don't belittle the

theory, and it's vitally inportant when it comes to dealing with
the nore tricky parts of a given language. But | believe in
putting first things first. Here we'll be dealing with the 95%
of conpiler techniques that don't need a |ot of theory to handle.

I also wll discuss only one approach to parsing: top-down,
recursive descent parsing, which is the _ONLY_ technique that's
at all amenable to hand-crafting a conpiler. The ot her
approaches are only useful if you have a tool |ike YACC, and al so

don't care how much nenory space the final product uses.

I also take a page fromthe work of Ron Cain, the author of the
original Small C. Wereas alnost all other conpiler authors have
historically used an internmediate |anguage |ike P-code and
divided the conpiler into two parts (a front end that produces
P-code, and a back end that processes P-code to produce

execut abl e object code), Ron showed us t hat it is a
straightforward matter to nmke a conpiler directly produce
executable object code, in the form of assenbler |[|anguage
statements. The code will _NOT_ be the world's tightest code ..

produci ng optim zed code is a nuch nore difficult job. But it
will work, and work reasonably well. Just so that | don't |eave
you with the inpression that our end product will be worthless,

_DO_intend to show you how to "soup up" the conpiler with sonme
optim zati on.

Finally, I'll be wusing some tricks that |I've found to be npst
hel pful in letting me understand what's going on w thout wadi ng
through a lot of boiler plate. Chief anobng these is the use of
si ngl e-character tokens, with no enbedded spaces, for the early
design work. | figure that if | can get a parser to recognize
and deal with I-T-L, | can get it to do the sane with |IF- THEN



ELSE. And I can. 1In the second "l esson," "Il show you just
how easy it is to extend a sinple parser to handle tokens of

arbitrary length. As another trick, | conpletely ignore file
/O, figuring that if | can read source fromthe keyboard and
out put object to the screen, | can also do it fronfto disk files.
Experience has proven that once a transl at or is working
correctly, it's a straightforward matter to redirect the I1/Oto
files. The last trick is that | make no attenpt to do error
correction/recovery. The progr ans we'll be building wll
RECOGNI ZE errors, and will not CRASH, but they wll sinply stop
on the first error ... just like good ol' Turbo does. There will
be other tricks that you'll see as you go. Mst of themcan't be

found in any conpiler textbook, but they work.

A word about style and efficiency. As you will see, | tend to
write progranms in _VERY_ small, easily understood pieces. None
of the procedures we'll be working with will be nore than about
15-20 lines long. I'ma fervent devotee of the KISS (Keep It
Si npl e, Sidney) school of software development. | try to never
do sonething tricky or conplex, when something sinple will do.
Inefficient? Perhaps, but you'll like the results. As Brian

Kerni ghan has said, FIRST make it run, THEN make it run fast.
If, later on, you want to go back and tighten up the code in one
of our products, you'll be able to do so, since the code will be
qui te understandable. If you do so, however, | urge you to wait
until the programis doing everything you want it to.

I also have a tendency to delay building a nmodule until |

di scover that | need it. Trying to anticipate every possible
future contingency can drive you crazy, and you'll generally
guess wrong anyway. In this nodern day of screen editors and
fast conpilers, | don't hesitate to change a nodule when | feel
need a nore powerful one. Until then, I1'Il wite only what I
need.

One final caveat: One of the principles we'll be sticking to here

is that we don't fool around with P-code or imagi nary CPUs, but
that we will start out on day one producing working, executable
obj ect code, at least in the formof assenbler [|anguage source.

However, you may not Ilike ny choice of assenbler |anguage ..

it's 68000 code, which is what works on ny system (under SK*DOS).
I think you'll find, though, that the translation to any other
CPU such as the 80x86 will be quite obvious, though, so | don't
see a problemhere. |In fact, | hope sonmeone out there who knows
the '86 | anguage better than | do will offer us the equivalent

obj ect code fragnents as we need them

THE CRADLE

Every program needs sonme boiler plate ... [1/0O routines, error
message routines, etc. The prograns we develop here will be no
exceptions. I'"ve tried to hold this stuff to an absolute

m ni rum however, so that we can concentrate on the inportant
stuff without losing it anpbng the trees. The code given bel ow
represents about the mininmumthat we need to get anything done.
It consists of some I/O routines, an error-handling routine and a



skel eton, null main program I call it our cradle. As we

devel op other routines, we'll add themto the cradle, and add the
calls to themas we need to. Mke a copy of the cradle and save
it, because we'll be using it nore than once.

There are many different ways to organi ze the scanning activities

of a parser. In Unix systems, authors tend to use getc and
ungetc. |'ve had very good luck with the approach shown here,
which is to use a single, global, |ookahead character. Part of

the initialization procedure (the only part, so far!) serves to
"prime the pump" by reading the first character fromthe input
stream No other special techniques are required with Turbo 4.0

each successive call to GetChar will read the next character
in the stream

R LT R R PR PR PP LT P R PEE LT TR PEEETEP PR }
program Cr adl e;
(o o }

{ Constant Decl arations }

const TAB = 7|

(- - o e e }
{ Variable Declarations }

var Look: char; { Lookahead Character }
e R EEE }

{ Read New Character From | nput Stream}

procedure Get Char;
begi n

Read( Look) ;
end;

{ Report an Error }

procedure Error(s: string);
begin

WitelLn;

WiteLn("G 'FError: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;



{ Report What Was Expected }
procedure Expected(s: string);
begi n

Abort (s + ' Expected');
end;

{ Match a Specific | nput Character }

procedure Match(x: char);

begi n
if Look = x then Cet Char
el se Expected('''" + x + """");
end;
{ ______________________________________________________________

{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begi n

| sAl pha : = upcase(c) in['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begin

IsDigit :=cin['0.."9];
end;

{ Get an ldentifier }

function Get Nane: char;

begin
if not IsAlpha(Look) then Expected(' Nane');
Get Nane : = UpCase(Look);
Get Char ;

end;

{ Get a Number }

function GetNum char;

begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;
Get Char;

end;



{ Qutput a String with Tab }

procedure Emt(s: string);
begin

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }

procedure Em tLn(s: string);
begin

Em t(s);

WitelLn;
end;

{ Initialize }
procedure Init;
begin

CGet Char;
end;

{ Main Program}

begi n
Init;

That's it for this introduction. Copy the code above into TP and
conpile it. Make sure that it conpiles and runs correctly. Then
proceed to the first | esson, which is on expression parsing.
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GETTI NG STARTED

If you've read the introduction docunment to this series, you wll
al ready know what we're about. You will also have copied the
cradle software into your Turbo Pascal system and have conpil ed
it. So you should be ready to go.



The purpose of this article is for us to learn how to parse and
transl ate mat hemati cal expressions. Wat we would like to see as
output is a series of assenbler-Ilanguage statements that perform
the desired actions. For purposes of definition, an expression
is the right-hand side of an equation, as in

X = 2*y + 3/(4*2z)

In the early going, I'll be taking things in _VERY_ small steps
That's so that the beginners anong you won't get totally |ost.
There are also sone very good Ilessons to be |earned early on
that will serve us well later. For the nore experienced readers:
bear with ne. We'IIl get rolling soon enough

SINGLE DI G TS

In keeping with the whole thene of this series (KISS, renmenber?),
let's start with the absolutely nost sinple case we can think of.
That, to nme, is an expression consisting of a single digit.
Before starting to code, make sure you have a baseline copy of

the "cradle" that | gave last time. W'I| be using it again for
ot her experinments. Then add this code:

{ Parse and Translate a Math Expression }

procedure Expression;

begi n

EmtLn(' MOVE #' + GetNum + ', D0")
end;
{m }
And add the 1line "Expression;" to the main programso that it
reads:
(o }
begi n

Init;

Expr essi on;
end.
{o }
Now run the program Try any single-digit nunmber as input. You
shoul d get a single Iine of assenbl er-language out put. Now try
any other character as input, and you'll see that the parser

properly reports an error.

CONGRATULATI ONS! You have just witten a working transl ator

K, | grant you that it's pretty limted. But don't brush it off
too lightly. This little "compiler” does, on a very linmted



scale, exactly what any larger conpiler does: it correctly
recogni zes legal statements in the input "language" that we have
defined for it, and it produces correct, executable assenbler
code, suitable for assenmbling into object format. Just as
inmportantly, it correctly recognizes statenments that are NOT
| egal, and gives a neaningful error nmessage. Wo could ask for
nore? As we expand our parser, we'd better make sure those two
characteristics always hold true.

There are sone other features of this tiny program worth

ment i oni ng. First, you can see that we don't separate code
generation fromparsing ... as soon as the parser knows what we
want done, it generates the object code directly. In a rea

conpiler, of course, the reads in GetChar would be from a disk
file, and the wites to another disk file, but this way is much
easier to deal with while we're experinenting.

Al so note that an expression nust |eave a result somewhere. |'ve
chosen the 68000 register DO I  could have nmade sone ot her
choi ces, but this one nakes sense.

Bl NARY EXPRESSI ONS

Now t hat we have that under our belt, let's branch out a bit.
Admittedly, an "expression" consisting of only one character is
not going to neet our needs for long, so let's see what we can do
to extend it. Suppose we want to handl e expressions of the form

1+2
or 4-3
or, in general, <terner +/- <ternp

(That's a bit of Backus-Naur Form or BNF.)

To do this we need a procedure that recognizes a term and | eaves
its result somewhere, and another t hat recogni zes and

di stingui shes between a '+ and a '-' and generates the
appropriate code. But if Expression is going to leave its result
in DO, where should Termleave its result? Answer : the sane

place. W're going to have to save the first result of Term
somewhere before we get the next one.

K, basically what we want to do is have procedure Term do what
Expressi on was doing before. So just RENAME procedure Expression
as Term and enter the follow ng new version of Expression

{ Parse and Translate an Expression }

procedure Expression;
begi n

Term

Em tLn(' MOVE DO, D1');



case Look of

'+': Add;
'-': Subtract;
el se Expected(' Addop');
end;
end;
{ }

Next, just above Expression enter these two procedures:

{ Recogni ze and Transl ate an Add }

procedure Add;

begi n

Mat ch(' +');

Term

Em tLn(' ADD D1, DO');
end;
(oo }

{ Recogni ze and Translate a Subtract }

procedure Subtract;

begi n
Mat ch('-");
Term
Em tLn(' SUB D1, DO");
end;
{ }

When you're finished with that, the order of the routines should
be:

Term (The OLD Expression)
Add

Subt r act

Expr essi on

(el elNolNe]

Now run the program Try any conbination you can think of of two
single digits, separated by a '+ or a'-'. You should get a
series of four assenbler-language instructions out of each run.
Now try some expressions with deliberate errors in them Does

the parser catch the errors?

Take a |ook at the object code generated. There are two
observations we can make. First, the code generated is NOTI what
we would wite ourselves. The sequence

MOVE #n, DO
MOVE DO, D1

is inefficient. If we were witing this code by hand, we would



probably just load the data directly to D1.

There is a nessage here: code generated by our parser is |less
efficient than the code we would wite by hand. Get used to it.
That's going to be true throughout this series. 1It's true of al
conpilers to some extent. Conputer scientists have devoted whol e
lifetimes to the issue of code optim zation, and there are indeed
things that can be done to inprove the quality of code output.
Sonme conpilers do quite well, but there is a heavy price to pay
in conplexity, and it's a losing battle anyway ... there wll
probably never come a time when a good assenbler-Ilanguage pro-
grammer can't out-program a conpiler. Before this session is
over, I'Il briefly mention some ways that we can do a Ilittle op-
timzation, just to show you that we can indeed inprove things
wi t hout too nmuch trouble. But renenmber, we're here to |earn, not
to see how tight we can make the object code. For now, and
really throughout this series of articles, we'll studiously
ignore optimzation and concentrate on getting out code that
wor ks.

Speaki ng of which: ours DOESN T! The code is _WRONG_! As things
are working now, the subtraction process subtracts D1 (which has
the FIRST argunent in it) from DO (which has the second). That's
the wong way, so we end up with the wong sign for the result.
So let's fix up procedure Subtract with a sign-changer, so that
it reads

{ Recogni ze and Transl ate a Subtract }

procedure Subtract;
begin

Match('-"');

Term

EmitLn(' SUB D1, DO');

EmitLn(' NEG DO');
end;

Now our code is even less efficient, but at least it gives the
right answer! Unfortunately, the rules that give the neaning of
mat h expressions require that the ternms in an expression cone out
in an inconvenient order for us. Again, this is just one of
those facts of life you learn to live with. This one will cone
back to haunt us when we get to division

OK, at this point we have a parser that can recognize the sum or
difference of two digits. Earlier, we could only recognize a
single digit. But real expressions can have either form (or an
infinity of others). For kicks, go back and run the programwith
the single input line "1".

Didn't work, didit? And why should it? We just finished
telling our parser that the only kinds of expressions that are
| egal are those with two terns. W nust rewite procedure



Expression to be a | ot nore broadmi nded, and this is where things
start to take the shape of a real parser

GENERAL EXPRESSI ONS
In the REAL world, an expression can consist of one or nore
terms, separated by "addops" ('+ or '-'). In BNF, this is
witten

<expression> ::= <ternp [<addop> <ternp]*

W can acconpdate this definition of an expression wth the
addition of a sinple loop to procedure Expression:

{ Parse and Transl ate an Expression }

procedur e Expression;

begin
Term
while Look in ['+', '"-'"] do begin

Em tLn(' MOVE DO, D1');
case Look of
'+': Add;
'-': Subtract;
el se Expected(' Addop');
end;
end;
end;

NOW we' re getting somewhere! Thi s version handl es any nunber of
terms, and it only cost us two extra lines of code. As we go on
you' Il discover that this is characteristic of top-down parsers

it only takes a few lines of code to acconpdate extensions to
the | anguage. That's what nmkes our increnental approach
possible. Notice, too, how well the code of procedure Expression
mat ches the BNF definition. That, too, is characteristic of the
met hod. As you get proficient in the approach, you'll find that
you can turn BNF into parser code just about as fast as you can

type!

OK, conpile the new version of our parser, and give it a try. As
usual, verify that the "conpiler" can handl e any |ega
expression, and wll give a nmeaningful error nessage for an
illegal one. Neat, eh? You might note that in our test version
any error message cones out sort of buried in whatever code had
al ready been generated. But renmenber, that's just because we are
using the CRT as our "output file" for this series of
experiments. In a production version, the two outputs would be
separated ... one to the output file, and one to the screen



USI NG THE STACK

At this point I'mgoing to violate nmy rule that we don't
i ntroduce any conplexity until it's absolutely necessary, |ong
enough to point out a problemwith the code we're generating. As
things stand now, the parser wuses DO for the "primary" register

and D1l as a place to store the partial sum That works fine for
now, because as long as we deal with only the "addops" '+ and
'-', any new termcan be added in as soon as it is found. But in
general that isn't true. Consider, for exanple, the expression

1+(2-(3+(4-5)))

If we put the '1" in D1, where do we put the '2'? Since a
general expression can have any degree of conplexity, we're going
to run out of registers fast!

Fortunately, there's a sinple solution. Li ke every nodern
m croprocessor, the 68000 has a stack, which is the perfect place
to save a variable nunber of itens. So instead of noving the term
in DO to D1, let's just push it onto the stack. For the benefit
of those unfamliar with 68000 assenbler |anguage, a push is
witten

-(SP)

and a pop, (SP) + .

So let's change the EmitLn in Expression to read:
Em tLn(' MOVE DO, -(SP)');

and the two lines in Add and Subtract to
EmitLn(' ADD (SP)+, D0")

and EmtLn(' SUB (SP)+, D0'),

respectively. Now try the parser again and make sure we haven't
broken it.

Once again, the generated code is less efficient than before, but
it's a necessary step, as you'll see.

MULTI PLI CATI ON AND DI VI SI ON

Now | et's get down to some REALLY serious business. As you al
know, there are other math operators t han "addops"
expressions can also have multiply and divide operations. You
also know that there is an inplied operator PRECEDENCE, or
hi erarchy, associated with expressions, so that in an expression
like



2 + 3 * 4,

we know that we're supposed to nultiply FIRST, then add. (See
why we needed the stack?)

In the early days of conmpiler technol ogy, people used sonme rather
conpl ex techniques to insure that the operator precedence rules

were obeyed. It turns out, though, that none of this is
necessary ... the rules can be accommobdated quite nicely by our
top-down parsing technique. Up till now, the only form that

we' ve considered for a termis that of a single decimal digit.

More generally, we can define a termas a PRODUCT of FACTORS
i.e.,

<ternr ::= <factor> [ <nmul op> <factor ]*

What is a factor? For now, it's what a termused to be ... a
single digit.

Notice the symretry: a term has the sane form as an expression.
As a matter of fact, we can add to our parser wth alittle
judicious copying and renaming. But to avoid confusion, the
listing belowis the conplete set of parsing routines. (Note the
way we handl e the reversal of operands in Divide.)

{ Parse and Translate a Math Factor }
procedure Factor;

begi n

EmitLn(' MOVE #' + GetNum + ', DO0")
end;

{ Recognize and Translate a Miultiply }

procedure Miltiply;

begi n
Mat ch(' *');
Fact or ;
Em tLn(' MULS (SP)+, D0");
end;
o o }

{ Recogni ze and Transl ate a Divide }

procedure Divide;
begi n
Match('/");
Fact or;
EmitLn(' MOVE (SP)+, D1');
EmtLn(' DI VS D1, D0");
end;



{ Parse and Translate a Math Term }

procedure Term
begin
Fact or;
while Look in ['"*', '"/'] do begin
EmitLn(' MOVE DO, -(SP)"');
case Look of

"rroo Ml tioply;
/' Divide;
el se Expected(' Mul op');
end;
end;
end;
e EEEEE R }

{ Recogni ze and Transl ate an Add }

procedure Add;

begi n
Mat ch(' +');
Term
Em tLn(' ADD (SP) +, DO');
end;
[ o o oo }

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Match('-");
Term
EmtLn(' SUB (SP)+, DO');
Em tLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }

procedure Expression;

begi n
Term
while Look in ['+', '"-'"] do begin

EmtLn(' MOVE DO, -(SP)');
case Look of

"+': Add;

'-': Subtract;
el se Expected(' Addop');
end;



end;

end;

{o }

Hot dog! A NEARLY functional parser/translator, in only 55 |ines
of Pascal! The output is starting to |look really useful, if you
continue to overlook the inefficiency, which | hope you wll.

Remenber, we're not trying to produce tight code here.

PARENTHESES

W can wap up this part of the parser with the addition of
parent heses with math expressions. As you know, parentheses are
a nmechanismto force a desired operator precedence. So, for
exanpl e, in the expression

2*(3+4)

t he parentheses force the addition before the nultiply. Much
nmore importantly, though, parentheses give us a mechanismfor
defini ng expressions of any degree of conplexity, as in

(1+2)/ ((3+4) +(5-6))

The key to incorporating parentheses into our parser is to
realize that no nmatter how conplicated an expression encl osed by
parentheses may be, to the rest of the world it |looks |ike a
sinmple factor. That is, one of the forns for a factor is:

<factor> ::= (<expression>)

This is where the recursion conmes in. An expression can contain a
factor which contains another expression which contains a factor
etc., ad infinitum

Conplicated or not, we can take care of this by adding just a few
lines of Pascal to procedure Factor

{ Parse and Translate a Math Factor }
procedure Expression; Forward;

procedure Factor;
begi n
if Look = ' (' then begin
Match(' (");
Expr essi on;
Match(')");
end
el se
EmitLn(' MOVE #' + GetNum + ', D0");



Not e again how easily we can extend the parser, and how well the
Pascal code matches the BNF syntax.

As usual, conpile the new version and make sure that it correctly

parses |egal sentences, and flags illegal ones wth an error
message.
UNARY M NUS

At this point, we have a parser that can handl e just about any
expression, right? OK try this input sentence:

-1

WOOPS! It doesn't work, does it? Procedure Expression expects
everything to start with an integer, so it coughs up the |eading
mnus sign. You'll find that +3 won't work =either, nor wll
somet hing |ike

-(3-2)

There are a couple of ways to fix the problem The easi est
(al though not necessarily the best) way is to stick an inmaginary
| eading zero in front of expressions of this type, so that -3
becomes 0-3. W can easily patch this into our existing version
of Expression:

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
i f 1sAddop(Look) then
Em tLn(' CLR DO")
el se
Term
whi l e |1 sAddop(Look) do begin
EmitLn(' MOVE DO, -(SP)"');
case Look of

"+': Add;
'-': Subtract;
el se Expected(' Addop');
end;
end;
end;
R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
| TOLD you that meking changes was easy! This time it cost us
only three new lines of Pascal. Note the new reference to

function |IsAddop. Since the test for an addop appeared twice, |
chose to enbed it in the new function. The form of |sAddop



shoul d be apparent fromthat for IsAlpha. Here it is:

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;

begi n

IsAddop :=c in ["+, "-'];
end;
R PR }
OK, meke these changes to the program and reconpil e. You shoul d
al so include IsAddop in your baseline copy of the cradle. We' |
be needing it again Ilater. Now try the input -1 again. Ww
The efficiency of the code is pretty poor ... six lines of code
just for loading a sinple constant ... but at least it's correct.

Remenber, we're not trying to replace Turbo Pascal here.

At this point we're just about finished with the structure of our
expressi on parser. This version of the program should correctly
parse and conpile just about any expression you care to throw at
it. It's still limted inthat we can only handle factors
i nvol ving single decimal digits. But | hope that by now you're
starting to get the nmessage that we can acconodate further
extensions wth just sone nminor changes to the parser. You
probably won't be surprised to hear that a variable or even a
function call is just another kind of a factor

In the next session, |I'll show you just how easy it is to extend
our parser to take care of these things too, and I'll also show
you just how easily we can acconpodate nulticharacter nunbers and
vari abl e names. So you see, we're not far at all froma truly
useful parser.

A WORD ABQUT OPTI M ZATI ON

Earlier in this session, | prom sed to give you sone hints as to
how we can inprove the quality of the generated code. As | said,
the production of tight code is not the min purpose of this
series of articles. But you need to at |east know that we aren't

just wasting our time here ... that we <can indeed nodify the
parser further to nmmke it produce better code, w thout throw ng
away everything we've done to date. As usual, it turns out that
SOME optim zation is not that difficult to do ... it sinply takes

sone extra code in the parser
There are two basic approaches we can take:
o Try to fix up the code after it's generated

This is the concept of "peephole" optinization. The genera
idea it that we know what combinations of instructions the



conpiler is going to generate, and we al so know whi ch ones

are pretty bad (such as the code for -1, above). So all we
do is to scan the produced code, |ooking for those
conmbi nations, and replacing them by better ones. It's sort
of a macr o expansi on, in reverse, and a fairly
straightforward exercise in pattern- matching. The only
conplication, really, is that there may be a LOT of such
conmbinations to look for. |It's called peephole optimzation

sinply because it only | ooks at a small group of instructions
at atine. Peephole optinization can have a dramatic effect

on the quality of the code, wth Ilittle change to the
structure of the conpiler itself. There is a price to pay,
t hough, in both the speed, size, and conplexity of the

conpiler. Looking for all those conbinations calls for a | ot
of IF tests, each one of which is a source of error. And, of
course, it takes tine.

In the classical inplenentation of a peephole optinzer
it's done as a second pass to the conpiler. The output code
is witten to disk, and then the optinmzer reads and
processes the disk file again. As a matter of fact, you can
see that the optimizer could even be a separate PROGRAM from
the conpiler proper. Since the optimzer only |ooks at the
code through a small "wi ndow' of instructions (hence the
nanme), a better inplenentation would be to sinply buffer up a
few lines of output, and scan the buffer after each Em tLn.

o Try to generate better code in the first place

Thi s approach calls for us to ook for special cases BEFORE
we Emit them As a trivial exanple, we should be able to
identify a constant zero, and Enmt a CLR instead of a |oad,
or even do nothing at all, as in an add of zero, for exanple.
Closer to home, if we had chosen to recognize the unary m nus
in Factor instead of in Expression, we could treat constants
like -1 as ordinary constants, rather then generating them

from positive ones. None of these things are difficult to
deal with ... they only add extra tests in the code, which is
why | haven't included themin our program The way | see

it, once we get to the point that we have a working conpiler,
generating useful code that executes, we can always go back
and tweak the thing to tighten up the code produced. That's
why there are Release 2.0's in the world.

There IS one nore type of optinmzation worth nentioning, that

seens to prom se pretty tight code without too nuch hassle. It's
my "invention" in the sense that | haven't seen it suggested in
print anywhere, though |I have no illusions that it's origina
with me.

This is to avoid such a heavy use of the stack, by making better
use of the CPU registers. Renmenber back when we were doing only
addition and subtraction, that we used registers DO and D1,
rather than the stack? It worked, because with only those two
operations, the "stack" never needs nore than two entries.

Well, the 68000 has eight data registers. Wiy not use themas a



privately managed stack? The key is to recognize that, at any
point in its processing, the parser KNOAS how nmany itens are on
the stack, so it can indeed manage it properly. W can define a
private "stack pointer” that keeps track of which stack |eve

we're at, and addresses the corresponding register. Procedure
Factor, for exanple, would not cause data to be |loaded into
regi ster DO, but into whatever the <current "top-of-stack"

regi ster happened to be.

VWhat we're doing in effect is to replace the CPU s RAM stack with
a locally managed stack nmade up of registers. For nost
expressions, the stack level wll never exceed eight, so we'l
get pretty good code out. O course, we also have to deal with
those odd cases where the stack |level DOES exceed eight, but
that's no problem either. W sinply let the stack spill over
into the CPU stack. For levels beyond eight, the code is no
worse than what we're generating now, and for levels less than
eight, it's considerably better

For the record, | have inplenented this concept, just to nmake
sure it works before | nmentioned it to you. It does. In
practice, it turns out that you can't really use all eight |evels
. you need at | east one register free to reverse the operand
order for division (sure w sh the 68000 had an XTHL, |ike the
8080!). For expressions that include function calls, we would
al so need a register reserved for them Still, there is a nice
i mprovenent in code size for npbst expressions.

So, you see, getting better code isn't that difficult, but it
does add conplexity to the our translator ... conplexity we can
do without at this point. For that reason, | STRONGLY suggest
that we continue to ignore efficiency issues for the rest of this
series, secure in the know edge that we can indeed i nprove the
code quality w thout throw ng away what we've done.

Next |esson, I'll show you how to deal with variables factors and
function calls. 1'Il also show you just how easy it is to handle
mul ti character tokens and enbedded white space.
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| NTRODUCTI ON
In the last installnent, we exanm ned the techniques used to parse
and translate a general math expression. W ended up wth a
sinmple parser that could handle arbitrarily conpl ex expressions,
with two restrictions:

0 No variables were allowed, only nunmeric factors

0 The nuneric factors were limted to single digits

In this installment, we'll get rid of those restrictions. W'|I
al so extend what we've done to include assignment statenents
function calls and. Remenber, t hough, t hat the second

restriction was nmminly self-inposed ... a choice of convenience



on our part, to make life easier and to |l et us concentrate on the

fundament al concepts. As you'll see in a bit, it's an easy
restriction to get rid of, so don't get too hung up about it.
We'l|l use the trick when it serves us to do so, confident that we

can discard it when we're ready to.

VARI ABLES

Most expressions that we see in practice involve variables, such
as

b*b+4*a*c

No parser is much good without being able to deal wth them
Fortunately, it's also quite easy to do.

Remenber that in our parser as it currently stands, there are two

kinds of factors allowed: integer constants and expressions
wi t hin parentheses. In BNF notation,

<factor> ::= <nunber> | (<expression>)
The '|' stands for "or", meaning of course that either form is a
legal formfor a factor. Remenber, too, that we had no trouble
knowi ng which was which ... the |ookahead character is a left

paren '(' in one case, and a digit in the other

It probably won't come as too rmuch of a surprise that a variable

is just another kind of factor. So we extend the BNF above to
read:

<factor> ::= <nunber> | (<expression>) | <variable>
Again, there is no anmbiguity: if the |[|ookahead character is a

letter, we have a variable; if a digit, we have a number. Back
when we transl ated the nunber, we just issued code to load the
nunmber, as inmediate data, into DO. Now we do the same, only we
| oad a vari abl e.

A minor conplication in the code generation arises fromthe fact
that nost 68000 operating systens, including the SK*DOS that |I'm
using, require the code to be witten in "position-independent"
form which basically nmeans that everything is PC-relative. The
format for a load in this |anguage is

MOVE X( PC), DO

where X is, of course, the variable nane. Arned with that, let's
nodi fy the current version of Factor to read:

{ Parse and Translate a Math Factor }



procedure Expression; Forward;

procedure Factor;
begi n
if Look ="' (" then begin
Match(' (");
Expr essi on;
Match(')");
end
else if |sAl pha(Look) then
EmtLn(' MOVE ' + GetNane + ' (PC), DO')
el se
EmtLn(' MOVE #' + GetNum + ', DO")

I've remarked before how easy it is to add extensions to the
parser, because of the way it's structured. You can see that
this still holds true here. This tinme it cost us all of two
extra lines of code. Notice, too, howthe if-else-else structure
exactly parallels the BNF syntax equati on.

K, conpile and test this new version of the parser. That didn't
hurt too badly, did it?

FUNCTI ONS

There is only one other comon kind of factor supported by nost
| anguages: the function call. |It's really too early for us to
deal with functions well, because we haven't yet addressed the
i ssue of paraneter passing. Wat's nore, a "real" |anguage woul d
i nclude a nechanismto support nore than one type, one of which
should be a function type. W haven't gotten there yet, either
But 1'd still like to deal with functions now for a couple of
reasons. First, it lets us finally wap up the parser in
sonmething very close to its final form and second, it brings up
a new i ssue which is very much worth tal ki ng about.

U till now, we've been able to wite what is called a
"predictive parser." That neans that at any point, we can know
by | ooking at the current |ookahead character exactly what to do
next. That isn't the case when we add functions. Every |anguage
has some naming rules for what <constitutes a |legal identifier

For the present, ours is sinmply that it is one of the letters

'a'..'z'. The problem is that a variable name and a function
name obey the same rules. So how can we tell which is which?
One way is to require that they each be declared before they are
used. Pascal takes that approach. The other is that we m ght

require a function to be followed by a (possibly enpty) paraneter
list. That's the rule used in C

Since we don't yet have a mechanismfor declaring types, let's
use the C rule for now Since we also don't have a nechanismto
deal with parameters, we can only handle enpty lists, so our
function calls will have the form



x()
Since we're not dealing wth paraneter lists yet, there is
nothing to do but to call the function, so we need only to issue
a BSR (call) instead of a MOVE.
Now that there are two possibilities for the "If |IsAl pha" branch

of the test in Factor, let's treat themin a separate procedure.
Modi fy Factor to read:

{ Parse and Translate a Math Factor }
procedure Expression; Forward;

procedure Factor;

begi n
if Look = ' (' then begin
Match(" (");
Expr essi on;
Match(')");
end
el se if |IsAl pha(Look) then
| dent
el se
EmtLn(' MOVE #' + GetNum + ', D0");
end;
(o }

and insert before it the new procedure

{ Parse and Translate an Identifier }

procedure |dent;
var Nane: char;

begi n
Name : = Get Nane;
if Look = "'(' then begin
Match(' (");
Match(')");
EmtLn('BSR ' + Name);
end
el se
EmtLn(' MOVE ' + Name + '(PC),D0")
end;
{o o }
K, conpile and test this version. Does it parse all lega

expressions? Does it correctly flag badly formed ones?

The inportant thing to notice is that even though we no |onger



have a predictive parser, there is little or no conplication
added with the recursive descent approach that we're using. At
the point where Factor finds an identifier (letter), it doesn't
know whether it's a variable nane or a function name, nor does it
really care. It sinply passes it on to Ident and leaves it up to
that procedure to figure it out. Ildent, in turn, sinmply tucks
away the identifier and then reads one nore character to decide
which kind of identifier it's dealing with.

Keep this approach in mnd. It's a very powerful concept, and it
shoul d be used whenever you encounter an anbiguous situation
requiring further | ookahead. Even if you had to |ook severa
t okens ahead, the principle would still work

MORE ON ERROR HANDLI NG

As long as we're talking philosophy, there's another inportant
issue to point out: error handling. Noti ce that although the
parser correctly rejects (alnost) every malfornmed expression we
can throw at it, with a neaningful error message, we haven't
really had to do nuch work to nake that happen. 1In fact, in the
whol e parser per se (from Ident through Expression) there are
only two calls to the error routine, Expected. Even those aren't
necessary ... if you'll look again in Term and Expression, you'l
see that those statenents can't be reached. | put them in early
on as a bit of insurance, but they're no |longer needed. Wy
don't you del ete them now?

So how did we get this nice error handling virtually for free?

It's sinply that 1've carefully avoided reading a character
directly wusing GetChar. Instead, 1've relied on the error
handling in GetNane, GetNum and Match to do all the error
checking for ne. Astute readers wll notice that sone of the
calls to Match (for exanple, the ones in Add and Subtract) are
al so unnecessary ... we already know what the character is by the
time we get there ... but it maintains a certain symetry to

| eave themin, and the general rule to always use Match instead
of GetChar is a good one.

I mentioned an "al nost" above. There is a case where our error
handling |eaves a bit to be desired. So far we haven't told our
parser what and end-of-line looks Ilike, or what to do wth

enbedded white space. So a space character (or any other
character not part of the recognized character set) sinply causes
the parser to termnate, ignoring the unrecogni zed characters.

It could be argued that this is reasonable behavior at this

point. 1In a "real" conpiler, there is usually another statenent
followi ng the one we're working on, so any characters not treated
as part of our expression will either be used for or rejected as

part of the next one.

But it's also a very easy thing to fix up, even if it's only
t enporary. All we have to do is assert that the expression
should end with an end-of-line , i.e., a carriage return



To see what |I'mtal king about, try the input line
1+2 <space> 3+4

See how the space was treated as a term nator? Now, to make the
conpiler properly flag this, add the line

if Look <> CR then Expected(' Newine');
in the main program just after the call to Expression. That
catches anything left over in the input stream Don't forget to
define CR in the const statenent:

CR = "M
As usual, reconpile the program and verify that it does what it's

supposed to.

ASSI GNVENT STATEMENTS

OK, at this point we have a parser that works very nicely. 1'd
like to point out that we got it wusing only 88 |Ilines of
execut abl e code, not <counting what was in the cradle. The

conpiled object file is a whopping 4752 bytes. Not bad,
considering we weren't trying very hard to save either source
code or object size. W just stuck to the KISS principle.

Of course, parsing an expression is not nmuch good w thout having
something to do with it afterwards. Expressions USUALLY (but not
al ways) appear in assignnent statements, in the form

<l dent > = <Expressi on>
W're only a breath away frombeing able to parse an assi gnnent

statenent, so let's take that Jlast step. Just after procedure
Expressi on, add the follow ng new procedure:

{ Parse and Translate an Assi gnment Statenent }

procedure Assignnent;
var Nane: char;

begi n
Name : = Get Nane;
Mat ch(' =");

Expr essi on;
EmtLn('LEA' + Name + '(PC), AQ');
Em t Ln(' MOVE DO, (A0)')

end;

Note again that the code exactly parallels the BNF. And notice
further that the error checking was painless, handl ed by Get Name
and Match.



The reason for the two Ilines of assenmbler has to do wth a
peculiarity in the 68000, which requires this kind of construct
for PC-relative code

Now change the call to Expression, in the main program to one to
Assignnent. That's all there is to it.

Son of a gun! W are actually conpiling assignnent statenents.
If those were the only kind of statements in a |language, all we'd
have to do is put this in a loop and we'd have a full-fl edged
compi | er!

Wel |, of course they're not the only kind. There are also little
items |like control statements (IFs and |oops), procedures,
decl arations, etc. But cheer up. The arithnmetic expressions
that we've been dealing with are anong the nost challenging in a
| anguage. Conpared to what we've already done, contro

statenents will be easy. |'Il be covering them in the fifth
installment. And the other statements will all fall in |Iine, as

l ong as we renenber to KISS.

MULTI - CHARACTER TOKENS

Throughout this seri es, I've been carefully restricting
everything we do to single-character tokens, all the while
assuring you that it wouldn't be difficult to extend to nulti-
character ones. I don't knowif you believed ne or not ...

woul dn't really blame you if you were a bit skeptical. I
continue to use that approach in the sessions which follow,

because it hel ps keep conplexity away. But I'd like to back up
those assurances, and wap up this portion of +the parser, by
showi ng you just how easy that extension really is. |In the
process, we'll also provide for enbedded white space. Before you
make the next few changes, though, save the current version of
the parser away under another name. | have some nore uses for it
in the next installment, and we'll be working with the single-

character version.

Most conpil ers separate out the handling of the input streaminto
a separate nodule called the lexical scanner. The idea is that
the scanner deals with all the character-by-character input, and
returns the separate units (tokens) of the stream There may
come a tinme when we'll want to do sonething |like that, too, but
for now there is no need. We can handle the nulti-character
t okens that we need by very slight and very |ocal nodifications
to Cet Name and Get Num

The usual definition of an identifier is that the first character
nmust be a letter, but the rest can be al phanuneric (letters or
nunbers). To deal wth this, we need one other recognizer
function

{ Recogni ze an Al phanuneric }



function IsAl Num(c: char): bool ean;

begi n

| sSAl Num : = I sAl pha(c) or IsDigit(c);
end;
{ }
Add this function to your parser. | put nmine just after IsDigit.
VWhile you're at it, mght as well include it as a pernmanent

menber of Cradle, too.

Now, we need to nodify function GetNane to return a string
i nstead of a character:

{ Get an ldentifier }

function GetNane: string;
var Token: string;
begi n
Token : = ;
if not IsAlpha(Look) then Expected(' Nane');
whil e 1 sAl NumLook) do begin
Token : = Token + UpCase(Look);
Get Char ;
end;
Get Nane : = Token;
end;

Simlarly, nodify GetNumto read:

{ Get a Nunber }

function GetNum string;

var Val ue: string;

begin
Value :="'";
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin

Val ue : = Val ue + Look;
Get Char;
end;
Get Num : = Val ue;
end;
{o o }

Amazi ngly enough, that 1is wvirtually all the changes required to
the parser! The local variable Nane in procedures Ildent and
Assignnent was originally declared as "char", and nust now be
declared string[8]. (Clearly, we could nake the string Ilength



I onger if we chose, but npst assenblers linmt the | ength anyhow.)
Make this change, and then reconpile and test. _NOW do you
believe that it's a sinple change?

VWH TE SPACE

Before we | eave this parser for awhile, let's address the issue
of white space. As it stands now, the parser wll barf (or
sinply terminate) on a single space character enbedded anywhere
in the input stream That's pretty unfriendly behavior. So
let's "productionize" the thing a bit by elinmnating this |ast
restriction.

The key to easy handling of white space is to cone up wth a
sinmple rule for how the parser should treat the input stream and
to enforce that rule everywhere. Up till now, because white
space wasn't permtted, we've been able to assune that after each
parsi ng action, the | ookahead character Look contains the next
meani ngful character, so we could test it inmrediately. Qur
desi gn was based upon this principle.

It still sounds like a good rule to ne, so that's the one we'l
use. This neans that every routine that advances the input
stream nmust skip over white space, and | eave the next non-white
character in Look. Fortunately, because we've been careful to
use GetNane, GetNum and Match for nobst of our input processing,
it is only those three routines (plus 1Init) that we need to
nodi fy.

Not surprisingly, we start wth yet another new recognizer
routine:

{ Recogni ze Wite Space }

function IsWiite(c: char): bool ean

begi n

IsWhite :=c in [" ', TAB];
end;
R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
W also need a routine that wll eat white-space characters,
until it finds a non-white one:
(o o o }

{ Skip Over Leading Wite Space }

procedure Ski pWite;
begi n
whil e | sWite(Look) do
Get Char;



Now, add calls to Skipwite to Match, GetNanme, and GetNum as
shown bel ow

{ Match a Specific | nput Character }

procedure Match(x: char);
begi n
if Look <> x then Expected('''' + x + '""'")
el se begin
Get Char ;
Ski pWhi t e;
end;
end;

{ Get an ldentifier }

function Get Nane: string;
var Token: string;
begin
Token : = ;
if not IsAlpha(Look) then Expected(' Nane');
whil e 1 sAl Num(Look) do begin
Token : = Token + UpCase(Look);

Get Char;
end;
Get Name : = Token
Ski pWhi t e;
end;
[ }

{ Get a Nunber }

function GetNum string;

var Val ue: string;

begin
Value :="'";
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin

Val ue : = Val ue + Look;
Get Char;
end;
Get Num : = Val ue;
Ski pWhi t e;
end;
R R T e PR P e PP P R R PEE LT T EEPEEETET PR }
(Note that | rearranged Match a bit, wthout changing the

functionality.)

Finally, we need to skip over |eading blanks where we "prinme the



pump” in Init:

{ I'nitialize }

procedure Init;

begin

Get Char;

Ski pWhi t e;
end;
{o }
Make these changes and reconpile the program You will find that
you will have to nove Match bel ow SkipWwhite, to avoid an error

message fromthe Pascal conpiler. Test the programas always to
make sure it works properly.

Since we've made quite a few changes during this session, |I'm
reproducing the entire parser bel ow

o }
program par se;

R e LT LR T R R PP LR PP PR PEEEE TP EEPEEETEP PR }
{ Constant Declarations }

const TAB = /|;

CR = "M
o }
{ Variable Declarations }
var Look: char; { Lookahead Character }

(o oo }

{ Read New Character From | nput Stream}

procedure Get Char;
begi n

Read( Look);
end;

{ Report an Error }

procedure Error(s: string);
begi n
WitelLn;
WiteLn("G ‘'FError: ', s, '".");
end;

{ Report Error and Halt }



procedure Abort(s: string);
begi n

Error(s);

Hal t;
end;

{ Report What Was Expected }

procedure Expected(s: string);
begi n

Abort (s + ' Expected');
end;

{ Recogni ze an Al pha Character }

function |IsAl pha(c: char): bool ean;
begi n

| SAl pha := UpCase(c) in['A.."Z'];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phanuneric }

function IsAl Num(c: char): bool ean;
begi n

| SAl Num : = I sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=c in ["+, "-'];

end;

{ Recogni ze Wite Space }

function IsWiite(c: char): bool ean;
begi n



IsWhite :=cin [" ', TAB];
end;

{ Skip Over Leading Wite Space }

procedure Ski pWite;

begi n
whil e | sWite(Look) do
Get Char;
end;
o mmmm e e

{ Match a Specific | nput Character }

procedure Match(x: char);
begi n
if Look <> x then Expected('''' + x + '""'")
el se begin
Get Char;
Ski pWhi t e;
end;
end;

{ Get an ldentifier }

function GetNane: string;
var Token: string;
begin
Token :="'";
if not IsAlpha(Look) then Expected(' Nane');
whil e |1 sAl Num(Look) do begin
Token : = Token + UpCase(Look);

Get Char;
end;
Get Name : = Token;
Ski pWhi t e;
end;
{ ______________________________________________________________

{ Get a Nunber }

function GetNum string;
var Val ue: string;
begi n
Value :="'";
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin
Val ue : = Val ue + Look;
Get Char;
end;
Get Num : = Val ue;



Ski pWhi t e;
end;

{ Qutput a String with Tab }

procedure Em t(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }

procedure Em tLn(s: string);
begin

Em t(s);

WitelLn;
end;

{ Parse and Translate a ldentifier }

procedure |dent;
var Nane: string[8];
begi n
Name: = Get Nane;
if Look = ' (' then begin

Match(" (");
Match(')');
EmtLn('BSR ' + Nanme);
end
el se
EmtLn(' MOVE ' + Nane + '(PC),D0'");
end;
{ _______________________________________________________________

{ Parse and Translate a Math Factor }
procedure Expression; Forward;

procedure Factor;

begi n

if Look = ' (' then begin
Match(' (');
Expr essi on;
Match(')");
end

else if |sAl pha(Look) then
| dent

el se

EmitLn(' MOVE #' + GetNum + ', D0")
end;



{ Recognize and Translate a Miultiply }

procedure Miltiply;

begin

Mat ch(' *');

Fact or;

Em tLn(' MULS (SP)+, D0");
end;
e }

{ Recogni ze and Translate a Divide }

procedure Divide;
begin
Match('/"');
Fact or;
EmtLn(' MOVE (SP)+, D1');
EmtLn(' EXS.L DO");
Em tLn(' D VS D1, D0'");
end;

{ Parse and Translate a Math Term}

procedure Term
begi n
Fact or;
while Look in ['"*', '"/'] do begin
Em tLn(' MOVE DO, -(SP)');
case Look of
rooMul tioply;
/' Divide;
end;
end;
end;

{ Recogni ze and Translate an Add }

procedure Add;

begi n

Mat ch(' +');

Term

EmitLn(' ADD (SP)+,D0");
end;
R EEEE R, }

{ Recogni ze and Translate a Subtract }

procedure Subtract;



begi n
Mat ch('-");
Term
Em tLn(' SUB (SP) +, DO ) ;
Em tLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
i f 1sAddop(Look) then
EmitLn(' CLR DO")
el se
Term
whi | e |1 sAddop(Look) do begin
EmitLn(' MOVE DO, -(SP)"');
case Look of
'+': Add;
'-': Subtract;
end;
end;
end;

{ Parse and Translate an Assi gnnent Statenent }

procedure Assignment;
var Nane: string[8];

begin
Name : = Get Nane;
Mat ch(' =");

Expr essi on;
EmtLn('LEA " + Name + '(PC), AQ');
Em tLn(' MOVE DO, (A0)")

end;

{ Initialize }

procedure Init;
begi n

Get Char;
Ski pWhi t e;
end;

{ Main Program}

begi n
Init;
Assi gnnent ;



If Look <> CR then Expected(' NewLi ne');

end.

{o }
Now t he parser is conplete. |It's got every feature we can put in
a one-line "conmpiler.” Tuck it away in a safe place. Next tinme
we'll nove on to a new subject, but we'll still be talking about
expressions for quite awhile. Next installnent, | plan to talk a

bit about interpreters as opposed to conpilers, and show you how
the structure of the parser changes a bit as we change what sort
of action has to be taken. The information we pick up there wll
serve us in good stead |ater on, even if you have no interest in
interpreters. See you next tine.
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| NTRODUCTI ON

In the first three installnments of this series, we've |ooked at
parsing and conpiling math expressions, and worked our way grad-
ually and nethodically fromdealing with very sinple one-term
one-character "expressions" up through nore general ones, finally
arriving at a very conplete parser that could parse and translate
conplete assignnent statenments, wth nulti-character tokens,
enbedded white space, and function calls. This tinme, |'mgoing
to wal k you through the process one nore tine, only with the goa
of interpreting rather than conpiling object code.

Since this is a series on conpilers, why should we bother wth
interpreters? Sinply because | want you to see how the nature of
the parser changes as we change the goals. | also want to unify
the concepts of the two types of translators, so that you can see
not only the differences, but also the simlarities.

Consi der the assignment statenment
X =2*y+3

In a conpiler, we want the target CPU to execute this assignnment
at EXECUTION time. The translator itself doesn't do any arith-
metic ... it only issues the object code that will cause the CPU
to do it when the code is executed. For the exanple above, the
conpil er would issue code to conmpute the expression and store the
results in variable x.

For an interpreter, on the other hand, no object code is gen-

er at ed. Instead, the arithnetic is conmputed i mredi ately, as the
parsing is going on. For the exanple, by the time parsing of the
statement is conplete, x will have a new val ue.

The approach we've been taking in this whole series is called
"syntax-driven translation." As you are aware by now, the struc-
ture of the parser is very closely tied to the syntax of the
producti ons we parse. W have built Pascal procedures that rec-



ogni ze every | anguage construct. Associ ated with each of these
constructs (and procedures) is a corresponding "action," which
does whatever nmakes sense to do once a construct has been
recogni zed. In our conpiler so far, every action involves
emtting object code, to be executed | ater at execution time. In
an interpreter, every action involves sonmething to be done im
medi atel y.

VWhat 1'd like you to see here is that the layout ... the struc-
ture ... of the parser doesn't <change. |It's only the actions
t hat change. So if you can wite an interpreter for a given
| anguage, you can also wite a conpiler, and vice versa. Yet, as
you wll see, there ARE differences, and significant ones.
Because the actions are different, the procedures that do the
recogni zing end up being witten differently. Specifically, in
the interpreter the recognizing procedures end up bei ng coded as
FUNCTI ONS that return numeric values to their callers. None of
the parsing routines for our conpiler did that.

Qur conpiler, in fact, 1is what we nmight call a "pure" conpiler
Each tinme a construct is recognized, the object code is entted
| MMEDI ATELY. (That's one reason the code is not very efficient.)
The interpreter we'll be building here is a pure interpreter, in
the sense that there is no translation, such as "tokenizing,"
performed on the source code. These represent the two extrenes
of translation. In the real world, translators are rarely so
pure, but tend to have bits of each technique.

I can think of several exanples. I've already nentioned one:
nost interpreters, such as Mcrosoft BASIC, for exanple, trans-
| ate the source code (tokenize it) into an internediate formso
that it'll be easier to parse real tinme.

Anot her exanple is an assenbler. The purpose of an assenbl er, of
course, is to produce object code, and it nornmally does that on a
one-to-one basis: one object instruction per |ine of source code.
But al most every assenbler also permits expressions as argunents.
In this case, the expressions are always constant expressions,
and so the assenbler isn't supposed to issue object <code for
them Rather, it "interprets" the expressions and computes the
correspondi ng constant result, which is what it actually enmts as
obj ect code.

As a matter of fact, we could use a bit of that ourselves. The

translator we built in the previous installnment wll dutifully
spit out object code for conplicated expressions, even though
every termin the expression is a constant. |In that case it
woul d be far better if the translator behaved a bit nmore |[|ike an

interpreter, and just conputed the equival ent constant result.

There is a concept in conpiler theory called "lazy" translation.
The idea is that you typically don't just ent code at every
action. 1In fact, at the extrene you don't emt anything at all

until you absolutely have to. To acconplish this, the actions
associated with the parsing routines typically don't just emt
code. Sonetimes they do, but often they sinply return in-
formation back to the caller. Armed with such information, the



caller can then make a better choice of what to do.
For exanple, given the statenent
X =x+3-2-(5-4 |,

our conmpiler will dutifully spit out a streamof 18 instructions
to | oad each paranmeter into registers, perform the arithnetic,
and store the result. A lazier evaluation would recognize that
the arithmetic involving constants can be evaluated at conpile
time, and woul d reduce the expression to

X =x +0

An even lazier evaluation would then be smart enough to figure
out that this is equivalent to

X =X ,

which calls for no action at all. We coul d reduce 18 in-
structions to zero!

Note that there is no chance of optimzing this way in our trans-
lator as it stands, because every action takes place i mediately.

Lazy expression evaluation can produce significantly better
obj ect code than we have been able to so far. | warn you,
t hough: it conplicates the parser code considerably, because each
routi ne now has to nake decisions as to whether to emt object
code or not. Lazy evaluation is certainly not naned that because
it's easier on the conpiler witer!

Since we're operating mainly on the KISS principle here, | won't
go into nuch nmore depth on this subject. | just want you to be
aware that you can get sone code optim zation by conbining the
techni ques of conpiling and interpreting. In particular, you
shoul d know that the parsing routines in a smarter translator
will generally return things to their caller, and sonetines
expect things as well. That's the main reason for going over

interpretation in this installnment.

THE | NTERPRETER

K, now that you know WHY we're going into all this, let's do it.
Just to give you practice, we're going to start over with a bare
cradle and build up the translator all over again. This tine, of
course, we can go a bit faster

Since we're now going to do arithnmetic, the first thing we need

to do is to change function GetNum which up till now has always
returned a character (or string). Now, it's better for it to
return an integer. MAKE A COPY of the cradle (for goodness's

sake, don't change the version in Cradle itself!!) and nodify
Get Num as fol |l ows:



{ Get a Nunber }

function GetNum integer

begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Ord(Look) - Od('0");
Get Char;

end;

{ Parse and Transl ate an Expression }

functi on Expression: integer
begi n

Expression : = Get Num
end;

Finally, insert the statenent

W itel n(Expression);

at the end of the main program Now conpile and test.

All this program does is to "parse" and translate a single
i nteger "expression." As al ways, you should nmake sure that it
does that with the digits 0..9, and gives an error nessage for
anyt hing else. Shouldn't take you very | ong!

OK, now let's extend this to include addops. Change Expression
to read:
o }

{ Parse and Transl ate an Expression }

functi on Expression: integer
var Val ue: integer;
begi n
if 1sAddop(Look) then
Value := 0
el se
Val ue : = Get Num
whi | e | sAddop(Look) do begin
case Look of
"+': begin
Mat ch(' +');
Val ue : = Value + Get Num



end;

"-': begin
Match('-");
Val ue := Value - Get Num
end;
end;
end;
Expressi on : = Val ue;
end;
{o }

The structure of Expression, of course, parallels what we did
before, so we shouldn't have too much trouble debugging it.
There's been a SIGN FICANT devel opnent, though, hasn't there?
Procedures Add and Subtract went away! The reason is that the
action to be taken requires BOTH argunments of the operation.
coul d have chosen to retain the procedures and pass into themthe
val ue of the expression to date, which is Value. But it seened
cleaner to me to keep Value as strictly a local variable, which
meant that the code for Add and Subtract had to be noved in |ine.
This result suggests that, while the structure we had devel oped
was nice and clean for our sinple-mnded translation schenme, it
probably wouldn't do for use with lazy evaluation. That's a
little tidbit we'll probably want to keep in mnd for |later

K, did the translator work? Then let's take the next step
It's not hard to figure out what procedure Term shoul d now | ook
i ke. Change every call to GetNumin function Expression to a
call to Term and then enter the following formfor Term

{ Parse and Translate a Math Term}

function Term integer
var Val ue: integer;
begi n
Val ue : = Get Num
while Look in ['"*', '"/'] do begin
case Look of

"*': begin
Mat ch(' *');
Val ue := Value * Get Num
end;
"/': begin
Match('/");
Val ue := Value div Get Num
end;
end;
end;
Term : = Val ue;
end;



Now, try it out. Don't forget two things: first, we're dealing
with integer division, so, for exanple, 1/3 should come out zero.
Second, even though we can output rmulti-digit results, our input
is still restricted to single digits.

That seens like a silly restriction at this point, since we have
al ready seen how easily function GetNum can be extended. So
let's go ahead and fix it right now The new version is

{ Get a Nunber }

function Get Num i nteger
var Val ue: integer;
begin
Val ue : = 0;
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin
Value := 10 * Value + Ord(Look) - Od('0");
Get Char;
end;
Get Num : = Val ue;
end;

If you've conpiled and tested this version of the interpreter
the next step is toinstall function Factor, conplete with pa-

rent hesi zed expressions. We'Ill hold off a bit [Ionger on the
vari abl e nanes. First, change the references to GetNum in
function Term so that they call Factor instead. Now code the

foll owi ng version of Factor:

{ Parse and Translate a Math Factor }
function Expression: integer; Forward;

function Factor: integer

begin
if Look = "'(' then begin
Match(' (");
Factor := Expression
Match(')");
end
el se
Factor := Get Num
end;
{o }

That was pretty easy, huh? We're rapidly closing in on a usefu
i nterpreter.



A LI TTLE PHI LOSOPHY

Bef ore going any further, there's sonething 1'd like to call to

your attention. It's a concept that we' ve been making use of in
all these sessions, but | haven't explicitly nmentioned it up til

now. | think it's time, because it's a concept so useful, and so
powerful, that it nmkes all the difference between a parser

that's trivially easy, and one that's too conplex to deal with.

In the early days of conpiler technol ogy, people had a terrible
time figuring out howto deal with things |ike operator prece-
dence ... the way that nultiply and divide operators take
precedence over add and subtract, etc. | renmenber a coll eague of
some thirty years ago, and how excited he was to find out how to
do it. The technique used involved building two stacks, upon
whi ch you pushed each operator or operand. Associated with each
operator was a precedence level, and the rules required that you
only actually perfornmed an operation ("reducing”" the stack) if
the precedence |l evel showing on top of the stack was correct. To
make |ife nore interesting, an operator like ')' had different
precedence | evels, depending upon whether or not it was already
on the stack. You had to give it one value before you put it on
the stack, and another to decide when to take it off. Just for
the experience, | worked all of this out for myself a few years
ago, and | can tell you that it's very tricky.

W haven't had to do anything like that. |In fact, by now the
parsing of an arithmetic statenment should seem|like child' s play.
How did we get so lucky? And where did the precedence stacks go?

A simlar thing is going on in our interpreter above. You just
KNOWthat in order for it to do the conputation of arithnetic
statements (as opposed to the parsing of them, there have to be
nunbers pushed onto a stack sonmewhere. But where is the stack?

Finally, in conpiler textbooks, there are a nunber of places
where stacks and other structures are discussed. |In the other
| eadi ng parsing nmethod (LR), an explicit stack is used. In fact,
the technique is very nmnuch |like the old way of doing arithmetic
expressions. Another concept 1is that of a parse tree. Authors
like to draw diagrans of the tokens in a statement, connected
into a tree with operators at the internal nodes. Again, where
are the trees and stacks in our technique? W haven't seen any.
The answer in all cases is that the structures are inplicit, not
explicit. In any conputer |anguage, there is a stack involved
every time you call a subroutine. \Whenever a subroutine is
called, the return address is pushed onto the CPU stack. At the
end of the subroutine, the address is popped back off and contro
is transferred there. In a recursive | anguage such as Pascal
there can also be local data pushed onto the stack, and it, too,
returns when it's needed.

For exanple, function Expression contains a |local paraneter
called Value, which it fills by a call to Term Suppose, inits
next call to Term for the second argunent, that Termcalls
Factor, which recursively calls Expression again. That "in-



stance" of Expression gets another value for its copy of Value.

VWhat happens to the first Value? Answer: it's still on the
stack, and wll be there again when we return from our cal
sequence.

In other words, the reason things look so sinple is that we've
been maki ng maxi num use of the resources of the |anguage. The
hierarchy levels and the parse trees are there, all right, but
they're hidden within the structure of the parser, and they're
taken care of by the order with which the various procedures are
called. Now that you've seen how we do it, it's probably hard to
i magi ne doing it any other way. But | can tell you that it took
a lot of years for compiler witers to get that smart. The early
conpilers were too conplex too inmagine. Funny how t hi ngs get
easier with a little practice.

The reason |1've brought all this upis as both a |lesson and a
war ni ng. The | esson: things can be easy when you do themright.
The warning: take a | ook at what you're doing. |[|f, as you branch

out on your own, Yyou begin to find a real need for a separate
stack or tree structure, it may be tinme to ask yourself if you're
| ooking at things the right way. Maybe you just aren't using the
facilities of the | anguage as well as you coul d be.

The next step is to add variable nanes. Now, though, we have a
slight problem For the conpiler, we had no problemin dealing
with variable names ... we just issued the names to the assenbler
and let the rest of the programtake care of allocating storage
for them Here, on the other hand, we need to be able to fetch
the values of the variables and return themas the return val ues
of Factor. W need a storage mechani sm for these vari abl es.

Back in the early days of personal conputing, Tiny BASICI|ived.
It had a grand total of 26 possible variables: one for each
letter of the al phabet. This fits nicely with our concept of
singl e-character tokens, so we'll try the sanme trick. 1In the
begi nning of your interpreter, just after the declaration of
vari abl e Look, insert the line:

Table: Array['A ..'Z ] of integer

We also need to initialize the array, so add this procedure:

{ I'nitialize the Variable Area }

procedure | nitTable;
var i: char;
begi n
for i :="A to 'Z do
Tabl e[i] := O;



You nust also insert a call to InitTable, in procedure Init.
DON' T FORGET to do that, or the results may surprise you

Now t hat we have an array of variables, we can nodify Factor to
use it. Since we don't have a way (so far) to set the variabl es,

Factor w Il always return zero values for them but let's go
ahead and extend it anyway. Here's the new version:

{ Parse and Translate a Math Factor }
function Expression: integer; Forward,

function Factor: integer

begin
if Look ="' (' then begin
Match(' (");
Factor : = Expression
Match(')');
end
el se if |IsAl pha(Look) then
Factor := Tabl e[ Get Nane]
el se
Factor := Get Num
end;
RS }
As al ways, conpile and test this version of the program Even

though all the variables are now zeros, at |east we can correctly
parse the conpl ete expressions, as well as catch any badly fornmed
expressi ons.

| suppose you realize the next step: we need to do an assignnent
statement so we can put something INTO the variables. For now,
let's stick to one-liners, though we will soon be handling
mul tiple statenments.

The assignnent statenment parallels what we did before:

{ Parse and Translate an Assi gnnent Statenent }

procedure Assi gnnent;
var Nane: char;

begi n

Name : = Get Nane;

Mat ch(' =");

Tabl e[ Nane] := Expression;
end;



To test this, | added a temporary wite statement in the main
program to print out the value of A Then | tested it wth
vari ous assignnents to it.

Of course, an interpretive |language that can only accept a single
line of program is not of much value. So we're going to want to
handle nultiple statenments. This nerely nmeans putting a |oop

around the <call to Assignnent. So let's do that now. But what
shoul d be the loop exit criterion? G ad you asked, Dbecause it
brings up a point we've been able to ignore up till now.

One of the nost tricky things to handle in any translator is to
determ ne when to bail out of a given construct and go | ook for
sonething else. This hasn't been a problemfor us so far because
we've only allowed for a single kind of construct ... either an
expression or an assignnent statenent. Wen we start adding
| oops and different kinds of statenents, you'll find that we have
to be very careful that things termnate properly. |If we put our
interpreter in a loop, we need a way to quit. Term nating on a
new i ne i s no good, because that's what sends us back for another
line. W could always |let an unrecogni zed character take us out,
but that would cause every run to end in an error nessage, which
certainly seens uncool

What we need is a termination character. | vote for Pascal's
endi ng period ('."). A minor conplication is that Turbo ends
every normal line with TWO characters, the carriage return (CR)
and line feed (LF). At the end of each line, we need to eat
t hese characters before processing the next one. A natural way
to do this would be wth procedure Match, except that Match's
error nessage prints the character, which of course for the CR
and/or LF won't | ook so great. \What we need is a special proce-
dure for this, which we'll no doubt be using over and over. Here
it is:

{ Recognize and Skip Over a Newline }

procedure NewLi ne;

begi n
if Look = CR then begin
Get Char;
if Look = LF then
Get Char;
end;
end;
{ }
Insert this procedure at any convenient spot ... | put mnmine just

after Match. Now, rewite the main programto |ook like this:



{ Main Program}

begi n
Init;
r epeat
Assi gnnent ;
NewLi ne;
until Look = "'.";
end.

Note that the test for a CRis now gone, and that there are al so
no error tests within NewLine itself. That's OK, though
whatever is left over in ternms of bogus characters will be caught
at the beginning of the next assignnent statenent.

Well, we now have a functioning interpreter. It doesn't do us a
ot of good, however, since we have no way to read data in or
write it out. Sure would help to have some I/ O

Let's wap this session wup, then, by adding the I/O routines.

Since we're sticking to single-character tokens, I'Il use '?" to
stand for a read statenent, and '!' for a wite, with the char-
acter immediately following them to be used as a one-token
"paraneter list." Here are the routines:
e R R P EEE }

{ I'nput Routine }

procedure | nput;
begi n

Mat ch(' ?');

Read( Tabl e[ Get Nane] ) ;
end;

{ Qutput Routine }

procedure Qutput;

begin

Match('!");

WitelLn(Tabl e[ Get Nane] ) ;
end;
{o }
They aren't very fancy, | admt ... no pronpt character on input,
for example ... but they get the job done.

The correspondi ng changes in the nmain program are shown bel ow.
Note that we use the usual trick of a case statenment based upon
the current | ookahead character, to deci de what to do.

{ Main Program}



begi n

Init;
repeat
case Look of
"2 I nput;
"1 Qutput;
el se Assignnent;
end;
NewLi ne;
until Look = "'.";
end.
(o }
You have now conpleted a real, working interpreter. |It's pretty
sparse, but it works just like the "big boys." It includes three

ki nds of program statenments (and can tell the difference!), 26
variables, and |/0O statenents. The only things that it |acks,

really, are control statenments, subroutines, and sone kind of
program editing function. The programediting part, I'mgoing to
pass on. After all, we're not here to build a product, but to
| earn things. The control statenents, we'll cover in the next
i nstall ment, and the subroutines soon after. |'m anxious to get
on with that, so we'll leave the interpreter as it stands.

I hope that by now you're convinced that the limtation of sin-
gl e-character nanes and the processing of white space are easily

taken care of, as we did in the |last session. This tinme, if
you'd like to play around with these extensions, be ny guest
they're "left as an exercise for the student.” See you next
tinme.
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| NTRODUCTI ON

In the first four installments of this series, we've been
concentrating on the parsing of math expressions and assignnent
statenents. In this installnment, we'll take off on a new and
exciting tangent: that of parsing and translating contro
constructs such as |F statenents.

This subject is dear to nmy heart, because it represents a turning
point for ne. I had been playing with the parsi ng of
expressions, just as we have done in this series, but | stil

felt that | was a LONG way from being able to handle a conplete

| anguage. After all, REAL | anguages have branches and | oops and
subroutines and all that. Perhaps you' ve shared sonme of the sanme
t hought s. Awhi | e back, though, | had to produce contro

constructs for a structured assenbl er preprocessor | was writing.
| magi ne ny surprise to discover that it was far easier than the
expression parsing | had already been through. I renmenber
thi nki ng, "Hey! This is EASY!" After we've finished this session

"1l bet you'll be thinking so, too.



THE PLAN

In what follows, we'll be starting over again with a bare cradl e,
and as we've done twi ce before now, we'll build things up one at
atime. W'Il also be retaining the concept of single-character
t okens that has served us so well to date. This neans that the
"code" will look a little funny, with '"i' for IF, 'w for WH LE
etc. But it helps us get the concepts down pat w thout fussing
over lexical scanning. Fear not ... eventually we'll see

somet hing | ooking like "real" code.

| also don't want to have us get bogged down in dealing with
statenents other than branches, such as the assignnent statenents
we've been working on. W've already denponstrated that we can
handl e them so there's no point carrying them around as excess
baggage during this exercise. So what |'ll do instead is to use
an anonynous statenent, "other", to take the place of the non-
control statements and serve as a place-holder for them W have
to generate sone kind of object code for them (we're back into
conmpiling, not interpretation), so for want of anything else I']
just echo the character input.

K, then, starting with yet another copy of the cradle, let's
define the procedure:

{ Recogni ze and Translate an "Qther" }

procedure O her;
begi n

Em t Ln( Get Nane) ;
end;

Now i nclude a call to it in the main program thus:

o }
{ Main Program}
begin

Init;

O her;
end.
R EEE }

Run the program and see what you get. Not very exciting, is it?
But hang in there, it's a start, and things will get better.

The first thing we need is the ability to deal with nore than one
statenent, since a single-line branch is pretty linmted. W did
that in the |ast session on interpreting, but this time let's get
alittle nore formal. Consider the foll owi ng BNF



<progran® ::= <bl ock> END
<block> ::= [ <statenent> ]*

This says that, for our purposes here, a programis defined as a
bl ock, followed by an END statenment. A block, in turn, consists
of zero or nore statenents. W only have one kind of statenent,
so far.

What signals the end of a block? It's sinply any construct that
isn'"t an "other" statenent. For now, that neans only the END
statenment.

Armed with these ideas, we can proceed to build up our parser

The code for a program (we have to call it DoProgram or Pasca
will conplain, is:
(o o }

{ Parse and Translate a Program}

procedure DoProgramn

begi n
Bl ock;
if Look <> 'e' then Expected('End');
EmitLn(' END )

end;
{o }
Notice that |'ve arranged to emit an "END' comand to the

assenbl er, which sort of punctuates the output code, and makes
sense considering that we're parsing a conplete program here.

The code for Block is:

{ Recogni ze and Translate a Statenent Bl ock }

procedure Bl ock

begin
while not(Look in ['e']) do begin
O her;
end;
end;
R PR }

(Fromthe formof the procedure, you just KNOWwe're going to be
adding to it in a bit!)

K, enter these routines into your program Replace the call to
Block in the main program by a <call to DoProgram Nowtry it
and see how it works. Well, it's still not rmuch, but we're
getting cl oser.



SOVE GROUNDWORK

Before we begin to define the various control constructs, we need
to lay a bit nore groundwork. First, a word of warning: | won't
be using the same syntax for these constructs as you're famliar
with from Pascal or C. For exanple, the Pascal syntax for an IF
is:

| F <condi ti on> THEN <st at enent >

(where the statenent, of course, may be conpound).

The C version is simlar

IF ( <condition> ) <statenent>

Instead, 1'Il be using sonmething that | ooks nore |ike Ada:

| F <conditi on> <bl ock> ENDI F

In other words, the IF construct has a specific termnation
symbol. This avoids the dangling-else of Pascal and C and al so
precludes the need for the brackets {} or begin-end. The synt ax
" m showi ng you here, in fact, is that of the |language KISS that
"Il be detailing in later installnents. The ot her constructs
will also be slightly different. That shouldn't be a rea
probl em for you. Once you see howit's done, you'll realize that
it really doesn't matter so much which specific syntax is
i nvol ved. Once the syntax is defined, turning it into code is
strai ghtforward.

Now, all of the <constructs we'll be dealing with here involve
transfer of control, which at the assenbl er-|anguage |evel neans
condi tional and/or unconditional branches. For exanple, the

sinmple |IF statenent

| F <condition> A ENDIF B ...
must get translated into

Branch if NOT condition to L
A
L: B

It's clear, then, that we're going to need sone nore procedures
to help us deal with these branches. 1've defined two of them
bel ow. Procedure NewlLabel generates unique |abels. This is done



via the sinple expedient of calling every label 'Lnn', where nn
is a label nunber starting from zero. Procedure PostLabel just
outputs the | abels at the proper place.

Here are the two routines:

{ Generate a Uni que Label }

functi on NewLabel: string;
var S: string;

begi n
Str(LCount, S);
NewLabel :='L' + S
I nc(LCount);
end;
o o }

{ Post a Label To Qutput }

procedur e PostLabel (L: string);
begin

WiteLn(L, '":');
end;

Noti ce that we've added a new global variable, LCount, so you
need to change the VAR declarations at the top of the programto
| ook |ike this:

var Look : char; { Lookahead Character }
Lcount: integer; { Label Counter }

Al so, add the following extra initialization to Init:

LCount := O;

(DON' T forget that, or your |abels can look really strange!)

At this point 1'd also like to show you a new Kkind of notation

If you conpare the formof the IF statenent above with the as-
senbl er code that nust be produced, you can see that there are
certain actions associated wth each of the keywords in the
statenent :

IF: First, get the condition and issue the code for it.
Then, create a unique | abel and emit a branch if fal se.

ENDI F: Enit the [|abel



These actions can be shown very concisely if we wite the syntax
this way:

I F
<condi ti on> { Condition;
L = NewLabel
Em t (Branch False to L); }
<bl ock>
ENDI F { PostLabel (L) }

This is an exanple of syntax-directed translation. W' ve been
doing it all along ... we've just never witten it down this way
before. The stuff in curly brackets represents the ACTIONS to be
taken. The nice part about this representationis that it not
only shows what we have to recognize, but also the actions we
have to perform and in which order. Once we have this syntax,
the code alnpst wites itself.

About the only thing left to dois to be a bit nore specific
about what we nean by "Branch if false."

I'"'massunming that there will be code executed for <condition>
that will perform Bool ean al gebra and conpute some result. It
shoul d al so set the condition flags corresponding to that result.
Now, the usual convention for a Boolean variable is to |et 0000
represent "false,” and anything else (sone use FFFF, sone 0001)
represent "true."

On the 68000 the condition flags are set whenever any data is
noved or calculated. |[If the data is a 0000 (corresponding to a
fal se condition, remenber), the zero flag will be set. The code
for "Branch on zero" is BEQ So for our purposes here

BEQ <=> Branch if false
BNE <=> Branch if true

It's the nature of the beast that nost of the branches we see
will be BEQs ... we'll be branching AROUND the code that's
supposed to be executed when the condition is true.

THE | F STATEMENT

Wth that bit of explanation out of the way, we're finally ready

to begin coding the IF-statement parser. |In fact, we've al npost
al ready done it! As usual, 1'll be using our single-character
approach, with the character '"i' for IF, and 'e' for ENDF (as

well as END ... that dual nature causes no confusion). I
al so, for now, skip conpletely the character for the branch con-
dition, which we still have to define.



The code for Dolf is:

{ Recogni ze and Translate an I F Construct }

procedure Bl ock; Forward,;

procedure Dol f;
var L: string;
begi n
Match('i');
L : = NewLabel;
Condi ti on;
EmtLn('BEQ ' + L);
Bl ock;
Match('e');
Post Label (L);
end;

Add this routine to your program and change Block to reference
it as follows:

{ Recogni ze and Translate a Statenent Bl ock }

procedure Bl ock;
begi n
whil e not(Look in ["e']) do begin
case Look of

"i': Dolf;
'o': Other;
end;
end;
end;
R EEE }
Notice the reference to procedure Condition. Eventual |y, we'l

write a routine that can parse and translate any Bool ean con-
dition we care to give it. But that's a whole installnent by
itself (the next one, in fact). For now, let's just nake it a
dummy that emts sonme text. Wite the follow ng routine:

{ Parse and Transl ate a Bool ean Condition }
{ This version is a dunmy }

Procedure Condition;
begin

Em tLn(' <condition>");
end;



Insert this procedure in your programjust before Dolf. Now run
the program Try a string |ike

ai bece
As you can see, the parser seems to recognize the construct and
inserts the object code at the right places. Now try a set of
nested IF's, |ike

ai bi cedef e

It's starting to | ook real, eh?

Now that we have the general idea (and the tools such as the
notation and the procedures NewlLabel and PostlLabel), it's a piece
of cake to extend the parser to include other constructs. The

first (and also one of the trickiest) is to add the ELSE cl ause
to IF. The BNF is

| F <condition> <block> [ ELSE <bl ock>] ENDIF

The tricky part arises sinply because there is an optional part,
whi ch doesn't occur in the other constructs.

The correspondi ng out put code shoul d be

<condi ti on>
BEQ L1
<bl ock>
BRA L2

L1: <bl ock>

L2:

This leads us to the follow ng syntax-directed translation:

I F

<condi ti on> { L1 = NewlLabel
L2 = NewlLabel
Emit (BEQ L1) }

<bl ock>

ELSE { Emt(BRA L2);
Post Label (L1) }

<bl ock>

ENDI F { PostLabel (L2) }

Conparing this with the case for an ELSE-less |F gives us a clue
as to how to handl e both situations. The code below does it.
(Note that I use an 'I' for the ELSE, since 'e' is otherw se
occupi ed) :



{ Recogni ze and Translate an I F Construct }

procedure Dol f;
var L1, L2: string;

begi n
Match('i');
Condi tion;
L1 : = NewlLabel
L2 := L1;
EmtLn('BEQ ' + L1);
Bl ock;
if Look = 'I" then begin
Match('l"');
L2 : = NewLabel ;
EmtLn('BRA "' + L2);
Post Label (L1);
Bl ock;
end;
Mat ch('e');
Post Label (L2);
end;
{o }

There you have it. A conmplete IF parser/translator, in 19 lines
of code.

Gve it atry now Try something |ike
ai bl cede

Did it work? Now, just to be sure we haven't broken the ELSE-
| ess case, try

ai bece
Now try sone nested IF's. Try anything you like, including sone
badly formed statenents. Just renenber that 'e'" is not a |l ega

"ot her" statenent.

THE WHI LE STATEMENT

The next type of statenent should be easy, since we already have
the process down pat. The syntax |'ve chosen for the WH LE
statenment is

VWHI LE <condi ti on> <bl ock> ENDWHI LE

I know, | know, we don't REALLY need separate kinds of ter-
m nators for each construct ... you can see that by the fact that
in our one-character version, 'e' is used for all of them But I



al so renmenber MANY debuggi ng sessions in Pascal, trying to track
down a wayward END that the conpiler obviously thought | neant to
put sonmewhere el se. It's been ny experience that specific and
uni que keywords, although they add to the vocabulary of the
| anguage, give a bit of error-checking that is worth the extra
work for the conpiler witer.

Now, consider what the WH LE should be translated into. It
shoul d be:

L1: <condition>
BEQ L2
<bl ock>
BRA L1

L2:

As before, conparing the two representati ons gives us the actions
needed at each point.

VWHI LE { L1 = NewLabel
Post Label (L1) }

<condi ti on> { EmMt(BEQ L2) }

<bl ock>

ENDVWHI LE { Em t(BRA L1);
Post Label (L2) }

The code follows inmediately fromthe syntax:

{ Parse and Translate a WHI LE Statenent }

procedure DoWhil e;
var L1, L2: string;
begi n
Match('w );
L1 : = NewLabel
L2 : = NewLabel ;
Post Label (L1);
Condi tion;
EmtLn('BEQ ' + L2);
Bl ock;
Mat ch('e');
EmitLn('BRA " + L1);
Post Label (L2);
end;

Since we've got a new statenment, we have to add a call to it
wi t hin procedure Bl ock:



{ Recogni ze and Transl ate a Statenent Bl ock }

procedure Bl ock
begin
while not(Look in ['e', "I']) do begin
case Look of
"i': Dolf;
'"w: DoWile;
el se O her;
end;
end;
end;

No ot her changes are necessary.

K, try the new program Note that this time, the <condition>
code is INSIDE the upper |abel, which is just where we wanted it.
Try sone nested |loops. Try sone loops within IF's, and sonme |IF' s

within loops. |If you get a bit confused as to what you should
type, don't be discouraged: you wite bugs in other |anguages,
too, don't you? It'lIl look a lot nore neaningful when we get

full keywords.

| hope by now that you're beginning to get the idea that this
really 1S easy. Al we have to do to acconodate a new construct
is to wrk out the syntax-directed translation of it. The code
alnmost falls out from there, and it doesn't affect any of the
ot her routines. Once you've gotten the feel of the thing, you'l
see that you can add new constructs about as fast as you can
dream t hem up.

THE LOOP STATEMENT

We could stop right here, and have a |anguage that works. It's
been shown nmany times that a high-order | anguage with only two
constructs, the IF and the WHILE, is sufficient to wite struc-
tured code. But we're on a roll now, so let's richen up the
repertoire a bit.

This construct is even easier, since it has no condition test at

all ... it's aninfinite |oop. What's the point of such a | oop?
Not much, by itself, but Ilater on we're going to add a BREAK
conmand, that wll give us a way out. This makes the | anguage

considerably richer than Pascal, which has no break, and also
avoids the funny WH LE(1) or WH LE TRUE of C and Pascal

The syntax is sinply
LOOP <bl ock> ENDLOOP

and the syntax-directed translation is:



LOOP { L = NewLabel
Post Label (L) }

<bl ock>

ENDL OOP { Emt(BRA L }
The correspondi ng code is shown below. Since 1've already used
"I for the ELSE, |I've used the last letter, 'p', as the

"keyword" this tinme.

{ Parse and Translate a LOOP Statenent }

procedure DoLoop;
var L: string;
begi n

Match(' p');

L : = NewlLabel ;

Post Label (L);

Bl ock;

Match('e');

EmtLn('BRA "' + L);
end;
O R R PR D }

VWhen you insert this routine, don't forget to add a line in Block
to call it.

REPEAT- UNTI L
Here's one construct that | lifted right from Pascal. The syntax
is

REPEAT <bl ock> UNTIL <condition>

and the syntax-directed translation is:

REPEAT { L = NewLabel
Post Label (L) }

<bl ock>

UNTI L

<condi ti on> { EmMt(BEQ L) }

As usual, the code falls out pretty easily:



{ Parse and Transl ate a REPEAT Statement }

procedure DoRepeat;
var L: string;
begi n

Match('r');

L := NewlLabel ;

Post Label (L);

Bl ock;

Mat ch(' u');

Condi tion;

EmtLn('BEQ "' + L);
end;
R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
As before, we have to add the call to DoRepeat wthin Bl ock
This time, there's a difference, though. | decided to wuse 'r'

for REPEAT (naturally), but | also decided to use 'u' for UNTIL.
This nmeans that the 'u' nust be added to the set of characters in
the while-test. These are the characters that signal an exit

fromthe current block ... the "follow' characters, in conpiler
j argon.
R }

{ Recogni ze and Translate a Statenent Bl ock }

procedure Bl ock;

begi n
while not(Look in['e", "I'", "u]) do begin
case Look of
"i': Dolf;
"w : DoWwhil e;
"p': DoLoop;
"r': DoRepeat;
el se O her;
end;
end;
end;
{ }

THE FOR LOOP

The FOR loop is a very handy one to have around, but it's a bear
to translate. That's not so nmuch because the construct itself is
hard ... it's only a loop after all ... but sinply because it's
hard to inmplement in assenbler |anguage. Once the code is
figured out, the translation is straightforward enough.

C fans love the FOR-loop of that |anguage (and, in fact, it's
easier to code), but |I've chosen instead a syntax very nmuch |ike
the one from good ol' BASIC:



FOR <i dent> = <exprl1l> TO <expr2> <bl ock> ENDFOR

The translation of a FOR loop can be just about as difficult as
you choose to make it, depending upon the way you decide to
define the rules as to howto handle the limts. Does expr2 get
eval uated every time through the loop, for exanple, or is it
treated as a constant [imt? Do you always go through the | oop
at least once, as in FORTRAN, or not? It gets sinpler if you
adopt the point of view that the construct is equivalent to:

<i dent> = <expr 1>
TEMP = <expr2>
WHI LE <i dent> <= TEMP

<bl ock>

ENDWHI LE
Notice that with this definition of the | oop, <block> will not be
executed at all if <exprl>is initially larger than <expr2>.

The 68000 code needed to do this is trickier than anything we've

done so far. | had a couple of tries at it, putting both the
counter and the upper limt on the stack, both in registers,
etc. | finally arrived at a hybrid arrangenent, in which the

| oop counter is in nenory (so that it can be accessed within the
| oop), and the upper Iimt is on the stack. The translated code
cane out like this:

<i dent > get name of | oop counter

<expr 1> get initial value

LEA <ident>(PC), AO address the |oop counter

SUBQ #1, DO predecrenment it

MOVE DO, ( AO) save it

<expr 1> get upper limt

MOVE DO, - ( SP) save it on stack

L1: LEA <ident>(PC), A0 address |oop counter

MOVE ( AO), DO fetch it to DO

ADDQ #1, DO bunmp the counter

MOVE DO, ( AO) save new val ue

CwWP (SP), DO check for range

BLE L2 skip out if DO > (SP)

<bl ock>

BRA L1 | oop for next pass

L2: ADDQ #2, SP cl ean up the stack

Wowl That seens |like a lot of code ... the Iline containing
<bl ock> seens to al nost get lost. But that's the best | could do
withit. | guess it helps to keep in mnd that it's really only
sixteen words, after all. |If anyone else can optimze this

better, please let ne know.

Still, the parser routine is pretty easy now that we have the



{ Parse and Translate a FOR Statenent }

procedure DoFor;
var L1, L2: string;
Nane: char;

begi n
Mat ch(' f');
L1 : = NewlLabel ;
L2 : = NewlLabel ;
Nane : = Get Name;
Mat ch(' =");

Expr essi on;

EmitLn(' SUBQ #1, D0');

EmtLn('LEA " + Narme + ' (PC), AQ');
EmitLn(' MOVE DO, (AO)"');

Expr essi on;

Em tLn(' MOVE DO, -(SP)');

Post Label (L1);

EmtLn('LEA ' + Nane + '(PC),A0");
EmitLn(' MOVE (A0), DO');
EmitLn(' ADDQ #1, D0');

EmitLn(' MOVE DO, (AO)"');
EmtLn(' CMP (SP), DO");
EmtLn('BGT ' + L2);

Bl ock;

Mat ch('e');

EmtLn('BRA ' + L1);

Post Label (L2);

EmitLn(' ADDQ #2, SP');

end;
{ }
Since we don't have expressions in this parser, | used the sane

trick as for Condition, and wote the routine

{ Parse and Transl ate an Expression }
{ This version is a dunmy }

Procedure Expression;

begi n

Em tLn(' <expr>');
end;
{ }
Gve it atry. Once again, don't forget to add the <call in
Bl ock. Since we don't have any input for the dunmy version of

Expression, a typical input |ine would | ook something like

afi =bece



Well, it DOES generate a |ot of code, doesn't it? But at | east
it's the RI GHT code.

THE DO STATEMENT

Al this made me wish for a sinpler version of the FOR | oop. The
reason for all the code above is the need to have the |oop
counter accessible as a variable within the loop. If all we need
is a counting loop to make us go through something a specified
nunber of times, but don't need access to the counter itself,
there is a nuch easier solution. The 68000 has a "decrenment and
branch nonzero" instruction built in which is ideal for counting.
For good neasure, let's add this construct, too. This wll be
the | ast of our |oop structures.

The syntax and its translation is:

DO
<expr> { Em t(SUBQ #1, DO);
L = NewlLabel
Post Label (L);
Emi t (MOVE DO, - (SP) }
<bl ock>
ENDDO { Em t(MOVE (SP)+, DO;

Emi t (DBRA DO, L) }

That's quite a bit sinpler! The loop will execute <expr> tines.
Here's the code:

{ Parse and Translate a DO Statenent }

procedur e Dodo;
var L: string;
begi n
Match('d");
L := NewLabel;
Expr essi on;
EmitLn(' SUBQ #1, D0');
Post Label (L);
EmitLn(' MOVE DO, -(SP)"');
Bl ock;
Em tLn(' MOVE (SP)+, D0');
Em tLn(' DBRA DO,"' + L);
end;

I think you'll have to agree, that's a whole |Iot sinpler than the
classical FOR. Still, each construct has its place.



THE BREAK STATEMENT

Earlier | prom sed you a BREAK statenent to acconmpany LOOP. This
is one I|I'msort of proud of. On the face of it a BREAK seens
really tricky. M first approach was to just use it as an extra
term nator to Block, and split all the loops into two parts, just
as | did with the ELSE half of an IF. That turns out not to
wor k, though, because the BREAK statenment is al nost certainly not
going to show up at the sane |level as the loop itself. The npst
likely place for a BREAK is right after an IF, which would cause
it to exit to the IF construct, not the enclosing | oop. WRONG
The BREAK has to exit the inner LOOP, even if it's nested down
into several |evels of IFs.

My next thought was that | would just store away, in sone gl oba
vari abl e, the ending | abel of the innernost | oop. That doesn't
work either, because there may be a break from an inner |oop
foll owed by a break froman outer one. Storing the |abel for the
i nner |1 oop would cl obber the |abel for the outer one. So the
gl obal variable turned into a stack. Things were starting to get
nmessy.

Then | decided to take ny own advice. Renenber in the |ast
session when | pointed out how well the inplicit stack of a
recursive descent parser was serving our needs? | said that if
you begin to see the need for an external stack you m ght be
doi ng sonething wong. Wll, I was. It is indeed possible to
let the recursion built into our parser take care of everything,
and the solution is so sinple that it's surprising.

The secret is to note that every BREAK statenent has to occur
within a block ... there's no place else for it to be. So all we
have to do is to pass into Block the exit address of the
i nnernost | oop. Then it can pass the address to the routine that
translates the break instruction. Since an |IF statenent doesn't
change the | oop | evel, procedure Dolf doesn't need to do anything
except pass the label into ITS blocks (both of then). Si nce
| oops DO change the level, each Iloop construct sinply ignores
what ever | abel is above it and passes its own exit |abel along.

All this is easier to show you than it is to describe. [
denonstrate with the easiest |oop, which is LOOP

{ Parse and Translate a LOOP Statenent }

procedure DolLoop;
var L1, L2: string;
begi n
Match(' p');
L1 : = NewLabel
L2 : = NewLabel ;
Post Label (L1);
Bl ock(L2);
Mat ch('e');
EmtLn('BRA ' + L1);



Post Label (L2);

end;

{o }
Noti ce that DoLoop now has TWO | abel s, not just one. The second
is to give the BREAK instruction a target to junmp to. If there

is no BREAK within the |oop, we've wasted a | abel and cluttered
up things a bit, but there's no harm done.

Note al so that Bl ock now has a paraneter, which for |oops wll
al ways be the exit address. The new version of Block is:

{ Recogni ze and Translate a Statenent Bl ock }

procedure Bl ock(L: string);

begi n
while not(Look in ['e", "I', "u']) do begin
case Look of
"i': Dolf(L);
"W : DoWwhil e;
"p': DoLoop;
"r': DoRepeat;
"f': DoFor;
"d': DoDo;
"b': DoBreak(L);
el se O her;
end;
end;
end;
{o o }

Again, notice that all Block does with the label is to pass it
into Dolf and DoBreak. The loop constructs don't needit,
because they are going to pass their own | abel anyway.

The new version of Dolf is:

{ Recogni ze and Translate an |IF Construct }

procedure Bl ock(L: string); Forward;

procedure Dol f(L: string);
var L1, L2: string;
begi n

Match('i');

Condi tion;

L1 : = NewLabel

L2 := L1,

EmitLn(' BEQ ' + L1);

Bl ock(L);

if Look = 'I1' then begin



Match('l"');

L2 : = NewlLabel ;
EmtLn('BRA ' + L2);
Post Label (L1);

Bl ock(L);
end;
Mat ch('e');
Post Label (L2);
end;
{o }

Here, the only thing that changes is the addition of the
paraneter to procedure Block. An IF statement doesn't change the
|l oop nesting level, so Dolf just passes the |I|abel along. No
matter how many levels of |IF nesting we have, the sane | abel will
be used.

Now, renenber that DoProgram also calls Block, so it now needs to

pass it a label. An attenpt to exit the outernopst block is an
error, so DoProgram passes a null [label which is caught by
DoBr eak:
R EEEEE LR R REEEE }

{ Recogni ze and Transl ate a BREAK }

procedure DoBreak(L: string);
begi n
Match('b');
if L <>"'" then
EmtLn('BRA ' + L)
el se Abort('No | oop to break from);
end;

{ Parse and Translate a Program}

procedur e DoProgram

begin
Bl ock('"');
if Look <> 'e' then Expected('End');
EmitLn(' END )

end;

That ALMOST takes care of everything. Gve it atry, see if you
can "break" it <pun>. Careful, though. By this tinmne we've used
so many letters, it's hard to think of characters that aren't now

representing reserved words. Remenber: before you try the
program you're going to have to edit every occurence of Block in
the other |oop constructs to include the new paraneter. Do it

just like |I did for LOOP.



I said ALMOST above. There is one slight problem if you take a
hard look at the code generated for DO vyou'll see that if you
break out of this Ioop, the value of the |oop counter is stil
left on the stack. W're going to have to fix that! A shanme ...
that was one of our smaller routines, but it can't be hel ped.
Here's a version that doesn't have the probl em

{ Parse and Translate a DO Statenent }

procedur e Dodo;
var L1, L2: string;
begin
Mat ch('d');
L1 : = NewLabel
L2 : = NewLabel;
Expr essi on;
Em tLn(' SUBQ #1, D0');
Post Label (L1);
EmtLn(' MOVE DO, -(SP)');
Bl ock(L2);
Em tLn(' MOVE (SP)+, D0");
EmitLn(' DBRA DO,"' + L1);
EmitLn(' SUBQ #2, SP');
Post Label (L2);
Em tLn(' ADDQ #2, SP');
end;

The two extra instructions, the SUBQ and ADDQ, take care of
| eaving the stack in the right shape.

CONCLUSI ON

At this point we have created a nunber of control constructs ...
a richer set, really, than that provided by al nost any other pro-
granm ng | anguage. And, except for the FOR loop, it was pretty
easy to do. Even that one was tricky only because it's tricky in
assenbl er | anguage.

I"lI'l conclude this session here. To wap the thing up with a red
ri bbon, we really should have a go at having real keywords
i nstead of these nickey-nmouse single-character things. You' ve
al ready seen that the extension to nmulti-character words is not
difficult, but in this case it will make a big difference in the
appearance of our input code. [1'll save that little bit for the
next installment. |In that installnment we'll also address Bool ean
expressions, so we can get rid of the dummy version of Condition
that we've used here. See you then.

For reference purposes, here is the conpleted parser for this
sessi on:



{ Constant Declarations }

const TAB = /|;
CR ="M
o mmmm e e
{ Variable Declarations }
var Look : char; { Lookahead Character }
Lcount: integer; { Label Counter }
{ ______________________________________________________________

{ Read New Character From Input Stream}

procedure Get Char;
begi n

Read( Look) ;
end;

{ Report an Error }

procedure Error(s: string);
begi n

WitelLn;

WiteLn("G 'Error: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;

{ Report What Was Expected }

procedure Expected(s: string);
begi n

Abort (s + ' Expected');
end;



{ Match a Specific |Input Character }

procedure Match(x: char);

begi n
if Look = x then Get Char
el se Expected('''" + x + "'"""");
end;
{ ______________________________________________________________

{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begin

| sAl pha := UpCase(c) in ['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean
begin

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=c in ["+", "-'];

end;

{ Recogni ze White Space }

function IsWhite(c: char): bool ean;
begi n

IsWite :=c in [' ', TAB];
end;

{ Skip Over Leading Wite Space }

procedure Ski pWite;
begi n
whil e | sWite(Look) do
Get Char;
end;



{ Get an ldentifier }

functi on Get Nane: char;

begi n
i f not IsAl pha(Look) then Expected(' Nane');
Get Nane : = UpCase(Look);
Get Char;

end;

{ Get a Nunber }

function GetNum char;

begin
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;
Get Char;

end;

{ Generate a Uni que Label }

functi on NewLabel: string;
var S: string;
begi n
Str(LCount, S);
NewLabel :="'L" + S
I nc(LCount);
end;

{ Post a Label To Qutput }

procedure PostLabel (L: string);
begi n

WiteLn(L, '":');

end;

{ Qutput a String with Tab }

procedure Emit(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }



procedure EmtLn(s: string);
begi n

Emit(s);

WitelLn;
end;

{ Parse and Transl ate a Bool ean Condition }

procedure Condition
begi n

EmtLn(' <condition>");
end;

{ Parse and Translate a Math Expression }

procedur e Expression;
begin

EmitLn(' <expr>');
end;

{ Recogni ze and Translate an I F Construct }

procedure Bl ock(L: string); Forward;

procedure Dol f(L: string);
var L1, L2: string;
begi n
Match('i');
Condi ti on;
L1 : = NewlLabel
L2 := L1,
EmtLn('BEQ ' + L1);
Bl ock(L);
if Look = 'I" then begin
Match('l");
L2 : = NewLabel;
EmitLn('BRA ' + L2);
Post Label (L1);

Bl ock(L);
end;
Match('e');
Post Label (L2);
end;
{ ______________________________________________________________

{ Parse and Translate a WHI LE St atenent }



procedure DoWhil e;
var L1, L2: string;
begi n
Match("w );
L1 : = NewLabel;
L2 : = NewlLabel ;
Post Label (L1);
Condi tion;
EmtLn('BEQ "' + L2);
Bl ock(L2);
Mat ch('e');
EmtLn('BRA ' + L1);
Post Label (L2);
end;

{ Parse and Translate a LOOP Statenent }

procedure DolLoop;
var L1, L2: string;
begi n
Match(' p');
L1 : = NewlLabel;
L2 : = NewLabel ;
Post Label (L1);
Bl ock(L2);
Mat ch('e');
EmtLn('BRA ' + L1);
Post Label (L2);
end;

{ Parse and Transl ate a REPEAT Statenent }

procedure DoRepeat;
var L1, L2: string;
begi n
Match('r');
L1 : = NewlLabel;
L2 : = NewlLabel ;
Post Label (L1);
Bl ock(L2);
Mat ch(' u');
Condi ti on;
EmtLn('BEQ ' + L1);
Post Label (L2);
end;

{ Parse and Translate a FOR Statenent }

procedure DoFor;
var L1, L2: string;



Nanme: char;

begi n
Mat ch(' f');
L1 : = NewlLabel ;
L2 := NewLabel ;
Nane : = Get Name;
Mat ch(' =");

Expr essi on;

EmitLn(' SUBQ #1, D0');

EmtLn('LEA "' + Name + ' (PC), A0');
Em tLn(' MOVE DO, (AQ)"');

Expr essi on;

Em tLn(' MOVE DO, -(SP)');

Post Label (L1);

EmitLn('LEA ' + Nane + ' (PC),A0");
EmitLn(' MOVE (A0), DO');
EmitLn(' ADDQ #1, D0');

EmitLn(' MOVE DO, (AO)"');
EmitLn(' CMP (SP), D0");
EmitLn(' BGT ' + L2);

Bl ock(L2);

Mat ch('e');

EmitLn('BRA " + L1);

Post Label (L2);

EmitLn(' ADDQ #2, SP');

end;

{ Parse and Translate a DO Statenent }

procedur e Dodo;
var L1, L2: string;
begin
Mat ch('d');
L1 : = NewlLabel ;
L2 : = NewlLabel ;
Expr essi on;
EmitLn(' SUBQ #1, D0');
Post Label (L1);
EmitLn(' MOVE DO, -(SP)"');
Bl ock(L2);
Em tLn(' MOVE (SP)+, D0');
EmitLn(' DBRA DO," + L1);
Em tLn(' SUBQ #2, SP');
Post Label (L2);
Em tLn(' ADDQ #2, SP');
end;

{ Recogni ze and Transl ate a BREAK }

procedure DoBreak(L: string);
begi n



Mat ch('b');
EmitLn('BRA ' + L);
end;

{ Recogni ze and Translate an "Qther" }
procedure O her;
begi n

Em t Ln( Get Nare) ;
end;

{ Recogni ze and Translate a Statenent Bl ock }

procedure Bl ock(L: string);

begi n
while not(Look in ['e", "I', "u']) do begin
case Look of
"i': Dolf(L);
"W : DoWwhil e;
"p': DoLoop;
"r': DoRepeat;
"f': DoFor;
"d': DoDo;
"b': DoBreak(L);
el se O her;
end;
end;
end;
{ ______________________________________________________________

{ Parse and Translate a Program}

procedur e DoProgram
begin
Bl ock('"');
if Look <> 'e' then Expected('End');
EmitLn(' END )
end;

{ Initialize }

procedure Init;
begin
LCount := O;
Get Char;
end;



{ Main Program}

begi n

Init;

DoPr ogr am
end.
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| NTRODUCTI ON

In Part V of this series, we took a |look at control constructs,
and devel oped parsing routines to translate them into object
code. W ended up with a nice, relatively rich set of
constructs.

As we |eft the parser, though, there was one big hole in our
capabilities: we did not address the issue of the branch
condition. To fill the void, | introduced to you a dumy parse
routine called Condition, which only served as a pl ace-keeper for
the real thing.

One of the things we'll do in this sessionis to plug that hole
by expanding Condition into a true parser/transl ator

THE PLAN

We're going to approach this installnment a bit differently than
any of the others. In those other installnments, we started out
i medi ately with experinments using the Pascal conpiler, building
up the parsers from very rudinentary beginnings to their fina
forms, w thout spending much time in planning beforehand. That's
call ed coding without specs, and it's usually frowned upon. We
could get away with it before because the rules of arithnetic are
pretty well established ... we know what a '+' sign is supposed
to mean wi thout having to discuss it at length. The sanme is true
for branches and | oops. But the ways in which progranmm ng
| anguages inplenment logic vary quite a bit from |anguage to
| anguage. So before we begin serious coding, we'd better first
make up our mnds what it is we want. And the way to do that is
at the level of the BNF syntax rules (the GRAMVAR).

THE GRAMVAR

For some tinme now, we've been inplenenting BNF syntax equations
for arithnmetic expressions, without ever actually witing them
down all in one place. It's time that we did so. They are:



<expression> ::
<terne
<factor>

<unary op> <term> [ <addop> <ternp]*
<factor> [ <mul op> factor]*
<integer> | <variable> | ( <expression>)

(Remenber, the nice thing about this grammar is that it enforces
t he operator precedence hierarchy that we normally expect for
al gebra.)

Actually, while we're on the subject, I'd like to amend this
granmar a bit right now. The way we've handled the unary m nus
is a bit awkward. |'ve found that it's better to wite the

grammar this way:

<expressi on> <terne [<addop> <ternp]*

<ternmp .= <signed factor> [<mul op> factor]*
<signed factor> ::= [ <addop>] <factor>
<factor> ;.= <integer> | <variable> | (<expression>)

This puts the job of handling the unary m nus onto Factor, which
is where it really bel ongs.

This doesn't nmean that you have to go back and recode the
progranms you've already witten, although you're free to do so if
you like. But I will be using the new syntax from now on.

Now, it probably won't come as a shock to you to learn that we
can define an anal ogous grammar for Bool ean al gebra. A typica
set or rules is:

<b-term> [<orop> <b-ternk]*

<not -factor> [ AND <not-factor>]*

[ NOT] <b-factor>

<b-literal> | <b-variable> | (<b-expression>)

<b- expressi on>:
<b-terne :
<not - f act or >
<b-factor>

Notice that in this grammar, the operator AND is analogous to

"*' and OR (and exclusive OR) to '+ . The NOT operator is
anal ogous to a unary nnus. This hierarchy is not absolutely
standard ... sone |anguages, notably Ada, treat all |ogica
operators as having the same precedence level ... but it seens
nat ur al

Notice also the slight difference between the way the NOT and the
unary mnus are handl ed. In algebra, the unary mnminus is
considered to go with the whole term and so never appears but
once in a given term So an expression |ike

or worse yet,
a- -b

is not allowed. |In Boolean al gebra, though, the expression



a AND NOT b

makes perfect sense, and the syntax shown allows for that.

RELOPS

OK, assuming that you're willing to accept the grammar |'ve shown
here, we now have syntax rules for both arithmetic and Bool ean
al gebr a. The sticky part comes in when we have to conbine the
two. Wiy do we have to do that? Well, the whol e subject cane up
because of the need to process the "predicates” (conditions)
associated with control statements such as the IF. The predicate
is required to have a Bool ean value; that is, it nust evaluate to
either TRUE or FALSE. The branch is then taken or not taken

depending on that value. \What we expect to see going on in
procedure Condition, then, is the evaluation of a Boolean
expressi on.

But there's nmore to it than that. A pure Bool ean expression can
i ndeed be the predicate of a control statement ... things |ike

IF a AND NOT b THEN . ...

But nore often, we see Bool ean al gebra show up in such things as

IFE (x >= 0) and (x <= 100) THEN ...

Here, the two terms in parens are Bool ean expressions, but the
i ndi vidual terns being conpared: x, 0, and 100, are NUMERIC in
nature. The RELATI ONAL OPERATORS >= and <= are the catalysts by
which the Boolean and the arithmetic ingredients get nmerged
t oget her.

Now, in the exanple above, the ternms being conmpared are just
that: terns. However, in general each side can be a math
expression. So we can define a RELATION to be:

<relation> ::= <expression> <rel op> <expressi on>

where the expressions we're talking about here are the old
nunmeric type, and the relops are any of the usual synbols

= <> (or !=), < > <=, and >=

If you think about it a bit, you'll agree that, since this kind
of predicate has a single Boolean value, TRUE or FALSE, as its
result, it is really just another kind of factor. So we can
expand the definition of a Boolean factor above to read:



<b-factor> ::= <b-literal >
| <b-variabl e>
| (<b-expression>)
| <relation>

THAT's the connection! The relops and the relation they define
serve to wed the two kinds of algebra. It is worth noting that
this inplies a hierarchy where the arithnmetic expression has a
Hl GHER precedence that a Boolean factor, and therefore than al
the Bool ean operators. If you wite out the precedence |evels
for all the operators, you arrive at the following |ist:

Level Synt ax El enent Oper at or

0 factor literal, variable

1 si gned factor unary m nus

2 term *

3 expression +, -

4 b-factor literal, variable, relop

5 not - f act or NOT

6 b-term AND

7 b- expression OR, XOR
If we're willing to accept that many precedence levels, this
grammar seens reasonable. Unfortunately, it won't work! The
granmar may be great in theory, but it's no good at all in the

practice of a top-down parser. To see the problem consider the
code fragnent:

IF ((((((A+B+C <0) AND....

When the parser is parsing this code, it knows after it sees the
| F token that a Bool ean expression is supposed to be next. So it
can set up to begin evaluating such an expression. But the first
expression in the exanple is an ARl THVETI C expression, A+ B + C.
What's worse, at the point that the parser has read this nuch of
the input |ine:

LE CCCCCCA

it still has no way of knowi ng which kind of expression it's
dealing wth. That won't do, because we nust have different
recogni zers for the two cases. The situation can be handled
wi t hout changing any of our definitions, but only if we're
willing to accept an arbitrary anmount of backtracking to work our
way out of bad guesses. No conpiler witer in his right mnd



woul d agree to that.

VWhat's going on here is that the beauty and el egance of BNF
grammar has nmet face to face with the realities of conpiler
t echnol ogy.

To deal wth this situation, conpiler witers have had to nake
conpromses so that a single parser can handle the grammar
wi t hout backtracki ng.

FI XI NG THE GRAMVAR

The problem that we've encountered cones up because our
definitions of both arithnmetic and Bool ean factors permt the use
of par ent hesi zed expressions. Since the definitions are
recursive, we can end up wth any nunber of | evel s of
par ent heses, and the parser can't know which kind of expression
it's dealing with.

The solution is sinple, although it ends wup causing profound
changes to our granmmar. We can only allow parentheses in one
kind of factor. The way to do that varies considerably from
| anguage to |language. This is one place where there is NO
agreenent or convention to help us.

VWhen N kl aus Wrth designed Pascal, the desire was to |inmt the
nunber of |evels of precedence (fewer parse routines, after all).
So the OR and exclusive OR operators are treated just like an
Addop and processed at the level of a math expression

Simlarly, the ANDis treated like a Milop and processed with
Term The precedence | evels are

Level Synt ax El enent Oper at or

0 factor literal, variable
1 si gned factor unary m nus, NOT
2 term * [/, AND

3 expression +, -, OR

Notice that there is only ONE set of syntax rules, applying to
both kinds of operators. According to this granmmar, then
expressions |ike

x + (y AND NOT z) DIV 3

are perfectly legal. And, in fact, they ARE ... as far as the
parser is concerned. Pascal doesn't allow the mxing of
arithnmetic and Bool ean variables, and things |like this are caught
at the SEMANTIC | evel, when it comes tine to generate code for
them rather than at the syntax |evel.

The authors of Ctook a dianetrically opposite approach: they
treat the operators as different, and have sonething nuch nore
akin to our seven levels of precedence. 1In fact, in Cthere are



no fewer than 17 levels! That's because C also has the operators

=", "+=" and its kin, '<<', ">>" ) '"++', '--'  etc. Ironically,
although in Cthe arithmetic and Boolean operators are treated
separately, the variables are NOT ... there are no Bool ean or

|l ogical variables in C, so a Boolean test can be made on any
i nteger val ue.

We'll do something that's sort of in-between. I"'mtenpted to
stick nostly wth the Pascal approach, since that seenms the
sinplest froman inplenentation point of view, but it results in
some funnies that | never |liked very nuch, such as the fact that,
in the expression

IF (c >="A") and (c <= "'Z") then ..

the parens above are REQU RED. | never understood why before,
and neither my conpiler nor any human ever explained it very
well, either. But now, we can all see that the 'and' operator

havi ng the precedence of a multiply, has a higher one than the
rel ati onal operators, so without the parens the expression is
equivalent to

IFc > ("A and c) <= 'Z then
whi ch doesn't make sense.

In any case, |'ve elected to separate the operators into
different levels, although not as many as in C

<b- expression> ::
<b-ternr
<not - f act or >
<b-factor>

<rel ati on>
<expressi on>

<b-term> [<orop> <b-terne]*

<not -factor> [ AND <not-factor>]*

[ NOT] <b-factor>

<b-literal> | <b-variable> | <relation>
| <expression> [<rel op> <expression]
<term> [ <addop> <ternp]*

<ternmp : <si gned factor> [<nul op> factor]*
<si gned factor>::= [<addop>] <factor>
<factor> : <integer> | <variable> | (<b-expression>)

This grammar results in the sane set of seven |levels that |
showed earlier. Really, it's alnost the sane grammar ... | just
renmoved the option of parenthesized b-expressions as a possible
b-factor, and added the relation as a |legal form of b-factor

There is one subtle but crucial difference, which is what makes
the whole thing work. Notice the square brackets in the
definition of a relation. This nmeans that the relop and the
second expression are OPTI ONAL

A strange consequence of this granmmar (and one shared by C) is
that EVERY expression is potentially a Boolean expression. The
parser will always be |ooking for a Bool ean expression, but wll
"settle" for an arithmetic one. To be honest, that's going to
sl ow down the parser, because it has to wade through nore |ayers
of procedure calls. That's one reason why Pascal compilers tend



to compile faster than C conpilers. If it's raw speed you want,
stick with the Pascal syntax.

THE PARSER

Now that we've gotten through the decision-making process, we can
press on with devel opnent of a parser. You've done this wth nme
several times now, so you know the drill: we begin with a fresh
copy of the cradle, and begin adding procedures one by one. So
let's do it.

We begin, as we did in the arithnmetic case, by dealing only with
Boolean literals rather than variables. This gives us a new kind
of input token, so we're also going to need a new recogni zer, and
a new procedure to read instances of that token type. Let's
start by defining the two new procedures:

{ Recogni ze a Bool ean Literal }

function IsBool ean(c: char): Bool ean
begin

| sBool ean : = UpCase(c) in ['T, "F];
end;

{ Get a Boolean Literal }

functi on Get Bool ean: Bool ean;

var c: char;

begi n
if not |sBool ean(Look) then Expected('Boolean Literal');
Get Bool ean : = UpCase(Look) ="'T';
Get Char ;

end;

Type these routines into your program You can test them by
adding into the main programthe print statenent

W itelLn(Get Bool ean);

OK, conpile the programand test it. As usual, it's not very
i mpressive so far, but it soon will be.

Now, when we were dealing with nunmeric data we had to arrange to
generate code to |l oad the values into DO. W need to do the sane
for Bool ean data. The wusual way to encode Bool ean variables is
to let 0 stand for FALSE, and sone other value for TRUE. Many



| anguages, such as C, use an integer 1 to represent it. But |
prefer FFFF hex (or -1), because a bitwise NOT also becones a
Bool ean NOT. So now we need to enit the right assenbler code to
| oad those val ues. The first cut at the Bool ean expression
parser (Bool Expression, of course) is:

{ Parse and Transl ate a Bool ean Expression }

procedur e Bool Expressi on;
begi n
if not IsBool ean(Look) then Expected(' Boolean Literal');
i f GetBool ean t hen
EmitLn(' MOVE #-1, D0")
el se
EmitLn(' CLR DO");

end;

R }
Add this procedure to your parser, and call it from the min
program (replacing the print statenment you had just put there).
As you can see, we still don't have nmuch of a parser, but the

output code is starting to look nore realistic.

Next, of course, we have to expand the definition of a Boolean
expression. W already have the BNF rul e:

<b-expression> ::= <b-terne [<orop> <b-ternp]*

| prefer the Pascal versions of the "orops", OR and XOR But
since we are keeping to single-character tokens here, I'll encode
those with '|'" and '~'. The next version of Bool Expression is

al nost a direct copy of the arithmetic procedure Expression:

{ Recogni ze and Transl ate a Bool ean OR }

procedure Bool O;
begin
Match('|");
Bool Term
EmtLn(' OR (SP)+,D0");
end;

{ Recogni ze and Translate an Exclusive O }

procedur e Bool Xor;
begi n



Mat ch(' ~');

Bool Ter m

EmitLn(' EOR (SP) +, DO');
end;

{ Parse and Transl ate a Bool ean Expression }

procedur e Bool Expressi on;
begi n
Bool Ter m
while 1sOr Op(Look) do begin
EmtLn(' MOVE DO, -(SP)');
case Look of
"|': Bool Or;
' ~': Bool Xor;
end;
end;
end;

Not e the new recognizer 1IsOrOp, which is also a copy, this tine
of 1sAddOp:

{ Recogni ze a Boolean Orop }

function IsOrop(c: char): Bool ean;
begi n

[sOrop :=cin["']", '"~'];
end;

K, renanme the old version of Bool Expression to Bool Term then
enter the code above. Conpile and test this version. At this
point, the output code is starting to I|ook pretty good. O
course, it doesn't make nmuch sense to do a | ot of Bool ean al gebra
on constant values, but we'll soon be expanding the types of
Bool eans we deal with.

You've probably already guessed what the next step is: The
Bool ean version of Term

Rename the current procedure Bool Termto NotFactor, and enter the
foll owi ng new version of Bool Term Note that is is nuch sinpler
than the numeric version, since there is no equivalent of
di vi si on.

{ Parse and Translate a Bool ean Term}



procedur e Bool Ter m
begi n
Not Fact or ;
while Look = '& do begin
Em tLn(' MOVE DO, -(SP)");

Match(' & );
Not Fact or ;
Em tLn(' AND (SP) +, DO');
end;
end;
{o }

Now, we're alnmpbst honme. W are translating conplex Boolean
expressions, although only for constant values. The next step is
to allow for the NOT. Wite the follow ng procedure:

{ Parse and Transl ate a Bool ean Factor with NOT }

procedur e Not Fact or;
begi n
if Look = "'!" then begin
Match('!"');
Bool Fact or;
EmitLn(' EOR #-1,D0");

end
el se
Bool Fact or;
end;
R }

And rename the earlier procedure to Bool Factor. Now try that.
At this point the parser should be able to handle any Bool ean
expression you care to throw at it. Does it? Does it trap badly
formed expressions?

If you've been following what we did in the parser for math
expressions, you know that what we did next was to expand the
definition of a factor to include variables and parens. W don't
have to do that for the Boolean factor, because those little
itenms get taken care of by the next step. It takes just a one
line addition to Bool Factor to take care of relations:

{ Parse and Transl ate a Bool ean Factor }

procedur e Bool Factor;
begin
i f | sBool ean(Look) then
i f GetBool ean then
EmitLn(' MOVE #-1, D0")
el se
Em tLn(' CLR DQ")
el se Rel ation;



You might be wondering when I'mgoing to provide for Boolean

vari abl es and parent hesi zed Bool ean expressions. The answer is,

' m NOT! Remenber, we took those out of the grammar earlier

Right nowall I'm doing is encoding the grammar we've already

agreed upon. The conpiler itself can't tell the difference

bet ween a Bool ean variable or expression and an arithnmetic one
all of those will be handled by Relation, either way.

O course, it would help to have sone code for Relation. | don't
feel confortable, though, adding any nore code wthout first
checki ng out what we already have. So for now let's just wite a
dummy version of Relation that does nothing except eat the
current character, and wite a little nessage:

{ Parse and Translate a Relation }

procedure Rel ation;

begin

WiteLn(' <Rel ation>");

Get Char;
end;
{o }
OK, key in this code and give it atry. Al the old things
should still work ... you should be able to generate the code for
ANDs, ORs, and NOTs. In addition, if you type any al phabetic

character you should get a little <Relation> place-holder, where
a Boolean factor should be. Did you get that? Fine, then let's
nove on to the full-blown version of Relation

To get that, though, there is a bit of groundwork that we mnust
lay first. Recall that a relation has the form

<rel ation> ;.= | <expression> [<rel op> <expression]

Since we have a new kind of operator, we're also going to need a
new Bool ean function to recognize it. That function is shown
bel ow. Because of the single-character limtation, |'msticking
to the four operators that can be encoded with such a character
(the "not equals" is encoded by "#').

{ Recogni ze a Relop }

function IsRelop(c: char): Bool ean;
begi n
IsRelop :=cin['=", "# , 6 "'<, '">];



{o }
Now, recall that we're wusing a zero or a -1 in register DO to
represent a Bool ean value, and also that the |oop constructs
expect the flags to be set to correspond. In inplenmenting al

this on the 68000, things get a a little bit tricky.

Since the | oop constructs operate only on the flags, it would be
nice (and also quite efficient) just to set up those flags, and

not load anything into DO at all. This would be fine for the
| oops and branches, but remenber that the relation can be used
ANYWHERE a Bool ean factor could be used. W may be storing its
result to a Boolean variable. Since we can't know at this point
how the result is going to be used, we nust allow for BOTH cases

Conparing nunmeric data is easy enough ... the 68000 has an
operation for that ... but it sets the flags, not a value.
VWat's nore, the flags wll always be set the sanme (zero if

equal, etc.), while we need the zero flag set differently for the
each of the different rel ops.

The solution is found in the 68000 instruction Scc, which sets a
byte value to 0000 or FFFF (funny how t hat works!) dependi ng upon
the result of the specified condi tion. If we nmake the
destination byte to be DO, we get the Bool ean val ue needed.

Unfortunately, there's one final conplication: unlike alnost
every other instruction in the 68000 set, Scc does NOT reset the
condition flags to match the data being stored. So we have to do
one last step, which is to test DO and set the flags to match it.
It nust seemto be a trip around the noon to get what we want: we
first performthe test, then test the flags to set data into DO,

then test DO to set the flags again. It is sort of roundabout,
but it's the nost straightforward way to get the flags right, and
after all it's only a couple of instructions.

I mght nmention here that this area is, in nmy opinion, the one
that represents the biggest difference between the efficiency of

hand- coded assenbl er | anguage and conpiler-generated code. We
have seen already that we |ose ef ficiency in arithnetic
operations, although later | plan to show you how to inprove that
a bit. W' ve al so seen that the control constructs thensel ves
can be done quite efficiently ... it's usually very difficult to
i mprove on the code generated for an |IF or a WH LE. But

virtually every conpiler |'ve ever seen generates terrible code,
conpared to assenbler, for the conputati on of a Bool ean function

and particularly for relations. The reason is just what |'ve
hinted at above. VWhen I'mwiting code in assenbler, | go ahead
and performthe test the nost convenient way | can, and then set
up the branch so that it goes the way it shoul d. In effect, |

“tailor" every branch to the situation. The conpiler can't do
that (practically), and it also can't know that we don't want to
store the result of the test as a Bool ean vari abl e. So it rmust



generate the code in a very strict order, and it often ends up
loading the result as a Boolean that never gets wused for
anyt hi ng.

In any case, we're now ready to |ook at the code for Relation.
It's shown below with its conpani on procedures:

{ Recogni ze and Translate a Rel ational "Equals" }

procedure Equals;
begi n
Match(' =");
Expr essi on;
EmtLn(' CMP (SP)+, D0');
Em tLn(' SEQ DO');
end;

{ Recogni ze and Translate a Rel ational "Not Equal s" }

procedur e Not Equal s;
begin
Mat ch(' #');
Expr essi on;
EmtLn(' CMP (SP) +, DO');
Em tLn(' SNE DO');
end;

{ Recogni ze and Translate a Rel ational "Less Than" }

procedure Less;
begi n
Mat ch(' <');
Expr essi on;
EmtLn(' CMP (SP)+, DO');
Em tLn(' SGE DO');
end;

{ Recogni ze and Translate a Rel ational "Greater Than" }

procedure Greater;
begin
Mat ch(' >");
Expr essi on;
EmtLn(' CMP (SP)+, DO');
Em tLn(' SLE DO');
end;



{ Parse and Transl ate

procedure Rel ati on;
begi n
Expr essi on;
if
Emit Ln(' MOVE DO,
case Look of
' Equal s;
Not Equal s;
Less;
Greater;

"H#
<
t>
end;
Em tLn(' TST DO');
end;
end;

Now, t hat
edi tor of
code for

call to
your system
Expressi on
can copy them into
character versions.
arithnetic procedures
see that |'ve changed
the | atest version of
so you may prefer

everything is working.

{ Parse and Transl ate

procedure |dent;
var Nane: char;
begi n
Nanme: = Get Nane;
if Look = '(' then
Match(' (");
Match(')");
Em tLn(' BSR '
end
el se
Em tLn(' MOVE '

+

end;

Expressi on

a Relation }

| sRel op(Look) then begin

-(SP)");

| ooks famliar! Here is where the
cones in handy. W have already generated

and its buddies in previous sessions. You
your file now. Renenber to use the single-
Just to be certain, 1've duplicated the
below. If vyou're observant, vyou'll also
thema little to make them correspond to
the syntax. This change is NOT necessary,
to hold off on that wuntil you're sure

an ldentifier }

begin

Nane) ;

+ Nane + ' (PC),D0");

{ Parse and Translate a Math Factor }

procedure Expression;

procedure Factor;

For war d;



begi n
if Look = ' (' then begin

Match(" (*);
Expr essi on;
Match(')");
end
el se if |IsAl pha(Look) then
| dent
el se
EmitLn(' MOVE #' + GetNum + ', D0");
end;
{ _______________________________________________________________

{ Parse and Translate the First Math Factor }

procedure Si gnedFact or

begi n
if Look ="'+ then
Get Char;
if Look ="'-" then begin
Cet Char;

if IsDigit(Look) then
EmtLn(' MOVE #-' + GetNum + ', D0")
el se begin

Fact or;
Em tLn(' NEG DO');
end;
end
el se Factor;
end;
LR }

{ Recognize and Translate a Miultiply }

procedure Miltiply;

begi n
Mat ch(' *');
Fact or ;
Em tLn(' MULS (SP)+, D0");
end;
o o }

{ Recogni ze and Transl ate a Divide }

procedure Divide;

begi n
Match('/");
Fact or;
EmitLn(' MOVE (SP)+, D1');
EmtLn(' EXS.L DO");
EmtLn(' DI VS D1, D0");



{ Parse and Translate a Math Term }

procedure Term
begi n
Si gnedFact or;
while Look in ['"*', '"/'"] do begin
Em tLn(' MOVE DO, -(SP)');
case Look of

"rroo Ml tioply;
/' Divide;
end;
end;
end;

{ Recogni ze and Transl ate an Add }

procedure Add;

begin
Mat ch(' +');
Term
Em tLn(' ADD (SP) +, DO');
end;
{ _______________________________________________________________

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Match('-");
Term
Em tLn(' SUB (SP) +, DO');
Em tLn(' NEG DQ');
end;

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
Term
whi l e |1 sAddop(Look) do begin
EmitLn(' MOVE DO, -(SP)"');
case Look of
"+ Add;
'-': Subtract;
end;
end;



RS }
There you have it ... a parser that can handle both arithnmetic
AND Bool ean al gebra, and things that conmbine the two through the
use of rel ops. | suggest you file away a copy of this parser in

a safe place for future reference, because in our next step we're
going to be chopping it up

MERG NG W TH CONTROL CONSTRUCTS

At this point, let's go back to the file we had previously built
that parses control constructs. Remenber those little dumy
procedures called Condition and Expression? Now you know what
goes in their places!

I warn you, you're going to have to do sone creative editing
here, so take your tine and get it right. What you need to do is
to copy all of the procedures fromthe |ogic parser, fromIldent
t hrough Bool Expression, into the parser for control constructs.
Insert them at the current |location of Condition. Then delete
that procedure, as well as the dummy Expression. Next, change
every call to Condition to refer to Bool Expression instead.
Finally, copy the procedures IsMilop, IsOrOp, |sRelop, IsBoolean

and CGetBool ean into place. That should do it.

Conpile the resulting programand give it a try. Since we
haven't used this programin awhile, don't forget that we used
singl e-character tokens for IF, WHLE, etc. Al so don't forget

that any letter not a keyword just gets echoed as a bl ock
Try

i a=bxl ye
whi ch stands for "IF a=b X ELSE Y ENDI F".

VWhat do you think? Did it work? Try some others.

ADDI NG ASSI GNMVENTS

As long as we're this far, and we already have the routines for
expressions in place, we mght as well replace the "blocks" with
real assignment statenents. W' ve al ready done that before, so
it won't be too hard. Before taking that step, though, we need
to fix something else

We're soon going to find that the one-line "prograns"” that we're
having to wite here will really cranp our style. At the nonent
we have no cure for that, because our parser doesn't recognize
the end-of-line characters, the carriage return (CR) and the |ine
feed (LF). So before going any further let's plug that hole.



There are a couple of ways to deal with the CR'LFs. One (the
Cl/ Uni x approach) is just to treat them as additional white space

characters and ignore them That's actually not such a bad
approach, but it does sort of produce funny results for our
parser as it stands now. If it were reading its input froma

source file as any self-respecting REAL conpiler does, there
woul d be no problem But we're reading input from the keyboard,
and we're sort of conditioned to expect sonething to happen when
we hit the return key. It won't, if we just skip over the CR and
LF (try it). So I'mgoing to use a different nethod here, which
is NOT necessarily the best approach in the Iong run. Consider
it a tenporary kludge until we're further along.

I nstead of skipping the CRILF, W'Il let the parser go ahead and
catch them then introduce a special procedure, analogous to
Ski pWhite, that skips themonly in specified "legal" spots.

Here's the procedure:

{ Skip a CRLF }

procedure Fin;

begi n

if Look = CR then GetChar;

if Look = LF then GetChar;
end;
(o }
Now, add two calls to Fin in procedure Block, like this:
O R EEEEE R EEE }

{ Recogni ze and Transl ate a Statenent Bl ock }

procedure Bl ock(L: string);

begi n
while not(Look in ['e'", "I', "u']) do begin
Fi n;
case Look of
"i': Dolf(L);
"W DoWhil e;
"p': DoLoop;
"r': DoRepeat;
"f': DoFor;
"d': DoDo;
"b': DoBreak(L);
el se Ot her;
end;
Fi n;
end;
end;



Now, you'll find that you can use nmultiple-line "progranms.” The
only restriction is that you can't separate an IF or WH LE token
fromits predicate.

Now we're ready to include the assignnment statenents. Si mply
change that <call to Owher in procedure Block to a call to
Assi gnnent, and add the follow ng procedure, copied from one of
our earlier prograns. Not e t hat Assi gnnment now calls
Bool Expressi on, so that we can assign Bool ean vari abl es.

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignhnent;
var Nane: char;

begi n
Name : = Get Nane;
Mat ch(' =");

Bool Expr essi on;
EmitLn('LEA ' + Nane + '(PC),A0");
EmitLn(' MOVE DO, (AO)"');

end;

Wth that change, you should now be able to wite reasonably
realistic-looking programs, subject only to our [imtation on
si ngl e-character tokens. M original intention was to get rid of
that limtation for you, too. However, that's going to require a
fairly maj or change to what we've done so far. W need a true
| exi cal scanner, and that requires sone structural changes. They
are not BI G changes that require us to throw away all of what
we' ve done so far ... with care, it can be done with very m ni mal
changes, in fact. But it does require that care.

This installment has already gotten pretty long, and it contains
sone pretty heavy stuff, so |I've decided to | eave that step unti
next tinme, when you've had a little nore time to digest what
we' ve done and are ready to start fresh.

In the next installnent, then, we'll build a |exical scanner and
elimnate the single-character barrier once and for all. W'l
also wite our first conplete conpiler, based on what we've done
in this session. See you then
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| NTRODUCTI ON
In the last installnent, | left you with a conpiler that would
ALMOST work, except that we were still Jlimted to single-

character tokens. The purpose of this session is to get rid of
that restriction, once and for all. This nmeans that we nust dea



with the concept of the |exical scanner.

Maybe | should nention why we need a |exical scanner at al

after all, we've been able to nanage all right w thout one, up
till now, even when we provided for nmulti-character tokens.
The ONLY reason, really, has to do with keywords. It's a fact of

conputer life that the syntax for a keyword has the same form as
that for any other identifier. W can't tell until we get the
conpl ete word whether or not it IS a keyword. For exanple, the
variable I FILE and the keyword IF |l ook just alike, until you get
to the third character. |In the exanples to date, we were always
able to make a decision based wupon the first character of the
token, but that's no |onger possible when keywords are present.
W need to know that a given string is a keyword BEFORE we begin
to process it. And that's why we need a scanner

In the last session, | also pronmised that we would be able to
provi de for nornmal tokens w thout naking wholesale changes to
what we have already done. | didn't lie ... we can, as you wl|
see later. But every time | set out to install these elenments of
the software into the parser we have already built, | had bad
feelings about it. The whole thing felt entirely too much |Iike a
band-aid. | finally figured out what was causing the problem |

was installing |exical scanning software w thout first explaining
to you what scanning is all about, and what the alternatives are.
Up till now, | have studiously avoided giving you a |lot of
theory, and certainly not alternatives. I generally don't
respond well to the textbooks that give you twenty-five different
ways to do something, but no clue as to which way best fits your
needs. |l've tried to avoid that pitfall by just showing you ONE
met hod, that WORKS.

But this is an inportant area. Wile the lexical scanner s
hardly the nost exciting part of a conpiler, it often has the

nost profound effect on the general "look & feel" of the
| anguage, since after all it's the part «closest to the user. |
have a particular structure in nmnd for the scanner to be wused
with KISS. It fits the look & feel that | want for that
| anguage. But it may not work at all for the |[|anguage YOU RE

cooking up, so in this one case | feel that it's inportant for
you to know your options.

So I'"'mgoing to depart, again, frommy wusual format. In this
session we'll be getting nuch deeper than usual into the basic
theory of | anguages and grammars. "Il also be tal king about
areas OTHER than conpilers in which |exical scanning plays an
important role. Finally, I will show you some alternatives for
the structure of the lexical scanner. Then, and only then, wll
we get back to our parser from the last installment. Bear with
me ... | think you'll find it's worth the wait. In fact, since
scanners have many applications outside of conmpilers, you may
well find this to be the nost useful session for you.

LEXI CAL SCANNI NG



Lexi cal scanning is the process of scanning the stream of input
characters and separating it into strings called tokens. Most
conpiler texts start here, and devote several chapters to
di scussing various ways to build scanners. This approach has its
pl ace, but as you have already seen, there is a lot you can do
W t hout ever even addressing the issue, and in fact the scanner
we'll end up with here won't ook much Ilike what the texts
descri be. The reason? Conpil er theory and, consequently, the
progranms resulting fromit, nust deal with the nost general kind
of parsing rules. W don't. In the real world, it is possible
to specify the | anguage syntax in such a way that a pretty sinple
scanner will suffice. And as always, KISS is our notto.

Typically, lexical scanning is done in a separate part of the
conpiler, so that the parser per se sees only a stream of input
tokens. Now, theoretically it is not necessary to separate this
function fromthe rest of the parser. There is only one set of
syntax equations that define the whole |anguage, so in theory we
could wite the whole parser in one nodul e.

Why the separation? The answer has both practical and
t heoretical bases.

In 1956, Noam Chonmsky defined the "Chonsky Hi erarchy" of
grammars. They are:

o Type 0: Unrestricted (e.g., English)
o Type 1. Context-Sensitive

o Type 2: Context-Free

o Type 3: Regular

A few features of the typical programring |anguage (particularly
the ol der ones, such as FORTRAN) are Type 1, but for the nost
part all nodern [|anguages can be described using only the I ast
two types, and those are all we'll be dealing with here.

The neat part about these two types is that there are very
specific ways to parse them It has been shown that any regul ar
granmar can be parsed using a particular form of abstract machine
called the state machine (finite automaton). We have al ready
i mpl enented state machines in sone of our recognizers.

Simlarly, Type 2 (context-free) grammars can always be parsed
using a push-down automaton (a state nachine augnmented by a
stack). We have also inplenented these machines. |nstead of
i mpl ementing a literal stack, we have relied on the built-in
stack associated with recursive coding to do the job, and that in
fact is the preferred approach for top-down parsing.

Now, it happens that in real, practical grammrs, the parts that
qualify as regular expressions tend to be the |ower-I|evel parts,
such as the definition of an identifier

<ident> ::= <letter> [ <letter>| <digit>]*



Since it takes a different kind of abstract machine to parse the
two types of grammars, it makes sense to separate these | ower-
| evel functions into a separate nodule, the |exical scanner
which is built around the idea of a state machine. The idea is to
use the sinplest parsing technique needed for the job.

There is another, nore practical reason for separating scanner
from parser. W like to think of the input source file as a
stream of characters, which we process right to left without
backtracking. In practice that isn't possible. Al most every
| anguage has certain keywords such as |IF, WHLE and END. As |
mentioned earlier, we can't really know whether a given
character string is a keyword, until we've reached the end of it,
as defined by a space or other delimter. So in that sense, we
MJUST save the string long enough to find out whether we have a
keyword or not. That's a limted form of backtracking.

So the structure of a conventional conpiler involves splitting up
the functions of the |ower-level and higher-level parsing. The
| exical scanner deals wth things at the character |evel,
collecting characters into strings, etc., and passing them al ong
to the parser proper as indivisible tokens. |It's also considered
normal to |l et the scanner have the job of identifying keywords.

STATE MACHI NES AND ALTERNATI VES

I rmentioned that the regular expressions can be parsed using a

state machi ne. In nost conpiler texts, and indeed in nost
conpilers as well, you will find this taken literally. There is
typically a real inplementation of the state machine, with

i ntegers used to define the current state, and a table of actions
to take for each conbination of current state and input
character. |If you wite a conpiler front end using the popul ar
Uni x tools LEX and YACC, that's what you'll get. The output of
LEX is a state nachine inplenented in C, plus a table of actions
corresponding to the input grammar given to LEX. The YACC out put
is simlar ... a canned table-driven parser, plus the table
correspondi ng to the | anguage syntax.

That is not the only choice, though. In our previous
i nstal l nents, you have seen over and over that it is possible to
i mpl enent parsers w thout dealing specifically wth tables,
stacks, or state vari abl es. In fact, in Installnent V I warned
you that if you find yourself needing these things you m ght be
doi ng somet hi ng wong, and not taking advantage of the power of
Pascal. There are basically two ways to define a state machine's
state: explicitly, with a state nunber or code, and inplicitly,
sinply by virtue of the fact that I'"'mat a certain place in the
code (if it's Tuesday, this nust be Belgiun). W've relied
heavily on the inplicit approaches before, and | think you'l
find that they work well here, too.

In practice, it may not even be necessary to HAVE a well-defined
| exi cal scanner. This isn't our first experience at dealing with
mul ti - character tokens. In Installment 111, we extended our



parser to provide for them and we didn't even NEED a |exica

scanner. That was because in that narrow context, we could
always tell, just by |ooking at the single | ookahead character
whether we were dealing with a number, a variable, or an
operator. In effect, we built a distributed |I|exical scanner

usi ng procedures Cet Nane and Get Num

Wth keywords present, we can't know anynore what we're dealing

with, until the entire token is read. This |l eads us to a nore
| ocalized scanner; although, as you will see, the idea of a
di stributed scanner still has its nmerits.

SOVE EXPERI MENTS | N SCANNI NG

Before getting back to our conpiler, it wll be wuseful to
experiment a bit with the general concepts.

Let's begin with the two definitions nost often seen in rea
programm ng | anguages:

<ident> ::
<number

<letter> [ <letter> | <digit>]*
[<digit>]+

(Renmenber, the '*' indicates zero or nore occurences of the terns
in brackets, and the '+, one or nore.)

W have already dealt with simlar items in Installnment [111.
Let's begin (as usual) with a bare cradle. Not surprisingly, we
are going to need a new recogni zer

{ Recogni ze an Al phanuneric Character }

function IsAl Num(c: char): bool ean;
begi n

| sAl Num : = | sAl pha(c) or IsDigit(c);
end;

Using this let's wite the following two routines, which are very
simlar to those we've used before:

{ Get an ldentifier }

function Get Nane: string;
var x: string[8];
begi n
X 1= ;
if not IsAlpha(Look) then Expected(' Nane');
whil e 1 sAl Num(Look) do begin
X := X + UpCase(Look);
Get Char;



{ Get a Nunber }

function GetNum string;

var X: string[16];

begi n
X = ;
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin

X := X + Look;
Cet Char;
end;
Get Num : = X
end;
R PR }

(Notice that this version of GetNumreturns a string, not an
i nteger as before.)

You can easily wverify that these routines work by calling them
fromthe main program as in

WitelLn(Get Name);
This program wll print any |egal name typed in (maxi mum ei ght
characters, since that's what we told Get Nane). It will reject

anyt hi ng el se.

Test the other routine simlarly.

VHI TE SPACE
We also have dealt with enbedded white space before, using the
two routines IsWite and SkipWite. Make sure that these
routines are in your current version of the cradle, and add the
the Iine

Ski pWhi t e;
at the end of both CGetNanme and Get Num

Now, let's define the new procedure:

{ Lexical Scanner }

Function Scan: string;
begi n
i f 1sAl pha(Look) then



Scan : = Cet Name

else if IsDigit(Look) then
Scan := GetNum

el se begin

Scan : = Look;
Get Char ;
end;
Ski pWhi t e;
end;
{o }

We can call this fromthe new main program

[ o o }
{ Main Program}
begi n
Init;
r epeat
Token : = Scan;

writel n(Token);
until Token = CR

end.
{o }
(You will have to add the declaration of the string Token at the

begi nning of the program Make it any convenient length, say 16
characters.)

Now, run the program Note how the input string is, indeed,
separated into distinct tokens.

STATE MACHI NES

For the record, a parse routine |ike GetNane does indeed
i npl ement a state machine. The state is inplicit in the current
position in the code. A very useful trick for visualizing what's
going on is the syntax diagram or ‘“railroad-track" diagram
It's alittle difficult to draw one in this medium so I'll use
them very sparingly, but the figure below should give you the
i dea:

| ----- > O0her--------------------o-o-- > Error
|
Start ------- > Letter --------------- > Gther ----- > Finish
\
<----- Letter <--------- |



As you can see, this diagram shows how the logic flows as

characters are read. Things begin, of course, in the start
state, and end when a character other than an al phanunmeric is
found. If the first <character 1is not alpha, an error occurs.
O herwi se the machine will continue |looping until the term nating

delimter is found.

Note that at any point in the flow, our position is entirely
dependent on the past history of the input characters. At that
point, the action to be taken depends only on the current state,
plus the current input character. That's what nake this a state
machi ne.

Because of the difficulty of drawing railroad-track diagranms in
this medium 1'Il continue to stick to syntax equations from now
on. But | highly reconmend the diagrans to you for anything you
do that involves parsing. After a little practice you can begin
to see how to wite a parser directly from the diagrans.
Paral |l el paths get coded into guarded actions (guarded by IF' s or
CASE statenments), serial paths into sequential calls. It's
al nost |ike working froma schematic.

We didn't even discuss SkipWwite, which was introduced earlier
but it also is a sinple state machine, as is GetNum So is their
parent procedure, Scan. Little machines make bi g machi nes.

The neat thing that 1'd like you to note is how painlessly this

implicit approach creates these state nachines. | personally
prefer it a |lot over the table-driven approach. It also results
is a small, tight, and fast scanner

NEWLI NES

Moving right along, let's nodify our scanner to handl e nore than
one line. As | nentioned last tinme, the nost straightforward way
to do this is to sinply treat the newline characters, carriage
return and line feed, as white space. This is, in fact, the way
the C standard Ilibrary routine, iswhite, works. We didn't
actually try this before. 1'dlike to do it now, so you can get
a feel for the results.

To do this, sinply nmodify the single executable Iline of IsWite
to read:

IswWhite :=c in [" ', TAB, CR, LF];

We need to give the main program a new stop condition, since it
will never see a CR Let's just use:

until Token = '.';



K, compile this program and run it. Try a couple of Iines,
term nated by the period. | used:

now is the tine
for all good nen.

Hey, what happened? When | tried it, | didn't get the |Iast
token, the period. The programdidn't halt. What's nore, when
pressed the ‘'enter' key a few tinmes, | still didn't get the
peri od.

If you're still stuck in your program vyou'll find that typing a
period on a newline will termnate it.

What's going on here? The answer is that we're hanging up in
Ski pWwhite. A quick look at that routine will show that as |ong

as we're typing null lines, we're going to just continue to | oop
After SkipWhite encounters an LF, it tries to execute a GetChar.
But since the input buffer is now enpty, GetChar's read statenent
insists on having another line. Procedure Scan gets the
termnating period, all right, but it calls Skipwite to clean
up, and SkipWhite won't return until it gets a non-null 1ine.

This kind of behavior is not quite as bad as it seenms. In a rea

conpiler, we'd be reading from an input file instead of the
console, and as long as we have sonme procedure for dealing with
end-of -files, everything will conme out OK  But for reading data
fromthe console, the behavior is just too bizarre. The fact of
the matter is that the C/ Unix convention is just not conpatible
with the structure of our parser, which calls for a | ookahead
character. The code that the Bell w zards have inplenented
doesn't use that convention, which is why they need 'ungetc'.

K, let's fix the problem To do that, we need to go back to the
old definition of IsWite (delete the CR and LF characters) and
make wuse of the procedure Fin that | introduced last time. |If
it's not in your current version of the cradle, put it there now

Al so, nodify the main programto read:

o o o }
{ Main Program}
begi n
Init;
r epeat
Token : = Scan;

writel n(Token);
if Token = CR then Fin;
until Token = "'.';



Note the "guard" test preceding the <call to Fin. That's what
makes the whol e thing work, and ensures that we don't try to read
a |ine ahead.

Try the code now. | think you'll like it better.

If you refer to the code we did in the last installnent, you'l

find that | quietly sprinkled calls to Fin throughout the code,
wherever a line break was appropriate. This is one of those
areas that really affects the look & feel that | nentioned. At

this point | wuld urge you to experinment wth different
arrangenents and see how you |Ilike them If you want your
| anguage to be truly free-field, then newines shoul d be
t ransparent. In this case, the best approach is to put the

following |ines at the BEA NNI NG of Scan:

whil e Look = CR do
Fi n;

If, on the other hand, you want a line-oriented |anguage |ike

Assenbl er, BASIC, or FORTRAN (or even Ada... note that it has
coments term nated by newmines), then vyou'll need for Scan to
return CRs as tokens. It nust also eat the trailing LF. The

best way to do that is to use this line, again at the beginning
of Scan:

if Look = LF then Fin;

For other conventions, you'll have to use other arrangenents.
In nmy exanple of the last session, | allowed newines only at
specific places, so | was somewhere in the mddle ground. |In the
rest of these sessions, |'ll be picking ways to handle newines
that | happen to like, but I want you to know how to choose ot her
ways for yourselves.

OPERATORS

W could stop now and have a pretty useful scanner for our
purposes. In the fragments of KISS that we've built so far, the
only tokens that have nultiple characters are the identifiers and
nunbers. All operators were single characters. The only
exception | can think of is the relops <= >=  and <>, but they

could be dealt with as special cases.

Still, other |anguages have nulti-character operators, such as
the ':=" of Pascal or the '"++ and '>>" of C. So while we may
not need nulti-character operators, it's nice to know how to get
themif necessary.

Needl ess to say, we can handle operators very much the sane way
as the other tokens. Let's start with a recognizer



{ Recogni ze Any Operator }

function IsOp(c: char): bool ean

begi n

IsOp :=cin ["+, "-", "* ", <, 0t =
end;
{ }
It's inportant to note that we DON T have to include every
possi ble operator in this list. For example, the paretheses
aren't included, nor is the term nating period. The current

versi on of Scan handl es single-character operators just fine as
it is. The list above includes only those characters that can
appear in multi-character operators. (For specific |anguages, of
course, the list can always be edited.)

Now, let's nodify Scan to read:

{ Lexical Scanner }

Function Scan: string;
begi n
whil e Look = CR do
Fi n;
i f 1sAl pha(Look) then
Scan : = Cet Name
else if IsDigit(Look) then
Scan : = Get Num
else if IsOp(Look) then
Scan = Get O
el se begin

Scan : = Look;
Get Char;
end;
Ski pWhi t e;
end;
{ }
Try the programnow. You wll find that any code fragnents you
care to throwat it will be neatly broken wup into individua
t okens.

LI STS, COMMAS AND COMMAND LI NES

Before getting back to the main thrust of our study, I'd like to
get on ny soapbox for a nonent.

How many tines have you worked with a program or operating system
that had rigid rules about how you nust separate itens in a list?
(Try, the last time you used MSDOS!) Sone programs require
spaces as delinmters, and sone require comras. Worst of all



some require both, in different places. Most  are pretty
unforgi ving about violations of their rules.

I think this is inexcusable. It's too easy to wite a parser

that will handle both spaces and comms in a flexible way.
Consi der the foll owi ng procedure:

{ Skip Over a Conma }

procedure Ski pComrg;

begi n
Ski pWhi t e;
if Look ='," then begin
Get Char;
Ski pWhi t e;
end;
end;
{o }
This eight-line procedure will skip over a delimter consisting

of any nunber (including zero) of spaces, with zero or one comm
enbedded in the string.

TEMPORARI LY, change the call to SkipWiite in Scan to a «call to
Ski pComma, and try inputting some |ists. Wrks nicely, eh?
Don't you wi sh nore software authors knew about Ski pComma?

For the record, | found that adding the equivalent of SkipComma
to ny Z80 assenbl er-Ilanguage prograns took all of 6 (six) extra
bytes of code. Even in a 64K nmachine, that's not a very high

price to pay for user-friendliness!

I think you can see where |'m going here. Even if you never
wite a line of a conpiler code in your life, there are places in
every program where you can use the concepts of parsing. Any
program that processes a command |ine needs them In fact, if
you think about it for a bit, you'll have to conclude that any
time you wite a programthat processes user inputs, you're
defining a |anguage. People conmunicate with | anguages, and the
syntax inmplicit in your program defines that |anguage. The rea

gquestion is: are you going to define it deliberately and
explicitly, or just let it turn out to be whatever the program
ends up parsing?

| claimthat you'll have a better, nore user-friendly programif
you'll take the tinme to define the syntax explicitly. Wite down
the syntax equations or draw the railroad-track diagrams, and
code the parser using the techniques |I've shown you here. You'l
end up with a better program and it will be easier to wite, to
boot .

GETTI NG FANCY



K, at this point we have a pretty nice |exical scanner that wll
break an input streamup into tokens. W could use it as it
stands and have a servicable conpiler. But there are sone other
aspects of lexical scanning that we need to cover

The mai n consideration is <shudder> efficiency. Renmenber when we
were dealing wth single-character tokens, every test was a
conpari son of a single character, Look, with a byte constant. W
al so used the Case statenent heavily.

Wth the nulti-character tokens being returned by Scan, all those
tests now becone string conmparisons. Mich slower. And not only
sl ower, but nore awkward, since there is no string equival ent of

the Case statenment in Pascal. It seens especially wasteful to
test for what used to be single characters ... the '=", '+, and
ot her operators ... using string conparisons.

Using string conparison is not inpossible ... Ron Cain used just

that approach in witing Small C. Since we're sticking to the
KI'SS principle here, we would be truly justified in settling for
this approach. But then | would have failed to tell you about
one of the key approaches used in "real"” conpilers.

You have to renenber: the |l exical scanner is going to be called a

_Lor_! Once for every token in the whole source program in
fact. Experiments have indicated that the average conpiler
spends anywhere from 20%to 40%of its tinme in the scanner
routines. |If there were ever a place where efficiency deserves

real consideration, this is it.

For this reason, nost conpiler witers ask the |exical scanner to
do a little nore work, by "tokenizing" the input stream The
idea is to match every token against a |list of acceptable
keywords and operators, and return unique codes for each one
recogni zed. In the case of ordinary variable names or nunbers,
we just return a code that says what kind of token they are, and
save the actual string somewhere el se.

One of the first things we're going to need is a way to identify
keywords. W can always do it wth successive IF tests, but it
surely would be nice if we had a general-purpose routine that
could conpare a given string with a table of keywords. (By the
way, we're also going to need such a routine later, for dealing
with synmbol tables.) This wusually presents a problemin Pascal
because standard Pascal doesn't allow for arrays of variable
| engt hs. It's a real bother to have to declare a different
search routine for every table. Standard Pascal also doesn't
allow for initializing arrays, so you tend to see code |ike

Table[1] :="I1F;
Tabl e[2] := 'ELSE;
Table[n] := 'END ;

whi ch can get pretty old if there are many keywords.



Fortunately, Turbo Pascal 4.0 has extensions that elimnate both
of these problens. Constant arrays can be declared using TP's
"typed constant" facility, and the variable dinensions can be
handled with its C1ike extensions for pointers.

First, nodify your declarations like this:

CType Dectarations 3 T }
type Symbol = string[8];

SynmTlrab = array[1..1000] of Synbol;

TabPtr = ~Synirab;
R E T TR PP P PP LR PP EEE PP PPEERT P PREEPPPD }
(The dinension used in Synmlab is not real ... no storage is

al l ocated by the declaration itself, and the nunber need only be
"bi g enough. ")

Now, just beneath those declarations, add the foll ow ng:

{ Definition of Keywords and Token Types }

const KWist: array [1..4] of Synmbol =
("IF, "ELSE', "ENDIF', 'END);

Next, insert the follow ng new function:

{
{ Tabl e Lookup }

{ If the input string matches a table entry, return the entry
index. If not, return a zero. }

function Lookup(T: TabPtr; s: string; n: integer): integer

var i: integer;
found: bool ean;
begi n
found : = false;
i =

while (i > 0) and not found do
if s = T~[i] then
found : = true
el se
dec(i);
Lookup :=i;
end;



To test it, you can tenporarily change the main program as
fol |l ows:

o o o }
{ Main Program}
begi n
ReadLn( Token) ;
WitelLn(Lookup(Addr ( KW.i st), Token, 4));
end.
{o }

Notice how Lookup is called: The Addr function sets up a pointer
to KW.ist, which gets passed to Lookup

OK, give this a try. Since we're bypassing Scan here, you'l
have to type the keywords in upper case to get any nmatches.

Now t hat we can recogni ze keywords, the next thing is to arrange
to return codes for them

So what kind of code should we return? There are really only two
reasonabl e choices. This seens |ike an ideal application for the
Pascal enumnerated type. For example, you can define sonething
like

Synmrype = (1fSym ElseSym EndifSym EndSym Ident, Nunber,
Operator);

and arrange to return a variable of this type. Let's give it a
try. Insert the line above into your type definitions.

Now, add the two vari abl e decl arati ons:

Token: Syntype; { Current Token }
Val ue: String[16]; { String Token of Look }

Modi fy the scanner to read:

{ Lexical Scanner }

procedure Scan;
var k: integer;
begin
whil e Look = CR do
Fi n;
i f 1sAl pha(Look) then begin



Val ue : = Get Nane;
k := Lookup(Addr (KWist), Value, 4);
if Kk =0 then

Token : = ldent
el se

Token : = Syniype(k - 1);
end

else if IsDigit(Look) then begin
Val ue : = Get Num
Token : = Numnber;
end

el se if 1sOp(Look) then begin
Val ue : = CGet Op;
Token : = Operator;
end

el se begin
Val ue : = Look;
Token : = Qperator;
Get Char ;

end;

Ski pWhi t e;

end;

(Notice that Scan is now a procedure, not a function.)

Finally, nodify the main programto read

{ Main Program}

begi n
Init;
repeat
Scan;
case Token of
Ident: wite('ldent ");
Nurmber: Wite(' Nunmber ');
Operator: Wite(' Operator ');
IfSym ElseSym EndifSym EndSym Wite(' Keyword ');
end;
Witel n(Val ue);
until Token = EndSym
end.

What we' ve done here is to replace the string Token wused earlier
with an enunerated type. Scan returns the type in variable Token,
and returns the string itself in the new variable Val ue.

K, conpile this and give it a whirl. |[If everything goes right,
you shoul d see that we are now recogni zi ng keywords.



VWhat we have now is working right, and it was easy to generate
fromwhat we had earlier. However, it still seens a little
"busy" to me. We can sinplify things a bit by letting GetNane,
Get Num Get Op, and Scan be procedures working wth the gl oba
vari abl es Token and Val ue, thereby elinmnating the |ocal copies.
It also seens a little cleaner to nove the table |ookup into
Get Nane. The new form for the four procedures is, then:

{ Get an ldentifier }

procedure Cet Nane;
var k: integer;
begin
Val ue : = ;
if not IsAlpha(Look) then Expected(' Nane');
whil e | sAl Num(Look) do begin
Val ue : = Val ue + UpCase(Look);
Get Char;
end;
k := Lookup(Addr (KWist), Value, 4);
if k =0 then

Token : = | dent
el se
Token : = Symrype(k-1);
end;
(o o }

{ Get a Nunber }

procedure Get Num

begin
Value :="'";
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin

Val ue : = Val ue + Look;
Get Char;
end;
Token : = Nunber;
end;
[ }

{ Get an Operator }

procedure GCet Op;
begi n
Val ue : = ;
if not IsOp(Look) then Expected(' Operator');
while 1sOp(Look) do begin
Val ue : = Val ue + Look;
Get Char;
end;
Token : = Qperator;
end;



{ Lexical Scanner }

procedure Scan;
var k: integer;

begin
whil e Look = CR do
Fi n;
i f IsAl pha(Look) then
Get Name
else if IsDigit(Look) then
Get Num
else if IsOp(Look) then
Get Op
el se begin
Val ue : = Look;
Token : = Qperator;
Get Char;
end;
Ski pWhi t e;
end;
{ }

RETURNI NG A CHARACTER

Essentially every scanner |'ve ever seen that was witten in
Pascal used the nechanism of an enunerated type that |'ve just
described. It is certainly a workable nmechanism but it doesn't
seem t he sinpl est approach to ne.

For one thing, the list of possible synbol types can get pretty
Il ong. Here, |'ve used just one synbol, "Operator," to stand for
all of the operators, but |1've seen other designs that actually
return different codes for each one.

There is, of course, another sinple type that can be returned as
a code: the character. |Instead of returning the enuneration
value 'QOperator' for a '+ sign, what's wong with just returning
the character itself? A character is just as good a variable for
encoding the different token types, it <can be used in case
statements easily, and it's sure a |lot easier to type. What
could be sinpler?

Besi des, we've already had experience with the idea of encoding
keywords as single characters. Qur previous prograns are already
witten that way, so wusing this approach will mninize the
changes to what we've al ready done.

Sone of you may feel that this idea of returning character codes

is too mckey-nmouse. | nmust admt it gets a little awkward for
mul ti-character operators |ike '<=". If you choose to stay with
the enunerated type, fine. For the rest, I1'd like to show you

how t o change what we've done above to support that approach

First, you can delete the SynType declaration now ... we won't be



needi ng that. And you can change the type of Token to char.

Next, to replace SyniType, add the followi ng constant string:

const KWode: string[5] = 'xilee';

(I"1'l be encoding all idents with the single character 'x'.)

Lastly, modify Scan and its relatives as follows:

{ Get an ldentifier }

procedure Get Nane;
begi n
Val ue : = ;
if not IsAlpha(Look) then Expected(' Nane');
whi I e 1 sAl Num(Look) do begin
Val ue : = Val ue + UpCase(Look);
Get Char;
end;
Token : = KWode[ Lookup(Addr (KW ist), Value, 4) + 1];
end;

{ Get a Nunber }

procedure Get Num

begi n
Value :="'";
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin

Val ue : = Value + Look;
Get Char;
end;
Token := '"#';
end;
{ ______________________________________________________________

{ Get an Operator }

procedure GCet Op;
begi n
Value :="'";
if not IsOp(Look) then Expected(' Operator');
while 1sOp(Look) do begin
Val ue : = Val ue + Look;
Get Char;
end;
if Length(Value) = 1 then
Token : = Val ue[ 1]



{ Lexical Scanner }

procedure Scan;
var k: integer;
begi n
whi l e Look = CR do
Fin;
i f 1sAl pha(Look) then
Get Nane
else if IsDigit(Look) then
Get Num
else if IsOp(Look) then begin
Get Op
el se begin
Val ue :
Token :
Get Char ;
end;
Ski pWhi t e;
end;

Look;
Cor

{ Main Program}

begin
Init;
repeat
Scan;
case Token of
"X': write('ldent ');
"# 0 Wite(' Number ');
i, ", et Wite( Keyword ) ;
el se Wite(' Operator ');
end;
Witel n(Val ue);
until Value = 'END ;

This program should work the same as the previous version. A
mnor difference in structure, mybe, but it seens nore
straightforward to ne.

DI STRI BUTED vs CENTRALI ZED SCANNERS

The structure for the lexical scanner that |'ve just shown you is
very conventional, and about 99% of all conpilers use sonething



very close to it. This is not, however, the only possible
structure, or even always the best one.

The problemwi th the conventional approach is that the scanner
has no know edge of context. For exanple, it can't distinguish
bet ween the assignnment operator '=' and the relational operator
' (perhaps that's why both C and Pascal use different strings
for the two). All the scanner can do is to pass the operator
along to the parser, which can hopefully tell fromthe context
whi ch operator is neant. Simlarly, a keyword like '"I'F' has no
place in the niddle of a math expression, but if one happens to
appear there, the scanner wll see no problemwith it, and w |
return it to the parser, properly encoded as an 'IF .

Wth this kind of approach, we are not really using all the
informati on at our disposal. In the mddle of an expression, for
exanple, the parser "knows" that there is no need to | ook for
keywords, but it has no way of telling the scanner that. So the
scanner continues to do so. This, of <course, slows down the
conpi | ati on.

In real-world compilers, the designers often arrange for nore
information to be passed between parser and scanner, just to
avoid this kind of problem But that can get awkward, and
certainly destroys a |lot of the nodularity of the structure.

The alternative is to seek some way to wuse the contextua

i nformati on that cones from knowi ng where we are in the parser

This leads us back to the notion of a distributed scanner, in
whi ch various portions of the scanner are called dependi ng upon
t he cont ext.

In KISS, as in nost |anguages, keywords ONLY appear at the

begi nning of a statement. |In places |like expressions, they are
not allowed. Also, with one mnor exception (the nulti-character
relops) that 1is weasily handled, all operators are single

characters, which neans that we don't need GetOp at all

So it turns out that even wth nulti-character tokens, we can
still always tell fromthe current |ookahead character exactly
what ki nd of token is comi ng, except at the very beginning of a
st atenment .

Even at that point, the ONLY kind of token we can accept is an
identifier. W need only to determine if that identifier is a
keyword or the target of an assignnent statenent.

We end up, then, still needing only GetNane and Get Num which are
used very much as we've used themin earlier installnments.

It may seem at first to you that this is a step backwards, and a

rather primtive approach. In fact, it is an inprovenent over
the classical scanner, since we're wusing the scanning routines
only where they're really needed. |In places where keywords are

not all owed, we don't slow things down by | ooking for them



MERG NG SCANNER AND PARSER

Now t hat we've covered all of the theory and general aspects of
| exi cal scanning that we'll be needing, |I'm FINALLY ready to back
up my claimthat we can acconodate nulti-character tokens with
m ni mal change to our previous work. To keep things short and
sinmple | will restrict nmyself here to a subset of what we've done
before; I'mallowi ng only one control construct (the |F) and no
Bool ean expressions. That's enough to denonstrate the parsing of
bot h keywords and expressions. The extension to the full set of
constructs should be pretty apparent from what we' ve already
done.

All the elements of the programto parse this subset, using
si ngl e-character tokens, exist already in our previous prograns.
| built it by judicious copying of these files, but | wouldn't
dare try to |lead you through that process. Instead, to avoid any
confusion, the whole programis shown bel ow.

(o }
program KI SS;
o }
{ Constant Declarations }
const TAB = ~I;

CR ="M

LF = 7J,
(o o }
{ Type Declarations }
type Synmbol = string[8];

SymTrab = array[ 1..1000] of Symnbol;

TabPtr = ~Synirab;
o }
{ Variable Declarations }
var Look : char; { Lookahead Character }

Lcount: integer; { Label Counter }
R R EEE }

{ Read New Character From | nput Stream}

procedure Get Char;
begi n

Read( Look);
end;



{ Report an Error }

procedure Error(s: string);
begi n
WitelLn;
WiteLn(~G 'Error: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;

{ Report What WAs Expected }

procedure Expected(s: string);
begin

Abort (s + ' Expected');
end;

{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begi n

| sAl pha := UpCase(c) in ['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phaNuneric Character }
function IsAl Num(c: char): bool ean;
begi n

I sAl Num : = I sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;



begi n
IsAddop :=c in ["+, "-'];
end;

{ Recognize a Mulop }

function IsMiulop(c: char): bool ean;
begi n

IsMulop :=cin ["*", "['];

end;

{ Recogni ze Wite Space }
function IsWiite(c: char): bool ean;
begi n

IswWhite :=c in [' ', TAB];
end;

{ Skip Over Leading Wite Space }

procedure Ski pWite;

begi n
whil e | sWite(Look) do
Get Char;
end;
- m o m e e

{ Match a Specific | nput Character }

procedure Match(x: char);

begi n
if Look <> x then Expected(''"" + x + '""");
Get Char;

Ski pWhi t e;

end;

{ Skip a CRLF }

procedure Fin;

begi n
if Look = CR then Get Char;
if Look = LF then GetChar;
Ski pWhi t e;
end;
{ ______________________________________________________________

{ Get an ldentifier }



functi on Get Nanme: char;
begi n
while Look = CR do
Fi n;
i f not IsAl pha(Look) then Expected(' Nane');
Get nane : = UpCase(Look);
Get Char;
Ski pWhi t e;
end;

{ Get a Number }

function Get Num char;

begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;
CGet Char;

Ski pWhi t e;

end;

{ Generate a Uni que Label }

functi on NewLabel: string;
var S: string;

begi n
Str(LCount, S);
NewLabel :='L" + S;
I nc(LCount);
end;
{ ______________________________________________________________

{ Post a Label To Qutput }

procedure PostLabel (L: string);
begi n

WiteLn(L, '":');

end;

{ Qutput a String with Tab }

procedure Emit(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }



procedure EmtLn(s: string);
begi n

Emit(s);

WitelLn;
end;

{ Parse and Translate an Identifier }

procedure |dent;
var Nane: char;
begi n
Name : = Cet Nane;
if Look = '(' then begin
Match(' (");
Match(')");
EmtLn('BSR ' + Name);
end
el se
EmitLn(' MOVE ' + Name + ' (PC),D0')
end;

{ Parse and Translate a Math Factor }
procedure Expression; Forward;

procedure Factor;

begi n
if Look = '(' then begin
Match(' (");
Expr essi on;
Match(')");
end
el se if |sAl pha(Look) then
| dent
el se
EmtLn(' MOVE #' + GetNum + ', D0");
end;
{ _______________________________________________________________

{ Parse and Translate the First Math Factor }

procedur e Si gnedFact or
var s: bool ean;
begin
s := Look = '-";
i f |IsAddop(Look) then begin
Get Char ;
Ski pWhi t e;
end;
Fact or;



if s then
Em tLn(' NEG DQ');
end;

{ Recogni ze and Translate a Multiply }

procedure Miltiply;
begi n

Match('*');

Fact or;

Em tLn(' MULS (SP)+, D0");
end;

{ Recogni ze and Translate a Divide }

procedure Divide;
begi n
Match('/"');
Fact or;
EmitLn(' MOVE (SP)+, D1');
EmitLn(' EXS.L DO");
EmitLn(' DI VS D1, D0");
end;

{ Conpl etion of Term Processing

procedure Terni;
begi n
whi l e I sMul op(Look) do begin
Em tLn(' MOVE DO, -(SP)");
case Look of

"xtoo Ml tioply;
/' Divide;
end;
end;
end;

(called by Termand FirstTerm}

{ Parse and Translate a Math Term}

procedure Term
begi n
Fact or;
Terml;
end;

{ Parse and Translate a Math Termwi th Possible Leading Sign }



procedure FirstTerm
begi n

Si gnedFact or ;

Ter mi;
end;

{ Recogni ze and Translate an Add }

procedure Add;

begi n
Mat ch(' +');
Term
Em tLn(' ADD (SP) +, DO');
end;
{ _______________________________________________________________

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Match('-");
Term
EmtLn(' SUB (SP)+, DO');
EmitLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
FirstTerm
whi | e |1 sAddop(Look) do begin
Em tLn(' MOVE DO, -(SP)');
case Look of
"+ Add;
'-': Subtract;
end;
end;
end;

{ Parse and Transl ate a Bool ean Condition }
{ This version is a dummy }

Procedure Conditi on;
begi n

Em tLn(' Condition');
end;



{ Recogni ze and Translate an |IF Construct }

procedure Bl ock;
For war d;

procedure Dol f;
var L1, L2: string;

begi n
Match('i');
Condi tion;
L1 : = NewlLabel
L2 := L1;
EmtLn('BEQ ' + L1);
Bl ock;
if Look = 'I" then begin
Match('l"');
L2 : = NewLabel ;
EmtLn('BRA "' + L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Match('e');
end;
{ ______________________________________________________________

{ Parse and Translate an Assi gnnent Statenent }

procedure Assignment;
var Nane: char;

begi n
Nanme : = Get Nane;
Mat ch(' =");

Expr essi on;
EmtLn('LEA "' + Name + ' (PC), AQ');
Em tLn(' MOVE DO, (A0)');

end;

{ Recogni ze and Translate a Statenent Bl ock }

procedure Bl ock
begi n
while not(Look in ['e', "I']) do begin
case Look of
"i': Dolf;
CR while Look = CR do
Fi n;
el se Assignnent;
end;
end;
end;



{ Parse and Translate a Program }

procedure DoProgram
begi n
Bl ock;
if Look <> '"e' then Expected(' END );
EmitLn(' END )
end;

{ I'nitialize }

procedure Init;
begin
LCount := O;
Get Char ;
end;

{ Main Program}
begin

Init;

DoPr ogr am
end.

A coupl e of coments:

(1) The formfor the expression parser, wusing FirstTerm etc.

is a little different fromwhat you' ve seen before. It's
yet another variation on the sane theme. Don't let it throw
you ... the change is not required for what foll ows.

(2) Note that, as usual, | had to add calls to Fin at strategic

spots to allow for nultiple Iines.

Before we proceed to adding the scanner, first copy this file and
verify that it does indeed parse things correctly. Don't forget

the "codes": 'i' for IF, '"I' for ELSE, and 'e' for END or ENDIF.

If the program works, then let's press on. In adding the scanner
nmodul es to the program it helps to have a systematic plan. 1In
all the parsers we've witten to date, we've stuck to a

convention that the current | ookahead character should always be
a non-bl ank character. W preload the |ookahead <character in
Init, and keep the "punp prinmed" after that. To keep the thing
working right at newlines, we had to nodify this a bit and treat
the newline as a | egal token.

In the multi-character version, the rule is simlar: The current
| ookahead character should al ways be left at the BEG NNI NG of the
next token, or at a newine.



The multi-character version is shown next. To get it, |[|'ve made
the foll owi ng changes:

0 Added the variables Token and Value, and the type definitions
needed by Lookup.

o Added the definitions of KW.ist and KWode.

o Added Lookup.

0 Replaced GetNane and Get Num by their nulti-character versions.
(Note that the call to Lookup has been noved out of GetNane,
so that it wll not be executed for calls wthin an

expression.)

o Created a new, vestigial Scan that calls GetNanme, then scans
for keywords.

o Created a new procedure, MtchString, that |ooks for a
specific keyword. Note that, unlike Match, MatchString does
NOT read the next keyword.

o Modified Block to call Scan.

o Changed the calls to Fin a bit. Fin is now called within
Get Nane.

Here is the programin its entirety:

oo oo }
program Kl SS;
o o }
{ Constant Declarations }
const TAB = /|;

CR ="M

LF = 7J;
[ o }
{ Type Declarations }
type Symbol = string[8];

SymTrab = array[ 1l..1000] of Synbol;

TabPtr = ~SynTab;

{ Variable Declarations }

var Look : char; { Lookahead Character }
Token : char; { Encoded Token }



Val ue : string[16]; { Unencoded Token }
Lcount: integer; { Label Counter }

{ Definition of Keywords and Token Types }

const KWist: array [1..4] of Synbol =
("IF, "ELSE', "ENDIF', 'END);

const KWode: string[5] = 'xilee';

{ Read New Character From | nput Stream}

procedure Get Char;
begin

Read( Look);
end;

{ Report an Error }

procedure Error(s: string);
begi n

WitelLn;

WiteLn("G 'FError: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begin

Error(s);

Hal t ;
end;

{ Report What Was Expected }

procedure Expected(s: string);
begi n

Abort (s + ' Expected');
end;

{ Recogni ze an Al pha Character }

function |IsAl pha(c: char): bool ean;
begin

| sAl pha := UpCase(c) in ['A.."Z];
end;



{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phaNuneric Character }

function IsAl Num(c: char): bool ean;
begin

I sAl Num : = | sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function IsAddop(c: char): bool ean;
begin

IsAddop :=c in ['"+, "-'];

end;

{ Recognize a Mulop }

function IsMiul op(c: char): bool ean;
begin

IsMulop :=c in ["*", "['];
end;

{ Recogni ze Wite Space }

function IsWite(c: char): bool ean;
begin

IsWite :=c in [' ', TAB];
end;

{ Skip Over Leading Wite Space }

procedure SkipWhite;
begin
whil e I sWite(Look) do
Get Char;
end;



{ Match a Specific |Input Character }

procedure Match(x: char);

begi n
if Look <> x then Expected('''' + x + '"""'");
Get Char ;

Ski pWhi t e;

end;

{ Skip a CRLF }

procedure Fin;

begin
if Look = CR then GetChar;
if Look = LF then Get Char;
Ski pWhi t e;
end;
{ ______________________________________________________________

{ Table Lookup }

function Lookup(T: TabPtr; s: string; n: integer): integer

var i: integer;
found: bool ean;
begi n
found : = fal se;
i =

while (i > 0) and not found do
if s =T*i] then

found : = true
el se
dec(i);
Lookup :=i;
end;
{ ______________________________________________________________

procedure Get Nane;

begin
while Look = CR do
Fin;
if not IsAlpha(Look) then Expected(' Nane');
Value :="";

whi I e 1 sAl Num(Look) do begin
Val ue : = Val ue + UpCase(Look);
Get Char;
end;
Ski pWhi t e;
end;



{ Get a Nunber }

procedure Get Num

begi n
if not IsDigit(Look) then Expected('Integer');
Value :="'";
while IsDigit(Look) do begin
Val ue : = Val ue + Look;
Get Char ;
end;
Token := "#';
Ski pWhi t e;
end;
g

{ Get an ldentifier and Scan it for Keywords }

procedure Scan;
begi n

Get Nane;

Token : = KWode[ Lookup(Addr (KW ist), Value, 4) + 1];
end;

{ Match a Specific Input String }

procedure MatchString(x: string);
begi n

if Value <> x then Expected('''" + x + "'"'");
end;

{ Generate a Uni que Label }

functi on NewLabel: string;
var S: string;

begi n
Str(LCount, S);
NewLabel :='L'" + S
I nc(LCount);
end;
{ ______________________________________________________________

{ Post a Label To Qutput }

procedure PostLabel (L: string);
begin

WiteLn(L, ':');

end;

{ Qutput a String with Tab }



procedure Emit(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }

procedure EmtLn(s: string);
begi n

Emit(s);

WitelLn;
end;

{ Parse and Translate an Identifier }

procedure |dent;

begi n
Cet Nane;
if Look = '(' then begin
Match(' (");
Match(')");
EmtLn('BSR ' + Val ue);
end
el se
EmtLn(' MOVE ' + Value + ' (PC), D0");
end;
o m ot

{ Parse and Translate a Math Factor }
procedure Expression; Forward;

procedure Factor;

begi n
if Look ="' (" then begin
Match(' (");
Expr essi on;
Match(')");
end
else if |sAl pha(Look) then
| dent
el se begin
Get Num
EmitLn(' MOVE # + Value + ',D0");
end;
end;

{ Parse and Translate the First Math Factor }



procedure Si gnedFact or

var s: bool ean;
begi n
s := Look = "-";
i f 1sAddop(Look) then begin
Get Char ;
Ski pWhi t e;
end;
Fact or;
if s then
Em tLn(' NEG DO');
end;
(o

{ Recogni ze and Translate a Miultiply }

procedure Miltiply;
begi n

Match('*');

Fact or;

Em tLn(' MULS (SP)+, D0");
end;

{ Recogni ze and Translate a Divide }

procedure Divide;
begi n
Match('/"');
Fact or;
EmitLn(' MOVE (SP)+, D1');
EmitLn(' EXS.L DO");
EmitLn(' DI VS D1, D0");
end;

{ Conpl etion of Term Processing

procedure Terni;
begi n
whi l e I sMul op(Look) do begin
Em tLn(' MOVE DO, -(SP)");
case Look of

"xtoo Ml tioply;
/' Divide;
end;
end;
end;

(called by Termand FirstTerm}

{ Parse and Translate a Math Term}

procedure Term
begi n
Fact or;



Termi;
end;

{ Parse and Translate a Math Term wi th Possi bl e Leading Sign }

procedure FirstTerm
begi n

Si gnedFact or;

Ter mi,
end;

{ Recogni ze and Translate an Add }

procedure Add;

begi n
Mat ch(' +');
Term
Em tLn(' ADD (SP) +, DO ) ;
end;
o m ot

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Match('-");
Term
Em tLn(' SUB (SP)+, DO');
EmitLn(' NEG DO');
end;

{ Parse and Transl ate an Expression }

procedur e Expression;
begin
FirstTerm
whi | e |1 sAddop(Look) do begin
EmitLn(' MOVE DO, -(SP)"');
case Look of
'+': Add;
'-': Subtract;
end;
end;
end;

{ Parse and Transl ate a Bool ean Condition }
{ This version is a dunmy }



Procedure Condition;
begi n

Em tLn(' Condition');
end;

{ Recogni ze and Translate an |IF Construct }

procedure Bl ock; Forward;

procedure Dol f;
var L1, L2: string;
begin
Condi tion;
L1 : = NewLabel
L2 := L1,
EmtLn('BEQ ' + L1);
Bl ock;
if Token ="'1" then begin
L2 : = NewlLabel;
EmitLn('BRA " + L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Mat chStri ng(' ENDI F' ) ;
end;

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignnent;
var Nane: string;

begi n
Nane : = Val ue;
Match('=");

Expr essi on;
EmtLn('LEA ' + Name + ' (PC), A0');
Em tLn(' MOVE DO, (A0)');

end;

{ Recogni ze and Transl ate a Statenent Bl ock }

procedure Bl ock;

begi n
Scan;
while not (Token in ['e', '"I']) do begin
case Token of
"i': Dolf;
el se Assignnent;
end;

Scan;



end;
end;

{ Parse and Translate a Program}

procedur e DoProgram
begi n

Bl ock;

Mat chString(' END );
Em tLn(' END )
end;

{ Initialize }

procedure Init;
begi n
LCount := O;
Cet Char;
end;

{ Main Program}

begi n

Init;

DoPr ogr am
end.

Conpare this programwith its single-character counterpart. I
think you will agree that the differences are m nor

CONCLUSI ON

At this point, you have | earned how to parse and generate code
for expressions, Boolean expressions, and control structures.
You have now | earned how to devel op | exical scanners, and howto
i ncorporate their elements into a translator. You have still not
seen ALL the elenents combined into one program but on the basis
of what we've done before you should find it a straightforward
matter to extend our earlier programs to include scanners.

W are very close to having all the elenents that we need to
build a real, functional conmpiler. There are still a few things
m ssing, notably procedure calls and type definitions. W will
deal with those in the next few sessions. Before doing so,
however, | thought it would be fun to turn the translator above
into a true conpiler. That's what we'll be doing in the next



i nstall ment.

Up till now, we've taken a rather bottom up approach to parsing,
begi nning with | ow1evel constructs and working our way up. In
the next installment, 1'Il also be taking a |look fromthe top
down, and we'll discuss how the structure of the translator is

altered by changes in the | anguage definition.

See you then.
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I NTRODUCTI ON

This is going to be a different kind of session than the others
in our series on parsing and conpiler <construction. For this
session, there won't be any experinents to do or code to wite.
This once, 1'd Ilike to just talk with you for a while.
Mercifully, it will be a short session, and then we can take up
where we | eft off, hopefully with renewed vi gor

When | was in college, | found that | could always follow a
prof's lecture a ot better if I knew where he was going with it.
"Il bet you were the sane.

So | thought maybe it's about time | told you where we're going
with this series: what's conming up in future installnents, and in
general what all this is about. "Il also share sone genera

t hought s concerning the useful ness of what we've been doing.

THE ROAD HOMVE

So far, we've covered the parsing and translation of arithnetic
expressi ons, Bool ean expressions, and conbi nati ons connected by
rel ati onal operators. W' ve al so done the same for contro
constructs. In all of this we've |eaned heavily on the use of
t op-down, recursive descent parsing, BNF definitions of the
syntax, and direct generation of assenbly-language code. W also
| earned the value of such tricks as single-character tokens to
help us see the forest through the trees. In the |ast
installnent we dealt with | exical scanning, and | showed you
sinmpl e but powerful ways to renpve the single-character barriers.

Throughout the whole study, |'ve enphasized the KISS philosophy

Keep It Sinple, Sidney ... and | hope by now you've realized
just how sinple this stuff can really be. Wile there are for
sure areas of conpiler theory that are truly intimdating, the
ultimte message of this series is that in practice you can just
politely sidestep many of these areas. If the |anguage
definition cooperates or, as in this series, if you can define
the | anguage as you go, it's possible to wite down the |anguage
definition in BNF with reasonabl e ease. And, as we've seen, you
can crank out parse procedures fromthe BNF just about as fast as
you can type



As our conpiler has taken form it's gotten nore parts, but each
part is quite small and sinple, and very nmuch I|ike all the
ot hers.

At this point, we have many of the makings of a real, practica
conpiler. As a matter of fact, we already have all we need to
build a toy conpiler for a |anguage as powerful as, say, Tiny
BASIC. In the next couple of installnments, we'll go ahead and
define that |anguage.

To round out the series, we still have a fewitens to cover
These i ncl ude:

0 Procedure calls, with and w thout paraneters

o Local and gl obal vari ables

0 Basic types, such as character and integer types

o Arrays

o Strings

0 User-defined types and structures

o0 Tree-structured parsers and internedi ate | anguages
0 Optimzation

These will all be covered in future installments. Wen we're
finished, you'll have all the tools you need to design and build
your own | anguages, and the conpilers to translate them

I can't design those |anguages for you, but | can nmake sone
comments and recommendations. I've already sprinkled sone
t hroughout past install nents. You've seen, for exanple, the
control constructs | prefer.

These constructs are going to be part of the | anguages | build.
I have three ||anguages in mnd at this point, two of which you
will see in installnents to cone:

TINY - A mnimal, but wusable |anguage on the order of Tiny
BASIC or Tiny C. It won't be very practical, but it wll
have enough power to let you wite and run real prograns
that do sonet hing wort hwhil e.

KISS - The Ilanguage |I'm building for my own use. KISS is
intended to be a systens programmi ng | anguage. It won't
have strong typing or fancy data structures, but it wll
support nost of the things | want to do with a higher-
order | anguage (HOL), except perhaps witing conpilers.

I'"ve also been toying for vyears wth the idea of a HOL-like
assenbler, wth structured control constructs and HOL-1ike
assi gnment statements. That, in fact, was the inpetus behind mny
original foray into the jungles of conpiler theory. This one may



never be built, sinply because |'ve learned that it's actually
easier to inplement a | anguage like KISS, that only uses a subset

of the CPU instructions. As you know, assenbly |anguage can be
bi zarre and irregular in the extreme, and a | anguage that maps
one-for-one onto it can be a real challenge. Still, 1've always

felt that the syntax used in conventional assenblers is dunb ...
why is

MOVE.L A, B
better, or easier to translate, than
B=A ?

I think it would be an interesting exercise to develop a
"conpiler" that would give the programmer conplete access to and
control over the full conplenent of the CPU instruction set, and
woul d all ow you to generate prograns as efficient as assenbly
| anguage, without the pain of |earning a set of menonics. Can

it be done? | don't know. The real question may be, "WII| the
resulting | anguage be any easier to wite than assenbly"? |If
not, there's no point init. | think that it can be done, but

I'"mnot conpletely sure yet how the syntax should | ook

Per haps you have sone comments or suggestions on this one. 1[|'d
| ove to hear them

You probably won't be surprised to learn that |'ve already worked
ahead in nost of the areas that we will cover. | have sone good
news: Things never get nmuch harder than they've been so far

It's possible to build a conplete, working conpiler for a rea

| anguage, using nothing but the same kinds of techniques you' ve
| earned so far. And THAT brings up sone interesting questions.

VHY | S I T SO SI MPLE?

Before embarking on this series, |I always thought that conpilers
were just naturally conplex conmputer prograns ... the ultimte
chal | enge. Yet the things we have done here have wusually turned

out to be quite sinple, sonetinmes even trivial

For awhile, | thought is was sinply because | hadn't yet gotten

into the neat of the subject. I had only covered the sinple
parts. | will freely admt to you that, even when | began the
series, | wasn't sure how far we would be able to go before

things got too conplex to deal with in the ways we have so far
But at this point |I've already been down the road far enough to
see the end of it. Guess what?

THERE ARE NO HARD PARTS!

Then, | thought naybe it was because we were not generating very
good object code. Those of you who have been follow ng the
series and trying sanple conpiles know that, while the code works



and is rather foolproof, its efficiency is pretty awful. I
figured that if we were concentrating on turning out tight code,
we woul d soon find all that mssing conmplexity.

To sone extent, that one is true. |In particular, ny first few
efforts at trying to inprove efficiency introduced conplexity at
an alarmng rate. But since then |I've been tinkering around with
sonme sinple optimzations and |I've found sone that result in very
respectabl e code quality, WTHOUT adding a | ot of conplexity.

Finally, | thought that perhaps the saving grace was the "toy
conmpil er" nature of the study. I have nade no pretense that we
were ever going to be able to build a conpiler to conpete with
Borland and M crosoft. And yet, again, as | get deeper into this
thing the differences are starting to fade away.

Just to nmeke sure you get the nessage here, let me state it flat
out :

USI NG THE TECHNI QUES WE' VE USED HERE, IT 1S POSSIBLE TO
BUI LD A PRODUCTI ON- QUALI TY, WORKI NG COWPI LER W THOUT ADDI NG
A LOT OF COWPLEXITY TO WHAT WE' VE ALREADY DONE

Since the series began |I've received sone comments from you
Most of them echo nmy own thoughts: "This is easy! Why do the
t ext books nmake it seem so hard?" Good question

Recently, 1've gone back and | ooked at some of those texts again
and even bought and read some new ones. Each tine, | come away
with the same feeling: These guys have made it seemtoo hard.

What's going on here? Wy does the whole thing seemdifficult in
the texts, but easy to us? Are we that nuch smarter than Aho,
U | man, Brinch Hansen, and all the rest?

Hardly. But we are doing sone things differently, and nore and

nmore |I'm starting to appreciate the value of our approach, and
the way that it sinplifies things. Aside from the obvious
shortcuts that | outlined in Part |, |ike single-character tokens

and console I1/0O we have nade sonme inplicit assunptions and done
sonme things differently fromthose who have designed conmpilers in
the past. As it turns out, our approach makes life a | ot easier

So why didn't all those other guys use it?

You have to renenber the context of some of the earlier conmpiler
devel opnent. These people were working with very small conputers
of limted capacity. Menory was very limted, the CPU
instruction set was mnimal, and programs ran in batch node
rather than interactively. As it turns out, these caused sone
key design decisions that have really conplicated the designs.
Until recently, | hadn't realized how nmuch of classical conpiler
desi gn was driven by the avail abl e hardware.

Even in cases where these limtations no |onger apply, people
have tended to structure their progranms in the same way, Since



that is the way they were taught to do it.

In our case, we have started with a blank sheet of paper. There
is a danger there, of course, that you will end up falling into
traps that other people have |long since |learned to avoid. But it
al so has allowed us to take different approaches that, partly by
design and partly by pure dumb luck, have allowed us to gain

simplicity.

Here are the areas that | think have led to conplexity in the
past :

o Limted RAM Forcing Miltiple Passes

I just read "Brinch Hansen on Pascal Conpi l ers" (an
excel | ent book, BTW. He developed a Pascal conpiler for a
PC, but he started the effort in 1981 with a 64K system and
so al nost every design decision he made was ai ned at maki ng
the conpiler fit into RAM To do this, his conpiler has
three passes, one of which is the lexical scanner. There is
no way he could, for example, use the distributed scanner |
introduced in the last installnent, because the program
structure wouldn't allowit. He also required not one but
two internediate |anguages, to provide the conmunication
bet ween phases.

Al'l the early conpiler witers had to deal with this issue:
Break the conpiler up into enough parts so that it wll fit
in menory. When you have nmultiple passes, you need to add
data structures to support the information that each pass
| eaves behind for the next. That adds conplexity, and ends
up driving the design. Lee's book, "The Anatony of a
Conpiler," mentions a FORTRAN conpil er devel oped for an | BM
1401. It had no fewer than 63 separate passes! Needless to
say, in a conpiler like this the separation into phases
woul d domi nate the design.

Even in situations where RAM is plentiful, people have
tended to use the sanme techni ques because that is what
they're famliar wth. It wasn't wuntil Turbo Pascal came

al ong that we found how sinple a conpiler could be if you
started with different assunptions.

o Batch Processing

In the early days, batch processing was the only choice ..
there was no interactive conputing. Even today, conpilers
run in essentially batch npde.

In a mainframe conpiler as well as nmany micro conpilers,
considerable effort is expended on error recovery ... it can
consune as nmuch as 30-40% of the conpiler and conpletely
drive the design. The idea is to avoid halting on the first
error, but rather to keep going at all costs, so that you
can tell the programrer about as many errors in the whole
program as possi bl e.



Al'l of that harks back to the days of the early mainfranes,
where turnaround tinme was measured in hours or days, and it
was inmportant to squeeze every |ast ounce of information out
of each run.

In this series, |I've been very careful to avoid the issue of
error recovery, and instead our conpiler sinply halts with
an error nessage on the first error. | will frankly admt

that it was nostly because | wanted to take the easy way out
and keep things sinple. But this approach, pioneered by
Borl and in Turbo Pascal, also has a ot going for it anyway.

Aside from keeping the conpiler sinple, it also fits very
well wth the idea of an interactive system When
conpilation is fast, and especially when you have an editor
such as Borland's that wll take you right to the point of

the error, then it makes a |ot of sense to stop there, and
just restart the conpilation after the error is fixed.

Large Prograns

Early conpilers were designed to handle |arge prograns

essentially infinite ones. In those days there was little
choice; the idea of subroutine Ilibraries and separate
conpilation were still in the future. Again, this

assunption led to multi-pass designs and internediate files
to hold the results of partial processing.

Bri nch Hansen's stated goal was that the conmpiler should be
able to conmpile itself. Agai n, because of his limted RAM
this drove himto a nulti-pass design. He needed as little
resident conpiler code as possible, so that the necessary
tabl es and other data structures would fit into RAM

| haven't stated this one yet, because there hasn't been a
need ... we've always just read and witten the data as
streams, anyway. But for the record, nmy plan has always
been that, in a production conmpiler, the source and object
data should all coexist in RAMw th the conpiler, a la the
early Turbo Pascals. That's why |I've been careful to keep
routines |like GetChar and Emt as separate routines, in
spite of their small size. It wll be easy to change them
to read to and wite from nmenory.

Enphasi s on Efficiency

John Backus has stated that, when he and his colleagues
devel oped the original FORTRAN conpiler, they KNEWthat they
had to nmake it produce tight code. |In those days, there was
a strong sentinent against HOLs and in favor of assenbly
| anguage, and efficiency was the reason. |f FORTRAN didn't
produce very good code by assenbly standards, the users
would sinply refuse to use it. For the record, that FORTRAN
conpiler turned out to be one of the nost efficient ever
built, in terns of code quality. But it WAS conpl ex!



Today, we have CPU power and RAM size to spare, so code

efficiency is not so nmuch of an issue. By studi ously
ignoring this issue, we have indeed been able to Keep It
Si npl e. Ironically, though, as |I have said, | have found

sone optim zations that we can add to the basic conpiler
structure, without having to add a |lot of conplexity. $So in
this case we get to have our cake and eat it too: we wll
end up with reasonabl e code quality, anyway.

Limted Instruction Sets
The early conputers had primtive instruction sets. Thi ngs
that we take for granted, such as stack operations and

i ndi rect addressing, came only with great difficulty.

Exanpl e: In nost conpiler designs, there is a data structure

called the literal pool. The conpiler typically identifies
all literals used in the program and collects them into a
single data structure. All references to the literals are
done indirectly to this pool. At the end of the

conpilation, the conpiler issues conmands to set aside
storage and initialize the literal pool

We haven't had to address that issue at all. Wen we want
toload a literal, we just do it, inline, as in

MOVE #3, DO

There is sonething to be said for the use of a literal pool
particularly on a machine like the 8086 where data and code
can be separated. Still, the whole thing adds a fairly
| arge anount of conplexity with little in return.

O course, without the stack we would be lost. In a nicro,
both subroutine calls and tenmporary storage depend heavily
on the stack, and we have used it even nore than necessary
to ease expression parsing.

Desire for Generality

Much of the content of the typical conpiler text is taken up
with issues we haven't addressed here at all ... things like
automated translation of grammars, or generation of LALR
parse tables. This is not sinmply because the authors want
to inpress you. There are good, practical reasons why the
subj ects are there

We have been concentrating on the use of a recursive-descent
parser to parse a determnistic grammar, i.e., a grammar
that is not ambi guous and, therefore, can be parsed with one
| evel of |ookahead. | haven't nade nuch of this limtation

but the fact is that this represents a small subset of
possi ble grammars. In fact, there is an infinite nunber of
granmars that we can't parse using our techniques. The LR



technique is a nore powerful one, and can deal with gramars
that we can't.

In conpiler theory, it's inmportant to know how to deal with
these other grammars, and how to transform them into
grammars that are easier to deal with. For exanple, many
(but not all) anbiguous grammars can be transfornmed into
unanmbi guous ones. The way to do this is not always obvious,
t hough, and so many people have devoted years to develop
ways to transform them autonmatically.

In practice, these issues turn out to be considerably |ess
i nportant. Modern | anguages tend to be designed to be easy
to parse, anyway. That was a key notivation in the design
of Pascal . Sure, there are pathological grammars that you
woul d be hard pressed to write unambi guous BNF for, but in
the real world the best answer is probably to avoid those
gr anmar s!

In our case, of course, we have sneakily let the | anguage
evolve as we go, so we haven't painted ourselves into any
corners here. You may not always have that |uxury. Still
with alittle care you should be able to keep the parser
sinmple without having to resort to automatic translation of
the grammar.

W have taken a vastly different approach in this series. W
started with a clean sheet of paper, and developed techniques
that work in the context that we are in; that is, a single-user
PC with rather anple CPU power and RAM space. W have linited
oursel ves to reasonable grammars that are easy to parse, we have
used the instruction set of the CPU to advantage, and we have not
concerned ourselves with efficiency. THAT's why it's been easy.

Does this nmean that we are forever doonmed to be able to build

only toy conpilers? No, | don't think so. As |'ve said, we can
add certain optim zations wi t hout changi ng the conpiler
structure. If we want to process large files, we can always add

file buffering to do that. These things do not affect the
overal | program design.

And | think that's a key factor. By starting with small and
limted cases, we have been able to concentrate on a structure
for the conpiler that is natural for the |job. Since the
structure naturally fits the job, it is alnmst bound to be sinple
and transparent. Addi ng capability doesn't have to change that
basic structure. We can sinply expand things Iike the file
structure or add an optim zation layer. | guess ny feeling is

that, back when resources were tight, the structures people ended
up with were artificially warped to make them work under those
conditions, and weren't optinmum structures for the problem at
hand.

CONCLUSI ON



Anyway, that's nmy armwaving guess as to how we've been able to
keep things sinple. W started with sonething sinple and let it
evolve naturally, wthout trying to force it into sone
traditional nold.

We're going to press on with this. [1've given you a |ist of the
areas we'll be covering in future installnents. Wth those
install nents, you should be able to build conplete, working
conpilers for just about any occasion, and build themsinmply. |If

you REALLY want to build production-quality conpilers, you'll be
able to do that, too.

For those of you who are chafing at the bit for nore parser code,
| apol ogize for this digression. | just thought you'd like to
have things put into perspective a bit. Next tinme, we'll get
back to the mainstream of the tutorial

So far, we've only | ooked at pieces of conpilers, and while we
have many of the makings of a conplete |anguage, we haven't

tal ked about how to put it all together. That will be the
subj ect of our next two installments. Then we'll press on into
the new subjects | |isted at the beginning of this installnent.

See you then.
kkhkhkkhkhkkhhkkhkhkhkhhkhhkkhhkhhkhhhkdhhkdhhdhhkhhkhhkhhhkdhdhdhhkdhkhhkhdhdhkdhdhkhhkhhhdhdxkxx*%
COPYRI GHT NOTI CE

Copyright (C) 1989 Jack W Crenshaw. Al rights reserved

* *
* *
* *
* *
* *
* *

khkkkhhkkhkdkhkhkhhkhkhkdkhkhkdkhkrhkdkhrhkdhkrhkdbhkhkdkhrrkhdbhrkhkdkhrrhdkhrrkdkhrrhdkhrhkdhxkhdkxkdtx



LET'S BUI LD A COWPI LER
By
Jack W Crenshaw, Ph.D.

16 April 1989

Part I X: A TOP VI EW

EE IR I I R R R I I R R S S R I R O

COPYRI GHT NOTI CE

Copyright (C) 1989 Jack W Crenshaw. Al rights reserved

* *
* *
* *
* *
* *
* *

EE R R R R R R R R R R R R R R R I R R R

| NTRODUCTI ON

In the previous installnments, we have |earned many of the
techniques required to build a full-blown conpiler. W' ve done
both assi gnment statement s (with Bool ean and arithmetic

expressions), relational operators, and control constructs. We
still haven't addressed procedure or function calls, but even so
we could conceivably construct a mni-language w thout them
I've always thought it would be fun to see just how snmall a
| anguage one could build that would still be useful. We're
ALMOST in a position to do that now. The problem is: though we
know how to parse and translate the constructs, we still don't

know quite how to put themall together into a |anguage.

In those earlier installments, the development of our prograns
had a decidedly bottomup flavor. 1In the case of expression
parsing, for exanple, we began wth the very |lowest |eve
constructs, the individual constants and variables, and worked
our way up to nmore conpl ex expressions.

Most people regard the top-down design approach as being better
than the bottomup one. | do too, but the way we did it
certainly seemed natural enough for the kinds of things we were
par si ng.

You nustn't get the idea, though, that the incremental approach
that we've been wusing in all these tutorials is inherently

bottomup. In this installment 1'd Iike to show you that the
approach can work just as well when applied fromthe top down ..
maybe better. We'IIl consider | anguages such as C and Pascal, and

see how conpl ete conpilers can be built starting fromthe top



In the next installnment, we'll apply the sane technique to build
a complete translator for a subset of the KISS | anguage, which

"Il be calling TINY. But one of ny goals for this series is
that you will not only be able to see how a compiler for TINY or
KISS works, but that you will also be able to design and build
conpilers for your own | anguages. The C and Pascal exanples wll
hel p. One thing I'd like you to see is that the natura

structure of the conpiler depends very nuch on the | anguage being
transl ated, so the sinplicity and ease of construction of the
conpil er depends very nmuch on letting the | anguage set the
program structure.

It's a bit nmuch to produce a full C or Pascal conpiler here, and
we won't try. But we can flesh out the top |levels far enough so
that you can see how it goes.

Let's get started.

THE TOP LEVEL

One of the biggest mistakes people make in a top-down design is
failing to start at the true top. They think they know what the
overall structure of the design should be, so they go ahead and
wite it down.

Whenever | start a new design, | always like to do it at the
absol ute begi nni ng. In program design | anguage (PDL), this top
| evel | ooks sonething like:

begi n
sol ve the problem
end

K, | grant you that this doesn't give much of a hint as to what
the next level is, but I Ilike to wite it down anyway, just to
give me that warmfeeling that | amindeed starting at the top

For our problem the overall function of a conmpiler is to compile
a conplete program Any definition of the Ianguage, witten in
BNF, begins here. \What does the top |evel BNF | ook |ike? Well
that depends quite a bit on the |language to be translated. Let's
take a | ook at Pascal

THE STRUCTURE OF PASCAL

Most texts for Pascal include a BNF or "railroad-track"
definition of the | anguage. Here are the first few lines of one:

<progrant ::.= <program header> <bl ock> '."'

<program header> ::= PROCGRAM <i dent >



<bl ock> ::= <decl arati ons> <st at ement s>

We can wite recognizers to deal wth each of these el enents,

just as we've done before. For each one, we'll use our famliar
si ngl e-character tokens to represent the input, then flesh things
out alittle at a tine. Let's begin with the first recognizer:

the programitself.

To translate this, we'll start wth a fresh copy of the Cradle.
Since we're back to single-character names, we'll just use a 'p'
to stand for ' PROGRAM '

To a fresh copy of the cradle, add the follow ng code, and insert
acall toit fromthe main program

{ Parse and Translate A Program}

procedure Prog;
var Name: char;

begi n

Mat ch(' p'); { Handl es program header part }

Name : = Get Nane;

Pr ol og( Nan®e) ;

Match('."');

Epi | og( Nan®e) ;
end;
(o }

The procedures Prolog and Epilog performwhatever is required to
let the programinterface with the operating system so that it

can execute as a program Needless to say, this part wll be
VERY OS-dependent. Renenber, |'ve been enitting code for a 68000
runni ng under the OS | use, which is SK*DCS. I realize nost of

you are using PC's and would rather see sonething else, but I'm
in this thing too deep to change now

Anyhow, SK*DOS is a particularly easy OSto interface to. Here
is the code for Prolog and Epil og:

{ Wite the Prolog }
procedure Prol og;
begi n

Em t Ln(' WARMST EQU $A01E');
end;

{ Wite the Epilog }

procedure Epilog(Name: char);



begi n
Em tLn(' DC WARMST' ) ;
EmitLn(' END ' + Name);
end;

As usual, add this code and try out the "conpiler." At this
point, there is only one |egal input:

pX. (where x is any single letter, the program name)
Well, as wusual our first effort is rather uninpressive, but by
now |'msure you know that things wll get nmore interesting.

There is one inportant thing to note: THE OUTPUT IS A WORKI NG,
COVWPLETE, AND EXECUTABLE PROGRAM (at |east after it's assenbled).

This is wvery inportant. The nice feature of the top-down
approach is that at any stage you can conpile a subset of the

conpl ete | anguage and get a programthat will run on the target
machi ne. From here on, then, we need only add features by
fleshing out the | anguage constructs. [It's all very simlar to

what we've been doing all along, except that we're approaching it
fromthe other end.

FLESHI NG | T OUT

To flesh out the conpiler, we only have to deal with |anguage
features one by one. | like to start with a stub procedure that
does nothing, then add detail in increnental fashion. Let's
begin by processing a block, in accordance with its PDL above.
We can do this in two stages. First, add the null procedure:

{ Parse and Translate a Pascal Bl ock }
procedure DoBl ock(Name: char);

begi n
end;

{ Parse and Translate A Program}

procedure Prog;
var Name: char;

begin
Mat ch(' p');
Name : = Get Nane;

Pr ol og;



DoBl ock( Nare) ;

Match('."');

Epi | og( Nane) ;
end;

That certainly shouldn't change the behavior of the program and
it doesn't. But nowthe definition of Prog is conplete, and we
can proceed to flesh out DoBlock. That's done right fromits BNF
definition:

{ Parse and Translate a Pascal Bl ock }

procedure DoBl ock( Name: char);
begin

Decl ar ati ons;

Post Label ( Nare) ;

St at ement s;
end;

The procedure PostlLabel was defined in the installnment on
branches. Copy it into your cradle.

| probably need to explain the reason for inserting the |abe
where | have. It has to do with the operation of SK*DOS. Unlike
some OS's, SK*DOS allows the entry point to the main programto
be anywhere in the program All you have to do is to give that
point a nanme. The call to PostlLabel puts that nanme just before
the first executable statement in the main program How does
SK*DOS know which of the many | abels is the entry point, you ask?
It's the one that matches the END statenent at the end of the
program

K, now we need stubs for the procedures Declarations and
Statenents. Make them null procedures as we did before.

Does the program still run the sane? Then we can nove on to the
next stage.

DECLARATI ONS

The BNF for Pascal declarations is:

<decl arations> ::= ( <label list>
<constant |ist>
<type list> |
<variable list> |
<procedur e> |
<function> )*



(Note that |1'm wusing the nore liberal definition used by Turbo
Pascal. In the standard Pascal definition, each of these parts
must be in a specific order relative to the rest.)

As usual, let's let a single character represent each of these
declaration types. The new form of Declarations is:

{ Parse and Translate the Declaration Part }

procedure Decl arati ons;

begi n
while Look in['I"', "¢, "t', '"v', '"p', 'f'] do
case Look of
"I': Label s;
'c¢': Constants;
"t': Types;
'"v': Vari abl es;
"p': DoProcedure;
"f': DoFunction;
end;
end;
{o }

O course, we need stub procedures for each of these declaration
types. This time, they can't quite be null procedures, since
otherwise we'll end up with an infinite While |loop. At the very
| east, each recognizer nmust eat the character that invokes it.
Insert the foll ow ng procedures:

{ Process Label Statenent }

procedure Labels;
begi n

Match('1');
end;

{ Process Const Statenent }

procedure Constants;
begi n

Mat ch('c');

end;

{ Process Type Statenent }
procedure Types;
begi n

Match('t');



{ Process Var Statenent }

procedure Vari abl es;
begi n

Mat ch('v');

end;

{ Process Procedure Definition }

procedur e DoProcedure;
begi n

Match(' p');

end;

{ Process Function Definition }

procedure DoFuncti on;
begi n

Match('f');
end;

Now try out the conpiler wth a few representative inputs. You
can mx the declarations any way you like, as long as the | ast
character in the programis'.' to indicate the end of the
program O course, none of the declarations actually declare
anyt hing, so you don't need (and can't use) any characters other
than those standing for the keywords.

We can flesh out the statement part in a simlar way. The BNF
for it is:

<statements> ::= <conpound st atenment>
<conpound statenment> ::= BEG N <st at enent >
(';' <statenent>) END

Note that statenents can begin wth any identifier except END
So the first stub form of procedure Statenents is:

{ Parse and Translate the Statenent Part }

procedure Statenents;
begi n



Mat ch('b');
while Look <> 'e' do

Get Char;
Mat ch('e');
end;
{ }
At this point the conpiler will accept any nunber of

decl arations, followed by the BEGA N block of the main program
This block itself ~can contain any characters at all (except an
END), but it nust be present.

The sinplest formof input is now
' pxbe."’

Try it. Also try sonme conbinations of this. Make sonme
deli berate errors and see what happens.

At this point you should be beginning to see the drill. W begin
with a stub translator to process a program then we flesh out
each procedure in turn, based wupon its BNF definition. Just as
the lower-level BNF definitions add detail and el aborate upon the

hi gher -1 evel ones, the | ower-level recognizers wll parse nore
detail of the input program When the |ast stub has been
expanded, the conpiler wll be conplete. That's top-down

design/inplenmentation in its purest form

You m ght note that even though we've been addi ng procedures, the
out put of the program hasn't changed. That's as it should be.
At these top levels there is no entted code required. The
recogni zers are functioning as just that: recognizers. They are
accepting input sentences, catching bad ones, and channeli ng good
input to the right places, so they are doing their job. [If we
were to pursue this a bit longer, code would start to appear

The next step in our expansion should probably be procedure
Statenents. The Pascal definition is:

<statement> ::= <sinple statement> | <structured statenent>
<sinple statement> ::= <assignnent> | <procedure call> | nul
<structured statenent> ::= <conpound statement>

|
<if statenent> |
<case statenent> |
<whi | e st atenent >
<repeat statenment>
<for statement> |
<wi th statenment>

These are starting to look famliar. As a matter of fact, you
have al ready gone through the process of parsing and generating
code for both assignnent statenments and control structures. This



is where the top | evel neets our bottomup approach of previous
sessions. The constructs will be a little different fromthose
we've been wusing for KISS, but the differences are nothing you
can't handl e.

I think you can get the picture now as to the procedure. We
begin with a conplete BNF description of the |anguage. Starting
at the top level, we code up the recognizer for that BNF
statenent, using stubs for the next-level recognizers. Then we
flesh those | ower-Ilevel statenents out one by one.

As it happens, the definition of Pascal is very conpatible with
the wuse of BNF, and BNF descriptions of the |anguage abound.
Armed with such a description, you wll find it fairly
straightforward to continue the process we've begun

You might have a go at fleshing a few of these constructs out,
just to get a feel for it. | don't expect you to be able to
conpl ete a Pascal conpiler here ... there are too many things
such as procedures and types that we haven't addressed yet

but it mght be helpful to try sone of the nore famliar ones.
It will do you good to see executable prograns com ng out the
ot her end.

If 1'"'mgoing to address those issues that we haven't covered yet,
I'd rather do it in the context of KISS. W're not trying to
build a conplete Pascal conmpiler just yet, so |'mgoing to stop
t he expansi on of Pascal here. Let's take a look at a very
di fferent |anguage.

THE STRUCTURE OF C

The C |l anguage is quite another matter, as you'll see. Texts on
C rarely include a BNF definition of the |anguage. Probably
that's because the language is quite hard to wite BNF for

One reason |'m showi ng you these structures nowis so that | can
i npress upon you these two facts:

(1) The definition of the |anguage drives the structure of the
conpiler. Wat works for one | anguage may be a disaster for
anot her. It's a very bad idea to try to force a given
structure upon the conpiler. Rather, you should |et the BNF
drive the structure, as we have done here.

(2) A language that is hard to wite BNF for wll probably be
hard to wite a conpiler for, as well. C is a popular
| anguage, and it has a reputation for letting you do
virtually anything that is possible to do. Despite the

success of Small C, Cis _NOT_ an easy |anguage to parse.

A C program has less structure than its Pascal counterpart. At
the top level, everything in Cis a static declaration, either of
data or of a function. W can capture this thought |ike this:



<progrant ::.= ( <global declaration> )*

<gl obal decl aration> ::= <data decl arati on>
<function>

In Small C, functions can only have the default type int, which
is not declared. This makes the input easy to parse: the first
token is either "int," "char," or the nane of a function. In
Small C, the preprocessor commands are also processed by the
conpi |l er proper, so the syntax becones:

<gl obal declaration> ::="#' <preprocessor command> |
"int' <data list>
"char' <data |ist> |
<ident > <function body> |

Al though we're really nore interested in full C here, [I'll show
you the code corresponding to this top-level structure for Small

{ Parse and Translate A Program}

procedure Prog;
begi n
whil e Look <> ~Z do begin
case Look of

"#'. PreProc;
"i': IntDecl
'¢': Char Decl
el se DoFunction(Int);
end;
end;
end;
R EEE }

Note that |'ve had to use a *"Z to indicate the end of the source.
C has no keyword such as END or the '.' to otherwi se indicate the
end.

Wth full C, things aren't even this easy. The problem cones
about because in full C, functions can al so have types. So when
the conpiler sees a keyword like "int," it still doesn't know
whet her to expect a data declaration or a function definition
Things get nore conplicated since the next token may not be a
name ... it may start with an '*" or '(', or combinations of the
t wo.

More specifically, the BNF for full C begins with:

<prograne ::= ( <top-level decl> )*



<top-level decl> ::= <function def> | <data decl >

<data decl > ::= [<class>] <type> <decl-list>

<function def> ::= [<class>] [<type>] <function decl>
You can now see the problem The first two parts of the
decl arations for data and functions can be the sane. Because of
the anbiguity in the grammar as witten above, it's not a
suitable grammar for a recursive-descent parser. Can we

transformit into one that is suitable? Yes, with alittle work
Suppose we wite it this way:

<top-level decl> ::= [<class>] <decl>
<decl > ::= <type> <typed decl> | <function decl>
<typed decl> ::= <data list> | <function decl>

W can build a parsing routine for the cl ass and type
definitions, and have them store away their findings and go on
wi t hout their ever having to "know' whether a function or a data
declaration is being processed.

To begin, key in the follow ng version of the main program

o o }
{ Main Program}
begi n
Init;
while Look <> ~Z do begin
Get Cl ass;
Cet Type;
TopDecl
end;
end.
{o }

For the first round, just nmake the three procedures stubs that do
not hing _BUT_ call Get Char.

Does this programwork? Well, it would be hard put NOT to, since
we're not really asking it to do anything. 1It's been said that a
C conmpiler will accept virtually any input w thout choking. It's
certainly true of THIS conpiler, since in effect all it does is
to eat input characters until it finds a "Z.

Next, let's make GCetClass do sonmething worthwhile. Declare the
gl obal vari able



var Cl ass: char;

and change GetClass to do the follow ng:

{ Get a Storage Class Specifier }

Procedure Get Cl ass;

begi n
if Look in['"a, "x', '"s'] then begin
Cl ass : = Look;
Get Char;
end
else Class := 'a';
end;
{o }
Here, 1've used three single characters to represent the three
storage cl asses "auto," "extern," and "static." These are not
the only three possible classes ... there are also "register" and

"typedef," but this should give you the picture. Note that the
default class is "auto."

W can do a simlar thing for types. Enter the follow ng
procedure next:

{ Get a Type Specifier }

procedure Get Type;
begin
Typ :=" ";
i f Look 'u' then begin
Sign :="u';
Typ :="i";
Get Char ;
end
else Sign :='s';
if Look in["i", "I'", '"c'] then begin
Typ : = Look;
Get Char;
end;
end;

Note that you nust add two nore gl obal variables, Sign and Typ.
Wth these two procedures in place, the conpiler will process the
class and type definitions and store away their findings. W can
now process the rest of the declaration

W are by no neans out of the woods yet, because there are stil



many conplexities just in the definition of the type, before we
even get to the actual data or function names. Let's pretend for
the nonent that we have passed all those gates, and that the next
thing in the input streamis a nanme. |f the nane is followed by
a |left paren, we have a function declaration. |If not, we have at
| east one data item and possibly a list, each elenment of which
can have an initializer.

Insert the follow ng version of TopDecl

{ Process a Top-Level Declaration }

procedure TopDecl
var Nane: char;
begi n
Name : = Cet nane;
if Look = '(' then
DoFunc( Nane)
el se
DoDat a( Nane) ;

(Note that, since we have already read the name, we nmust pass it
along to the appropriate routine.)

Finally, add the two procedures DoFunc and DoDat a:

{ Process a Function Definition }

procedure DoFunc(n: char);

begi n

Match(" (");

Match(')");

Match('{");

Match('}");

if Typ ="' ' then Typ := "i'";

Witeln(Cass, Sign, Typ, ' function ', n);
end;
O e R R }
{ Process a Data Declaration }
procedure DoData(n: char);
begi n

if Typ ="' ' then Expected(' Type declaration');

Witeln(Class, Sign, Typ, ' data ', n);

while Look = ',' do begin

Match(',"');

n := Cet Nane;

WiteLn(Class, Sign, Typ, ' data ', n);
end;



Match(';");

Since we're still a long way from produci ng execut abl e code,
decided to just have these two routines tell us what they found.

OK, give this programa try. For data declarations, it's OKto
give a list separated by commas. We can't process initializers
as yet. W also can't process argunment lists for the functions,
but the "(){}" characters should be there.

We're still a _VERY_ long way from having a C conpiler, but what
we have is starting to process the right kinds of inputs, and is
recogni zi ng both good and bad inputs. In the process, the

natural structure of the conpiler is starting to take form

Can we continue this until we have something that acts nore |ike
a conpiler. OF course we can. Should we? That's another matter

I don't know about you, but |'m beginning to get dizzy, and we've
still got a long way to go to even get past the data
decl arati ons.

At this point, | think you can see how the structure of the
conpi l er evolves fromthe | anguage definition. The structures
we've seen for our two exanples, Pascal and C, are as different
as night and day. Pascal was designed at |least partly to be easy

to parse, and that's reflected in the conpiler. 1In general, in
Pascal there is nmore structure and we have a better idea of what
ki nds of constructs to expect at any point. In C, on the other
hand, the program is essentially a |Ilist of decl arati ons,

term nated only by the end of file.

We could pursue both of these structures nuch farther, but
remenber that our purpose here is not to build a Pascal or a C

conpiler, but rather to study conpilers in general. For those of
you who DO want to deal with Pascal or C, | hope |'ve given you
enough of a start so that you can take it from here (although
you' Il soon need sone of the stuff we still haven't covered yet,
such as typing and procedure calls). For the rest of you, stay
with me through the next installment. There, I'll be | eading you

t hrough the devel opment of a conplete conpiler for TINY, a subset
of KI SS.

See you then.
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| NTRODUCT! ON
In the last installnment, | showed you the general idea for the
t op- down devel opnent of a conpiler. I gave you the first few

steps of the process for conpilers for Pascal and C, but
stopped far short of pushing it through to conpletion. The
reason was sinple: if we're going to produce a real, functiona
conpiler for any |language, |1'd rather do it for KISS, the
| anguage that |'ve been defining in this tutorial series.



In this installnment, we're going to do just that, for a subset of
KI'SS which I've chosen to call TINY

The process wll be essentially that outlined in Installment |X
except for one notable difference. In that installnment, |
suggested that you begin with a full BNF description of the
| anguage. That's fine for something like Pascal or C, for which

the | anguage definitionis firm In the case of TINY, however
we don't yet have a full description ... we seemto be defining
the | anguage as we go. That's OK. In fact, it's preferable,

since we can tailor the |l anguage slightly as we go, to keep the
par si ng easy.

So in the devel opnent that follows, we'll actually be doing a
t op- down devel opnent of BOTH the |anguage and its conpiler. The
BNF description will grow along with the conpiler.

In this process, there will be a nunber of decisions to be nmade,
each of which will influence the BNF and therefore the nature of
t he | anguage. At each decision point I'Il try to renenber to
explain the decision and the rationale behind nmy choice. That
way, if you happen to hold a different opinion and would prefer a
different option, you can choose it instead. You now have the
background to do that. | guess the inportant thing to note is
that nothing we do here is <cast in concrete. Wen YOU RE
desi gni ng YOUR | anguage, you should feel free to do it YOUR way.

Many of you may be asking at this point: Wiy bother starting over
from scratch? W had a working subset of KISS as the outcone of

Installment VII (lexical scanning). Wiy not just extend it as
needed? The answer is threefold. First of all, | have been
meki ng a nunber of changes to further sinplify the program..
changes |ike encapsulating the code generation procedures, so
that we can convert to a different target machine nore easily.
Second, | want you to see how t he devel opnent can i ndeed be done
fromthe top down as outlined in the last install nment. Finally,
we both need the practice. Each time | go through this exercise,
| get alittle better at it, and you will, also.

GETTI NG STARTED

Many years ago there were |anguages called Tiny BASIC, Tiny
Pascal, and Tiny C, each of which was a subset of its parent ful

| anguage. Tiny BASIC, for exanple, had only single-character
vari abl e names and gl obal vari abl es. It supported only a single
data type. Sound famliar? At this point we have alnost all the
tools we need to build a conpiler like that.

Yet a | anguage called Tiny-anything still <carries some baggage
inherited fromits parent |anguage. I've often wondered if this
is a good idea. Granted, a |anguage based upon sone parent
| anguage wi |l have the advantage of famliarity, but there may
also be some peculiar syntax carried over fromthe parent that
may tend to add unnecessary conplexity to the conpiler. (Nowhere
is this nore true than in Small C.)



I've wondered just how small and sinple a conpiler could be nmade
and still be wuseful, if it were designed fromthe outset to be
both easy to use and to parse. Let's find out. This |anguage
wWill just be called "TINY," period. I1t's a subset of KISS, which
I also haven't fully defined, so that at |east mnakes us
consistent (!). | suppose you could call it TINY KISS. But that
opens up a whole can of worns involving cuter and cuter (and
perhaps nore risque) nanes, so let's just stick with TINY.

The main limtations of TINY wll be because of the things we
haven't yet covered, such as data types. Like its cousins Tiny C
and Tiny BASIC, TINY wll have only one data type, the 16-bit
i nteger. The first version we develop wll also have no
procedure calls and wll use single-character variable nanes,
al though as you will see we can renove these restrictions wthout

much effort.

The | anguage | have in mnd will share sonme of the good features
of Pascal, C, and Ada. Taking a Iesson fromthe conparison of
the Pascal and C conpilers in the previous installnent, though

TINY will have a decided Pascal flavor. Wherever feasible, a
| anguage structure will be Dbracketed by keywords or synbols, so
that the parser will know where it's going wthout having to
guess.

One other ground rule: As we go, I'd like to keep the conpiler
produci ng real, executable code. Even though it my not DO nuch
at the beginning, it will at least do it correctly.

Finally, 1'lIl use a couple of Pascal restrictions that make
sense: All data and procedures must be declared before they are
used. That mekes good sense, even though for now the only data
type we'll use is a wrd. This rule in turn nmeans that the only
reasonabl e place to put the executable code for the main program
is at the end of the listing.

The top-level definition will be sinmlar to Pascal

<progrant ::= PROGRAM <t op-|evel decl> <main>"'."'

Al ready, we've reached a decision point. M first thought was to
make the main bl ock optional. It doesn't seemto neke sense to
write a "progrant with no main program but it does namke sense if
we're allowing for nmultiple nodules, |inked together. As a
matter of fact, | intend to allow for this in KISS. But then we
begin to open up a can of worns that I'd rather |eave closed for
now. For exanple, the term "PROGRAM really becones a m snomer.
The MODULE of Mbdul a-2 or the Unit of Turbo Pascal would be nore
appropriate. Second, what about scope rules? We'd need a
convention for dealing with name visibility across nodules.
Better for now to just Kkeep it sinple and ignore the idea
al t oget her.

There's also a decision in choosing to require the main program
to be last. | toyed with the idea of making its position



optional, as in C. The nature of SK*DOS, the OS |'m conpiling
for, make this very easy to do. But this doesn't really nmake
much sense in view of the Pascal-like requirement that all data
and procedures be declared before they're referenced. Since the
main  program can only call procedures that have already been
declared, the only position that makes sense is at the end, a la
Pascal .

G ven the BNF above, let's wite a parser that just recognizes
t he brackets:

{ Parse and Translate a Program}

procedure Prog;

begi n
Mat ch(' p');
Header ;
Pr ol og;
Match('.");
Epi | og;
end;
{o o }

The procedure Header just emts the startup code required by the
assenbl er:

{ Wite Header Info }

procedur e Header;
begi n

WitelLn(' WARMST', TAB, 'EQU $A01E');
end;

The procedures Prolog and Epilog enmt the code for identifying
the main program and for returning to the GCS:

{ Wite the Prolog }
procedure Prol og;
begi n

Post Label (" MAI N ) ;
end;

{ Wite the Epilog }

procedure Epil og;



begi n
Em tLn(' DC WARMST' ) ;
Em tLn(' END MAIN ) ;
end;

The main programjust calls Prog, and then I|ooks for a clean
endi ng:

o o }
{ Main Program}
begin

Init;

Pr og;

if Look <> CR then Abort('Unexpected data after "'."'"'");
end
{o }
At this point, TINY wll accept only one input "program" the

nul | program

PROGRAM . (or "p." in our shorthand.)

Not e, though, that the conpiler DOES generate correct code for
this program It will run, and do what you'd expect the nul
programto do, that is, nothing but return gracefully to the CS.

As a matter of interest, one of my favorite conpiler benchmarks
is to compile, link, and execute the null programin whatever
| anguage is i nvol ved. You can learn a lot about the
i mpl enentation by nmeasuring the overhead in tinme required to
conpi |l e what should be a trivial case. It's also interesting to
nmeasure the anount of code produced. |In many conpilers, the code
can be fairly large, because they always include the whole run-
time library whether they need it or not. Early versions of
Turbo Pascal produced a 12K object file for this case. VAX C
generates 50K

The smallest null programs |'ve seen are those produced by
Modul a-2 conpilers, and they run about 200-800 bytes.

In the case of TINY, we HAVE no run-tine library as yet, so the
object code is indeed tiny: two bytes. That's got to be a
record, and it's likely to remin one since it is the mninmm
size required by the CS.

The next step is to process the code for the main program |'1|
use the Pascal BEGQ N- bl ock:

<mai n> ::= BEG N <bl ock> END



Here, again, we have made a decision. W could have chosen to
requi re a "PROCEDURE MAIN' sort of declaration, simlar to C I

must admt that this is not a bad idea at all ... | don't
particularly 1like the Pascal approach since |l tend to have
trouble locating the main program in a Pascal listing. But the

alternative is a little awkward, too, since you have to deal with
the error condition where the user onits the min program or
m sspells its name. Here |I'mtaking the easy way out.

Anot her solution to the "where is the main progrant problem m ght
be to require a name for the program and then bracket the nmain

by

BEG N <nanme>
END <name>

simlar to the convention of Mdula 2. This adds a bit of
"syntactic sugar” to the |language. Things like this are easy to
add or change to your liking, if the language is your own design

To parse this definition of a main block, change procedure Prog
to read:

{ Parse and Translate a Program}

procedure Prog;

begi n

Match(' p');

Header ;

Mai n;

Match('."');
end;
e R R P EEE }

{ Parse and Translate a Main Program}

procedure Min;

begi n
Match(' b');
Pr ol og;
Match('e');
Epi | og;

end;

Now, the only legal programis



PROGRAM BEGI N END . (or 'pbe.")

Aren't we making progress??? Well, as usual it gets better. You
m ght try some deliberate errors here, like omtting the 'b' or

the 'e', and see what happens. As always, the conmpiler should
flag all illegal inputs.
DECLARATI ONS
The obvi ous next step is to decide what we nean by a declaration
My intent here is to have two kinds of declarations: variables
and procedures/functions. At the top Ilevel, only gl oba
declarations are allowed, just as in C
For now, there <can only be variable declarations, identified by
the keyword VAR (abbreviated 'v'):

<top-level decls> ::= ( <data declaration> )*

<data declaration> ::= VAR <var-|ist>
Note that since there is only one variable type, there is no need
to declare the type. Later on, for full KISS, we can easily add

a type description.

The procedure Prog becones:

{ Parse and Translate a Program}

procedure Prog;

begi n
Mat ch(' p');
Header ;
TopDecl s;
Mai n;
Match('."');
end;
{o }

{ Process a Data Declaration }

procedure Decl
begi n
Mat ch('v');
Get Char;



{ Parse and Translate d obal Decl arations }

procedure TopDecls;
begi n
while Look <> '"b'" do
case Look of

'v': Decl
el se Abort (' Unrecogni zed Keyword ''' + Look + "'"'");
end;
end;
{o o }
Note that at this point, Decl is just a stub. |t generates no
code, and it doesn't process a list ... every variable nust occur

in a separate VAR statenent.
oK, now we can have any nunber of data declarations, each

starting with a 'v' for VAR, before the BEG N-block. Try a few
cases and see what happens.

DECLARATI ONS AND SYMBOLS

That | ooks pretty good, but we're still only generating the nul
program for output. A real conpiler would issue assenbler
directives to allocate storage for the variables. It's about

time we actually produced some code.

Wth a little extra code, that's an easy thing to do from
procedure Decl. Mddify it as foll ows:
(o o o }

{ Parse and Translate a Data Decl aration }

procedur e Decl
var Nane: char;
begi n

Mat ch('v');

Al l oc( Get Nane) ;
end;

The procedure Alloc just issues a command to the assenbler to
al l ocate storage:

{ Allocate Storage for a Variable }

procedure Alloc(N: char);



begi n

WiteLn(N, ':', TAB, 'DC 0');
end;
(o }
Gve this one a whirl. Try an input that declares sone

vari abl es, such as:
pvxvyvzbe.

See how the storage is allocated? Si nmpl e, huh? Note al so that
the entry point, "MAIN," cones out in the right place

For the record, a "real" conmpiler would also have a synbol table
to record the variables being used. Normally, the synbol table
is necessary to record the type of each variable. But since in
this case all variables have the same type, we don't need a
synmbol table for that reason. As it turns out, we're going to
find a symbol necessary even without different types, but let's
post pone that need until it arises.

OF course, we haven't really parsed the correct syntax for a data
declaration, since it involves a variable list. Qur version only
permts a single variable. That's easy to fix, too.

The BNF for <var-list> is
<var-list> ::= <ident> (, <ident>)*

Addi ng this syntax to Decl gives this new version:

{ Parse and Translate a Data Decl aration }

procedure Decl
var Nane: char;
begi n
Mat ch('v');
Al | oc( Get Nane) ;
while Look = ',' do begin
Get Char;
Al'l oc( Get Nane) ;
end;
end;

OK, now conpile this code and give it a try. Try a nunber of
lines of VAR declarations, try a list of several variables on one
line, and try conbinations of the two. Does it work?

I NI TI ALI ZERS



As long as we're dealing with data declarations, one thing that's

al ways bothered ne about Pascal is that it doesn't allow
initializing data itenms in the declaration. That feature is
admttedly sort of a frill, and it my be out of place in a
| anguage that purports to be a mninmal |anguage. But it's also
SO easy to add that it seens a shane not to do so. The BNF
becones:

<var-list> ::= <var> ( <var> )*

<var> ::= <ident> [ = <integer> ]

Change Alloc as foll ows:

{ Allocate Storage for a Variable }

procedure Alloc(N: char);

begi n
Wite(N, ':', TAB, 'DC ');
if Look = '=" then begin
Mat ch(' =");
WitelLn(Get Num ;
end
el se
WiteLn('0");
end;
{o }

There you are: an initializer with six added |ines of Pascal

K, try this wversion of TINY and verify that you can, indeed,
give the variables initial values.

By golly, this thing is starting to ook reall! O  course, it
still doesn't DO anything, but it |ooks good, doesn't it?
Before |l eaving this section, | should point out that we've used

two versions of function GetNum One, the earlier one, returns a
character value, a single digit. The other accepts a nmulti-digit
i nteger and returns an integer value. Either one will work here,
since WiteLn will handle either type. But there's no reason to
[imt ourselves to single-digit values here, so the correct
version to use is the one that returns an integer. Here it is:

{ Get a Nunber }

function GetNum i nteger;
var Val: integer;
begi n

Val := 0;



if not IsDigit(Look) then Expected('Integer');
while I1sDigit(Look) do begin

Val := 10 * Val + Ord(Look) - Od('0");
Get Char ;
end;
Get Num : = Val ;
end;
{ }

As a matter of fact, strictly speaking we should allow for
expressions in the data field of the initializer, or at the very
| east for negative values. For now, let's just allow for
negative val ues by changing the code for Alloc as foll ows:

{ Allocate Storage for a Variable }

procedure Alloc(N:. char);
begi n
if InTabl e(N) then Abort('Duplicate Variable Nane ' + N)
ST[N] :="'v';
Wite(N, '":', TAB, 'DC"');
if Look = '=" then begin

Mat ch(' =");

If Look = '-' then begin
Wite(Look);
Match('-");

end;

WitelLn(Get Num;

end

el se
WiteLn('0");

Now you should be able to initialize variables wth negative
and/or nmulti-digit val ues.

THE SYMBOL TABLE

There's one problem with the conpiler as it stands so far: it
doesn't do anything to record a variable when we declare it. So
the conpiler is perfectly content to allocate storage for severa
variables with the sane nane. You can easily verify this with an
i nput |ike

pvavavabe.

Here we've declared the variable A three tinmes. As you can see,
the conpiler will <cheerfully accept that, and generate three
i dentical |abels. Not good.



Later on, when we start referencing variables, the conmpiler wll
also let us reference variables that don't exist. The assenbler
will catch both of these error conditions, but it doesn't seem
friendly at all to pass such errors along to the assenbler. The
conpi | er should catch such things at the source | anguage | evel

So even though we don't need a synmbol table to record data types,

we ought to install one just to check for these two conditions.
Since at this point we are still restricted to single-character
vari abl e names, the synbol table can be trivial. To provide for

it, first add the following declaration at the begi nning of your
program

var ST: array['A ..'Z] of char;

and insert the follow ng function:

{ Look for Synbol in Table }

function InTable(n: char): Bool ean;
begin
InTable := ST[n] <> "' ';

end;
{o }
W also need to initialize the table to all blanks. The
following lines in Init will do the job:
var i: char;
begin

for i :="A to 'Z do

ST[i] : =" "

Finally, insert the following two lines at the beginning of
Al | oc:

if InTabl e(N) then Abort('Duplicate Variable Nane ' + N)
ST[N] :="v';

That should do it. The conpiler wll now catch duplicate
declarations. Later, we can also wuse |InTable when generating
references to the vari abl es.

EXECUTABLE STATEMENTS

At this point, we can generate a null programthat has sone data



variables declared and possibly initialized. But so far we
haven't arranged to generate the first |ine of executable code.

Believe it or not, though, we almst have a wusable |anguage!
What's mssing is the executable code that nmust go into the main
program But that code is just assignment statements and contro
statenments ... all stuff we have done before. So it shouldn't
take us long to provide for them as well

The BNF definition given earlier for the main programincluded a
statenment bl ock, which we have so far ignored:

<mai n> ::= BEGQ N <bl ock> END

For now, we can just <consider a block to be a series of
assi gnment statenents:

<bl ock> ::= (Assignnment)*

Let's start things off by adding a parser for the block. W'l
begin with a stub for the assignnent statenent:

{ Parse and Translate an Assi gnnent Statenent }

procedure Assignment;
begi n

Get Char ;
end;

{ Parse and Translate a Block of Statenments }

procedure Bl ock;
begi n
while Look <> 'e' do
Assi gnnent ;

Modi fy procedure Main to call Block as shown bel ow

{ Parse and Translate a Main Program}

procedure Min;

begi n
Match('b');
Pr ol og;



Bl ock;

Mat ch('e');

Epi | og;
end;
{ }
This version still won't generate any code for the "assi gnnent
statements" ... all it does is to eat characters wuntil it sees
the 'e' for "END.'" But it sets the stage for what is to follow
The next step, of <course, is to flesh out the code for an
assignment statenment. This is sonething we've done many tines
before, so | won't belabor it. This time, though, 1'd like to
deal with the code generation a little differently. Up till now,

we' ve always just inserted the Emits that generate output code in
line with the parsing routines. A little unstructured, perhaps,
but it seenmed the npbst straightforward approach, and nade it easy
to see what kind of code would be enmtted for each construct.

However, | realize that nost of you are using an 80x86 computer,
so the 68000 code generated is of little use to you. Several of
you have asked ne if the CPU dependent code couldn't be collected
into one spot where it would be easier to retarget to another
CPU. The answer, of course, is yes.

To acconplish this, insert the following "code generation"
routines:
R TR }

{ Cear the Primary Register }

procedure Cl ear;
begi n

EmtLn(' CLR DO");
end;

{ Negate the Primary Register }

procedure Negate;
begin

Em tLn(' NEG DO');
end;

{ Load a Constant Value to Primary Register }

procedure LoadConst(n: integer);
begi n
Em t (' MOVE #')
WiteLn(n, ',D0");
end;



{ Load a Variable to Primary Register }

procedure LoadVar (Name: char);
begi n
if not InTabl e(Nane) then Undefi ned(Nane);
EmtLn(' MOVE ' + Nane + '(PC),D0");
end;

{ Push Primary onto Stack }

procedur e Push;

begin

Em tLn(' MOVE DO, -(SP)");
end;

{ Add Top of Stack to Primary }

procedur e PopAdd;

begin

Em tLn(' ADD (SP) +, DO');
end;

{ Subtract Primary from Top of Stack }

procedure PopSub;

begi n
EmtLn(' SUB (SP)+, DO');
Em tLn(' NEG DO');

end;

{ Multiply Top of Stack by Primary }

procedure PopMul ;

begin

Em tLn(' MULS (SP)+, D0");
end;

{ Divide Top of Stack by Primary }

procedure PopDiv;

begi n
Em tLn(' MOVE (SP)+, D7');
Em tLn(' EXT.L D7');
EmtLn(' DIVS DO, D7');
Em tLn(' MOVE D7, D0");



{ Store Primary to Variable }

procedure Store(Nane: char);

begi n
if not InTabl e(Nane) then Undefi ned(Nane);
EmtLn('LEA "' + Name + ' (PC), A0');
Em tLn(' MOVE DO, (A0)")

end;

e PR }
The nice part of this approach, of course, 1is that we can
retarget the conpiler to a new CPU sinmply by rewiting these
"code generator" procedures. In addition, we wll find later

that we can inprove the code quality by tweaking these routines a
bit, wi thout having to nodify the conpiler proper.

Not e that both LoadVar and Store check the synbol table to make

sure that the variable is defined. The error handler Undefined
sinmply calls Abort:

{ Report an Undefined ldentifier }

procedure Undefined(n: string);

begi n

Abort (' Undefined ldentifier ' + n);
end;
{o }
K, we are now finally ready to begin processing executabl e code.
We'll do that by replacing the stub version of procedure
Assi gnnent .

We' ve been down this road many times before, so this should al
be famliar to you. In fact, except for the changes associ ated
with the code generation, we could just copy the procedures from
Part WVII. Since we are maki ng sone changes, | won't just copy
them but we will go a little faster than usual

The BNF for the assignment statenment is:

<assignnent> ::= <ident> = <expression>

<expression> ::= <first term ( <addop> <terne )*

<first ternmp ::= <first factor> <rest>
<termp ::= <factor> <rest>
<rest> ::= ( <mul op> <factor> )*



<first factor> ::=[ <addop> ] <factor>

<factor> ::= <var> | <nunber> | ( <expression> )

This version of the BNFis also a bit different than we've used
before ... yet another "variation on the thene of an expression."
This particular version has what | <consider to be the best
treatment of the wunary minus. As you'll see later, it lets us
handl e negative constant values efficiently. It's wort h
mentioning here that we have often seen the advantages of
"tweaking® the BNF as we go, to help make the | anguage easy to
par se. What you're looking at here is a bit different: we've
tweaked the BNF to nake the CODE GENERATION nore efficient!
That's a first for this series.

Anyhow, the follow ng code inplements the BNF

{ Parse and Translate a Math Factor }
procedure Expression; Forward;

procedure Factor;
begin
if Look ="' (' then begin
Match(' (");
Expr essi on;
Match(')');
end
el se if |IsAl pha(Look) then
LoadVar ( Get Nane)
el se
LoadConst ( Get Nun) ;
end;

{ Parse and Translate a Negative Factor }

procedure NegFactor;
begin
Match('-");
if IsDigit(Look) then
LoadConst ( - Get Num)
el se begin
Fact or;
Negat e;
end;
end;

{ Parse and Translate a Leadi ng Factor }



procedure FirstFactor;

begi n
case Look of
"+': begin
Match(" +');
Fact or;
end;
'-': NegFactor;
el se Factor;
end;
end;
e }

{ Recogni ze and Translate a Miultiply }

procedure Miltiply;
begin
Mat ch(' *');
Fact or;
PopMul ;
end;

{ Recogni ze and Translate a Divide }

procedure Divide;
begi n
Match('/');
Fact or;
PopDi v;
end;

{ Common Code Used by Term and FirstTerm}

procedure Terni;
begi n
whi |l e I sMul op(Look) do begin
Push;
case Look of
rooMul tioply;
"/': Divide;
end;
end;
end;

{ Parse and Translate a Math Term}

procedure Term
begi n
Fact or;
Termi;



{ Parse and Translate a Leading Term}

procedure FirstTerm
begi n

FirstFactor;

Ter mi;
end;

{ Recogni ze and Translate an Add }

procedure Add;
begin
Mat ch(' +');
Term
PopAdd;
end;

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Match('-");
Term
PopSub;
end;

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
First Term
whi l e |1 sAddop(Look) do begin
Push;
case Look of
"+': Add;
'-': Subtract;
end;
end;
end;

{ Parse and Translate an Assi gnnent Statenent }

procedure Assignnment;
var Nane: char;
begi n



Nanme : = Get Nane;
Match(' =");
Expr essi on;
St or e( Nane) ;

end;

{ }
K, if you've got all this code inserted, then compile it and
check it out. You should be seeing reasonable-|ooking code,
representing a conplete programthat will assenble and execute.

We have a conpil er!

BOOLEANS

The next step should also be famliar to you. W nust add
Bool ean expressions and rel ational operations. Agai n, since
we've already dealt with themnmore than once, | won't el aborate

much on them except where they are different fromwhat we' ve
done before. Again, we won't just copy fromother files because
I'"ve changed a few things just a bit. Mst of the changes just
i nvol ve encapsul ati ng the machi ne-dependent parts as we did for

t he arithnetic operations. I've also nodified procedur e
Not Factor sonewhat, to parallel the structure of FirstFactor
Finally, | corrected an error in the object code for the

rel ati onal operators: The Scc instruction | used only sets the
low 8 bits of DO. W want all 16 bits set for a logical true, so
I've added an instruction to sign-extend the | ow byte.

To begin, we're going to need some nore recogni zers:

{ Recogni ze a Boolean Orop }

function IsOop(c: char): bool ean;
begi n

[sGrop :=cin["]", "~'1;

end;

{ Recogni ze a Relop }
function IsRelop(c: char): bool ean;
begi n

IsRelop :=c in ['=, "#,6 "<, ">];
end;

Al so, we're going to need sonme nore code generation routines:

{ Conplenment the Primary Register }



procedure Notlt;
begi n

Em tLn(' NOT DO');
end;

{ AND Top of Stack with Primary }

procedur e PopAnd;
begi n

EmitLn(' AND (SP) +, DO');
end;

{ OR Top of Stack with Primary }

procedure PopOr;
begi n

EmitLn(' OR (SP)+,D0");
end;

{ XOR Top of Stack with Primary }

procedur e PopXor;

begi n

EmtLn(' EOR (SP)+, DO');
end;

{ Conpare Top of Stack with Primary }

procedur e PopConpar e;

begi n

EmtLn(' CMP (SP)+, DO');
end;

{ Set DO If Conpare was =}

procedure Set Equal ;
begi n
Em tLn(' SEQ DO');
EmitLn(' EXT DO');
end;

{ Set DO |If Conpare was !=}



procedur e Set NEqual
begi n
Em tLn(' SNE DO');
Em tLn(' EXT DO');
end;

procedure Set G eater;
begi n
EmtLn(' SLT DO');
Em tLn(' EXT DO');
end;

{ Set DO If Conpare was < }

procedure SetlLess;
begi n
Em tLn(' SGT DO');
Em tLn(' EXT DO');
end;

Al'l of this gives us the tools we need. The BNF for the Bool ean
expressions is:

<bool -expr> ::= <bool -ternm> ( <orop> <bool-ternms )*

<bool -ternk ::= <not-factor> ( <andop> <not-factor> )*

<not-factor> ::= [ '"I'" ] <relation>

<relation> ::= <expression> [ <relop> <expression> ]
Shar p-eyed readers mght note that this syntax does not include
the non-term nal "bool-factor" used in earlier versions. It was

needed then because | also allowed for the Bool ean constants TRUE
and FALSE. But renenber that in TINY there is no distinction

made between Bool ean and arithnetic types ... they can be freely
i nterm xed. So there is really no need for these predefined
values ... we can just use -1 and O, respectively.

In C term nol ogy, we could always use the defines:

#define TRUE -1
#defi ne FALSE O

(That is, if TINY had a preprocessor.) Later on, when we all ow



for declarations of constants, these two val ues wi || be
predefi ned by the |anguage.

The reason that I'mharping on this is that ['ve already tried
the alternative, which is to include TRUE and FALSE as keywords.
The problemw th that approach is that it then requires |lexica
scanni ng for EVERY variable nanme in every expression. |If you'l
recall, | pointed out in Installnment VII that this slows the
conpil er down considerably. As long as keywords can't be in
expressions, we need to do the scanning only at the beginning of
every new statement ... quite an inprovenent. So using the
syntax above not only sinmplifies the parsing, but speeds up the
scanni ng as wel |

K, given that we're all satisfied with the syntax above, the
correspondi ng code is shown bel ow

{ Recogni ze and Translate a Rel ational "Equals" }

procedure Equals;
begi n
Mat ch(' =");
Expr essi on;
PopConpar e;
Set Equal ;
end;

{ Recogni ze and Translate a Rel ational "Not Equal s" }

procedur e Not Equal s;
begi n
Mat ch(' #');
Expr essi on;
PopConpar e;
Set NEqual ;
end;

{ Recogni ze and Translate a Rel ational "Less Than" }

procedure Less;
begi n
Mat ch(' <');
Expr essi on;
PopConpar e;
Set Less;
end;

{ Recogni ze and Translate a Rel ational "Greater Than" }



procedure G eater;
begi n
Mat ch(' >");
Expr essi on;
PopConpar e;
Set Greater;
end;

{ Parse and Translate a Relation }

procedure Rel ati on;
begin
Expr essi on;
if IsRel op(Look) then begin

Push;
case Look of
'=': Equals;
"#': Not Equal s;
'<': Less;
'>': Geater;
end;
end;
end;
{ _______________________________________________________________

{ Parse and Transl ate a Bool ean Factor with Leadi ng NOT }

procedur e Not Factor;
begin
if Look = "'!" then begin
Match('!");
Rel ati on;
Not I t;
end
el se
Rel ati on;
end;

{ Parse and Translate a Bool ean Term}

procedur e Bool Ter m
begi n
Not Fact or ;
while Look = '& do begin
Push;
Mat ch(' & );
Not Fact or ;
PopAnd;
end;
end;



{ Recogni ze and Transl ate a Bool ean OR }

procedure Bool O
begi n
Match(' |");
Bool Ter m
PopOr;
end;

{ Recogni ze and Transl ate an Exclusive O }

procedur e Bool Xor;
begi n
Mat ch(' ~');
Bool Ter m
PopXor ;
end;

{ Parse and Transl ate a Bool ean Expression }

procedur e Bool Expressi on;
begi n
Bool Ter m
while 1sOrOp(Look) do begin
Push;
case Look of
"|': Bool Or;
' ~': Bool Xor;
end;
end;
end;

To tie it all together, don't forget to change the references to
Expression in procedures Factor and Assignment so that they cal
Bool Expr essi on i nstead.

K, if you've got all that typed in, conpile it and give it a

whirl . First, make sure you can still parse an ordinary
arithnetic expression. Then, try a Bool ean one. Finally, make
sure that you can assign the results of relations. Try, for
exanpl e:

pvX, Yy, zbx=z>ye.
whi ch stands for:

PROGRAM
VAR X, Y, Z
BEG N



X=Z>Y
END.

See how this assigns a Bool ean value to X?
CONTROL STRUCTURES

W' re al nost hone. Wth Boolean expressions in place, it's a
sinple matter to add control structures. For TINY, we'll only
allow two kinds of them the IF and the WH LE

<if> ::= I F <bool -expression> <block> [ ELSE <bl ock>] ENDIF
<whi l e> ::= WHI LE <bool - expressi on> <bl ock> ENDWHI LE

Once again, let nme spell out the decisions inplicit in this
syntax, which departs strongly fromthat of C or Pascal. In both
of those | anguages, the "body" of an IF or WHILE is regarded as a
single statement. |If you intend to use a block of nore than one
statement, you have to build a conpound statement using BEG N- END
(in Pascal) or '{}" (in C. In TINY (and KISS) there is no such
thing as a conpound statenent ... single or nmultiple they're al
just blocks to these | anguages.

In KISS, all the control structures will have explicit and uni que
keywords bracketing the statenent block, so there can be no
confusion as to where things begin and end. This is the nodern
approach, used in such respected | anguages as Ada and Modula 2,
and it conpletely elimnates the problemof the "dangling else.”

Note that | could have chosen to use the sanme keyword END to end
all the constructs, as is done in Pascal. (The closing '}' inC
serves the sanme purpose.) But this has always led to confusion
which is why Pascal programmers tend to wite things like

end { loop }
or end { if }
As | explained in Part V, using unique term nal keywords does
increase the size of the keyword |ist and therefore slows down
the scanning, but in this case it seenms a small price to pay for
t he added i nsurance. Better to find the errors at compile tinme
rather than run tine.
One | ast thought: The two constructs above each have the non-
term nal s

<bool - expressi on> and <bl ock>

juxtaposed with no separating keyword. |In Pascal we woul d expect



the keywords THEN and DO in these | ocations.

I have no problemw th | eaving out these keywords, and the parser
has no trouble either, ON CONDI TION that we nake no errors in the
bool - expression part. On the other hand, if we were to include
t hese extra keywords we woul d get yet one nore | evel of insurance
at very little <cost, and | have no problemw th that, either
Use your best judgnment as to which way to go.

K, with that bit of explanation let's proceed. As usual, we're
going to need some new code generation routines. These generate
the code for conditional and unconditional branches:

{ Branch Unconditional }

procedure Branch(L: string);
begin

EmtLn('BRA " + L);

end;

{ Branch Fal se }

procedure BranchFal se(L: string);
begin

Em tLn(' TST DO');

EmtLn('BEQ "' + L);
end;

Except for the encapsul ation of the code generation, the code to
parse the control constructs is the sane as you' ve seen before:

{ Recogni ze and Translate an I F Construct }

procedure Bl ock; Forward,;

procedure Dol f;
var L1, L2: string;
begi n
Match('i');
Bool Expr essi on;
L1 : = NewlLabel

L2 := L1,

BranchFal se(L1);

Bl ock;

if Look = 'I" then begin
Match('l");

L2 : = NewLabel;
Branch(L2);
Post Label (L1);



Bl ock;

end;

Post Label (L2);

Mat ch('e');
end;
e }

{ Parse and Translate a WHI LE Statenent }

procedure DoWhil e;
var L1, L2: string;
begi n
Match("w );
L1 : = NewLabel
L2 := NewlLabel;
Post Label (L1);
Bool Expr essi on;
BranchFal se(L2);
Bl ock;
Mat ch('e');
Branch(L1);
Post Label (L2);
end;

To tie everything together, we need only nodify procedure Bl ock
to recogni ze the "keywords" for the IF and WHILE. As usual, we
expand the definition of a block |ike so:

<block> ::= ( <statenent> )*

wher e

<statement> ::= <if> | <while> | <assignment>

The correspondi ng code is:

{ Parse and Translate a Block of Statements }

procedure Bl ock;
begi n
while not(Look in ["e", "I"]) do begin
case Look of
"i': Dolf;
"w : DoWwhil e;
el se Assignnent;
end;
end;
end;



OK, add the routines I've given, conpile and test them You
shoul d be able to parse the single-character versions of any of
the control constructs. |It's |ooking pretty good!

As a matter of fact, except for the single-character limtation
we've got a virtually conplete version of TINY. | call it, with
tongue planted firmy in cheek, TINY Version 0.1.

LEXI CAL SCANNI NG

O course, you know what's next: We have to convert the program
so that it can deal with nmulti-character keywords, new ines, and
whi t espace. We have just gone through all that in Part VI
We'll use the distributed scanner technique that | showed you in
that install nment. The actual inplenentation is a little
di fferent because the way |I'm handling newines is different.

To begin with, let's sinply allow for whitespace. This involves
only adding calls to Skipwite at the end of the three routines,
Get Nane, GetNum and Match. A call to Skipwite in Init prines
the punp in case there are | eadi ng spaces.

Next, we need to deal with newines. This is really a two-step
process, since the treatment of the newlines wth single-
character tokens is different fromthat for nulti-character ones.
We can elimnate some work by doing both steps at once, but |
feel safer taking things one step at a tine.

I nsert the new procedure:

{ Skip Over an End-of-Line }

procedure NewLi ne;

begi n
whil e Look = CR do begin
Get Char;
if Look = LF then GetChar;
Ski pWhi t e;
end;
end;
{o }
Note that we have seen this procedure before in the form of
Procedure Fin. |'ve changed the nane since this new one seens
nore descriptive of the actual function. 1've also changed the

code to allow for multiple newlines and |ines with nothing but
whi te space.

The next step is to insert calls to NewLi ne wherever we decide a
newline is permssible. As I've pointed out before, this can be



very different in different |anguages. In TINY, |'ve decided to
allow themvirtually anywhere. This means that we need calls to
NewLi ne at the BEG NNI NG (not the end, as with Skipwite) of the
procedures Get Name, GetNum and Match

For procedures that have while | oops, such as TopDecl, we need a
call to NewLine at the beginning of the procedure AND at the
bottom of each |loop. That way, we can be assured that NewLine
has just been called at the begi nning of each pass through the
| oop.

If you've got all this done, try the programout and verify that
it will indeed handle white space and newl i nes.

If it does, then we're ready to deal with multi-character tokens
and keywords. To begin, add the additional declarations (copied
al nost verbatimfromPart VII):

o }
{ Type Decl arations }
type Synmbol = string[8];

SynTab = array[ 1..1000] of Symnbol;

TabPtr = ~Synirab;
o o o }
{ Variable Declarations }
var Look : char; { Lookahead Character }

Token: char; { Encoded Token }

Val ue: string[16]; { Unencoded Token }

ST: Array['A.."Z"] of char;

{ Definition of Keywords and Token Types }

const NKW = 9;
NKWL. = 10;

const KWist: array[l..NKW of Synbol =
("IF, "ELSE', "ENDIF', "WHILE , 'ENDWH LE,
'"VAR, 'BEG N, 'END, 'PROGRAM );

const KWode: string[ NKM] = 'xil ewevbep';
Next, add the three procedures, also fromPart VII

{
{ Tabl e Lookup }



function Lookup(T: TabPtr; s: string; n: integer): integer

var i: integer;
found: Bool ean;
begi n
found : = fal se;
ior=on

mhile (i > 0) and not found do
if s =T~i] then

found : = true
el se
dec(i);
Lookup :=1i;
end;
{o o }
o o o }

{ Get an ldentifier and Scan it for Keywords }

procedure Scan;
begi n

Cet Nane;

Token : = KWode[ Lookup(Addr (KW ist), Value, NKW + 1];
end;

{ Match a Specific Input String }

procedure MatchString(x: string);
begin

if Value <> x then Expected('''' + x + ''"'");
end;

Now, we have to make a fairly |arge nunber of subtle changes to
the remaining procedures. First, we nust change the function
Cet Nanme to a procedure, again as we did in Part VII:

{ Get an ldentifier }

procedure Get Nane;
begi n
NewLi ne;
i f not IsAl pha(Look) then Expected(' Nanme');
Value :="";
whil e |1 sAl NumLook) do begin
Val ue : = Val ue + UpCase(Look);
Get Char;
end;
Ski pWhi t e;
end;



Note that this procedure |leaves its result in the global string
Val ue.

Next, we have to change every reference to GetName to reflect its
new form These occur in Factor, Assignnment, and Decl

{ Parse and Translate a Math Factor }
procedur e Bool Expressi on; Forward,;

procedure Factor;

begi n
if Look = "'(' then begin
Match(' (");
Bool Expr essi on;
Match(')");
end
else if IsAl pha(Look) then begin
Get Nane;
LoadVar (Val ue[ 1]);
end
el se
LoadConst ( Get Nun) ;
end;
{o }
L EEEEEEEEEEEPTPREEE }

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignnent;
var Nane: char;

begi n
Nanme := Val ue[1];
Match(' =");

Bool Expr essi on;
St or e( Nane) ;
end;

{ Parse and Translate a Data Decl aration }

pr ocedur e Decl

begin
Get Nane;
Al l oc(Val ue[1]);
while Look = ',' do begin
Match(',"');
Get Nane;

All oc(Val ue[1]);



end;

(Note that we're still only allowing single-character variable
names, so we take the easy way out here and sinply use the first
character of the string.)

Finally, we nmust nake the changes to use Token instead of Look as
the test <character and to call Scan at the appropriate places.
Mostly, this involves deleting calls to Mtch, occasionally
replacing calls to Mitch by calls to MatchString, and Repl acing

calls to NewLine by calls to Scan. Here are the affected
routines:
R EEEEEEEE }

{ Recogni ze and Translate an |IF Construct }

procedure Bl ock; Forward;

procedure Dol f;
var L1, L2: string;
begin
Bool Expr essi on;
L1 : = NewLabel
L2 := L1,
BranchFal se(L1);
Bl ock;
if Token = "'1" then begin
L2 : = NewlLabel ;
Branch(L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Mat chString(' ENDI F' ) ;
end;

{ Parse and Translate a WHI LE Statenent }

procedure DoWhil e;
var L1, L2: string;
begi n
L1 : = NewlLabel
L2 : = NewlLabel;
Post Label (L1);
Bool Expr essi on;
BranchFal se(L2);
Bl ock;
Mat chStri ng(' ENDWHI LE' ) ;
Branch(L1);
Post Label (L2);
end;



{ Parse and Translate a Bl ock of Statements }

procedure Bl ock
begin
Scan;
while not(Token in ['"e', '"I']) do begin
case Token of

"i': Dolf;

"w : DoWhil e;
el se Assignnent;
end;

Scan;
end;
end;

{ Parse and Transl ate d obal Decl arations }

procedure TopDecl s;
begin
Scan;
while Token <> 'b' do begin
case Token of

"v': Decl
el se Abort (' Unrecogni zed Keyword ' + Val ue);
end;
Scan;
end;
end;

{ Parse and Translate a Main Program}

procedure Min;
begi n
Mat chString(' BEG N ) ;
Pr ol og;
Bl ock;
Mat chStri ng(' END ) ;
Epi | og;
end;

{ Parse and Translate a Program}

procedure Prog;
begi n
Mat chStri ng(' PROGRAM ) ;
Header ;
TopDecl s;
Mai n;
Match('.");



{ Initialize }

procedure Init;

var i: char;
begi n

for i :="A to 'Z do

ST[i] : =" "

Get Char;

Scan;
end;
{o o }
That should do it. If all the changes got in correctly, you
shoul d now be parsing prograns that | ook |ike prograns. (I'f you
didn't make it through all the changes, don't despair. A
conplete listing of the final formis given l[ater.)
Did it work? |If so, then we're just about hone. 1In fact, with a
few m nor exceptions we've already got a conpiler that's usable.
There are still a few areas that need i nprovenent.

MULTI - CHARACTER VARI ABLE NAMES

One of those is the restriction that we still have, requiring
si ngl e-character vari abl e nanmes. Now t hat we can handle nulti -
character keywords, this one begins to look very nuch Iike an
arbitrary and unnecessary limtation. And i ndeed it is.
Basically, its only virtue is that it permts a trivially sinple
i mpl enentation of the synmbol t abl e. But that's just a
convenience to the conpiler witers, and needs to be elim nated.

We've done this step before. This tine, as usual, I'mdoing it a
little differently. | think the approach used here keeps things

just about as sinple as possible.

The natural way to inplenment a synbol table in Pascal is hy
declaring a record type, and nmaeking the synbol table an array of
such records. Here, though, we don't really need a type field
yet (there is only one kind of entry allowed so far), so we only
need an array of synbols. This has the advantage that we can use
t he existing procedure Lookup to search the synbol table as wel
as the keyword |Iist. As it turns out, even when we need nore
fields we can still use the same approach, sinply by storing the
other fields in separate arrays.

K, here are the changes that need to be made. First, add the
new typed constant:

NEntry: integer = O;



Then change the definition of the synmbol table as foll ows:

const MaxEntry = 100;

var ST . array[l..MaxEntry] of Synbol;

(Note that ST is _NOT_ declared as a Symlab. That declaration is
a phony one to get Lookup to work. A Symlab would take up too

much RAM space, and so one is never actually allocated.)

Next, we need to replace InTable:

{ Look for Synmbol in Table }

function InTable(n: Synbol): Bool ean
begi n

I nTabl e : = Lookup(@T, n, MaxEntry) <> 0;
end,

We al so need a new procedure, AddEntry, that adds a new entry to
t he table:

o o }
{ Add a New Entry to Synbol Table }
procedure AddEntry(N: Synbol; T: char);
begi n
if InTabl e(N) then Abort('Duplicate Identifier ' + N);
if NEntry = MaxEntry then Abort (' Synmbol Table Full');
Inc(NEntry);
ST[NEntry] := N,
SType[ NEntry] := T,
end;
R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
This procedure is called by Alloc
A e LR R EEE LR EEE }

{ Allocate Storage for a Variable }

procedure Alloc(N: Synbol);

begi n
if InTabl e(N) then Abort('Duplicate Variable Name ' + N);
AddEntry(N, 'v');



Finally, we nmust change all the routines that currently treat the
vari abl e nane as a single character. These include LoadVar and
Store (just change the type from char to string), and Factor
Assi gnnent, and Decl (just change Value[l] to Val ue).

One last thing: change procedure 1Init to clear the array as
shown:

{ Initialize }

procedure Init;
var i: integer;
begin
for i := 1 to MaxEntry do begin
ST[i] :="";
SType[i] =" ';
end;
Get Char ;
Scan;
end;

That should do it. Try it out and verify that you can, indeed,
use multi-character variabl e nanes.

MORE RELOPS

We still have one renmining single-character restriction: the one
on relops. Some of the relops are indeed single characters, but

others require two. These are '<=' and '>='. | also prefer the
Pascal '<>' for "not equals," instead of "#'.
If you'll recall, in Part VII | pointed out that the conventiona

way to deal wth relops is to include themin the list of
keywords, and let the Iexical scanner find them But, again,
this requires scanning throughout the expression parsing process,
whereas so far we've been able to |limt the use of the scanner to
t he begi nning of a statenent.

I nmentioned then that we can still get away with this, since the
mul ti-character relops are so few and so limted in their usage.
It's easy to just treat them as special cases and handle themin
an ad hoc manner.

The changes required affect only the code generation routines and
procedures Relation and friends. First, we're going to need two
nore code generation routines:



{ Set DO If Conpare was <=}

procedure SetlLessOr Equal ;
begi n
Em tLn(' SGE DO');
Em tLn(' EXT DO'");
end;

{ Set DO If Conpare was >= }

procedure Set G eater O Equal ;
begi n

Em tLn(' SLE DO');

Em tLn(' EXT DO');
end;

Then, nodify the relation parsing routines as shown bel ow

{ Recogni ze and Translate a Relational "Less Than or Equal" }

procedure LessOr Equal ;
begi n

Match(' =");

Expr essi on;

PopConpar e;

Set LessOr Equal ;
end;

{ Recogni ze and Translate a Rel ational "Not Equal s" }

procedur e Not Equal ;
begi n
Mat ch(' >');
Expr essi on;
PopConpar e;
Set NEqual ;
end;

{ Recogni ze and Translate a Rel ati onal "Less Than" }

procedure Less;
begi n
Mat ch(' <');
case Look of
'=': LessOr Equal ;
">'": Not Equal ;
el se begin



Expr essi on;
PopConpar e;
Set Less;
end;
end;
end;

{ Recogni ze and Translate a Rel ational "Greater Than" }

procedure Greater;

begi n

Mat ch(' >');

if Look = '=" then begin
Mat ch(' =");
Expr essi on;
PopConpar e;
Set Gr eat er Or Equal ;
end

el se begin
Expr essi on;

PopConpar e;
Set G eater;
end;

end;
{o }
That's all it takes. Now you can process all the relops. Try
it.
I NPUT/ QUTPUT

W now have a conplete, working | anguage, except for one ninor
enbarassnment: we have no way to get data in or out. W need sone
/0.

Now, the convention these days, established in C and continued in
Ada and Modula 2, is to leave I/O statenents out of the | anguage
itself, and just include themin the subroutine library. That
would be fine, except that so far we have no provision for
subroutines. Anyhow, with this approach you run into the problem
of variable-length argunment lists. |In Pascal, the I/0O statenents
are built into the | anguage because they are the only ones for
which the argunent |ist can have a variable nunber of entries.
In C, we settle for kludges like scanf and printf, and nust pass
t he argument count to the called procedure. In Ada and Modula 2
we nust use the awkward (and SLOW) approach of a separate cal
for each argunent.

So | think | prefer the Pascal approach of building the I/Oin,
even though we don't need to.

As usual, for this we need sonme nore code generation routines.
These turn out to be the easiest of all, because all we do is to



call library procedures to do the work:

{ Read Variable to Primary Register }

procedure ReadVar;
begi n

Em tLn(' BSR READ );
St or e( Val ue) ;
end;

{ Wite Variable fromPrimry Register }

procedure WiteVar;
begin

Em tLn(' BSR WRI TE' ) ;
end;

The idea is that READ | oads the value frominput to the DO, and
WRI TE outputs it fromthere.

These two procedures represent our first encounter with a need
for library procedures ... the conponents of a Run Time Library
(RTL). O course, soneone (nanmely wus) has to wite these
routi nes, but they're not part of the conpiler itself. | won't
even bother showing the routines here, since these are obviously
very much OS-dependent. I _WLL_ sinply say that for SK*DGCS,
they are particularly sinple ... alnobst trivial. One reason
won't show them here is that you can add all kinds of fanciness
to the things, for exanple by pronpting in READ for the inputs,
and by giving the user a chance to reenter a bad input.

But that is really separate from conpiler design, so for now |'ll
just assune that a library call TINYLIB.LIB exists. Since we now
need it |oaded, we need to add a statenment to include it in
procedur e Header:

{ Wite Header Info }

procedur e Header;
begi n

WitelLn(' WARMST', TAB, ' EQU $A01FE');
EmtLn('LIB TINYLIB);
end;

That takes care of that part. Now, we also need to recognize the
read and wite commands. W can do this by adding two nore
keywords to our list:



{ Definition of Keywords and Token Types }

const NKW = 11;
NKWL = 12;

const KWist: array[l.. NKW of Synbol =
("IF, "ELSE', "ENDIF', "WHILE , 'ENDWHI LE,
' READ , "WRI TE' ' VAR, '"BEG N, "END',
' PROGRAM ) ;

const KWode: string[ NKM] = 'xil eweRWbep';

(Note how |I' m usi ng upper case codes here to avoid conflict with
the 'w of WHILE.)

Next, we need procedures for processing the read/wite statenent
and its argunent |ist:

{ Process a Read Statenent }
procedur e DoRead;
begi n
Match(' (");
Get Nane;
ReadVar ;
while Look ="'," do begin
Match(',"');
Get Nane;
ReadVar ;
end;
Match(')");
end;

{ Process a Wite Statenent }

procedure DoWite;
begi n
Match(' (");
Expr essi on;
WiteVar;
while Look = "',' do begin
Match(',");
Expr essi on;
WiteVar;
end;
Match(')");
end;



Finally, we nust expand procedure Block to handle the new
statenent types:

{ Parse and Translate a Block of Statements }

procedure Bl ock
begi n
Scan;
while not(Token in ["e', "I']) do begin
case Token of
i': Dolf;
"w : DoWwhil e;
'R : DoRead;
'"W: DoWite;
el se Assignnent;
end;
Scan;
end;
end;

That's all there is toit. _NOW we have a | anguage!

CONCLUSI ON

At this point we have TINY conpletely defined. |It's not nmuch ..
actually a toy conpiler. TINY has only one data type and no
subroutines ... but it's a conplete, usable [|anguage. Whi | e
you're not likely to be able to wite another conpiler in it, or
do anything el se very seriously, you could wite prograns to read
sonme input, performcalculations, and output the results. Not
too bad for a toy.

Most inmportantly, we have a firm base upon which to build further

extensions. | know you'll be glad to hear this: this is the |ast
time I1'lIl start over in building a parser ... from now on |
intend to just add features to TINY wuntil it becones KISS. Oh,
there'll be other tines we will need to try things out with new

copies of the Cradle, but once we've found out how to do those
things they'll be incorporated into TINY.

What will those features be? Well, for starters we need
subroutines and functions. Then we need to be able to handle
di fferent types, including arrays, strings, and other structures.
Then we need to deal with the idea of pointers. Al this will be
upcoming in future install ments.

See you then.

For references purposes, the conplete listing of TINY Version 1.0
is shown bel ow



o o }
program Ti ny10;

o }
{ Constant Decl arations }

const TAB = ~I;

CR ="M

LF = 7J;

LCount: integer = O;

NEntry: integer = O;
(e }
{ Type Declarations }
type Synmbol = string[8];

Symrab = array[1l..1000] of Symbol;

TabPtr = ~Synirab;
(oo }
{ Variable Declarations }
var Look : char; { Lookahead Character }

Token: char; { Encoded Token }

Val ue: string[16]; { Unencoded Token }
const MaxEntry = 100;
var ST . array[l..MaxEntry] of Synbol;

SType: array[l..MaxEntry] of char;
R EEEEEE R }
{ Definition of Keywords and Token Types }
const NKW = 11,

NKWL = 12;
const KWist: array[l..NKW of Synbol =

("I'F, "ELSE', "ENDIF', '"VWH LE , 'ENDWH LE',

' READ' , "WRI TE' ' VAR | '"BEG N, "END
' PROGRAM ) ;
const KWode: string[ NKM] = "xil eweRWbep';
o o oo }

{ Read New Character From | nput Stream}

procedure Get Char;
begi n
Read( Look);



{ Report an Error }

procedure Error(s: string);
begin

WitelLn;

WiteLn("G 'FError: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;

{ Report What WAs Expected }

procedure Expected(s: string);
begin

Abort (s + ' Expected');
end;

{ Report an Undefined ldentifier }

procedure Undefined(n: string);

begi n

Abort (' Undefined lIdentifier ' + n);
end;

{ Recogni ze an Al pha Character }

function |IsAl pha(c: char): bool ean;
begin

| sAl pha : = UpCase(c) in ['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean
begi n

IsDigit :=cin['0.."9];

end;



{ Recogni ze an Al phaNuneric Character }

function IsAl Num(c: char): bool ean;
begi n

I sAl Num : = I sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=c in ['"+", "-'];
end;

{ Recognize a Mil op }

function IsMiul op(c: char): bool ean;
begi n

IsMulop :=cin ["*", "/['];
end;

{ Recogni ze a Boolean Orop }

function IsOrop(c: char): bool ean;
begi n

[sOrop :=cin["']", '"~'];

end;

{ Recognize a Relop }

function IsRelop(c: char): bool ean;
begi n

IsRelop :=c in ['=", "#,6 '<, '">],;
end;

{ Recogni ze White Space }

function IsWiite(c: char): bool ean;
begi n

IsWite :=c in['" ', TAB];
end;

{ Skip Over Leading Wite Space }



procedure Ski pWite;

begi n
whil e |1 sWite(Look) do
Get Char ;
end;
o m st ot

{ Skip Over an End-of-Line }

procedure NewLi ne;

begi n
while Look = CR do begin
Get Char ;
if Look = LF then GetChar;
Ski pWhi t e;
end;
end;
{ ______________________________________________________________

{ Match a Specific Input Character }

procedure Match(x: char);

begin
NewLi ne;
if Look = x then Get Char
el se Expected('"''"'" + x + """");
Ski pWhi t e;
end;
o mmmm e e

{ Tabl e Lookup }

function Lookup(T: TabPtr; s: string; n: integer): integer

var i: integer;
found: Bool ean;
begi n
found : = false;
i =

mhile (i > 0) and not found do
if s = T~[i] then

found : = true
el se
dec(i);
Lookup :=i;
end;
g

{ Locate a Synbol in Table }
{ Returns the index of the entry. Zero if not present. }

function Locate(N:. Synmbol): integer
begi n
Locate : = Lookup(@T, n, MaxEntry);



{ Look for Symbol in Table }

function I nTabl e(n: Synbol): Bool ean;
begi n

I nTabl e : = Lookup(@T, n, MaxEntry) <> 0;
end;

{ Add a New Entry to Synbol Table }

procedure AddEntry(N: Synbol; T: char);

begi n
if InTabl e(N) then Abort('Duplicate Identifier ' + N);
if NEntry = MaxEntry then Abort (' Synbol Table Full');
Inc(NEntry);
ST[NEntry] := N,

SType[ NEntry] := T,

end;

{ Get an ldentifier }

procedure Get Nane;
begi n
NewLi ne;
i f not IsAl pha(Look) then Expected(' Nanme');
Value :="";
whil e | sAl NumLook) do begin
Val ue : = Val ue + UpCase(Look);
Get Char;
end;
Ski pWhi t e;
end;

{ Get a Nunber }

function GetNum i nteger;
var Val: integer;
begi n
NewLi ne;
if not IsDigit(Look) then Expected('Integer');
Val := 0;
while IsDigit(Look) do begin
Val := 10 * Val + Ord(Look) - Od('0");
Get Char;
end;
Get Num : = Val ;
Ski pWhi t e;
end;



{ Get an ldentifier and Scan it for Keywords }

procedure Scan;
begin

Get Nane;

Token : = KWode[ Lookup(Addr (KW ist), Value, NKW + 1];
end;

{ Match a Specific Input String }

procedure MatchString(x: string);
begi n

if Value <> x then Expected('''' + x + '''");
end;

{ Qutput a String with Tab }

procedure Emt(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }

procedure Em tLn(s: string);
begi n

Emt(s);

WitelLn;
end;

{ Generate a Uni que Label }

functi on NewLabel: string;
var S: string;

begi n
Str(LCount, S);
NewLabel :='L'" + S;
I nc(LCount);
end;
{ ______________________________________________________________

{ Post a Label To Qutput }

procedure PostLabel (L: string);
begi n



WiteLn(L, ":");
end;

{ Cear the Primary Register }

procedure Cl ear;

begi n

Em tLn(' CLR DO');
end;

{ Negate the Primary Register }

procedure Negat e;
begin

Em tLn(' NEG DO');
end;

{ Conpl enent the Primary Register }

procedure Notlt;
begin

Em tLn(' NOT DO');
end;

{ Load a Constant Value to Prinmary Register }

procedure LoadConst(n: integer);
begin
Em t (' MOVE #');
WiteLn(n, ',D0");
end;

{ Load a Variable to Primary Regi ster }

procedure LoadVar(Name: string);
begi n
if not InTabl e(Nane) then Undefi ned(Nane);
EmtLn(' MOVE ' + Name + ' (PC),D0');
end;

{ Push Primary onto Stack }

procedure Push;
begi n
Em tLn(' MOVE DO, -(SP)");



{ Add Top of Stack to Primary }

procedur e PopAdd;

begi n

Em tLn(' ADD (SP) +, DO');
end;

{ Subtract Primary from Top of Stack }

procedure PopSub;

begi n
EmtLn(' SUB (SP)+, DO');
Em tLn(' NEG DO');

end;

{ Multiply Top of Stack by Primary }

procedure PopMil ;

begin

Em tLn(' MULS (SP)+, D0");
end;

{ Divide Top of Stack by Primary }

procedure PopDiv;
begin
EmitLn(' MOVE (SP)+, D7");
EmtLn(' EXT.L D7");
Em tLn(' DI VS DO, D7');
Em tLn(' MOVE D7, D0");
end;

{ AND Top of Stack with Primary }

procedure PopAnd;

begi n

Em tLn(' AND (SP) +, DO');
end;

{ OR Top of Stack with Primary }

procedure PopOr;
begi n



EmitLn(' OR (SP)+,D0");
end;

{ XOR Top of Stack with Primary }

procedur e PopXor;

begi n

EmitLn(' EOR (SP)+, DO');
end;

{ Conpare Top of Stack with Primary }

procedur e PopConpar €;
begin

Em tLn(' CMP (SP)+, D0");
end;

{ Set DO If Conpare was = }

procedure Set Equal ;
begin
Em tLn(' SEQ DO');
Em tLn(' EXT DO');
end;

procedure Set NEqual ;
begi n
Em tLn(' SNE DO');
Em tLn(' EXT DO');
end;

{ Set DO If Conpare was > }

procedure Set G eater;
begi n
EmtLn(' SLT DO');
Em tLn(' EXT DO");
end;

{ Set DO If Conpare was < }

procedure SetlLess;
begi n



EmtLn(' SGT DQ');
Em tLn(' EXT DQO');
end;

procedure SetlLessO Equal ;
begi n

Em tLn(' SGE DO');

Em tLn(' EXT DO');
end;

{ Set DO If Conpare was >= }

procedure Set Greater Or Equal ;
begi n

EmitLn(' SLE DO');

Em tLn(' EXT DO');
end;

{ Store Primary to Variable }

procedure Store(Nane: string);

begi n
if not InTabl e(Nanme) then Undefined(Nane);
EmtLn('LEA ' + Nanme + '(PC), AQ");
Em tLn(' MOVE DO, (AQ0)")

end;

{ Branch Unconditional }

procedure Branch(L: string);
begi n

EmtLn('BRA ' + L);

end;

{ Branch Fal se }

procedure BranchFal se(L: string);
begi n
Em tLn(' TST DO');
EmtLn('BEQ ' + L);
end;

{ Read Variable to Primary Register }



procedure ReadVar;
begi n
Em tLn(' BSR READ ) ;
St ore(Val ue[ 1]);
end;

{ Wite Variable fromPrimry Register }

procedure WiteVar;
begi n

Em tLn(' BSR WRI TE' ) ;
end;

{ Wite Header Info }

procedur e Header;

begi n

WitelLn(' WARMST' , TAB, 'EQU $A01FE');
end;

{ Wite the Prolog }

procedure Prol og;
begi n

Post Label (' MAI N ) ;
end;

{ Wite the Epilog }

procedure Epil og;
begi n
Em tLn(' DC WARMST' ) ;
Em tLn(' END MAIN ) ;
end;

{ Parse and Translate a Math Factor }
procedur e Bool Expression; Forward;

procedure Factor;
begin
if Look = "'(' then begin
Match(' (");
Bool Expr essi on;
Match(')");
end
el se if IsAl pha(Look) then begin



Cet Nane;
LoadVar ( Val ue) ;

end
el se
LoadConst ( Get Num ;
end;
{ ______________________________________________________________

{ Parse and Translate a Negative Factor }

procedur e NegFactor;
begi n
Match('-");
if IsDigit(Look) then
LoadConst ( - Get Num)
el se begin
Fact or;
Negat e;
end;
end;

{ Parse and Translate a Leadi ng Factor }

procedure FirstFactor;

begi n
case Look of
"+': begin
Mat ch(' +');
Fact or;
end;
'-': NegFactor;
el se Factor;
end;
end;
{ ______________________________________________________________

{ Recogni ze and Translate a Multiply }

procedure Miltiply;
begin
Mat ch(' *');
Fact or;
PopMul ;
end;

{ Recogni ze and Translate a Divide }

procedure Divide;
begi n
Match('/');
Fact or;



PopDi v;
end;

{ Common Code Used by Term and FirstTerm}

procedure Terni;
begi n
whi l e I sMul op(Look) do begin
Push;
case Look of
"rroo Ml tioply;
"/': Divide;
end;
end;
end;

{ Parse and Translate a Math Term }

procedure Term
begin

Fact or;

Ter mi;
end;

{ Parse and Translate a Leading Term}

procedure FirstTerm
begi n

FirstFactor;

Ter mi;
end;

{ Recogni ze and Transl ate an Add }

procedure Add;
begin
Mat ch(' +');
Term
PopAdd;
end;

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Match('-');
Term



PopSub;
end;

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
FirstTerm
whi | e |1 sAddop(Look) do begin
Push;
case Look of
"+': Add;
'-': Subtract;
end;
end;
end;

{ Recogni ze and Translate a Rel ational "Equal s" }

procedur e Equal
begin
Mat ch(' =");
Expr essi on;
PopConpar e;
Set Equal ;
end;

{ Recogni ze and Translate a Relational "Less Than or Equal" }

procedure LessOr Equal
begi n

Match(' =");

Expr essi on;

PopConpar e;

Set LessOr Equal ;
end;

{ Recogni ze and Translate a Rel ational "Not Equal s" }

procedur e Not Equal
begi n
Mat ch(' >');
Expr essi on;
PopConpar e;
Set NEqual ;
end;



{ Recogni ze and Translate a Rel ational "Less Than" }

procedure Less;
begi n
Match(' <');
case Look of
' LessOr Equal ;
'>'": Not Equal ;
el se begin
Expr essi on;
PopConpar e;
Set Less;
end;

end;
end;

{ Recogni ze and Translate a Rel ational "Greater Than" }

procedure Greater;

begi n

Mat ch(' >');

if Look = '=" then begin
Mat ch(' =");
Expr essi on;
PopConpar e;
Set Gr eat er Or Equal ;
end

el se begin
Expr essi on;
PopConpar e;
Set G eater;
end;
end;

{ Parse and Translate a Relation }

procedure Rel ation;
begi n
Expr essi on;
if IsRel op(Look) then begin

Push;

case Look of
'='": Equal
'<': Less;
'>': Geater;

end;

end;
end;

{ Parse and Transl ate a Bool ean Factor with Leadi ng NOT }



procedur e Not Factor;
begi n
if Look ="'!" then begin
Match("!");
Rel ati on;
Not I t;
end
el se
Rel ati on;
end;

{ Parse and Translate a Bool ean Term}

procedure Bool Term

begin
Not Fact or;
while Look = '& do begin
Push;
Mat ch(' & );
Not Fact or ;
PopAnd;
end;
end;
R R EEEEEE R }

{ Recogni ze and Transl ate a Bool ean OR }

procedur e Bool Or;
begin
Match('|");
Bool Term
PopOr;
end;

{ Recogni ze and Transl ate an Exclusive O }

procedur e Bool Xor;
begin

Mat ch(' ~');

Bool Ter m
PopXor ;
end;

{ Parse and Transl ate a Bool ean Expression }

procedur e Bool Expressi on;
begi n
Bool Ter m
while 1sOrOp(Look) do begin



Push;

case Look of

"|": Bool O;

' ~': Bool Xor;
end;

end;

end;

{ Parse and Transl ate an Assi gnnent Statenent }

procedure Assignment;
var Nane: string;

begin
Nane : = Val ue;
Mat ch(' =");

Bool Expr essi on;
St or e( Nane) ;
end;

{ Recogni ze and Translate an |IF Construct }

procedure Bl ock; Forward;

procedure Dol f;
var L1, L2: string;
begi n
Bool Expr essi on;
L1 : = NewLabel
L2 := L1,
BranchFal se(L1);
Bl ock;
if Token = 'I' then begin
L2 : = NewlLabel ;
Branch(L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Mat chStri ng(' ENDI F' ) ;
end;

{ Parse and Translate a WHI LE Statenent }

procedure DoWhil e;
var L1, L2: string;
begi n
L1 : = NewlLabel
L2 : = NewlLabel ;
Post Label (L1);
Bool Expr essi on;



BranchFal se(L2);
Bl ock;
Mat chString(' ENDWHI LE' ) ;
Branch(L1);
Post Label (L2);
end;

{ Process a Read Statenent }

procedur e DoRead;
begi n
Match(' (");
Cet Nane;
ReadVar ;
while Look = ',' do begin
Match(',"');
Cet Nane;
ReadVar ;
end;
Match(')');
end;

{ Process a Wite Statenent }

procedure DoWite;
begi n
Match(' (');
Expr essi on;
WiteVar;
while Look = ',' do begin
Match(',"');
Expr essi on;
WiteVar;
end;
Match(')");
end;

{ Parse and Translate a Block of Statements }

procedure Bl ock

begi n
Scan;
while not(Token in ["e', "I']) do begin
case Token of
"i': Dolf;
"W DoWhil e;
'R : DoRead;
"W: DoWite;
el se Assignnent;
end;

Scan;



end;
end;

{ Allocate Storage for a Variable }

procedure Alloc(N: Synbol);

begi n
if InTabl e(N) then Abort('Duplicate Variable Nane ' + N)
AddEntry(N, "v');

Wite(N, ':', TAB, 'DC");
if Look ="'=" then begin

Match(' =");

If Look = '-' then begin
Wite(Look);
Match('-"');

end;

WitelLn(Get Num;

end

el se

WiteLn('0");

end;

{ Parse and Translate a Data Decl aration }

procedure Decl
begi n
Get Nane;
Al | oc(Val ue);
while Look = ',' do begin
Match(',"');
Get Nane;
Al l oc(Val ue) ;
end;
end;

{ Parse and Transl ate G obal Declarations }

procedure TopDecl s;
begi n
Scan;
whil e Token <> 'b' do begin
case Token of

'v': Decl
el se Abort (' Unrecogni zed Keyword ' + Val ue);
end;
Scan;
end;
end;



{ Parse and Translate a Main Program}

procedure Min;
begi n
Mat chString(' BEG N ) ;
Pr ol og;
Bl ock;
Mat chStri ng(' END ) ;
Epi | og;
end;

{ Parse and Translate a Program}

procedure Prog;

begi n

Mat chStri ng(' PROGRAM ) ;

Header ;

TopDecl s;

Mai n;

Match('.");
end;
PP P REEE }

{ Initialize }

procedure Init;
var i: integer;
begi n
for i := 1 to MaxEntry do begin
STLi] :="'";
SType[i] := "' ';
end;
Get Char ;
Scan;
end;

{ Main Program}

begin

Init;

Pr og;

if Look <> CR then Abort('Unexpected data after "'.""");
end.
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| NTRODUCTI ON

|'ve got some good news and sone bad news. The bad news is that
this installnment is not the one | pronmsed last tine. What's
nore, the one after this one won't be, either



The good news is the reason for this installnment: |1've found a
way to sinplify and inprove the lexical scanning part of the
conpiler. Let ne explain.

BACKGROUND

If you'll renmenber, we talked at length about the subject of
| exical scanners in Part VII, and | left you with a design for a
distributed scanner that | felt was about as sinple as | could
make it ... nmore than nost that |'ve seen elsewhere. W used

that idea in Part X. The conpiler structure that resulted was
sinple, and it got the job done.

Recently, though, |I've begun to have problens, and they're the
kind that send a nessage that you m ght be doing something wong.

The whole thing came to a head when | tried to address the issue
of sem colons. Several people have asked nme about them and
whet her or not KISS will have them separating the statements. M
intention has been NOT to wuse sem colons, sinply because | don't
i ke them and, as you can see, they have not proved necessary.

But | know that many of you, |like nme, have gotten wused to them
and so | set out to wite a short installnent to show you how
they could easily be added, if you were so inclined.

Well, it turned out that they weren't easy to add at all. In
fact it was darned difficult.

I guess | should have realized that somethi ng was wong, because

of the issue of newines. In the last couple of installnents
we' ve addressed that issue, and |[|'ve shown you how to deal with
new ines with a procedure called, appropriately enough, NewLine.
In TINY Version 1.0, | sprinkled calls to this procedure in

strategic spots in the code.

It seems that wevery tine |'ve addressed the issue of new ines,

t hough, 1've found it to be tricky, and the resulting parser
turned out to be quite fragile ... one addition or deletion here
or there and things tended to go to pot. Looking back on it, |
realize that there was a nessage in this that | just wasn't

payi ng attention to.

When | tried to add sem colons on top of the newines, that was
the | ast straw. I ended up with much too conplex a solution. |
began to realize that something fundanmental had to change.

So, in a way this installnment will cause us to backtrack a bit
and revisit the issue of scanning all over again. Sorry about
that. That's the price you pay for watching ne do this in rea
time. But the new version is definitely an inprovenment, and wl |
serve us well for what is to come.

As | said, the scanner we used in Part X was about as sinple as
one can get. But anything can be inproved. The new scanner is
nmore |like the classical scanner, and not as sinple as before.



But the overall conpiler structure is even sinpler than before.
It's al so nore robust, and easier to add to and/or nodify. I
think that's worth the tine spent in this digression. So in this
installment, 1'll be showing you the new structure. No doubt
you'll be happy to know that, while the changes affect many
procedures, they aren't very profound and so we |ose very little
of what's been done so far.

Ironically, the new scanner is mnuch nore conventional than the

old one, and is very much |ike the nore generic scanner | showed
you wearlier in Part VII. Then | started trying to get clever,
and | al nost clevered nyself clean out of business. You' d think

one day I'd learn: K-1-S- 8!

THE PROBLEM

The problem begins to show itself in procedure Bl ock, which |'ve
reproduced bel ow:

{ Parse and Translate a Bl ock of Statenents }

procedure Bl ock

begi n
Scan;
while not(Token in ['"e', '"I']) do begin
case Token of
"i': Dolf;
"W : DoWhil e;
'R : DoRead;
"W: DoWite;
el se Assignnent;
end;
Scan;
end;
end;
{o }

As you can see, Block is oriented to individual program
statements. At each pass through the |oop, we know that we are
at the beginning of a statenent. W exit the block when we have
scanned an END or an ELSE

But suppose that we see a sem col on instead. The procedure as
it's shown above can't handle that, because procedure Scan only
expects and can only accept tokens that begin with a letter

I tinkered around for quite awhile to conme up with a fix.
found many possi bl e approaches, but none were very sati sfying.
finally figured out the reason.

Recal | that when we started with our single-character parsers, we
adopted a convention that the | ookahead character woul d al ways be
prefetched. That is, we would have the character that



corresponds to our current position in the input streamfetched
into the global character Look, so that we could examine it as
many times as needed. The rule we adopted was that EVERY
recogni zer, if it found its target token, would advance Look to
the next character in the input stream

That sinple and fixed convention served us very well when we had
si ngl e-character tokens, and it still does. It would nmake a | ot
of sense to apply the sane rule to multi-character tokens.

But when we got into |exical scanning, | began to violate that
simple rule. The scanner of Part X did indeed advance to the
next token if it found an identifier or keyword, but it DIDN T do
that if it found a carriage return, a whitespace character, or an
oper at or.

Now, that sort of m xed-npde operation gets us into deep trouble
in procedure Block, because whether or not the input stream has
been advanced depends upon the kind of token we encounter. | f
it's a keyword or the target of an assignment statenent, the
"cursor," as defined by the contents of Look, has been advanced
to the next token OR to the beginning of whitespace. [If, on the
other hand, the token is a semcolon, or if we have hit a
carriage return, the cursor has NOT advanced.

Needl ess to say, we can add enough logic to keep us on track
But it's tricky, and nakes the whol e parser very fragile.

There's a nuch better way, and that's just to adopt that same
rule that's worked so well before, to apply to TOKENS as well as
single characters. In other words, we'll prefetch tokens just as
we' ve al ways done for characters. It seens so obvi ous once you
think about it that way.

Interestingly enough, if we do things this way the problemthat
we've had with newline characters goes away. W can just |unp
themin as whitespace characters, which nmeans that the handling
of newines becones very trivial, and MJUCH | ess prone to error
than we've had to deal with in the past.

THE SOLUTI ON

Let's begin to fix the problem by re-introducing the two
procedures:

{ Get an ldentifier }

procedur e Get Nane;
begin
Ski pWhi t e;
if Not IsAl pha(Look) then Expected('ldentifier');
Token := 'Xx';
Value := "'";
repeat
Val ue : = Val ue + UpCase(Look);



Get Char;
until not |sAl Nun(Look);
end;

{ Get a Nunber }

procedure Get Num

begi n
Ski pWhi t e;
if not IsDigit(Look) then Expected(' Nunber');
Token : = "#';
Value :="";
repeat
Val ue : = Val ue + Look;
Get Char;
until not I|sDigit(Look);
end;
{o }
These two procedures are functionally alnmpst identical to the
ones | showed you in Part VII. They each fetch the current
token, either an identifier or a nunber, into the global string
Val ue. They also set the encoded version, Token, to the

appropriate code. The input streamis left with Look containing
the first character NOT part of the token

W can do the same thing for operators, even nulti-character
operators, with a procedure such as:

{ Get an Operator }

procedure GCet Op;
begi n
Token : = Look;
Value :="";
repeat
Val ue : = Val ue + Look;
Get Char;
until 1sAl pha(Look) or IsDigit(Look) or IsWite(Look);
end;

Note that GetOp returns, as its encoded token, the FIRST
character of the operator. This is inportant, because it means
that we can now use that single character to drive the parser

i nstead of the | ookahead character

W need to tie these procedures together into a single procedure
that can handle all three cases. The following procedure wll
read any one of the token types and always | eave the input stream
advanced beyond it:



{ Get the Next I|nput Token }

procedur e Next;

begi n
Ski pWhi t e;
i f IsAl pha(Look) then GetNanme
else if IsDigit(Look) then Get Num
el se Get Op;

end;

***NOTE that here | have put SkipWhite BEFORE the calls rather
than after. This neans that, in general, the variable Look wll
NOT have a neaningful value in it, and therefore we should NOT
use it as a test value for parsing, as we have been doing so far
That's the big departure from our normal approach

Now, renmenber that before | was careful not to treat the carriage
return (CR) and line feed (LF) characters as white space. This
was because, wth Skipwlite called as the last thing in the
scanner, the encounter with LF would trigger a read statenent.
If we were on the last |line of the program we couldn't get out
until we input another Iine with a non-white character. That's
why | needed the second procedure, NewLine, to handle the CRLF's.

But now, with the call to SkipWite comng first, that's exactly
t he behavi or we want. The compiler rmust know there's another
token coming or it wouldn't be calling Next. 1In other words, it

hasn't found the termnating END yet. So we're going to insist
on nore data until we find sonething.

Al this means that we can greatly sinplify both the program and
the concepts, by treating CR and LF as whitespace characters, and

elimnating NewLine. You can do that sinply by nodifying the
function IsWite:

{ Recogni ze Wite Space }

function IsWiite(c: char): bool ean;

begi n

IswWhite :=c in [" ', TAB, CR, LF];
end;
R EEE }
We've already tried simlar routines in Part VII, but you m ght

as well try these new ones out. Add themto a copy of the Cradle
and call Next with the follow ng main program

{ Main Program}



begi n

Init;
r epeat
Next ;
WiteLn(Token, ' ', Val ue);
until Token = "'.';
end
{o }

Conmpile it and verify that you can separate a program into a
series of tokens, and that you get the right encoding for each
t oken.

This ALMOST works, but not quite. There are two potentia
probl ens: First, in KISS/TINY alnost all of our operators are
singl e-character operators. The only exceptions are the relops
>=, <=, and <>. It seens a shame to treat all operators as
strings and do a string conmpare, when only a single character
conpare will alnmst always suffice. Second, and much nore
i mportant, the thing doesn't WRK when two operators appear
together, as in (a+tb)*(c+d). Here the string following 'b" woul d
be interpreted as a single operator ")*(."

It's possible to fix that problem For exanple, we could just
give GetOp a list of legal characters, and we could treat the
parent heses as different operator types than the others. But
this begins to get messy.

Fortunately, there's a better way that solves all the problens.
Since alnost all the operators are single characters, let's just
treat them that way, and let GetOp get only one character at a
time. This not only sinplifies GetOp, but also speeds things up
quite a bit. W still have the problemof the relops, but we
were treating them as special cases anyway.

So here's the final version of GetOp:

{ Get an Operator }

procedure Get Op;

begi n
Ski pWhi t e;
Token : = Look;
Val ue : = Look;
Get Char;
end;
{o o }
Note that | still give the string Value a value. |If you're truly

concerned about efficiency, you could | eave this out. Wen we're
expecting an operator, we will only be testing Token anyhow, so
the value of the string won't matter. But to me it seens to be



good practice to give the thing a value just in case.

Try this new version with sonme realistic-1ooking code. You
should be able to separate any programinto its individua
tokens, with the caveat that the two-character relops will scan
into two separate tokens. That's OK ... we'll parse them that
way.

Now, in Part VIl the function of Next was conbined with procedure
Scan, which also checked every identifier against a |Ilist of
keywords and encoded each one that was found. As | nentioned at
the tinme, the last thing we would want to do is to use such a
procedure in places where keywords should not appear, such as in
expressions. If we did that, the keyword |ist would be scanned
for every identifier appearing in the code. Not good.

The right way to deal wth that is to sinply separate the
functions of fetching tokens and |ooking for keywords. The
versi on of Scan shown bel ow does NOTHI NG but check for keywords.
Notice that it operates on the current token and does NOT advance
the input stream

{ Scan the Current ldentifier for Keywords }

procedure Scan;

begi n
if Token = 'x' then
Token : = KWode[ Lookup( Addr (KW ist), Value, NKW + 1];
end;
{ }
There is one last detail. |In the conpiler there are a few pl aces

that we nust actually check the string value of the token

Mainly, this is done to distinguish between the different END s,
but there are a couple of other places. (I should note in
passing that we could always elimnate the need for matchi ng END
characters by encoding each one to a different character. Right
now we are definitely taking the lazy man's route.)

The following version of MatchString takes the place of the
character-oriented Match. Note that, |ike Match, it DOES advance
the input stream

{ Match a Specific Input String }

procedure MatchString(x: string);

begi n
if Value <> x then Expected('''' + x + '''");
Next ;

end,



FI XI NG UP THE COWPI LER

Armed with these new scanner procedures, we can now begin to fix

the conpiler to wuse them properly. The changes are all quite
mnor, but there are quite a few places where changes are
necessary. Rather than showing you each place, | will give you

the general idea and then just give the finished product.

First of all, the code for procedure Bl ock doesn't change, though
its function does:

{ Parse and Translate a Block of Statenments }

procedure Bl ock

begi n
Scan;
while not(Token in ["e', "I']) do begin
case Token of
"i': Dolf;
"W : DoWhil e;
'R : DoRead;
'"W: DoWite
el se Assignnent;
end;
Scan;
end;
end;
R }

Remenber that the new version of Scan doesn't advance the input
stream it only scans for keywords. The input stream nust be
advanced by each procedure that Block calls.

In general, we have to replace every test on Look with a simlar
test on Token. For exanple:

{ Parse and Transl ate a Bool ean Expression }

procedur e Bool Expressi on;
begi n
Bool Ter m
while 1sO Op(Token) do begin
Push;
case Token of
"|'": Bool O;
'~': Bool Xor;
end;
end;
end;



In procedures |ike Add, we don't have to use Match anynore. We
need only call Next to advance the input stream

{ Recogni ze and Translate an Add }

procedure Add;
begi n

Next ;

Term

PopAdd;
end;

Control structures are actually sinmpler. W just call Next to
advance over the control keywords:

{ Recogni ze and Translate an |IF Construct }
procedure Bl ock; Forward;

procedure Dol f;
var L1, L2: string;
begi n
Next ;
Bool Expr essi on;
L1 : = NewLabel
L2 := L1,
BranchFal se(L1);
Bl ock;
if Token = 'I' then begin
Next ;
L2 : = NewlLabel ;
Branch(L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);
Mat chStri ng(' ENDI F' ) ;

end;

{o }
That's about the extent of the REQUI RED changes. 1In the listing
of TINY Version 1.1 below, |I've also made a nunber of other

"i mprovenents" that aren't really required. Let nme explain them
briefly:

(1) |I've deleted the two procedures Prog and Main, and comnbi ned
their functions into the main program They didn't seemto
add to programclarity ... in fact they seemed to just



muddy things up a little.

(2) 1've deleted the keywdrds PROGRAM and BEG N fromthe
keyword list. Each one only occurs in one place, so it's
not necessary to search for it.

(3) Having been bitten by an overdose of «cleverness, |'ve
rem nded nyself that TINY is supposed to be a mninmalist
program Therefore |'ve replaced the fancy handling of
unary minus with the dunbest one | could think of. A giant
step backwards in code quality, but a great sinplification
of the conpiler. KISS is the right place to use the other
ver si on.

(4) 1've added sonme error-checking routines such as CheckTabl e
and CheckDup, and replaced in-line code by calls to them
This cleans up a number of routines.

(5) |I've taken the error checking out of code generation
routines |ike Store, and put it in the parser where it
bel ongs. See Assignnment, for examnple.

(6) There was an error in InTable and Locate that caused them
to search all locations instead of only those with valid
data in them They now search only wvalid cells. Thi s
allows us to elimnate the initialization of the synbol
tabl e, which was done in Init.

(7) Procedure AddEntry now has two argunments, which helps to
make things a bit nore nodul ar.

(8 I"ve cleaned up the code for the relational operators by
the addition of the new procedures ConpareExpression and
Next Expr essi on.

(9) I fixed an error in the Read routine ... the earlier value
did not check for a valid variable name.

CONCLUSI ON

The resulting conpiler for TINY is given below. Oher than the
renmoval of the keyword PROGRAM it parses the sane | anguage as

bef ore. It's just a bit cleaner, and nore inportantly it's
considerably nore robust. | feel good about it.

The next installnment will be another digression: the discussion
of semicolons and such that got me into this mess in the first
place. THEN we'll press on into procedures and types. Hang in
there with nme. The addition of those features will go a | ong way

towards renoving KISS from the "toy |anguage" category. W're
getting very close to being able to wite a serious conpiler.

TINY VERSION 1.1



{ Constant Decl arations }

const TAB = ~I;
CR ="M
LF = 7J;
LCount: integer = O;
NEntry: integer = O;

{ Type Declarations }

type Synbol string[8];

Symrab = array[1l..1000] of Symbol;

TabPtr

ASymrab;

o mmmm e e
{ Variable Declarations }
var Look : char; { Lookahead Character }

Token: char; { Encoded Token }

Val ue: string[16]; { Unencoded Token }

const MaxEntry = 100;

var ST . array[l..MaxEntry] of Synbol;
SType: array[l..MxEntry] of char;

{ ______________________________________________________________
{ Definition of Keywords and Token Types }
const NKW = 9;

NKWL = 10;

const KWist: array[l..NKW of Synbol =
("IF, "ELSE', "ENDIF', "WHILE , 'ENDWH LE,
'"READ', "WRITE', 'VAR, "END);

const KWode: string[ NKM] = 'xil eweRWe';

{ Read New Character From | nput Stream}

procedure Get Char;
begi n
Read( Look);



{ Report an Error }

procedure Error(s: string);
begin

WitelLn;

WiteLn("G 'FError: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;

{ Report What WAs Expected }

procedure Expected(s: string);
begin

Abort (s + ' Expected');
end;

{ Report an Undefined ldentifier }

procedure Undefined(n: string);

begi n

Abort (' Undefined lIdentifier ' + n);
end;

{ Report a Duplicate Identifier }

procedure Duplicate(n: string);

begin

Abort (' Duplicate lIdentifier ' + n);
end;

{ Check to Make Sure the Current Token is an Identifier }

procedure Checkl dent;
begi n

if Token <> 'x' then Expected('ldentifier');
end;



{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begi n

| sAl pha := UpCase(c) in['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];
end;

{ Recogni ze an Al phaNuneric Character }

function IsAl Num(c: char): bool ean;
begi n

I sAl Num : = | sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=c in ['"+, "-'];

end;

{ Recognize a Mil op }

function IsMiul op(c: char): bool ean;
begi n

IsMulop :=c in ["*", "/['];

end;

{ Recogni ze a Boolean Orop }

function IsOrop(c: char): bool ean;
begi n

[sOrop :=cin["]", '"~'];

end;

{ Recognize a Relop }



function IsRelop(c: char): bool ean;
begi n

IsRelop :=c in ['=, "#,6 "<, ">];
end;

{ Recogni ze Wite Space }

function IsWhite(c: char): bool ean;
begi n

IswWhite :=c in [" ', TAB, CR, LF];
end;

{ Skip Over Leading Wite Space }

procedure Ski pWite;
begi n
whil e 1 sWite(Look) do
Get Char;
end;

{ Tabl e Lookup }

function Lookup(T: TabPtr; s: string; n: integer): integer

var i: integer;
f ound: Bool ean;
begi n
found : = fal se;
i = n;

while (i > 0) and not found do
if s = T~i] then

found : = true
el se
dec(i);
Lookup :=i;
end;
{ ______________________________________________________________

{ Locate a Synbol in Table }
{ Returns the index of the entry. Zero if not present. }

function Locate(N: Synbol): integer
begi n

Locate : = Lookup(@T, n, NEntry);
end;

{ Look for Symbol in Table }

function InTable(n: Synbol): Bool ean



begi n
InTabl e : = Lookup(@T, n, NEntry) <> O;
end;

{ Check to See if an Identifier is in the Synmbol Table
{ Report an error if it's not. }

procedure CheckTabl e(N: Synbol);
begi n

if not InTable(N) then Undefined(N)
end;

{ Check the Synbol Table for a Duplicate Identifier }
{ Report an error if identifier is already in table. }

procedure CheckDup(N: Synbol);
begi n

if InTabl e(N) then Duplicate(N)
end;

{ Add a New Entry to Synbol Table }

procedure AddEntry(N: Synbol; T: char);
begi n
CheckDup(N);
if NEntry = MaxEntry then Abort (' Synbol Table Full');
Inc(NENtry);
ST[NENtry] := N,
SType[NEntry] := T;
end;

{ Get an ldentifier }

procedure Get Nane;
begi n
Ski pWhi t e;
if Not IsAl pha(Look) then Expected('ldentifier');
Token := "Xx';
Value :="";
repeat
Val ue : = Value + UpCase(Look);
Get Char;
until not | sAl Num(Look);

end;



{ Get a Nunber }

procedure Get Num
begi n
Ski pWhi t e;
if not IsDigit(Look) then Expected(' Number');
Token := "#';
Value :="";
repeat
Val ue : = Val ue + Look;
Get Char;
until not IsDigit(Look);
end;

{ Get an Operator }

procedure GCet Op;

begi n
Ski pWhi t e;
Token : = Look;
Val ue : = Look;
Cet Char;
end;
{ ______________________________________________________________

{ Get the Next I|nput Token }

procedur e Next;
begi n
Ski pWhi t e;
i f IsAl pha(Look) then GetNanme
else if IsDigit(Look) then Get Num
el se Get Op;
end;

{ Scan the Current ldentifier for Keywords }

procedure Scan;

begin
if Token = 'x"' then
Token : = KWode[ Lookup(Addr (KW ist), Value, NKW + 1];
end;
{ ______________________________________________________________

{ Match a Specific Input String }

procedure MatchString(x: string);

begin
if Value <> x then Expected('''' + x + "'"'"");
Next ;

end;



{ Qutput a String with Tab }

procedure Emt(s: string);
begin

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }

procedure Em tLn(s: string);
begin

Emt(s);

WitelLn;
end;

{ Generate a Uni que Label }

functi on NewLabel: string;
var S: string;
begin
Str(LCount, S);
NewLabel :='L'" + S;
I nc(LCount);
end;

{ Post a Label To Qutput }

procedure PostLabel (L: string);
begi n

WiteLn(L, ":");

end;

{ Clear the Primary Register }

procedure Cl ear;

begi n

EmtLn(' CLR DQ0");
end;

{ Negate the Primary Register }

procedure Negate;
begi n
Em tLn(' NEG DO');



{ Conplenent the Primary Register }

procedure Notlt;

begi n

Em tLn(' NOT DO');
end;

{ Load a Constant Value to Primary Register }

procedure LoadConst(n: string);
begi n
Em t (' MOVE #');
WiteLn(n, ',D0");
end;

{ Load a Variable to Primary Register }

procedure LoadVar(Name: string);
begin
if not InTabl e(Nane) then Undefi ned(Nane);
EmitLn(' MOVE ' + Name + ' (PC),DO0');
end;

{ Push Primary onto Stack }

procedure Push;

begi n

Em tLn(' MOVE DO, -(SP)');
end;

{ Add Top of Stack to Primary }

procedur e PopAdd;

begi n

Em tLn(' ADD (SP) +, DO');
end;

{ Subtract Primary from Top of Stack }

procedure PopSub;

begi n
Em tLn(' SUB (SP) +, DO');
Em tLn(' NEG DQ');



{ Multiply Top of Stack by Primary }

procedure PopMul ;

begi n

Em tLn(' MULS (SP)+, D0");
end;

{ Divide Top of Stack by Primary }

procedure PopDiv;

begi n
Em tLn(' MOVE (SP)+, D7');
Em tLn(' EXT.L D7');
EmtLn(' DIVS DO, D7');
Em tLn(' MOVE D7, D0");

end;

{ AND Top of Stack with Primary }

procedure PopAnd;

begi n

Em tLn(' AND (SP) +, DO');
end;

{ OR Top of Stack with Primary }

procedure PopOr;

begi n

EmitLn(' OR (SP)+,D0");
end;

{ XOR Top of Stack with Primary }

procedure PopXor;

begi n

EmitLn(' EOR (SP) +, DO');
end;

{ Conpare Top of Stack with Primary }

procedure PopConpare;
begi n
Em tLn(' CMP (SP)+, DO ) ;



{ Set DO If Conpare was =}

procedure Set Equal ;
begi n
Em tLn(' SEQ DO');
Em tLn(' EXT DO');
end;

procedure Set NEqual ;
begin
Em tLn(' SNE DO');
Em tLn(' EXT DQO');
end;

{ Set DO If Conpare was > }

procedure Set G eater;
begi n
Em tLn(' SLT DO");
Em tLn(' EXT DO");
end;

{ Set DO If Conpare was < }

procedure SetlLess;
begi n
EmitLn(' SGT DO');
Em tLn(' EXT DO");
end;

procedure SetlLessOr Equal ;
begi n

Em tLn(' SGE DO');

Em tLn(' EXT DO'");
end;

{ Set DO If Conpare was >= }

procedure Set G eater O Equal ;



begi n
Em tLn(' SLE DO");
Em tLn(' EXT DQO');
end;

{ Store Primary to Variable }

procedure Store(Name: string);

begi n
EmtLn('LEA ' + Nane + '(PC),A0");
Em tLn(' MOVE DO, (A0)"')

end;

{ Branch Unconditional }

procedure Branch(L: string);
begi n

EmtLn('BRA ' + L);

end;

{ Branch Fal se }

procedure BranchFal se(L: string);
begi n
Em tLn(' TST DO');
EmtLn('BEQ ' + L);
end;

{ Read Variable to Primary Regi ster }

procedure Readlt(Name: string);
begi n

Em tLn(' BSR READ ) ;

St or e( Nane) ;
end;

{ Wite fromPrimary Regi ster }
procedure Witelt;
begi n

EmtLn(' BSR WRI TE' ) ;
end;

{ Wite Header Info }

procedur e Header;



begi n
WiteLn(' WARMST', TAB, 'EQU $A01E');
end;

{ Wite the Prolog }

procedure Prol og;
begi n

Post Label (* MAIN ) ;
end;

{ Wite the Epilog }

procedure Epil og;
begi n
Em tLn(' DC WARMST' ) ;
Em tLn(' END MAIN ) ;
end;

{ Allocate Storage for a Static Variable }

procedure Allocate(Nane, Val: string);
begi n

WiteLn(Nanme, ':', TAB, 'DC ', Val);
end;

{ Parse and Translate a Math Factor }
procedur e Bool Expressi on; Forward;

procedure Factor;
begi n
if Token ="' (' then begin
Next ;
Bool Expr essi on;
Mat chString(')');

end
el se begin
if Token = 'x' then
LoadVar ( Val ue)
else if Token = '"#' then

LoadConst ( Val ue)
el se Expected(' Math Factor');
Next ;
end;
end;



{ Recogni ze and Translate a Miultiply }

procedure Miltiply;
begi n
Next ;
Fact or;
PopMul ;
end;

{ Recogni ze and Transl ate a Divide }

procedure Divide;
begin
Next ;
Fact or;
PopDi v;
end;

{ Parse and Translate a Math Term }

procedure Term

begi n
Fact or;
whi l e I sMul op(Token) do begin
Push;
case Token of
"rroo Ml tioply;
/' Divide;
end;
end;
end;
e EEE R R }

{ Recogni ze and Transl ate an Add }

procedure Add;
begin

Next ;

Term
PopAdd;
end;

{ Recogni ze and Translate a Subtract }

procedure Subtract;
begi n
Next ;
Term
PopSub;
end;



{ Parse and Transl ate an Expression }

procedur e Expression;
begin
i f |sAddop(Token) then
Cl ear
el se
Term
whi | e |1 sAddop( Token) do begin
Push;
case Token of
"+ Add;
'-': Subtract;
end;
end;
end;

{ Get Another Expression and Conpare }

procedur e Conpar eExpression;
begi n
Expr essi on;
PopConpar e;
end;

{ Get The Next Expression and Conpare }

procedur e Next Expression;
begin

Next ;
Conpar eExpr essi on
end;

{ Recogni ze and Translate a Rel ational "Equals" }

procedur e Equal
begi n

Next Expr essi on;
Set Equal ;
end;

{ Recogni ze and Translate a Relational "Less Than or Equal" }

procedure LessOr Equal
begi n
Next Expr essi on;



Set LessOr Equal ;
end;

{ Recogni ze and Translate a Rel ational "Not Equal s" }

procedur e Not Equal ;
begi n

Next Expr essi on;
Set NEqual ;
end;

{ Recogni ze and Translate a Rel ational "Less Than" }

procedure Less;
begi n
Next ;
case Token of
' LessOr Equal ;
">': Not Equal ;
el se begin
Conpar eExpr essi on;
Set Less;
end;
end;
end;

{ Recogni ze and Translate a Rel ational "Greater Than" }

procedure G eater;
begin
Next ;
if Token = "'=" then begin
Next Expr essi on;
Set Gr eat er Or Equal ;
end
el se begin
Conpar eExpr essi on;
Set G eater;
end;
end;

{ Parse and Translate a Relation }

procedure Rel ation;
begin
Expr essi on;
if 1sRel op(Token) then begin
Push;



case Token of

'=': Equal;
'<': Less;
'>': Geater;
end;
end;
end;
{ _______________________________________________________________

{ Parse and Transl ate a Bool ean Factor with Leadi ng NOT }

procedur e Not Fact or;
begi n
if Token = '!"' then begin
Next ;
Rel ati on;
Not It ;
end
el se
Rel ati on;
end;

{ Parse and Translate a Bool ean Term}

procedure Bool Term

begi n
Not Fact or ;
while Token = '& do begin
Push;
Next ;
Not Fact or ;
PopAnd;
end;
end;
LR }

{ Recogni ze and Transl ate a Bool ean OR }

procedure Bool O;
begin

Next ;

Bool Ter m
PopOr;
end;

{ Recogni ze and Translate an Exclusive O }

procedur e Bool Xor;
begi n

Next ;

Bool Ter m



PopXor ;
end;

{ Parse and Transl ate a Bool ean Expression }

procedur e Bool Expressi on;
begi n
Bool Ter m
while 1sO Op(Token) do begin
Push;
case Token of
"|": Bool O;
' ~': Bool Xor;
end;
end;
end;

{ Parse and Translate an Assignment Statement }

procedure Assignnent;
var Nane: string;

begi n
CheckTabl e( Val ue);
Name : = Val ue;
Next ;

Mat chString(' =");
Bool Expr essi on;
St or e( Nane) ;

end;

{ Recogni ze and Translate an |IF Construct }
procedure Bl ock; Forward;

procedure Dol f;
var L1, L2: string;
begi n
Next ;
Bool Expr essi on;
L1 : = NewLabel
L2 := L1;
BranchFal se(L1);
Bl ock;
if Token = "'I' then begin
Next ;
L2 : = NewLabel ;
Branch(L2);
Post Label (L1);
Bl ock;
end;
Post Label (L2);



Mat chString(' ENDI F');
end;

{ Parse and Translate a WHI LE St atenent }

procedure DoWhil e;
var L1, L2: string;
begi n
Next ;
L1 : = NewlLabel
L2 : = NewlLabel;
Post Label (L1);
Bool Expr essi on;
BranchFal se(L2);
Bl ock;
Mat chStri ng(' ENDWHI LE' ) ;
Branch(L1);
Post Label (L2);
end;

{ Read a Single Variable }

procedure ReadVar;

begi n
Checkl dent ;
CheckTabl e( Val ue);
Readl t (Val ue) ;
Next ;

end;

{ Process a Read Statenent }

procedur e DoRead;
begi n
Next ;
Mat chString(' (');
ReadVar ;
while Token = ',"' do begin
Next ;
ReadVar ;
end;
Mat chString(')"');
end;

{ Process a Wite Statenent }

procedure DoWite;
begi n
Next ;



Mat chString(' (');

Expr essi on;

Witelt;

while Token = ',"' do begin
Next ;
Expr essi on;
Witelt;

end;

Mat chString(')"');

end;

{ Parse and Translate a Block of Statenents }

procedure Bl ock

begi n
Scan;
while not(Token in ['"e', '"I']) do begin
case Token of
"i': Dolf;
"W : DoWhil e;
'R : DoRead;
"W: DoWite;
el se Assignnent;
end;
Scan;
end;
end;
{ ______________________________________________________________

{ Allocate Storage for a Variable }

procedure Alloc;

begin
Next ;
if Token <> 'x' then Expected(' Variable Name');
CheckDup( Val ue) ;
AddEntry(Val ue, 'v');
Al |l ocat e(Val ue, '0")
Next ;

end;

{ Parse and Transl ate d obal Decl arations }

procedure TopDecls;
begi n
Scan;
while Token = 'v' do
Al | oc;
while Token = ',' do
Al | oc;
end;



{ Initialize }

procedure Init;

begi n
Get Char
Next ;
end;
o o }
{ Main Program}
begin
Init;
Mat chStri ng(' PROGRAM ) ;
Header ;
TopDecl s;
Mat chString(' BEA N );
Pr ol og;
Bl ock;
Mat chString(' END ) ;
Epi | og;
end
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| NTRODUCTI ON

This installnent is another one of those excursions into side
alleys that don't seemto fit into the nmainstream of this
tutorial series. As | mentioned last time, it was while | was
witing this installnment that | realized some changes had to be
made to the conpiler structure. So | had to digress fromthis
di gression | ong enough to develop the new structure and show it
to you.

Now that that's behind us, | can tell you what | set out to in
the first place. This shouldn't take 1long, and then we can get
back into the mainstream

Several people have asked nme about things that other |anguages
provide, but so far | haven't addressed in this series. The two
bi ggi es are sem col ons and comments. Per haps you' ve wondered
about them too, and wondered how things would change if we had
to deal with them Just so you can proceed with what's to cone,
wi t hout being bothered by that nagging feeling that sonmething is

m ssing, we'll address such issues here.

SEM COLONS

Ever since the introduction of Algol, sem colons have been a part
of al nobst every nodern | anguage. W've all wused them to the
point that they are taken for granted. Yet | suspect that nore

conpilation errors have occurred due to msplaced or mssing
sem colons than any other single cause. And if we had a penny
for every extra keystroke programers have used to type the
little rascals, we could pay off the national debt.



Havi ng been brought up with FORTRAN, it took me a long tine to

get used to using sem colons, and to tell the truth 1've never
qui te understood why they were necessary. Since | programin
Pascal, and since the use of semicolons in Pascal is particularly
tricky, that one little character is still by far nmy biggest

source of errors.

VWen | began developing KISS, | resolved to question EVERY
construct in other |anguages, and to try to avoid the npst comon
probl ems that occur with them That puts the semicolon very high
on ny hit list.

To wunderstand the role of the senicolon, you have to | ook at a
little history.

Early programm ng | anguages were line-oriented. In FORTRAN, for
exanpl e, various parts of the statenent had specific colums or
fields that they had to appear in. Since sone statenents were
too long for one Iine, the "continuation card" mechanism was
provided to let the conpiler know that a given card was stil
part of the previous line. The mechani sm survives to this day,
even though punched cards are now things of the distant past.

When other |anguages cane along, they also adopted various
mechani snms for dealing with nmultiple-line statements. BASICis a

good exanple. It's inportant to recognize, though, that the
FORTRAN nechani sm was not so much required by the line
orientation of that |anguage, as by the colum-orientation. In

those versions of FORTRAN where free-form input is pernitted,
it's no | onger needed.

When the fathers of Algol introduced that |anguage, they wanted
to get away from line-oriented prograns |ike FORTRAN and BASI C,
and allow for free-forminput. This included the possibility of
stringing multiple statenents on a single line, as in

a=b; c=d; e=e+l;

In cases like this, the semcolon is alnpbst REQU RED. The sane
line, without the sem colons, just |ooks "funny":

a=b c= d e=e+1

| suspect that this is the major ... perhaps ONLY ... reason for
sem col ons: to keep prograns from | ooking funny.

But the idea of stringing nmultiple statements together on a
single line is a dubious one at best. |It's not very good
programm ng style, and harks back to the days when it was
considered inmprotant to conserve cards. In these days of CRT's
and indented code, the clarity of progranms is far better served
by keeping statenents separate. |It's still nice to have the
OPTION of multiple statements, but it seems a shame to keep



programmers in slavery to the sem colon, just to keep that one
rare case from "l ooking funny."

VWen | started in with KISS, | tried to Kkeep an open mnd.
decided that | would use senicolons when it becane necessary for
the parser, but not until then. | figured this would happen just

about the time | added the ability to spread statenments over
multiple lines. But, as you can see, that never happened. The
TINY conmpiler is perfectly happy to parse the nost conplicated
statenent, spread over any nunber of |ines, w thout sem col ons.

Still, there are people who have wused semcolons for so |ong,
they feel naked without them [|I'mone of them Once | had KISS
defined sufficiently well, | began to wite a few sanple prograns
in the | anguage. I discovered, somewhat to nmy horror, that |
kept putting semcolons in anyway. So now I'm facing the
prospect of a NEW rash of conpiler errors, caused by UNWANTED
sem col ons. Phooey!

Perhaps nmore to the point, there are readers out there who are
designing their own | anguages, which may include senicolons, or
who want to use the techniques of these tutorials to conpile
conventional |anguages |ike C. In either case, we need to be
able to deal with senicol ons.

SYNTACTI C SUGAR
Thi s whol e discussion brings up the issue of "syntactic sugar"
constructs that are added to a | anguage, not because they are
needed, but because they help nmake the programs | ook right to the
pr ogr anmer . After all, it's nice to have a smll, sinple
conpi | er, but it would be of little wuse if the resulting
| anguage were cryptic and hard to program The | anguage FORTH
cones to mind (a premature OQUCH for the barrage | know that
one's going to fetch nme). |If we can add features to the | anguage
that nmake the programs easier to read and understand, and if
those features help keep the programmer from making errors, then
we should do so. Particularly if the constructs don't add much
to the conplexity of the | anguage or its conpiler.

The semicolon could be considered an exanple, but there are
pl enty of others, such as the '"THEN in a |IF-statenent, the 'DO
in a WILE-statement, and even the 'PROGRAM statenent, which
came within a gnat's eyelash of |eaving out of TINY. None of
these tokens add nmuch to the syntax of the language ... the
conpiler can figure out what's going on without them But sone
folks feel that they DO add to the readability of prograns, and
that can be very inportant.

There are two schools of thought on this subject, which are wel
represented by two of our nobst popul ar | anguages, C and Pascal

To the mnimalists, all such sugar should be Ileft out. They
argue that it clutters up the | anguage and adds to the nunber of
keystrokes programers nust type. Perhaps nore inportantly,

every extra token or keyword represents a trap laying in wait for



the inattentive progranmer. |If you leave out a token, misplace
it, or msspell it, the conpiler wll get you. So these people
argue that the best approach is to get rid of such things. These
folks tend to |ike C, which has a mni mum of unnecessary keywords
and punctuati on.

Those fromthe other school tend to |like Pascal. They argue that
having to type a few extra characters is a snall price to pay for
legibility. After all, humans have to read the prograns, too.

Their best argunent is that each such construct is an opportunity
to tell the conpiler that you really nean for it to do what you
said to. The sugary tokens serve as useful |andmarks to help you
find your way.

The differences are well represented by the two |anguages. The
nost oft-heard conplaint about C is that it is too forgiving.
When you make a mistake in C, the erroneous code is too often

another legal C construct. So the conpiler just happily
continues to conmpile, and leaves you to find the error during
debug. | guess that's why debuggers are so popular wth C
progranmers.

On the other hand, iif a Pascal program conpiles, you can be
pretty sure that the programw |l do what you told it. If there

is an error at run tine, it's probably a design error
The best exanple of wuseful sugar is the semcolon itself.
Consi der the code fragnent:

a=1+(2*b+c) b...

Since there is no operator connecting the token 'b'" with the rest

of the statement, the conpiler will conclude that the expression
ends with the ')', and the 'b" is the beginning of a new
st at enent . But suppose | have sinply left out the intended

operator, and | really want to say:

a=1+(2*b+c)*b..

In this case the conpiler will get an error, all right, but it
won't be very neaningful since it will be expecting an ' sign
after the 'b' that really shouldn't be there.

If, on the other hand, | include a semicolon after the 'b', THEN
there can be no doubt where | intend the statement to end.
Syntactic sugar, then, <can serve a very useful purpose by
provi di ng sone additional insurance that we renmain on track

I find nyself somewhere in the mddle of all this. | tend to
favor the Pascal-ers' view ... I'd nuch rather find my bugs at
conpile time rather than run time. But | also hate to just throw
verbosity in for no apparent reason, as in COBOL. So far |'ve
consistently left nost of the Pascal sugar out of KISS/TINY. But



| certainly have no strong feelings either way, and | also can
see the value of sprinkling a little sugar around just for the
extra insurance that it brings. If you like this latter
approach, things like that are easy to add. Just renenber that,
like the sem colon, each itemof sugar is sonmething that can
potentially cause a conpile error by its om ssion

DEALI NG W TH SEM COLONS
There are two distinct ways in which sem colons are used in
popul ar | anguages. In Pascal, the sem colon is regarded as an

statement SEPARATOR. No semicolon is required after the |ast
statenent in a block. The syntax is:

<bl ock> ::= <statenent> ( ';' <statenment>)*

<statement> ::.= <assignhment> | <if> | <while> ... | null

(The null statenent is | MPORTANT!)

Pascal also defines sonme semcolons in other places, such as
after the PROGRAM st at ement.

In C and Ada, on the other hand, the semi colon is considered a

statenent TERM NATOR, and follows all statenents (with sone
enbarrassi ng and confusing exceptions). The syntax for this is
simply:

<block> ::= ( <statenent> ';')*

O the two syntaxes, the Pascal one seens on the face of it nore
rati onal, but experience has shown that it |eads to sone strange
difficulties. People get so used to typing a sem colon after
every statenment that they tend to type one after the I ast
statenment in a block, also. That usually doesn't cause any harm

it just gets treated as a null statenent. Many Pasca
programers, including yours truly, do just that. But there is
one place you absolutely CANNOT type a semicolon, and that's
right before an ELSE. This little gotcha has cost nme nmany an
extra conpilation, particularly when the ELSE is added to
exi sting code. So the C/Ada choice turns out to be better
Apparently Nicklaus Wrth thinks so, too: 1In his Mdula 2, he
abandoned t he Pascal approach.

G ven either of these two syntaxes, it's an easy matter (now that
we've reorganized the parser!) to add these features to our
parser. Let's take the last case first, since it's sinpler.

To begin, I've made things easy by introducing a new recognizer



{ Match a Senicolon }

procedure Sem;
begi n
MatchString(';");

end;
R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
Thi s procedure works very much |ike our old Match. It insists on

finding a senmicolon as the next token. Having found it, it skips
to the next one.

Since a senmicolon follows a statement, procedure Block is al nost
the only one we need to change:

{ Parse and Translate a Block of Statements }

procedure Bl ock;

begi n
Scan;
while not(Token in ['e', "I']) do begin
case Token of
"i': Dol f;
"w : DoWhil e;
'R : DoRead;
"W: DoWite;
"x': Assignnent;
end;
Sem ;
Scan;
end;
end;
{o }

Note carefully the subtle change in the case statement. The cal
to Assignnent is now guarded by a test on Token. This is to
avoid cal ling Assignment when the token is a semcolon (which
could happen if the statenment is null).

Since declarations are also statenments, we also need to add a
call to Semi within procedure TopDecls:

{ Parse and Transl ate d obal Decl arations }

procedure TopDecls;

begi n
Scan;
while Token = 'v' do begin
Al |l oc;
while Token = ',' do

Al | oc;



Sem ;
end;

Finally, we need one for the PROGRAM st at enent :

[ o o }
{ Main Program}
begi n
Init;
Mat chStri ng(' PROGRAM ) ;
Semi ;
Header ;
TopDecl s;
Mat chString(' BEG N );
Pr ol og;
Bl ock;
Mat chString(' END );
Epi | og;
end
{o }

It's as easy as that. Try it with a copy of TINY and see how you
like it.

The Pascal version is a |little trickier, but it still only
requires mnor changes, and those only to procedure Block. To

keep things as sinple as possible, let's split the procedure into
two parts. The follow ng procedure handles just one statenent:

{ Parse and Translate a Single Statenent }

procedure Statenent;

begi n
Scan;
case Token of
"i': Dol f;
"W DoWhil e;
'R : DoRead;
"W: DoWite;
"x': Assignnent;
end;
end;
{o o }

Using this procedure, we can now rewite Block |like this:



{ Parse and Translate a Block of Statements }

procedure Bl ock;
begi n
St at emrent ;
whil e Token = ';' do begin
Next ;
St at emrent ;
end;
end;

That sure didn't hurt, didit? W can now parse senicolons in
Pascal -1i ke fashi on.

A COVPROM SE

Now t hat we know how to deal with sem col ons, does that nean that

I"mgoing to put themin KISS/ TINY? Well, yes and no. I like
the extra sugar and the security that cones with know ng for sure
where the ends of statenments are. But | haven't changed ny

dislike for the conpilation errors associated with sem col ons.
So | have what | think is a nice conmprom se: Make them OPTI ONAL

Consider the follow ng version of Sem:

{ Match a Sem col on }

procedure Sem;

begi n

if Token ="';' then Next;
end;
R PR }
This procedure will ACCEPT a sem col on whenever it is called, but
it won't INSIST on one. That neans that when you choose to use
sem col ons, the conpiler wll use the extra information to help

keep itself on track. But if you omt one (or onmit themall) the
conpiler won't conplain. The best of both worlds.

Put this procedure in place in the first version of your program
(the one for C/ Ada syntax), and you have the nmakings of TINY
Version 1. 2.

COMMENTS

Up until now | have carefully avoided the subject of comments.
You would think that this would be an easy subject ... after all,
the conpiler doesn't have to deal with conments at all; it should

just ignore them Well, sometimes that's true



Comments can be just about as easy or as difficult as you choose
to make them At one extreme, we can arrange things so that
comments are intercepted alnbst the instant they enter the
conpiler. At the other, we can treat them as |exical elenents.
Things tend to get interesting when you consider things |Iike
comment delimters contained in quoted strings.

SI NGLE- CHARACTER DELI M TERS

Here's an exanple. Suppose we assunme the Turbo Pascal standard
and use curly braces for coments. In this case we have single-
character delimters, so our parsing is a little easier

One approach is to strip the coments out the instant we
encounter themin the input stream that is, right in procedure
Get Char . To do this, first change the nane of GetChar to
somet hing el se, say GetCharX. (For the record, this is going to
be a TEMPORARY change, so best not do this with your only copy of
TINY. | assume you understand that you should always do these
experiments with a working copy.)

Now, we're going to need a procedure to skip over coments. So
key in the follow ng one:

[ o oo }
{ Skip A Comrent Field }
procedure Ski pComment ;
begi n

while Look <> '"}"' do

Get Char X;

Get Char X;
end;
{o }

Clearly, what this procedure is going to do is to sinply read and
di scard characters fromthe input stream until it finds a right
curly brace. Then it reads one nore character and returns it in
Look.

Now we can wite a new version of GetChar that SkipConment to
strip out comrents:

{ Get Character from Input Stream}
{ Skip Any Comments }

procedure Get Char;
begin

Get Char X;

if Look = '{' then SkipComent;
end;



Code this up and give it a try. You'll find that you can
i ndeed, bury comments anywhere you like. The comments never even
get into the parser proper ... every call to GetChar just returns

any character that's NOT part of a comrent.

As a matter of fact, while this approach gets the job done, and
may even be perfectly satisfactory for vyou, it does its job a
little TOO well. First of all, npbst programm ng |anguages
speci fy that a comment should be treated |Iike a space, so that
comments aren't allowed to be enbedded in, say, variable names.
This current version doesn't care WHERE you put comments.

Second, since the rest of the parser can't even receive a '{'
character, you will not be allowed to put one in a quoted string.

Before you turn up your nose at this sinplistic solution, though,
I should point out that as respected a conpiler as Turbo Pasca
also won't allow a '{'" in a quoted string. Try it. And as for

enmbeddi ng a coment in an identifier, | can't imagine why anyone
woul d want to do such a thing, anyway, so the question is npot.
For 99% of all applications, what |'ve just shown you wll work
just fine.

But, if you want to be picky about it and stick to the

conventional treatnent, then we need to nobve the interception
poi nt downstreama little further

To do this, first change GetChar back to the way it was and
change the name called in SkipConmment. Then, let's add the left
brace as a possible whitespace character

{ Recogni ze Wite Space }

function IsWhite(c: char): bool ean
begi n

Iswhite :=c in[' ', TAB, CR, LF, "{'];
end;

Now, we can deal with comrents in procedure SkipWite:

{ Skip Over Leading Wite Space }

procedure Ski pWite;
begi n
while |IswWiite(Look) do begin
if Look = '{"' then
Ski pComent
el se



end;
end;
(o }
Note that SkipWwiite is witten so that we wll skip over any

conmbi nati on of whitespace characters and coments, in one call

K, give this one a try, too. You'l| find that it will let a
conment serve to delimt tokens. |It's worth nmentioning that this
approach also gives us the ability to handle curly braces within
quoted strings, since within such strings we will not be testing
for or skipping over whitespace.

There's one last item to deal wth: Nested conmments. Sone
programmers like the idea of nesting conments, since it allows
you to coment out code during debugging. The code 1've given
here won't allow that and, again, neither will Turbo Pascal

But the fix is incredibly easy. Al we need to do is to make
Ski pComrment recursive

{ Skip A Cormment Field }

procedure Ski pComrment ;

begi n
while Look <> '}' do begin
Get Char;
if Look = '{" then SkipComrent;
end;
Get Char;
end;
{o }
That does it. As sophisticated a coment-handl er as you'll ever
need.

MULTI - CHARACTER DELI M TERS

That's all well and good for cases where a conment is delimted
by single characters, but what about the cases such as C or

standard Pascal, where two characters are required? Well, the
principles are still the same, but we have to change our approach
quite a bit. I'msure it won't surprise you to |earn that things

get harder in this case.

For the multi-character situation, the easiest thing to dois to
intercept the left delimter back at the GetChar stage. W can
"tokenize" it right there, replacing it by a single character

Let's assume we're using the Cdelimters '/*'" and '*/"'. First,
we need to go back to the "GetCharX approach. In yet another



copy of your compiler, rename GCetChar to GetCharX and then enter
the foll owing new procedure GetChar:

{ Read New Character. Intercept '/*' }

procedure Get Char;

begi n
if TempChar <> ' ' then begin
Look := TempChar;
TempChar ="' ';
end
el se begin
Get Char X;
if Look = '/' then begin
Read( TenpChar) ;
if TempChar = '*' then begin
Look := "{";
TempChar ="' ';
end;
end;
end;
end;
{o }
As you can see, what this procedure does is to intercept every
occurrence of '/'. It then exam nes the NEXT character in the
stream If the character is a '*', then we have found the
beginning of a coment, and GetChar wll return a single
character replacenent for it. (For sinmplicity, |I'm wusing the
same '{' character as | did for Pascal. |If you were witing a C
conpiler, you'd no doubt want to pick some other character that's
not used elsewhere in C. Pick anything you like ... even $FF

anyt hing that's unique.)

If the character following the '/' is NOT a'*', then GetChar
tucks it away in the new gl obal TenpChar, and returns the '/'.

Note that you need to declare this new variable and initialize it

to' '. 1 liketodo things like that wusing the Turbo "typed
constant" construct:

const TenpChar: char = ;

Now we need a new version of SkipComment:

{ Skip A Cormment Field }

procedure Ski pComrment ;
begi n
repeat



r epeat

Get Char X;
until Look = '"*';
Get Char X;
until Look = '/";
Get Char ;
end;
{ }
A few things to note: first of all, function IsWite and
procedure SkipWhite don't need to be changed, since GetChar
returns the '{' token. |If you change that token character, then

of course you also need to change the character in those two
routines.

Second, note that SkipComment doesn't call GetChar in its |oop

but Get Char X That neans that the trailing '/' is not
intercepted and is seen by SkipComrent. Third, although Get Char
is the procedure doing the work, we can still deal with the

conment characters enbedded in a quoted string, by calling
GetCharX instead of GetChar while we're wthin the string.
Finally, note that we can again provide for nested comrents by
adding a single statenent to Ski pComrent, just as we did before.

ONE- S| DED COMMENTS

So far 1've shown you how to deal wth any kind of coment

delimted on the left and the right. That only | eaves the one-
sided coments |ike those in assenbler |anguage or in Ada, that
are termnated by the end of the line. In a way, that <case is
easi er. The only procedure that would need to be changed is

Ski pComment, which nust now term nate at the newline characters:

(o oo }
{ Skip A Comrent Field }
procedure Ski pComment ;
begi n

repeat

Get Char X;

until Look = CR

Get Char;
end;
R PR }
If the leading character is a single one, as in the ';' of
assenbly | anguage, then we're essentially done. If it's a two-
character token, as in the '--' of Ada, we need only nodify the
tests within GetChar. Either way, it's an easier problemthan

t he bal anced case.

CONCLUSI ON



At this point we now have the ability to deal with both conments

and sem colons, as well as other kinds of syntactic sugar. ' ve
shown you several ways to deal with each, depending upon the
convention desired. The only issue left is: which of these

conventions should we use in KISS/TINY?

For the reasons that |'ve given as we went along, |'m choosing
the foll ow ng:

(1) Semicolons are TERM NATORS, not separators

(2) Sem col ons are OPTI ONAL

(3) Comments are delimted by curly braces

(4) Comments MAY be nested

Put the code corresponding to these cases into your copy of TINY
You now have TINY Version 1.2.

Now that we have disposed of these sideline issues, we can
finally get back into the mainstream In the next installnent,

we'll talk about procedures and paraneter passing, and we'll add
these inportant features to TINY. See you then
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| NTRODUCTI ON
At last we get to the good part!

At this point we've studied alnost all the basic features of
conpilers and parsing. W have learned how to translate
arithnetic expressions, Bool ean expressions, control constructs,
data declarations, and 1/0O statenments. W have defined a
| anguage, TINY 1.3, that enbodies all these features, and we have
witten a rudinentary conpiler that can translate them By
addi ng sonme file I/O we could indeed have a working conpiler that
coul d produce executable object files from prograns witten in
TINY. Wth such a conmpiler, we could wite sinple prograns that
could read integer data, performcalculations with it, and out put
the results.

That's nice, but what we have is still only a toy |anguage. W
can't read or wite even a single character of text, and we stil
don't have procedures.

It's the features to be discussed in the next couple of
install nents that separate the nen fromthe toys, so to speak

"Real " | anguages have nore than one data type, and they support
procedure calls. Mre than any others, it's these two features
that give a | anguage rmuch of its character and personality. Once
we have provided for them our |anguages, TINY and its
successors, will cease to become toys and wll take on the



character of real |anguages, suitable for serious programm ng
j obs.

For several installments now, |'ve been prom sing you sessions on
these two inportant subjects. Each tine, other issues came up
that required ne to digress and deal with them Finally, we've
been able to put all those issues to rest and can get on with the
mai nstream of things. In this i nstal | ment, "Il cover
procedures. Next time, we'll talk about the basic data types.

ONE LAST DI GRESSI ON

This has been an extraordinarily difficult installment for me to
write. The reason has nothing to do with the subject itself
I'"ve known what | wanted to say for sone tinme, and in fact
presented nost of this at Software Devel opment '89, back in
February. It has nore to do with the approach. Let ne explain.

When | first began this series, | told you that we would use
several "tricks" to make things easy, and to let us learn the
concepts wi thout getting too bogged down in the details. Anong
these tricks was the idea of |ooking at individual pieces of a
conpiler at a time, i.e. perform ng experinents using the Cradle
as a base. \When we studied expressions, for exanple, we dealt
with only that part of conpiler theory. Wen we studied contro

structures, we wote a different program still based on the
Cradle, to do that part. We only incorporated these concepts into
a conplete | anguage fairly recently. These techni ques have served
us very well indeed, and led us to the devel opnent of a conpiler
for TINY version 1.3.

When | first began this session, | tried to build upon what we
had al ready done, and just add the new features to the existing
conpiler. That turned out to be a little awkward and tricky ..
much too rmuch to suit me.

| finally figured out why. |In this series of experinments, | had
abandoned the very useful techniques that had allowed us to get
here, and wthout nmeaning to | had switched over into a new

met hod of working, that involved incremental changes to the ful
TINY conmpi l er.

You need to wunderstand that what we are doing here is a little
uni que. There have been a nunber of articles, such as the Snall
C articles by Cain and Hendrix, that presented finished conpilers
for one | anguage or another. This is different. In this series
of tutorials, you are watching nme design and inplenment both a
| anguage and a conpiler, in real tinme.

In the experinments that |'ve been doing in preparation for this

article, | was trying to inject the <changes into the TINY
conpiler in such a way that, at every step, we still had a real,
wor ki ng conpiler. In other words, | was attenpting an

i ncrenental enhancenent of the |anguage and its conpiler, while
at the sanme time explaining to you what | was doing.



That's a tough act to pull off! | finally realized that it was

dumb to try. Having gotten this far using the idea of smal
experiments based on si ngl e-character tokens and sinple,
speci al - purpose programs, | had abandoned them in favor of
working with the full conpiler. 1t wasn't working.

So we're going to go back to our roots, so to speak. In this
install ment and the next, I'll be wusing single-character tokens

again as we study the concepts of procedures, unfettered by the
ot her baggage that we have accunulated in the previous sessions.
As a mtter of fact, | won't even attenpt, at the end of this
session, to nmerge the constructs into the TINY conpiler. V' |
save that for |ater.

After all this tinme, you don't need nore buildup than that, so
let's waste no nore time and dive right in.

THE BASI CS

All nodern CPU s provide direct support for procedure calls, and
the 68000 is no exception. For the 68000, the call is a BSR
(PC-relative version) or JSR, and the return is RTS. All we have
to do is to arrange for the conpiler to issue these commnds at
the proper place.

Actually, there are really THREE things we have to address. One
of them is the call/return mechanism The second is the
mechani sm for DEFINING the procedure in the first place. And,
finally, there is the issue of passing paraneters to the called
procedure. None of these things are really very difficult, and
we can of course borrow heavily on what people have done in other
| anguages ... there's no need to reinvent the wheel here. O the
three issues, that of parameter passing will occupy nost of our
attention, sinply because there are so many options avail abl e.

A BASI S FOR EXPERI MENTS

As always, we will need sone software to serve as a basis for
what we are doing. We don't need the full TINY conpiler, but we
do need enough of a program so that some of the other constructs
are present. Specifically, we need at |least to be able to handle
statements of sonme sort, and data decl arations.

The program shown below is that basis. |It's a vestigial form of
TINY, with single-character tokens. It has data declarations,
but only in their sinplest form... no lists or initializers. It

has assi gnnent statenents, but only of the kind

<i dent > = <jdent>
In other words, the only legal expression is a single variable
nane. There are no control constructs ... the only |lega

statenent is the assignnent.

Most of the program is just the standard Cradle routines. 1've



shown the whole thing here, just to nake sure we're

fromthe same point:

{ Constant Declarations }

const TAB
CR
LF

Al
"M
UNE

{ Variable Declarations }

var Look: char; { Lookahead Character }

var ST: Array['A .."Z'] of char;

{ Read New Character From | nput Stream}

procedure Get Char;
begin

Read( Look);
end;

{ Report an Error }

procedure Error(s: string);
begi n

WitelLn;

WiteLn("G 'Error: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;

{ Report What Was Expected }

procedure Expected(s: string);
begi n

Abort (s + ' Expected');
end;

al |

starting



{ Report an Undefined ldentifier }

procedur e Undefined(n: string);

begin

Abort (' Undefined Identifier ' + n);
end;

{ Report an Duplicate Identifier }

procedure Duplicate(n: string);
begin

Abort (' Duplicate Identifier ' + n);
end;

{ Get Type of Synbol }

function TypeOf(n: char): char
begin

TypeOF := ST[n];
end;

{ Look for Synbol in Table }

function InTable(n: char): Bool ean;
begi n

InTable := ST[n] <> "' ';
end;

R EEE }
{ Add a New Synbol to Table }
procedure AddEntry(Name, T: char);
begi n

i f Intabl e(Nane) then Duplicate(Nane);

ST[ Nane] := T,
end;
SRR R }
{ Check an Entry to Make Sure It's a Variable }
procedure CheckVar (Nane: char);
begi n

if not InTabl e(Nane) then Undefi ned(Nane);

if TypeOf(Nane) <> 'v' then Abort(Nanme + ' is not a
variable');

end;



{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begin

| sAl pha : = upcase(c) in['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begin

IsDigit :=cin['0.."9];

end;

{ Recogni ze an Al phaNuneric Character }

function IsAl Num(c: char): bool ean;
begin

I sAl Num : = | sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=c in ["+", "-'];

end;

{ Recognize a Mulop }

function IsMiul op(c: char): bool ean;
begi n

IsMulop :=c in ["*", "['];
end;

{ Recogni ze a Boolean Orop }

function IsOop(c: char): bool ean;
begi n

IsCop :=cin["|", "~'T;
end;



{ Recogni ze a Relop }

function IsRelop(c: char): bool ean
begi n

IsRelop :=c in ['=, "#,6 "<, ">];
end;

{ Recogni ze Wite Space }
function IsWiite(c: char): bool ean
begi n

IsWhite :=c in [' ', TAB];
end;

{ Skip Over Leading Wite Space }

procedure Ski pWhite;

begi n
whil e I sWhite(Look) do
Get Char
end;
{ ______________________________________________________________

{ Skip Over an End-of-Line }

procedure Fin;
begi n
if Look = CR then begin
Get Char;
if Look = LF then
Get Char ;
end;
end;

{ Match a Specific | nput Character }

procedure Match(x: char);

begi n
if Look = x then Get Char
el se Expected('''" + x + """");
Ski pWhi t e;
end;
- m o m e e

{ Get an ldentifier }

functi on Get Nanme: char
begi n
if not IsAlpha(Look) then Expected(' Nane');



Get Nane : = UpCase(Look);
Get Char;
Ski pWhi t e;
end;

{ Get a Nunber }

function Get Num char;
begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;
Get Char ;
Ski pWhi t e;
end;

{ Qutput a String with Tab }

procedure Emit(s: string);
begi n

Wite(TAB, s);
end;

{ Qutput a String with Tab and CRLF }

procedure EmtLn(s: string);
begi n

Emt(s);

WitelLn;
end;

{ Post a Label To Qutput }

procedure PostLabel (L: string);
begin

WiteLn(L, ':');

end;

{ Load a Variable to the Primary Regi ster }

procedure LoadVar(Name: char);
begin

CheckVar ( Nane) ;

EmtLn(' MOVE ' + Nane + '(PC),D0'");
end;



{ Store the Primary Register }

procedure StoreVar(Nane: char);
begi n
CheckVar ( Nane) ;
EmtLn('LEA " + Name + ' (PC), A0');
Em tLn(' MOVE DO, (A0)")
end;

{ Initialize }

procedure Init;

var i: char;
begin

CGet Char;

Ski pWhi t e;

for i :="A to'Z do

ST[i] :="' ";

end;
g

{ Parse and Transl ate an Expression }
{ Vestigial Version }

procedure Expression;
begi n

LoadVar ( Get Nane) ;
end;

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignhnent;
var Nane: char;
begi n
Name : = Get Nane;
Match(' =");
Expr essi on;
St or eVar ( Nane) ;
end;

{ Parse and Translate a Block of Statenments }



procedur e DoBl ock

begi n
while not(Look in ["e']) do begin
Assi gnment ;
Fi n;
end;
end;
{ ______________________________________________________________

{ Parse and Transl ate a Begin-Bl ock }

procedur e Begi nBl ock;

begi n
Match('b');
Fi n;
DoBl ock
Mat ch('e');
Fi n;
end;
{ ______________________________________________________________

{ Allocate Storage for a Variable }

procedure Alloc(N: char);

begin
if InTabl e(N) then Duplicate(N)
ST[N :="v';
WiteLn(N, ':', TAB, 'DC 0');
end;
o m st ot

{ Parse and Translate a Data Declaration }

procedure Decl
var Nane: char;

begi n
Match('v');
Al | oc( Get Nane) ;
end;
{ ______________________________________________________________

{ Parse and Transl ate G obal Decl arations }

procedure TopDecl s;
begi n
while Look <> 'b' do begin
case Look of
"v': Decl
el se Abort (' Unrecogni zed Keyword ' + Look);
end;
Fin;
end;
end;



{ Main Program}

begi n

Init;

TopDecl s;

Begi nBl ock;
end
R e P EEE }
Note that we DO have a synbol table, and there is logic to check
a variable name to make sure it's a | egal one. It's also worth
noting that | have included the code you' ve seen bhefore to
provi de for white space and newines. Finally, note that the

main programis delimted, as usual, by BEG N-END brackets.

Once you' ve copied the program to Turbo, the first step is to
conpile it and make sure it works. Gve it a few declarations,
and then a begin-block. Try something |ike:

va (for VAR A)
vb (for VAR B)
Ve (for VAR Q)
b (for BEG N)
a=b

b=c

e. (for END.)

As usual, you should al so nmake sone deliberate errors, and verify
that the program catches them correctly.
DECLARI NG A PROCEDURE

If you're satisfied that our little programworks, then it's tine
to deal wth the procedures. Since we haven't talked about

parameters yet, we'll begin by considering only procedures that
have no paraneter |ists.

As a start, let's consider a sinple programw th a procedure, and
t hi nk about the code we'd like to see generated for it:

PROGRAM FQOG,



PROCEDURE BAR; BAR:

BEGI N
END; RTS

BEGI N { MAI N PROGRAM } MAI N:

FoO, BSR BAR
END. END MAI N

Here |'ve shown the high-order |anguage constructs on the |eft,
and the desired assenbler code on the right. The first thing to
notice is that we certainly don't have nmuch code to generate
here! For the great bulk of both the procedure and the nain
program our existing constructs take care of the code to be
gener at ed.

The key to dealing with the body of the procedure is to recognize
that although a procedure may be quite long, declaring it is

really no different than declaring a variable. It's just one
nore kind of declaration. W can wite the BNF

<decl aration> ::= <data decl> | <procedure>

This means that it should be easy to nodify TopDecl to deal with
procedures. What about the syntax of a procedure? Well, here's
a suggested syntax, which is essentially that of Pascal

<procedure> ::= PROCEDURE <i dent> <begi n-bl ock>

There is practically no code generation required, other than that
generated within the begin-bl ock. We need only enmt a |abel at
the begi nning of the procedure, and an RTS at the end.

Here's the required code:

{ Parse and Translate a Procedure Declaration }

procedur e DoProc;
var N: char;

begi n
Match(' p');
N : = Get Nane;
Fi n;

if InTabl e(N) then Duplicate(N)
ST[N] :="p";



Post Label (N);
Begi nBl ock
Ret ur n;

Note that |'ve added a new code generation routine, Return, which
merely emits an RTS instruction. The creation of that routine is
"l eft as an exercise for the student."

To finish this version, add the following Iine within the Case
statement in DoBl ock:

p': DoProc;

| should nmention that this structure for declarations, and the

BNF that drives it, differs fromstandard Pascal. In the Jensen
& Wrth definition of Pascal, variable declarations, in fact ALL
ki nds of declarations, nust appear in a specific sequence, i.e.
| abel s, constants, types, variables, procedures, and mai n

program To follow such a schene, we should separate the two
decl arations, and have code in the main program sonmething |ike

DoVars;

DoPr ocs;

DoMai n;
However, nost inplenmentations of Pascal, including Turbo, don't
require that order and let you freely mx up the various
declarations, as long as vyou still don't try to refer to
something before it's declared. Al though it nay be nore

aesthetically pleasing to declare all the global variables at the
top of the program it certainly doesn't do any HARMto all ow
themto be sprinkled around. In fact, it may do sonme GOOD, in
the sense that it gives you the opportunity to do a little
rudi mentary information hiding. Variables that should be
accessed only by the main program for exanple, can be declared
just before it and will thus be inaccessible by the procedures.

K, try this new version out. Note that we can declare as nmany
procedures as we choose (as long as we don't run out of single-
character nanmes!), and the I|abels and RTS s all come out in the
ri ght places.

It's worth noting here that | do _NOT_ allow for nested
procedur es. In TINY, all procedures nust be declared at the
gl obal level, the sane as in C. There has been quite a
di scussi on about this point in the Conputer Language Forum of
ConmpuServe. It turns out that there is a significant penalty in

conplexity that nust be paid for the luxury of nested procedures.
VWhat's nore, this penalty gets paid at RUN TI ME, because extra
code nust be added and executed every time a procedure is call ed.



| also happen to believe that nesting is not a good idea, sinply
on the grounds that | have seen too many abuses of the feature.
Before going on to the next step, it's also worth noting that the
"main program as it stands is inconplete, since it doesn't have
the | abel and END statenent. Let's fix that little oversight:

{ Parse and Translate a Main Program}

procedure DoMai n;

begi n

Match(' b');

Fin;

Pr ol og;

DoBl ock

Epi | og;
end;
e R R P EEE }
o }
{ Main Program }
begi n

Init;

TopDecl s;

DoMai n;
end
(o }

Note that DoProc and DoMain are not quite symretrical. DoProc
uses a call to BeginBl ock, whereas DoMain cannot. That's because
a procedure is signaled by the keyword PROCEDURE (abbrevi ated by
a'p here), while the main programgets no keyword other than
the BEG N itself.

And _THAT_ brings up an interesting question: WHY?

If we Ilook at the structure of C progranms, we find that al
functions are treated just alike, except that the nmain program
happens to be identified by its nane, "main." Since C functions
can appear in any order, the main programcan also be anywhere in
the conpilation unit.

In Pascal, on the other hand, all variables and procedures nust
be decl ared before they're wused, which neans that there is no
point putting anything after the main program... it could never
be accessed. The "nmin progrant is not identified at all, other
than being that part of the code that conmes after the globa
BEGIN. In other words, if it ain't anything else, it nust be the
mai n program

This causes no small anmount of conf usi on for beginning
programers, and for big Pascal prograns sonmetines it's difficult



to find the beginning of the main programat all. This leads to
conventions such as identifying it in coments:

BEG N { of MAIN }

This has always seenmed to ne to be a bit of a kludge. The
guesti on conmes up: Whay should the main programbe treated so
much differently than a procedure? In fact, now that we've
recogni zed that procedure declarations are just that ... part of
the gl obal declarations ... isn't the main programjust one nore
decl aration, also?

The answer is yes, and by treating it that way, we can sinplify
the code and nake it <considerably nore orthogonal. | propose
that we use an explicit keyword, PROGRAM to identify the main
program (Note that this neans that we can't start the file with

it, as in Pascal). |In this case, our BNF becones:
<decl aration> ::= <data decl> | <procedure> | <main progranp
<procedure> ::= PROCEDURE <i dent> <begi n-bl ock>
<mai n progranmp ::= PROGRAM <i dent > <begi n- bl ock>

The code also |ooks nuch better, at Ileast in the sense that
DoMai n and DoProc | ook npore alike:

{ Parse and Translate a Main Program}

procedure DoMai n;
var N. char;

begi n
Match(' P );
N : = Get Nane;
Fi n;
if InTabl e(N) then Duplicate(N);
Pr ol og;
Begi nBl ock
end;
{o }
o oo }

{ Parse and Transl ate d obal Decl arations }

procedure TopDecl s;
begi n
while Look <> "'.' do begin



case Look of

'v': Decl
"p': DoProc;
'"P': DoMi n;
el se Abort (' Unrecogni zed Keyword ' + Look);
end;
Fi n;
end;
end;
o o }
{ Main Program}
begin
Init;
TopDecl s;
Epi | og;
end
{o }

Since the declaration of the main programis now within the | oop
of TopDecl, that does present sonme difficulties. How do we
ensure that it's the last thing in the file? And how do we ever
exit from the 1oop? M answer for the second question, as you
can see, was to bring back our old friend the period. Once the
parser sees that, we're done.

To answer the first question: it depends on how far we're
willing to go to protect the progranmmer from dunmb m stakes. In
the code that 1've shown, there's nothing to keep the programer
from addi ng code after the min program ... even another nmmin
program The code will just not be accessible. However, we
COULD access it via a FORWARD st atenent, which we'll be providing
later. As a matter of fact, nmany assenbl er | anguage programmers
like to use the area just after the programto declare |arge,
uninitialized data bl ocks, so there nay indeed be sone value in
not requiring the main programto be last. We'Ill leave it as it
is.

If we decide that we should give the programmer a little nore
help than that, it's pretty easy to add sone logic to kick us out
of the loop once the nmain program has been processed. O we
could at least flag an error if someone tries to include two
mai ns.

CALLI NG THE PROCEDURE

If you're satisfied that things are working, let's address the
second half of the equation ... the call

Consider the BNF for a procedure call

<proc_call> ::= <identifier>



for an assignnment statenent, on the other hand, the BNF is:

<assignnment> ::= <identifier>"'=" <expression>

At this point we seemto have a problem The two BNF statenents
both begin on the right-hand side wth the token <identifier>.
How are we supposed to know, when we see the identifier, whether
we have a procedure call or an assignment statenent? Thi s | ooks
like a case where our parser ceases being predictive, and indeed
that's exactly the case. However, it turns out to be an easy
problemto fix, since all we have to do is to | ook at the type of
the identifier, as recorded in the synbol table. As we've
di scovered before, a mnor local violation of the predictive
parsing rule can be easily handl ed as a special case.

Here's how to do it:

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignnment (Nane: char);
begin

Mat ch(' =");

Expr essi on;

St or eVar ( Nane) ;
end;

{ Decide if a Statement is an Assignnment or Procedure Call }

procedure AssignOrProc;
var Nane: char;
begi n
Name : = Get Nane;
case TypeCX(NanE) of
Undefi ned( Nane) ;
v‘: Assi gnnent ( Nane) ;
"p': CallProc(Nane);
el se Abort('ldentifier

+ Name +
' Cannot Be Used Here');

{ Parse and Translate a Block of Statements }

procedur e DoBl ock
begi n
while not(Look in ['e']) do begin
Assi gnOr Proc;



end;

As you can see, procedure Block now calls AssignOProc instead of
Assignnent. The function of this new procedure is to sinply read
the identifier, determine its type, and then call whichever
procedure is appropriate for that type. Since the name has
al ready been read, we nust pass it to the two procedures, and
nodi fy Assignnent to match. Procedure CallProc is a sinple code
generation routine:

procedure Call Proc(N:. char);
begi n
EmtLn('BSR ' + N);

end;

{ }
Well, at this point we have a conpiler that can deal with
procedur es. It's worth noting that procedur es can cal

procedures to any depth. So even though we don't allow nested
DECLARATI ONS, there is certainly nothing to keep us from nesting
CALLS, just as we wuld expect to do in any |anguage. W're
getting there, and it wasn't too hard, was it?

Of course, so far we can only deal with procedures that have no
par anet ers. The procedures can only operate on the gl oba
variables by their global nanes. So at this point we have the
equi val ent of BASIC s GOSUB construct. Not too bad ... after al

| ots of serious programs were written using GOSUBs, but we can do
better, and we will. That's the next step

PASSI NG PARAMETERS

Again, we all know the basic idea of passed paraneters, but let's
review themjust to be safe.

In general the procedure is given a paraneter list, for exanple
PROCEDURE FOQ( X, Y, 2)

In the declaration of a procedure, the paraneters are called
formal paraneters, and may be referred to in the body of the

procedure by those nanes. The names used for the formal
paraneters are really arbitrary. Only the position really
counts. In the exanple above, the nane 'X sinply neans "the

first paraneter" wherever it is used.

VWhen a procedure is called, the "actual paraneters" passed to it



are associated with the fornmal paraneters, on a one-for-one
basi s.

The BNF for the syntax |ooks sonething like this:

<procedure> ::= PROCEDURE <i dent>
"('" <paramlist>"')"' <begin-bl ock>

<param.|list> ::= <paranmeter> ( ',' <paranmeter> )* | nul
Simlarly, the procedure call |ooks Ilike:
<proc call> ::= <ident> '(' <paramlist>")"

Note that there is already an inplicit decision built into this
syntax. Some | anguages, such as Pascal and Ada, permit paraneter
lists to be optional. If there are no paraneters, you sinply
| eave of f the parens conpletely. O her | anguages, |ike C and
Modul a 2, require the parens even if the list is enpty. Cearly,
the exanple we just finished corresponds to the forner point of
view. But to tell the truth | prefer the latter. For procedures
al one, the decision would seemto favor the "listless" approach
The st at enent

Initialize; ,

standi ng alone, can only mean a procedure call. |In the parsers
we've been witing, we've nmade heavy use of paraneterless
procedures, and it would seema shane to have to wite an enpty
pair of parens for each case.

But |later on we're going to be wusing functions, too. And since
functions can appear in the sane places as sinple scalar
identifiers, you can't tell the difference between the twd. You
have to go back to the declarations to find out. Sone folks
consider this to be an advantage. Their argunent 1is that an
identifier gets replaced by a value, and what do you care whet her
it's done by substitution or by a function? But we sonetines
_DO_ care, because the function may be quite time-consum ng. |If,
by witing a sinple identifier into a given expression, we can
i ncur a heavy run-tinme penalty, it seens to nme we ought to be
made aware of it.

Anyway, Niklaus Wrth designed both Pascal and Modula 2. 1|
give himthe benefit of the doubt and assune that he had a good
reason for changing the rules the second tinme around!

Needl ess to say, it's an easy thing to acconodate either point of
view as we design a |anguage, so this one is strictly a matter of
personal preference. Do it whichever way you |ike best.



Before we go any further, let's alter the translator to handle a
(possibly enpty) paraneter list. For now we won't generate any
extra code ... just parse the syntax. The code for processing
t he decl aration has very nuch the sanme formwe' ve seen before
when dealing with VAR-|i sts:

{ Process the Formal Parameter List of a Procedure }

procedure Formal List;
begi n
Match(' (');
if Look <> ')' then begin
For mal Par am

while Look = ',' do begin
Match(',"');
For mal Par am
end;
end;
Match(')");
end;
{ }

Procedure DoProc needs to have a |line added to call Formal List:

{ Parse and Translate a Procedure Declaration }

procedur e DoProc;

var N char;

begi n
Match(' p');
N : = Get Nane;
For mal Li st ;

Fi n;
if InTabl e(N) then Duplicate(N)
STIN| :="'p';
Post Label (N);
Begi nBl ock
Ret ur n;
end;
{o }

For now, the code for Formal Paramis just a dummy one that sinply
ski ps the paraneter nane:

{ Process a Formal Paraneter }

procedur e For nmal Param
var Nane: char;
begi n



end;
{o }
For the actual procedure call, there nmust be simlar code to

process the actual parameter |ist:

{ Process an Actual Paraneter }

procedure Param
var Nane: char
begin
Nanme : = Get Nane;
end;

{ Process the Paraneter List for a Procedure Call }

procedure ParanLi st;

begin
Match(' (");
if Look <> ')' then begin
Par am
while Look = ',' do begin
Match(',"');
Par am
end;
end;
Match(')');
end;
o o o }

{ Process a Procedure Call }

procedure Call Proc(Nane: char);

begi n

Par anLi st ;

Cal | (Nane) ;
end;
{o }
Note here that CallProc is no longer just a sinple code
generation routine. It has some structure to it. To handl e
this, I've renaned the code generation routine to just Call, and

called it fromw thin CallProc.

K, if you'll add all this code to your translator and try it
out, you'll find that you can indeed parse the syntax properly.

"Il note in passing that there is _NO_ checking to make sure
that the nunmber (and, later, types) of formal and actua

paranmeters match up. |In a production conpiler, we nust of course



do this. W'Il ignore the issue nowif for no other reason than
that the structure of our synbol table doesn't currently give us
a place to store the necessary information. Later on, we'll have
a place for that data and we can deal with the issue then

THE SEMANTI CS OF PARAMETERS

So far we've dealt with the SYNTAX of paraneter passing, and
we' ve got the parsing mechanisms in place to handle it. Next, we
have to | ook at the SEMANTICS, i.e., the actions to be taken when
we encounter parameters. This brings us square up against the
i ssue of the different ways paraneters can be passed.

There is nore than one way to pass a paraneter, and the way we do
it can have a profound effect on the character of the |anguage.
So this is another of those areas where | can't just give you ny
solution. Rather, it's inmportant that we spend sonme tine | ooking
at the alternatives so that you can go another route if you
choose to

There are two main ways paranmeters are passed:

o By val ue
o0 By reference (address)

The differences are best seen in the light of a little history.

The ol d FORTRAN conpil ers passed all paraneters by reference. In
other words, what was actually passed was the address of the
parameter. This nmeant that the called subroutine was free to
either read or wite that paranmeter, as often as it chose to,
just as though it were a gl obal variable. This was actually
quite an efficient way to do things, and it was pretty sinple
since the sane nmechanism was wused in all cases, wth one
exception that 1'Il get to shortly.

There were problens, though. Many people felt that this method
created entirely too much coupling between the called subroutine
and its caller. In effect, it gave the subroutine conplete
access to all variables that appeared in the paraneter |ist.

Many tinmes, we didn't want to actually change a paraneter, but
only use it as an input. For exanple, we mght pass an el enent
count to a subroutine, and wish we could then wuse that count
within a DO | oop. To avoid changing the value in the calling
program we had to nake a | ocal copy of the input paraneter, and
operate only on the copy. Some FORTRAN programrers, in fact,
made it a practice to copy ALL paranmeters except those that were
to be used as return val ues. Needl ess to say, all this copying
defeated a good bit of the efficiency associated with the
approach

There was, however, an even nore insidious problem which was not
really just the fault of the "pass by reference" convention, but
a bad convergence of several inplenentation decisions.



Suppose we have a subroutine:

SUBROUTI NE FOO(X, Y, N)

where N is sonme kind of input count or flag. Many tines, we'd
like to be able to pass a literal or even an expression in place
of a variable, such as:

CALL FOO(A, B, J + 1)

Here the third parameter is not a variable, and so it has no
addr ess. The earliest FORTRAN conmpilers did not allow such
things, so we had to resort to subterfuges |ike:

K=J + 1
CALL FOO( A, B, K)

Here again, there was copying required, and the burden was on the
programmer to do it. Not good.

Later FORTRAN inplenentations got rid of this by allowng
expressions as paraneters. VWhat they did was to assign a
conpi | er-generated variable, store the value of the expression in
the variable, and then pass the address of the expression

So far, so good. Even if the subroutine mstakenly altered the
anonynous variable, who was to know or care? On the next call
it would be recal cul ated anyway.

The problem arose when soneone decided to make things nore
efficient. They reasoned, rightly enough, that the npst comon
ki nd of "expression" was a single integer value, as in

CALL FOO(A, B, 4)

It seened inefficient to go to the trouble of "conputing" such an
integer and storing it in a tenporary variable, just to pass it
through the <calling list. Since we had to pass the address of
the thing anyway, it seened to make lots of sense to just pass
the address of the literal integer, 4 in the exanpl e above.

To make matters nore interesting, nost conpilers, then and now,

identify all literals and store them separately in a "litera
pool ," so that we only have to store one value for each unique
literal. That conbination of design decisions: passi ng
expressions, optimization for literals as a special case, and use
of aliteral pool, is what led to disaster

To see how it works, imagine that we call subroutine FOO as in



t he exanpl e above, passing it a literal 4. Actually, what gets
passed is the address of the literal 4, which is stored in the
literal pool. Thi s address corresponds to the fornmal paraneter,
K, in the subroutine itself.

Now suppose that, unbeknownst to the programrer, subroutine FOO
actually nodifies Kto be, say, -7. Suddenly, that literal 4 in
the literal pool gets CHANGED, to a -7. Fromthen on, every
expression that uses a 4 and every subroutine that passes a 4
will be using the value of -7 instead! Needless to say, this can
lead to sone bizarre and difficult-to-find behavior. The whole
thing gave the concept of pass-by-reference a bad name, although
as we have seen, it was really a conbination of design decisions
that led to the problem

In spite of the problem the FORTRAN approach had its good
poi nts. Chief among themis the fact that we don't have to
support nultiple mechanisns. The same schene, passing the
address of the argunent, works for EVERY case, including arrays.
So the size of the conpiler can be reduced.

Partly because of the FORTRAN gotcha, and partly just because of
the reduced coupling involved, nodern | anguages |ike C, Pascal
Ada, and Mbdula 2 generally pass scalars by val ue.

This means that the value of the scalar is COPIED into a separate

value wused only for the call. Since the value passed is a copy,
the called procedure can use it as a local variable and nodify it
any way it likes. The value in the caller will not be changed.

It my seemat first that this is a bit inefficient, because of
the need to copy the parameter. But renmenber that we're going to
have to fetch SOVE value to pass anyway, whether it be the
paranmeter itself or an address for it. |Inside the subroutine,
using pass-by-value is definitely nore efficient, since we
elimnate one level of indirection. Finally, we saw earlier that
with FORTRAN, it was often necessary to nmake copies within the
subrouti ne anyway, so pass-by-val ue reduces the nunmber of |oca
variables. Al in all, pass-by-value is better

Except for one small little detail: if all parameters are passed
by value, there is no way for a called to procedure to return a
result to its caller! The paraneter passed is NOT altered in the
caller, only in the called procedure. Cearly, that won't get
the job done.

There have been t wo answers to this problem which are
equi val ent . In Pascal, Wrth provides for VAR paraneters, which
are passed-by-reference. What a VAR paraneter is, in fact, is
none other than our old friend the FORTRAN paraneter, with a new
name and paint job for disguise. Wrth neatly gets around the

"changing a literal" problem as well as the "address of an
expression" problem by the sinple expedient of allowing only a
variable to be the actual parameter. |In other words, it's the

same restriction that the earliest FORTRANs i nposed.

C does the same thing, but explicitly. In C, _ALL_ parameters



are passed by val ue. One kind of variable that C supports,
however, is the pointer. So by passing a pointer by value, you

in effect pass what it points to by reference. 1In sone ways this
wor ks even better yet, because -even though you can change the
variable pointed to all you like, you still CAN T change the
pointer itself. In a function such as strcpy, for exanple, where

the pointers are incremented as the string is copied, we are
really only increnmenting copies of the pointers, so the val ues of
those pointers in the calling procedure still remain as they
were. To nodify a pointer, you nmnust pass a pointer to the
poi nter.

Since we are simply performng experinments here, we'll |ook at
BOTH pass- by-val ue and pass-by-reference. That way, we'll be
able to use either one as we need to. |It's worth nentioning that

it's going to be tough to use the C approach to pointers here,
since a pointer is a different type and we haven't studied types
yet!

PASS- BY- VALUE
Let's just try sonme sinple-nmnded things and see where they | ead

us. Let's begin with the pass-by-value case. Consi der the
procedure call

FOO(X, Y)

Al nost the only reasonable way to pass the data is through the
CPU stack. So the code we'd like to see generated mght |ook
sonmething |like this:

MOVE X(PQ), - ( SP) ; Push X
MOVE Y(PC), - (SP) ; Push Y
BSR FOO ; Call FOO

That certainly doesn't seemtoo conpl ex!

When the BSR i s executed, the CPU pushes the return address onto
the stack and junps to FOO At this point the stack will | ook
like this:

Val ue of X (2 bytes)
Val ue of Y (2 bytes)
SP --> Return Address (4 bytes)

So the values of the paranmeters have addresses that are fixed
offsets fromthe stack pointer. |In this exanple, the addresses
are:



X:  6(SP)
Y:  4(SP)

Now consi der what the called procedure night | ook Iike:

PROCEDURE FOO( A, B)
BEG N

A =B
END

(Remenber, the names of the formal paranmeters are arbitrary ...
only the positions count.)

The desired out put code mght | ook |ike:

FOO. MOVE 4(SP), DO
MOVE DO, 6( SP)
RTS

Note that, in order to address the fornal parameters, we're going
to have to know which position they have in the paraneter |ist.
Thi s means sonme changes to the synbol table stuff. In fact, for
our single-character case it's best to just create a new synbol
table for the formal paraneters.

Let's begin by declaring a new table:

var Parans: Array['A'.."'Z'] of integer;

W also wll need to keep track of how many paraneters a given
procedure has:

var NunParans: integer;

And we need to initialize the new table. Now, remenber that the
formal paraneter list wll be different for each procedure that
we process, so we'll need to initialize that table anew for each
procedure. Here's the initializer:

{ Initialize Parameter Table to Null }

procedure Cl ear Parans;
var i: char;
begi n
for i :="A to 'Z do
Params[i] := O;



end;

{o }
We'll put a call to this procedure in Init, and also at the end
of DoProc:

{o o }

{ Initialize }

procedure Init;

var i: char;
begin

Cet Char;

Ski pWhi t e;

for i :="A to 'Z do

ST[i] : =" "

Cl ear Par ans;
end;
{o }
[ o oo }

{ Parse and Translate a Procedure Declaration }

procedure DoProc;
var N. char;
begi n
Mat ch(' p');
N : = Get Name;
For mal Li st ;
Fin;
if InTabl e(N) then Duplicate(N);
STINl :="p";
Post Label (N);
Begi nBl ock;
Ret ur n;
Cl ear Par ans;

Note that the call wthin DoProc ensures that the table will be

clear when we're in the main program

K, now we need a few procedures to work with the table. The
next few functions are essentially copies of [InTable, TypeCf,
etc.:

{ Find the Parameter Number }



function ParamNunber (N: char): integer;
begi n

Par amNunber := Parans[N];
end;

{ See if an Identifier is a Paranmeter }

function IsParam(N: char): bool ean;
begi n

| sParam : = Parans[ N <> O;
end;

{ Add a New Paraneter to Table }

procedure AddParan(Nane: char);

begi n
i f IsParam(Nane) then Duplicate(Nane);
I nc( NunPar ans) ;
Par ans[ Nane] := NunPar amns;

Finally, we need sone code generation routines:

{ Load a Paraneter to the Primary Register }

procedure LoadParam(N:. integer);

var Offset: integer;

begin
Ofset :=4 + 2 * (NumParans - N);
Em t (' MOVE ');
WiteLn(Offset, '(SP),D0");

end;

{ Store a Paraneter fromthe Primary Register }

procedure StoreParan(N:. integer);

var Offset: integer;

begi n
Ofset :=4 + 2 * (NumParans - N);
Em t (' MOVE DO, "');
WiteLn(Offset, '(SP)');

end;

{ Push The Primary Register to the Stack }



procedure Push;
begi n
Em tLn(' MOVE DO, -(SP)");

( The last routine is one we've seen before, but it wasn't in
this vestigial version of the program)

Wth those prelinmnaries in place, we're ready to deal wth the
semantics of procedures with calling lists (remenber, the code to
deal with the syntax is already in place).

Let's begin by processing a formal parameter. Al we have to do
is to add each paraneter to the paraneter synbol table:

{ Process a Formal Paraneter }

procedur e For mal Param
begi n
AddPar am( Get Nane) ;

Now, what about dealing with a formal paraneter when it appears
in the body of the procedure? That takes a little nore work. W
must first determine that it 1S a formal parameter. To do this,
I've witten a nodified version of TypeO:

{ Get Type of Synbol }

function TypeOf (n: char): char;

begi n
if IsParam(n) then
TypeOf = "f"'
el se
TypeOF := ST[n];
end;
{o }

(Note that, since TypeOf now calls IsParam it may need to be
rel ocated in your source.)

We al so nust nodify AssignOrProc to deal with this new type:

{ Decide if a Statement is an Assignnment or Procedure Call }

procedure AssignO Proc;



var Nane: char;
begi n
Name : = Cet Nane;
case TypeO (Nane) of
" ': Undefined(Nane);

"v', 'f': Assignnent (Nane);
"p': CallProc(Nane);
else Abort('ldentifier ' + Nane + ' Cannot Be Used
Here');
end;
end;
(o }

Finally, the code to process an assignment statenent and an
expressi on nust be extended:

{ Parse and Transl ate an Expression }
{ Vestigial Version }

procedur e Expression;
var Nane: char;
begin
Name : = Get Nane;
i f IsParamNane) then
LoadPar am( Par amNunber ( Nanme) )
el se
LoadVar ( Name) ;

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignnment (Nane: char);
begi n
Match('=");
Expr essi on;
i f IsParam Nane) then
St or ePar an( Par amNunber ( Nane) )
el se
St or eVar ( Nane) ;

As you can see, these procedures will treat every variable nane
encountered as either a formal paraneter or a global variable,
depending on whether or not it appears in the paranmeter synbol
t abl e. Remenber that we are wusing only a vestigial form of
Expression. In the final program the change shown here will
have to be added to Factor, not Expression.

The rest is easy. W need only add the semantics to the actual
procedure call, which we can do with one new line of code:



{ Process an Actual Paraneter }

procedur e Param

begin

Expr essi on;

Push;
end;
R PR }

That's it. Add these changes to your programand give it a try.
Try declaring one or two procedures, each with a formal paraneter
list. Then do sone assignnents, using conbinations of global and

formal paraneters. You can call one procedure from wthin
anot her, but you cannot DECLARE a nested procedure. You can even
pass formal parameters from one procedure to another. |If we had
the full syntax of the |anguage here, you' d also be able to do

things like read or wite formal paraneters or wuse themin
conpl i cated expressions.

WHAT' S V\RONG?

At this point, you mght be thinking: Surely there's nore to this
than a few pushes and pops. There must be nore to passing
paraneters than this.

You'd be right. As a mtter of fact, the code that we're
generating here leaves a ot to be desired in several respects.

The nost glaring oversight is that it's wong! If youll |[|ook
back at the code for a procedure call, you'll see that the caller
pushes each actual paranmeter onto the stack before it calls the
procedure. The procedure USES that information, but it doesn't
change the stack pointer. That neans that the stuff is stil
there when we return. SOMEBODY needs to clean up the stack, or
we' |l soon be in very hot water

Fortunately, that's weasily fixed. Al we have to do is to
i ncrenent the stack pointer when we're finished.

Should we do that in the calling program or the «called
procedure? Some folks let the called procedure clean up the
stack, since that requires |less code to be generated per call
and since the procedure, after all, knows how many parameters
it's got. But that nmeans that it nust do something with the
return address so as not to lose it.

| prefer letting the <caller clean wup, so that the callee need
only execute a return. Also, it seens a bit nore bal anced, since
the caller is the one who "nessed up" the stack in the first
place. But THAT neans that the caller nust remenber how nmany
items it pushed. To make things easy, |I've nodified the
procedure Paraniist to be a function instead of a procedure,



returni ng the number of bytes pushed:

{ Process the Paraneter List for a Procedure Call }

function ParanList: integer;
var N integer;
begi n
N := 0;
Match(' (");
if Look <> ")"'" then begin
Par am
inc(N);
while Look = ',' do begin
Match(',"');
Par am
inc(N);
end;
end;
Match(')");
ParamList := 2 * N

{ Process a Procedure Call }

procedure Call Proc(Nane: char);
var N integer;

begi n
N : = Paranlii st;
Cal | (Nane) ;
Cl eanSt ack(N);
end;
{ ______________________________________________________________

Here |'ve created yet another code generation procedure:

{ Adjust the Stack Pointer Upwards by N Bytes }

procedure Cl eanStack(N: integer);
begi n
if N> 0 then begin
Emit(' ADD #');
WiteLn(N, ',SP);
end;



K, if you'll add this code to your compiler, | think you'll find
that the stack is now under control

The next problemhas to do with our way of addressing relative to
the stack pointer. That works fine in our sinple exanples, since
with our rudinmentary form of expressions nobody else is nmessing
with the stack. But consider a different exanple as sinple as:

PROCEDURE FOO( A, B)
BEG N

A=A+B
END

The code generated by a sinple-m nded parser mght be:

FOO MOVE 6(SP), DO ; Fetch A
MOVE DO, - ( SP) ; Push it
MOVE 4( SP), DO ; Fetch B
ADD ( SP) +, DO ; Add A
MOVE DO, 6( SP) . Store A
RTS

This would be wong. Wien we push the first argunent onto the
stack, the offsets for the two formal parameters are no |onger 4
and 6, but are 6 and 8. So the second fetch would fetch A again
not B.

This is not the end of the world. | think you can see that al
we really have to do is to alter the offset every tine we do a
push, and that in fact is what's done if the CPU has no support
for other methods.

Fortunately, t hough, t he 68000 does have such support.
Recogni zing that this CPU would be wused a lot with high-order
| anguage conpilers, Mtorola decided to add direct support for
this kind of thing.

The problem as you can see, is that as the procedure executes,
the stack pointer bounces up and down, and so it becones an
awkward thing to use as a reference to access the fornal
paranmeters. The solution is to define some _OTHER register, and
use it instead. This register is typically set wequal to the
original stack pointer, and is called the frame pointer

The 68000 instruction set LINK |ets you declare such a franme
pointer, and sets it wequal to the stack pointer, all in one
instruction. As a matter of fact, it does even nore than that.
Since this register may have been in use for sonmething else in
the calling procedure, LINK also pushes the current value of that
regi ster onto the stack. It can also add a value to the stack
pointer, to make room for |ocal variables.



The conpl enent of LINK is UNLK, which sinply restores the stack
poi nter and pops the old value back into the register.

Using these two instructions, the code for the previous exanple
becones:

FOO. LI NK A6, #0

MOVE 10( A6), DO ; Fetch A
MOVE DO, - ( SP) ; Push it
MOVE 8( A6), DO ; Fetch B
ADD ( SP) +, DO ; Add A
MOVE DO, 10( A6) . Store A
UNLK A6

RTS

Fi xing the conpiler to generate this code is a |lot easier than it

is to explain it. All we need to do is to modify the code
generation created by DoProc. Since that makes the code a little
nmore than one line, |'ve created new procedures to deal wth it,

paralleling the Prolog and Epilog procedures called by DoMi n:

{ Wite the Prolog for a Procedure }

procedure ProcProl og(N: char);
begi n

Post Label (N);

Em tLn(' LI NK A6, #0');
end;

{ Wite the Epilog for a Procedure }

procedure ProcEpil og;
begi n
EmitLn(' UNLK A6');
Em tLn(' RTS);

{ Parse and Translate a Procedure Declaration }

procedure DoProc;
var N:. char;
begin
Match(' p');
N : = CGet Nane;
For mal Li st ;



Fin;
if InTabl e(N) then Duplicate(N);

STIN| = "p";
ProcProl og(N);
Begi nBl ock;
Pr ocEpi | og;
Cl ear Par ans;
end;
{o }

Finally, we need to change the references to SP in procedures
LoadPar am and St oreParam

{ Load a Paraneter to the Primary Register }

procedure LoadParam(N:. integer);

var Offset: integer;

begi n
Ofset :=8 + 2 * (NumParans - N);
Em t (' MOVE ');
WiteLn(Offset, '(A6),D0");

end;

{ Store a Paraneter fromthe Primary Register }

procedure StoreParanmN: integer);

var Offset: integer;

begin
Offset :=8 + 2 * (NunmParans - N);
Emit (' MOVE DO,");
WiteLn(Offset, '(A6)');

(Note that the O fset conputation changes to allow for the extra
push of A6.)

That's all it takes. Try this out and see how you like it.

At this point we are generating sone relatively nice code for
procedures and procedure calls. Wthin the linmtation that there
are no local variables (yet) and that no procedure nesting is
al lowed, this code is just what we need.

There is still just one little small problemrenmaining:

WE HAVE NO WAY TO RETURN RESULTS TO THE CALLER!

But that, of course, is not a limtation of +the code we're



generating, but one inherent in the call-by-value protocol
Noti ce that we CAN use formal paraneters in any way inside the
procedure. W can calculate new values for them use them as
| oop counters (if we had |oops, that is!), etc. So the code is
doing what it's supposed to. To get over this |last problem we
need to look at the alternative protocol

CALL- BY- REFERENCE

This one is easy, now that we have the nmechanisms already in
pl ace. W only have to mmke a few changes to the code
generation. |Instead of pushing a value onto the stack, we nust
push an address. As it turns out, the 68000 has an instruction

PEA, that does just that.

We'll be making a new version of the test programfor this.
Before we do anything el se,

>>>> MAKE A COPY <<<<

of the programas it now stands, because we'll be needing it
again later.

Let's begin by |ooking at the code we'd |ike to see generated for
the new case. Using the sanme exanple as before, we need the cal

FOO( X, Y)

to be translated to:

PEA X( PC) ; Push the address of X
PEA Y(PC) ; Push Y the address of Y
BSR FOO ; Call FOO

That's a sinple matter of a slight change to Param

{ Process an Actual Paraneter }

procedure Param
begi n
EmtLn(' PEA ' + GetNanme + ' (PC)');

(Note that with pass-by-reference, we can't have expressions in
the calling list, so Paramcan just read the nane directly.)

At the other end, the references to the formal paranmeters nust be
gi ven one level of indirection:



FOO LI NK A6, #0

MOVE. L 12(A6), A0 ; Fetch the address of A
MOVE (AO), DO ; Fetch A
MOVE DO, - ( SP) ; Push it
MOVE. L 8( A6), AO ; Fetch the address of B
MOVE ( AO), DO ; Fetch B
ADD ( SP) +, DO ; Add A
MOVE. L 12( A6), AO ; Fetch the address of A
MOVE DO, ( AO) . Store A
UNLK A6
RTS
All  of this can be handl ed by changes to LoadParam and

St or ePar am

{ Load a Paraneter to the Primary Register }

procedure LoadParam(N. integer);
var Offset: integer;
begin
Offset :=8 + 4 * (NunmParans - N);
Emit(' MOVE.L ');
WiteLn(Offset, '(A6),A0");
Em tLn(' MOVE (AO), DO");
end;

{ Store a Paraneter fromthe Prinmary Register }

procedure StoreParan(N:. integer);

var Offset: integer;

begi n
Ofset :=8 + 4 * (NumParans - N);
Emt(' MOVE.L ');
WiteLn(Offset, '(A6),A0");
EmitLn(' MOVE DO, (AO)');

To get the <count right, we nust also change one line in
Par anLi st :

ParanmList := 4 * N;

That should do it. Gve it atry and see if it's generating

reasonabl e- |1 ooki ng code. As you wll see, the code is hardly
optimal, since we reload the address register every tine a
paranmeter is needed. But that's <consistent wth our KISS

approach here, of just being sure to generate code that works.



We'll just make a Ilittle note here, that here's yet another
candi date for optimzation, and press on

Now we' ve | earned to process parameters using pass-by-value and
pass-by-reference. In the real world, of course, we'd |like to be
able to deal wth BOTH nethods. W can't do that yet, though,
because we have not yet had a session on types, and that has to
cone first.

If we can only have ONE net hod, then of course it has to be the
good ol' FORTRAN method of pass-by-reference, since that's the
only way procedures can ever return values to their caller

This, in fact, will be one of the differences between TINY and
KISS. In the next version of TINY, we'll wuse pass-by-reference
for all paraneters. KISS will support both nethods.

LOCAL VARI ABLES

So far, we've said nothing about |ocal variables, and our
definition of procedures doesn't allow for them Needl ess to
say, that's a big gap in our |anguage, and one that needs to be
corrected.

Here again we are faced with a choice: Static or dynam c storage?

In those old FORTRAN prograns, |ocal variables were given static
storage just like global ones. That is, each local variable got
a nane and allocated address, |ike any other variable, and was
referenced by that nane.

That's easy for us to do, using the allocation nechanisns already
in place. Renenber, though, that |ocal variables can have the
same nanes as gl obal ones. W need to sonehow deal with that by
assi gni ng uni que nanes for these vari abl es.

The characteristic of static storage, of course, is that the data

survives a procedure call and return. When the procedure is
called again, the data will still be there. That can be an
advantage in some applications. In the FORTRAN days we used to

do tricks like initialize a flag, so that you could tell when you
were entering a procedure for the first tinme and could do any
one-time initialization that needed to be done.

O course, the sane "feature" is also what nmkes recursion
i mpossible with static storage. Any new call to a procedure will
overwite the data already in the | ocal variables.

The alternative is dynanm c storage, in which storage is allocated

on the stack just as for passed paranmeters. W also have the
mechani snms  already for doing this. |In fact, the same routines
that deal with passed (by value) paraneters on the stack can
easily deal wth local variables as well ... the code to be

generated is the sane. The purpose of the offset in the 68000
LINK instruction is there just for that reason: we can use it to
adj ust the stack pointer to make room for |ocals. Dynami c



storage, of course, inherently supports recursion

VWen | first began planning TINY, | nust admt to being
prejudiced in favor of static storage. That's sinply because
those old FORTRAN programs were pretty darned efficient ... the
early FORTRAN conpilers produced a quality of code that's stil
rarely matched by nodern conpil ers. Even today, a given program
written in FORTRAN is likely to outperform the sane program
written in C or Pascal, sonetimes by w de nargins. (Whew Am |
goi ng to hear about THAT statenent!)

I've always supposed that the reason had to do with the two main
di fferences between FORTRAN inplenentations and the others:

static storage and pass-by-reference. I  know that dynamc
storage supports recursion, but it's always seemed to nme a bit
peculiar to be willing to accept slower code in the 95% of cases

that don't need recursion, just to get that feature when you need
it. The idea is that, with static storage, you can use absolute
addressing rather than indirect addressing, which should result
in faster code.

More recently, though, several folks have pointed out to nme that
there really is no performance penalty associated w th dynanc
storage. Wth the 68000, for exanple, you shouldn't use absol ute
addressing anyway ... nost operating systens require position
i ndependent code. And the 68000 instruction

MOVE 8( A6), DO
has exactly the same timng as
MOVE X( PC), DO.

So |I'm convinced, now, that there is no good reason NOT to use
dynam c storage

Since this use of local variables fits so well into the schenme of
pass-by-value paraneters, we'll use t hat version of the
translator to illustrate it. (I _SURE_ hope you kept a copy!)

The general idea is to keep track of how many |ocal paraneters
there are. Then we use the integer in the LINK instruction to
adj ust the stack pointer dowmward to make room for them For mal
paranmeters are addressed as positive offsets from the frame
poi nter, and locals as negative offsets. Wth a Ilittle bit of
wor k, the same procedures we've already created can take care of
t he whol e t hi ng.

Let's start by creating a new variable, Base:

var Base: integer;

We'll use this variable, instead of NumParans, to conpute stack
of fsets. That means changing the two references to NunmParans in
LoadParam and St or ePar am



{ Load a Paraneter to the Primary Register }

procedure LoadParam(N:. integer);
var Offset: integer;
begin
Offset :=8 + 2 * (Base - N);
Emit(' MOVE ")
WiteLn(Offset, '(A6),D0");
end;

{ Store a Paraneter fromthe Prinmary Register }

procedure StoreParan(N: integer);

var Offset: integer;

begi n
Offset :=8 + 2 * (Base - N);
Em t (' MOVE DO, "');
WiteLn(Ofset, '(A6)");

end;
R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
The idea is that the value of Base will be frozen after we have

processed the fornmal paranmeters, and won't increase further as
the new, local variables, are inserted in the synbol table. This
is taken care of at the end of Formal List:

{ Process the Formal Parameter List of a Procedure }

procedure Fornal List;
begi n
Match(' (");
if Look <> ")"'" then begin
For mal Par am

while Look ="'," do begin
Match(',"');
For mal Par am
end;
end;
Match(')");
Fi n;
Base : = NunPar ans;
NumPar ans : = NunParans + 4;
end;
{ }

(W add four words to make al |l owances for the return address and
old franme pointer, which end up between the fornmal paranmeters and
the locals.)



About all we need to do next is to install the semantics for
declaring local variables into the parser. The routines are very
simlar to Decl and TopDecl s:

{ Parse and Translate a Local Data Declaration }

procedure LocDecl
var Nane: char;
begi n
Mat ch('v');
AddPar am( Get Nane) ;
Fi n;
end;

{ Parse and Translate Local Declarations }

function LocDecls: integer
var n: integer;

begin
n:=0;
while Look = 'v' do begin
LocDecl
inc(n);
end;
LocDecls := n;
end;
{o o }

Note that LocDecls is a FUNCTION, returning the nunber of |ocals
to DoProc.

Next, we nodify DoProc to use this information:

{ Parse and Translate a Procedure Declaration }

procedure DoProc;
var N:. char;
k: integer;
begi n
Mat ch(' p');
N : = Cet Nane;
if InTabl e(N) then Duplicate(N)
ST[N] :="p";
For mal Li st ;
k := LocDecl s;
ProcProl og(N, k);
Begi nBl ock
Pr ocEpi | og;



Cl ear Par ans;

end;
(o }
(I"ve nmade a couple of changes here that weren't really
necessary. Aside fromrearranging things a bit, | noved the cal
to Fin to wthin FornmalList, and placed one inside LocDecls as
wel | . Don't forget to put one at the end of FormalList, so that

we' re together here.)

Note the change in the call to ProcProlog. The new argument is
the nunber of WORDS (not bytes) to allocate space for. Here's
the new version of ProcProl og:

{ Wite the Prolog for a Procedure }

procedure ProcProl og(N: char; k: integer);
begi n

Post Label (N);

Em t (' LINK A6, #');

WiteLn(-2 * k)

That should do it. Add these changes and see how t hey work

CONCLUSI ON

At this point you know how to conpile procedure declarations and
procedure calls, wth paraneters passed by reference and by
value. You can also handle |ocal variables. As you can see, the
hard part is not in providing the nechanisns, but in deciding
just which nechanisns to use. Once we make these decisions, the
code to translate the constructs is really not that difficult.

| didn't show you how to deal wth the conbination of |oca
paraneters and pass-by-reference paraneters, but that's a

straightforward extension to what vyou've already seen. It just
gets a little nmore nmessy, that's all, since we need to support
bot h nechani sns instead of just one at a tine. I'd prefer to

save that one wuntil after we've dealt wth ways to handle
different variable types.

That will be the next installnment, which will be coming soon to a
Forum near you. See you then
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In the last installnment (Part Xl1l: PROCEDURES) | nmentioned that
in that part and this one, we would cover the two features that
tend to separate the toy |language froma real, usable one. W
covered procedure calls in that installment. Mny of you have
been waiting patiently, since August '89, for me to drop the
ot her shoe. Well, here it is.

In this installment, we'll talk about how to deal with different
data types. As | did in the last segment, | will NOT incorporate
these features directly into the TINY conpiler at this tine.
Instead, |I'Il be using the sane approach that has worked so wel

for us in the past: using only fragments of the parser and
si ngl e-character tokens. As usual, this allows us to get

directly to the heart of +the mtter wthout having to wade
through a |l ot of wunnecessary code. Since the major problens in
dealing with nmultiple types occur in the arithnetic operations,
that's where we'll concentrate our focus.

A few words of warning: First, there are sone types that | will

NOT be covering in this installment. Here we wll ONLY be
tal ki ng about the sinple, predefined types. W won't even dea
with arrays, pointers or strings in this installnment; 1'll be

covering themin the next few

Second, we also will not discuss user-defined types. That wil |
not come until nmuch later, for the sinple reason that | stil

haven't convinced nyself that user-defined types belong in a
| anguage naned KISS. In later installnents, | do intend to cover
at | east the general concepts of wuser-defined types, records,
etc., just so that the series wll be conmplete. But whether or
not they will be included as part of KISS is still an open issue.

I am open to conments or suggestions on this question

Finally, | should warn you: what we are about to do CAN add
considerable extra conplication to both the parser and the
generated code. Handling variables of different types is
strai ghtforward enough. The conplexity cones in when you add
rul es about conversion between types. In general, you can make
the compiler as sinple or as conplex as you choose to meke it,
dependi ng upon the way vyou define the type-conversion rules.
Even if you decide not to allow ANY type conversions (as in Ada,
for exanple) the problemis still there, and is built into the
mat hematics. Wien you nultiply two short nunbers, for exanple,
you can get a long result.

|'ve approached this problemvery carefully, in an attenpt to
Keep It Sinple. But we can't avoid the conplexity entirely. As
has so often has happened, we end up having to trade code quality
agai nst conplexity, and as wusual | wll tend to opt for the
si npl est approach.

VHAT' S COM NG NEXT?

Before diving into the tutorial, | think you'd |ike to know where
we are going from here ... especially since it's been so |ong
since the last installnent.



I have not been idle in the nmeantine. VWhat |'ve been doing is
reorganizing the conpiler itself into Turbo Units. One of the
problems |'ve encountered is that as we've covered new areas and
t hereby added features to the TINY conpiler, it's been getting
Il onger and longer. | realized a couple of installnments back that
this was causing trouble, and that's why |'ve gone back to using
only conpiler fragnents for the Ilast installnment and this one.
The problemis that it just seens dunb to have to reproduce the
code for, say, processing boolean exclusive OR's, when the
subj ect of the discussion is paraneter passing.

The obvious way to have our cake and eat it, too, is to break up
the conpiler into separately conpilable nodules, and of course
the Turbo Unit is an ideal vehicle for doing this. This allows
us to hide sone fairly conplex code (such as the full arithnetic
and bool ean expression parsing) into a single unit, and just pul
it in whenever it's needed. |In that way, the only code |I'll have
to reproduce in these installnents will be the code that actually
relates to the issue under discussion

I"ve also been toying with Turbo 5.5, which of course includes
the Borland object-oriented extensions to Pascal. I haven't
deci ded whether to make use of these features, for two reasons.
First of all, many of you who have been following this series may
still not have 5.5, and | certainly don't want to force anyone to
have to go out and buy a new conpiler just to conplete the
series. Secondly, |I'mnot convinced that the O O extensions have
all that nmuch value for this application. W've been having sone
di scussi ons about that in ConmpuServe's CLM forum and so far
we've not found any conpelling reason to use OO constructs.
This is another of those areas where |I could use some feedback
fromyou readers. Anyone want to vote for Turbo 5.5 and O O?

In any case, after the next fewinstallnments in the series, the
plan is to wupload to you a conplete set of Units, and conplete

functioning conpilers as well. The plan, in fact, is to have
THREE conpilers: One for a single-character version of TINY (to
use for our experinments), one for TINY and one for KISS. |'ve

pretty nmuch isolated the differences between TINY and KISS, which
are these:

o TINY will support only two data types: The character and the
16-bit integer. I may also try to do sonething wth
strings, since wthout them a compiler would be pretty
usel ess. KISS will support all the wusual sinple types,

i ncluding arrays and even floating point.

o TINY will only have two control constructs, the IF and the
WHILE. KISS will support a very rich set of constructs,
i ncl udi ng one we haven't discussed here before ... the CASE

0 KISS will support separately conpil abl e nodul es.
One caveat: Since | still don't know nuch about 80x86 assenbl er

| anguage, all these conpiler nodules wll still be witten to
support 68000 code. However, for the programs | plan to upload,



all the code generation has been carefully encapsulated into a
single unit, so that any enterprising student should be able to
easily retarget to any other processor. This task is "left as an
exercise for the student.” "1l make an offer right here and
now. For the person who provides us the first robust retarget to
80x86, | will be happy to discuss shared copyrights and royalties
fromthe book that's upcom ng.

But enough talk. Let's get on with the study of types. As |
said earlier, we'll do this one as we did in the |ast

installment: by performng experiments using single-character
t okens.

THE SYMBOL TABLE

It should be apparent that, if we're going to deal with variables
of different types, we're going to need soneplace to record what
those types are. The obvious vehicle for that is the synbo

table, and we've already wused it that way to distinguish, for
exanpl e, between 1local and global variables, and bet ween
vari abl es and procedures.

The synbol table structure for single-character tokens is
particularly sinple, and we've used it several tinmes before. To
deal with it, we'll steal sone procedures that we've used before.

First, we need to declare the synbol table itself:

{ Variable Declarations }
var Look: char; { Lookahead Character }

ST: Array['A.."Z"] of char; { *** ADD THI S LINE ***}

Next, we need to mamke sure it's initialized as part of procedure
Init:

{ Initialize }

procedure Init;

var i: char;
begi n
for i :="A to 'Z do
ST[i] :="'?";
CGet Char;
end;
{o }

We don't really need the next procedure, but it will be hel pfu



for debugging. All it does is to dunp the contents of the synmbo
t abl e:

{ Dunp the Synmbol Table }

procedure DunpTabl e;

var i: char;
begi n
for i :="A to 'Z do
WiteLn(i, ' ', ST[i]);
end;
{ }

It really doesn't matter nuch where you put this procedure ... |
plan to cluster all the synbol table routines together, so | put
mne just after the error reporting procedures.

If you're the cautious type (as | am, you mght want to begin
with a test programthat does nothing but initializes, then dunps
the table. Just to be sure that we're all on the same wavel ength
here, I'mreproducing the entire program bel ow, conplete with the
new procedures. Note that this version includes support for
whi te space:

(o }
program Types;
LR EEEEEEEEEE, }
{ Constant Declarations }
const TAB = 7|

CR ="M

LF = ~J;
R }

{ Variable Declarations }
var Look: char; { Lookahead Character }

ST: Array['A.."Z"] of char;

{ Read New Character From | nput Stream}

procedure Get Char;
begin

Read( Look) ;
end;

{ Report an Error }



procedure Error(s: string);
begi n

WitelLn;

WiteLn(~G 'Error: ', s, ".");
end;

{ Report Error and Halt }

procedure Abort(s: string);
begi n

Error(s);

Hal t ;
end;

{ Report What Was Expected }
procedure Expected(s: string);
begi n

Abort (s + ' Expected');
end;

{ Dunp the Symbol Table }

procedure DunpTabl e;

var i: char;
begin
for i :="A to 'Z do
WiteLn(i, ' ', ST[i]);
end;
{ ______________________________________________________________

{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begi n

| sAl pha : = UpCase(c) in ['A.."Z];
end;

{ Recognize a Decimal Digit }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin['0.."9];
end;



{ Recogni ze an Al phaNuneric Character }

function IsAl Num(c: char): bool ean;
begi n

I sAl Num : = I sAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addop }

function |IsAddop(c: char): bool ean;
begi n

IsAddop :=cin ["+, "-"];

end;

{ Recognize a Mul op }

function IsMiulop(c: char): bool ean;
begi n

IsMulop :=cin ["*", "I'];

end;

{ Recogni ze a Boolean Orop }

function IsOrop(c: char): bool ean;
begi n

IsCop :=cin["|", "~]T;

end;

{ Recogni ze a Relop }

function IsRelop(c: char): bool ean;
begi n

IsRelop :=c in ['=, "#,6 "<, '">];
end;

{ Recogni ze Wite Space }
function IsWiite(c: char): bool ean;
begi n

IsWhite :=c in [' ', TAB];
end;

{ Skip Over Leading Wite Space }

procedure Ski pWhite;



begi n
whil e | sWite(Look) do
Get Char ;
end;

{ Skip Over an End-of-Line }

procedure Fin;
begi n
if Look = CR then begin
Get Char ;
if Look = LF then
Get Char
end;
end;

{ Match a Specific |Input Character }

procedure Match(x: char);

begin
if Look = x then Get Char
el se Expected('''"'" + x + "'""");
Ski pWhi t e;
end;
{ ______________________________________________________________

{ Get an Identifier }

function Get Nane: char;

begi n
if not IsAlpha(Look) then Expected(' Nane');
Get Nane : = UpCase(Look);
Get Char;

Ski pWhi t e;

end;

{ Get a Nunber }

function Get Num char;

begi n
if not IsDigit(Look) then Expected('Integer');
Get Num : = Look;
Get Char ;

Ski pWhi t e;

end;

{ Qutput a String with Tab }



procedure Emt(s: string);
begi n

Wite(TAB, s);

end;

{ Qutput a String with Tab and CRLF }

procedure Em tLn(s: string);
begi n

Emit(s);

WitelLn;
end;

{ Initialize }

procedure Init;
var i: char;
begi n
for i :="A to 'Z do
ST[i] :="?";
CGet Char;
Ski pWhi t e;
end;

{ Main Program}

begin
Init;
DunpTabl e;
end.

OK, run this program You should get a (very fast) printout of
all the letters of the alphabet (potential identifiers), each
followed by a question mark. Not very exciting, but it's a
start.

Of course, in general we only want to see the types of the
vari abl es that have been defined. W can eliminate the others by
nodi fyi ng DunpTable with an IF test. Change the |oop to read:

for i :="A to 'Z do
if ST[i] <> "'?' then
WiteLn(i, ' ', ST[i]);

Now, run the program again. Wat did you get?

Well, that's even nore boring than before! There was no output



at all, since at this point NONE of the names have been decl ared.
W can spice things up a bit by inserting sonme statenents
declaring sone entries in the main program Try these:

ST['A] :="a";
ST['P'] :="b'";
ST['X] :="¢c",;

This time, when you run the program you should get an output
showi ng that the synbol table is working right.

ADDI NG ENTRI ES

Of course, witing to the table directly is pretty poor practice,
and not one that will help us nmuch Ilater. VWhat we need is a
procedure to add entries to the table. At the same tinme, we know
that we're going to need to test the table, to make sure that we
aren't redeclaring a variable that's already in use (easy to do
with only 26 choices!). To handle all this, enter the follow ng
new procedur es:

{ Report Type of a Variable }

function TypeO (N: char): char
begi n

TypeOf := ST[N];

end;

{ Report if a Variable is in the Table }

function InTable(N: char): bool ean
begi n

InTable := TypeOF(N) <> '?";
end;

{ Check for a Duplicate Variable Nane }

procedure CheckDup(N: char);

begi n

if InTabl e(N) then Abort('Duplicate Nane ' + N)
end;

{
{ Add Entry to Table }



procedure AddEntry(N, T:. char);

begi n
CheckDup(N);
ST[N :=T;
end;
{ }

Now change the three lines in the nain programto read:

AddEntry(' A, 'a');
AddEntry(' P, 'b');
AddEntry(' X', 'c')

and run the programagain. Didit work? Then we have the synbol
tabl e routines needed to support our work on types. |In the next
section, we'll actually begin to use them

ALLOCATI NG STORAGE

In other progranms |like this one, including the TINY conpiler
itself, we have already addressed the issue of declaring globa

vari abl es, and the code generated for them Let's build a
vestigial version of a "conpiler" here, whose only function is to
allow us declare vari abl es. Remenber, the syntax for a
decl aration is:

<data decl> ::= VAR <identifier>

Again, we can |lift a lot of the code from previous progranms. The

following are stripped-down versions of those procedures. They
are greatly sinplified since | have elimnated niceties |ike
variable lists and initializers. In procedure Alloc, note that

the newcall to AddEntry will also take care of checking for
duplicate decl arations:

{ Allocate Storage for a Variable }

procedure Alloc(N: char);
begi n

AddEntry(N, 'v');

WiteLn(N, ':', TAB, 'DC 0');
end;

{ Parse and Translate a Data Decl aration }

procedure Decl
var Nane: char;



begi n

Mat ch('v');

Al | oc( Get Nare) ;
end;

{ Parse and Transl ate d obal Decl arations }

procedure TopDecl s;

begi n
while Look <> '.' do begin
case Look of
"v': Decl
el se Abort (' Unrecogni zed Keyword ' + Look);
end;
Fin;
end;
end;
{o }

Now, in the main program add a call to TopDecls and run the
program Try allocating a few variables, and note the resulting
code generated. This is old stuff for you, so the results should
|l ook famliar. Note fromthe code for TopDecls that the program
is ended by a terminating period.

While you're at it, try declaring two variables with the sane
name, and verify that the parser catches the error

DECLARI NG TYPES

Al l ocating storage of different sizes is as easy as nodifying
procedure TopDecls to recogni ze nore than one keyword. There are
a nunmber of decisions to be made here, in terms of what the
syntax should be, etc., but for nowl'm going to duck all the
i ssues and sinply declare by executive fiat that our syntax will
be:

<data decl > ::= <typenanme> <identifier>

wher e:

<typenane> ::= BYTE | WORD | LONG

(By an amazing coincidence, the first letters of these nanes
happen to be the same as the 68000 assenbly code Ilength
specifications, so this choice saves us a little work.)

We can create the code to take care of these declarations wth
only slight nodifications. 1In the routines below, note that |'ve



separated the code generation parts of Alloc from the logic
parts. This is in keeping wth our desire to encapsul ate the
machi ne- dependent part of the conpiler.

{ Generate Code for Allocation of a Variable }

procedure AllocVar(N, T:. char);

begi n

WiteLn(N, ':', TAB, 'DC.'", T, ' 0');
end;

{ Allocate Storage for a Variable }

procedure Alloc(N, T: char);
begi n

AddEntry(N, T);

Al l ocVar (N, T);
end;

{ Parse and Translate a Data Declaration }

procedure Decl
var Typ: char;
begi n
Typ : = Get Nane;
Al |l oc( Get Nanme, Typ);
end;

{ Parse and Transl ate G obal Decl arations }

procedure TopDecls;

begi n
while Look <> '.' do begin
case Look of
b, 'w, '"I': Decl;
el se Abort (' Unrecogni zed Keyword ' + Look);
end;
Fi n;
end;
end;
(o }
Make the changes shown to these procedures, and give the thing a
try. Use the single characters 'b', 'w, and 'l"' for the
keywords (they nust be | ower case, for now). You will see that
in each case, we are allocating the proper storage size. Not e

fromthe dunped synbol table that the sizes are also recorded for
| ater use. What later use? Well, that's the subject of the rest



of this install ment.

ASSI GNMVENTS

Now t hat we can declare variables of different sizes, it stands
to reason that we ought to be able to do sonething wth them
For our first trick, let's just try loading theminto our working

register, DO. It makes sense to use the same idea we used for
Al'loc; that is, nake a | oad procedure that can | oad nore than one
si ze. W also want to continue to encapsulate the machine-

dependent stuff. The |oad procedure |ooks l|ike this:

{ Load a Variable to Primary Register }

procedure LoadVar(Name, Typ: char);

begi n

Move(Typ, Nanme + '(PC)', 'DO0');
end;
e PR }
On the 68000, at least, it happens that many instructions turn
out to be MOVE's. It turns out to be useful to create a separate
code generator just for these instructions, and then call it as
needed:
R EE e EEE TR }

{ Generate a Move Instruction }

procedure Move(Size: char; Source, Dest: String);
begi n

EmtLn(' MOVE.' + Size + ' ' + Source + ',' + Dest);
end;

Note that these two routines are strictly code generators; they
have no error-checking or other logic. To conplete the picture,
we need one nore |ayer of software that provides these functions.

First of all, we need to make sure that the type we are dealing
with is a |oadable type. This sounds like a job for another
recogni zer:

{ Recogni ze a Legal Variable Type }

function |IsVarType(c: char): bool ean
begin

IsvVarType :=c in ['B, "W, 'L']J];
end;



Next, it would be nice to have a routine that will fetch the type
of a variable fromthe synbol table, while checking it to nmake
sure it's valid:

{ Get a Variable Type fromthe Synbol Table }

function VarType(Nane: char): char
var Typ: char;
begi n
Typ := TypeO (Nane) ;
if not IsVarType(Typ) then Abort('ldentifier ' + Nane +
' is not a variable');
Var Type : = Typ;
end;

Armed with these tools, a procedure to cause a variable to be
| oaded becones trivial

{ Load a Variable to the Primary Regi ster }

procedure Load(Nane: char);
begi n
LoadVar ( Name, Var Type(Nane));

end;

R R T TR PR PP LR P PR PEE LT T EEPEEETEP PR }
(NOTE to the concerned: | know, | know, all this is all very
inefficient. |In a production program we probably would take

steps to avoid such deep nesting of procedure calls. Don't worry
about it. This is an EXERCI SE, renenber? |It's nore inmportant to
get it right and wunderstand it, than it is to make it get the
wrong answer, quickly. If you get your conpiler conpleted and
find that you're unhappy wth the speed, feel free to cone back
and hack the code to speed it up!)

It would be a good idea to test the programat this point. Since
we don't have a procedure for dealing wth assignnments yet,
just added the I|ines:

Load(' A );
Load('B');
Load(' C);
Load(' X');

to the main program Thus, after the declaration section is
conplete, they will be executed to generate code for the | oads.



You can play around with this, and try different conbinations of
declarations to see how the errors are handl ed.

I"msure you won't be surprised to learn that storing variables
is alot like loading them The necessary procedures are shown
next :

{ Store Primary to Variable }

procedure StoreVar(Nanme, Typ: char);
begi n
EmtLn('LEA ' + Nanme + '(PC), AQ");
Mve(Typ, 'DO", ' (A0)");
end;

{ Store a Variable fromthe Primary Register }

procedure Store(Name: char);
begi n

St or eVar (Nane, Var Type( Nane));
end;

You can test this one the same way as the | oads.

Now, of course, it's a RATHER small step to use these to handle
assignment statenents. What we'll do is to create a special
ver si on of procedure Block that supports only assi gnnment
statenments, and also a special version of Expression that only
supports single variables as | egal expressions. Here they are:

{ Parse and Transl ate an Expression }

procedur e Expression;
var Nane: char;
begi n

Load( Get Nane) ;
end;

{ Parse and Translate an Assignment Statement }

procedure Assignnent;
var Nane: char;

begi n
Name : = Get Nane;
Mat ch(' =");

Expr essi on;
St or e( Nare) ;



{ Parse and Translate a Block of Statenents }

procedure Bl ock;
begi n
while Look <> '.' do begin
Assi gnment ;
Fi n;
end;
end;

(I't's worth noting that, if anything, the new procedures that
permt us to manipulate types are, if anything, even sinpler and
cl eaner than what we've seen before. This is nostly thanks to
our efforts to encapsul ate the code generator procedures.)

There is one small, nagging problem Before, we used the Pascal
term nating period to get us out of procedure TopDecls. This is
now the wong character ... it's wused to termnate Block. 1In

previ ous prograns, we've used the BEG N synbol (abbreviated 'b")
to get us out. But that is now used as a type synbol.

The sol ution, while sonewhat of a kludge, is easy enough. we' |
use an UPPER CASE 'B' to stand for the BEG N. So change the
character in the WHILE [ oop within TopDecls, from'." to 'B, and
everything will be fine.

Now, we can conplete the task by changing the main programto
read:

{ Main Program}

begi n
Init;
TopDecl s;
Mat ch(' B');
Fi n;
Bl ock;
DunpTabl e;

(Note that |I've had to sprinkle a fewcalls to Fin around to get
us out of Newine troubles.)

OK, run this program Try the input:

ba { byte a} *** DON'T TYPE THE COMMENTSI ! ***



wh { word b }
I c { long c }
B { begin }
a=a
a=b
a=c
b=a
b=b
b=c
c=a
c=b
c=c

For each declaration, you should get code generated that
al l ocates storage. For each assignment, you should get code that
| oads a variable of the correct size, and stores one, also of the
correct size.

There's only one small little problem The generated code is
VWRONG

Look at the code for a=c above. The code is:

MOVE. L C(PC), DO
LEA A(PC) , AO
MOVE.B DO, (AO)

This code is correct. It will cause the |ower eight bits of Cto
be stored into A, which is a reasonable behavior. I1t's about al
we can expect to happen.

But now, | ook at the opposite case. For c=a, the code generated
is:

MOVE. B A( PC) , DO
LEA C(PC), A0
MOVE. L DO, ( AO)

This is NOT correct. It will cause the byte variable A to be
stored into the lower eight bits of DO. According to the rules
for the 68000 processor, the upper 24 bits are unchanged. This
means that when we store the entire 32 bits into C, whatever
garbage that was in those high bits will also get stored. Not
good.

So what we have run into here, early on, is the issue of TYPE
CONVERSI ON, or COERCI ON

Before we do anything with variables of different types, even if
it's just to copy them we have to face up to the issue. It is
not the nmost easy part of a conpiler. Mst of the bugs | have



seen in production conpilers have had to do with errors in type
conversion for sone obscure conbination of arguments. As usual
there is a tradeoff between conpiler conplexity and the potentia
quality of the generated code, and as usual, we will take the
path that keeps the conpiler sinple. | think you'll find that,
with this approach, we can keep the potential conplexity in check
rather nicely.

THE COMRD S WAY OUT

Before we get into the details (and potential complexity) of type
conversion, 1'd like you to see that there is one super-sinple
way to solve the problem sinply pronote every variable to a |ong
i nteger when we load it!

This takes the addition of only one line to Loadvar, although if
we are not going to COVPLETELY ignore efficiency, it should be
guarded by an IF test. Here is the nodified version:

{ Load a Variable to Primary Register }

procedure LoadVar(Nanme, Typ: char);
begi n
if Typ <> 'L' then
EmtLn('CLR. L DO");
Move(Typ, Name + ' (PC)', "D0');
end;

(Note that StoreVar needs no sinlar change.)

If you run sonme tests with this new version, you will find that
everything works correctly now, albeit sometinmes inefficiently.
For exanple, consider the case a=b (for the same declarations
shown above). Now the generated code turns out to be:

CLR. L DO
MOVE. W B( PC) , DO
LEA A(PC), AO
MOVE. B DO, ( AO)

In this case, the CLR turns out not to be necessary, since the
result is going into a byte-sized variable. Wth a little bit of
work, we can do better. Still, this is not bad, and it typica
of the kinds of inefficiencies that we've seen before in sinple-
m nded conpil ers.

| should point out that, by setting the high bits to zero, we are
in effect treating the nunmbers as UNSIGNED i ntegers. |f we want
to treat them as signed ones instead (the nmore Ilikely case) we
should do a sign extension after the |oad, instead of a clear



before it. Just to tie this part of the discussion up with a
nice, red ribbon, let's change LoadVar as shown bel ow.

{ Load a Variable to Primary Register }

procedure LoadVar(Nanme, Typ: char);
begi n
if Typ = 'B then
EmtLn('CLR L D0");
Move(Typ, Name + ' (PC)', "D0');
if Typ ='W then
EmitLn(' EXT.L DO");

Wth this version, a byte is treated as unsigned (as in Pasca
and C), while a word is treated as signed.

A MORE REASONABLE SOLUTI ON

As we've seen, pronpting every variable to long while it's in
menory solves the problem but it can hardly be called efficient,
and probably wouldn't be acceptable even for those of us who
cl ai m be unconcerned about efficiency. It wll nmean that all
arithmetic operations will be done to 32-bit accuracy, which wll
DOUBLE the run tine for nost operations, and make it even worse
for multiplication and division. For those operations, we would
need to call subroutines to do them even if the data were byte
or word types. The whole thing is sort of a cop-out, too, since
it ducks all the real issues.

K, so that solution's no good. |Is there still a relatively easy
way to get data conversion? Can we still Keep It Sinple?

Yes, i ndeed. All we have to do is to make the conversion at the
other end ... that is, we convert on the way _OUT_, when the data

is stored, rather than on the way in.

But, renenber, the storage part of the assignment is pretty nuch
i ndependent of the data |oad, which is taken care of by procedure
Expr essi on. In general the expression may be arbitrarily
conpl ex, so how can procedure Assignnment know what type of data
is left in register DO?

Again, the answer is sinple: We' Il just _ASK_ procedure
Expression! The answer can be returned as a function val ue.

Al of this requires several procedures to be nodified, but the
nods, |ike the nethod, are quite sinple. First of all, since we
aren't requiring LoadVar to do all the work of conversion, let's
go back to the sinple version



{ Load a Variable to Primary Register }
procedure LoadVar(Nanme, Typ: char);
begi n

Move( Typ, Name + '(PC)', 'D0");
end;

Next, let's add a new procedure that will convert from one type
to anot her:

{ Convert a Data Item from One Type to Another }

procedure Convert(Source, Dest: char);

begi n
if Source <> Dest then begin
if Source = 'B' then
Em tLn(' AND. W #$FF, DO' ) ;
if Dest = 'L"' then
EmtLn(' EXT.L DO');
end;
end;
{o }

Next, we need to do the logic required to load and store a
vari abl e of any type. Here are the routines for that:

{ Load a Variable to the Primary Regi ster }

function Load(Nane: char): char;
var Typ : char;
begi n
Typ := VarType(Nane);
LoadVar ( Name, Typ);
Load := Typ;
end;

{ Store a Variable fromthe Primary Register }

procedure Store(Nanme, T1: char);
var T2: char;
begi n
T2 : = Var Type(Nane);
Convert(Tl, T2);
St oreVar (Nane, T2);
end;



Note that Load is a function, which not only enmits the code for a
| oad, but also returns the variable type. 1In this way, we always
know what type of data we are dealing wth. Wen we execute a
Store, we pass it the current type of the variable in DO. Since
Store also knows the type of the destination variable, it can
convert as necessary.

Armed with all these new routines, the inplementation of our
rudi ment ary assi gnment statement is essentially trivial
Procedure Expression now becomes a function, which returns its
type to procedure Assignment:

{ Parse and Transl ate an Expression }

functi on Expression: char
begi n

Expressi on : = Load( Get Nane) ;
end;

{ Parse and Translate an Assi gnnent Statenment }

procedure Assignnment;
var Nane: char;

begi n
Name : = Get Nane;
Match(' =");
St or e( Narme, Expression);
end;
{o }

Again, note how incredibly sinple these two routines are. W've
encapsulated all the type logic into Load and Store, and the
trick of passing the type around nakes the rest of the work

extremely easy. O course, all of this is for our special
trivial case of Expression. Naturally, for the general case it
will have to get nore conplex. But you're 1looking now at the

FI NAL version of procedure Assignnent!

Al'l this seens like a very sinple and clean solution, and it is
i ndeed. Conpile this programand run the same test cases as
bef ore. You will see that all types of data are converted
properly, and there are fewif any wasted instructions. Only the
byte-to-1ong conversion uses two instructions where one would do,
and we could easily nodify Convert to handle this case, too.

Al t hough we haven't considered unsigned variables in this case, |
think you can see that we could easily fix up procedure Convert
to deal with these types as well. This is "left as an exercise
for the student.”



LI TERAL ARGUMENTS

Shar p-eyed readers m ght have noticed, though, that we don't even
have a proper formof a sinple factor yet, because we don't allow

for loading literal constants, only variables. Let's fix that
now.

To begin with, we'll need a GetNum function. W've seen severa

versions of this, some returning only a single character, some a
string, and some an integer. The one needed here will return a
Longlnt, so that it can handle anything we throw at it. Not e
that no type information is returned here: GetNum doesn't concern
itself with how the nunber will be used:

o o }

{ Get a Nunber }

function GetNum Longlnt;
var Val: Longlnt;

begi n
if not IsDigit(Look) then Expected('Integer');
Val := 0;
while IsDigit(Look) do begin
Val := 10 * Val + Ord(Look) - Od('0");
Get Char;
end;
Get Num : = Val ;
Ski pWhi t e;
end;
{o }
Now, when dealing with literal data, we have one little snall

probl em Wth variables, we know what type things should be
because they've been declared to be that type. W have no such
type information for literals. When the programer says, "-1,"
does that mean a byte, word, or longword version? We have no
clue. The obvious thing to do would be to wuse the |argest type
possible, i.e. a | ongword. But that's a bad idea, because when
we get to nore conplex expressions, we'll find that it will cause
every expression involving literals to be pronoted to |ong, as
wel | .

A better approach is to select a type based upon the value of the
literal, as shown next:

{ Load a Constant to the Primary Register }

function LoadNum(N: Longlnt): char
var Typ : char;
begin
if abs(N) <= 127 then
Typ := "B
else if abs(N) <= 32767 then



Typ ='W
else Typ :='L";
LoadConst (N, Typ);
LoadNum : = Typ;

end;
{m }
(I know, | know, the nunber base isn't really symmetric. You can

store -128 in a single byte, and -32768 in a word. But that's
easily fixed, and not worth the tinme or the added conplexity to
fool with it here. 1It's the thought that counts.)

Note that LoadNum calls a new version of the code generator
routi ne LoadConst, which has an added argument to define the

type:

{ Load a Constant to the Primary Register }

procedure LoadConst(N: Longlnt; Typ: char);
var tenp:string;

begin

Str(N, temp);

Move(Typ, '# + tenp, 'D0");
end;
e R R P EEE }

Now we can nodify procedure Expression to acconodate the two
possi bl e ki nds of factors:

{ Parse and Transl ate an Expression }

functi on Expression: char
begi n
i f 1sAl pha(Look) then
Expression : = Load(Get Nane)
el se
Expression : = LoadNum( Get Num ;

(Wow, that sure didn't hurt too bad! Just a few extra lines do
the job.)

OK, <conpile this code into your program and give it a try.

You'll see that it now works for either variables or constants as
val i d expressions.

ADDI TI VE EXPRESSI ONS



If you' ve been following this series fromthe beginning, |'msure
you know what's coming next: W'Il expand the form for an
expression to handl e first additive expr essi ons, t hen
mul tiplicative, then general expressions wi th parentheses.

The nice part is that we already have a pattern for dealing with
these nore conplex expressions. All we have to do is to nmke
sure that all the procedures called by Expression (Term Factor
etc.) always return a type identifier. If we do that, the
program structure gets changed hardly at all

The first step is easy: W can renane our existing function
Expression to Term as we've done so many tines before, and
create the new version of Expression:

{ Parse and Transl ate an Expression }

functi on Expression: char
var Typ: char;
begi n
i f 1sAddop(Look) then
Typ : = Unop
el se
Typ := Term
whi | e | sAddop(Look) do begin

Push(Typ);
case Look of
"+ Typ = AdA(Typ);
"-': Typ := Subtract(Typ);
end;
end;
Expression : = Typ;
end;
{o }
Note in this routine how each procedure call has beconme a
function call, and how the |local variable Typ gets updated at
each pass.

Note also the new call to a function Unop, which lets us dea
with a leading unary mnus. This change is not necessary ... we
could still wuse a formnore |ike what we've done before. |[|'ve
chosen to introduce UnOp as a separate routine because it wll
make it easier, later, to produce sonewhat better code than we've

been doi ng. In other words, |I'm |l ooking ahead to optim zation
i ssues.
For this wversion, though, we'll retain the sane dunb ol d code,

whi ch nakes the new routine trivial

{ Process a Termwi th Leadi ng Unary Operator }



function Unop: char;
begi n

Cl ear;

Unop := "W;
end;

Procedure Push 1is a code-generator routine, and now has a type
argument :

{ Push Primary onto Stack }

procedure Push(Size: char);

begi n

Move(Size, 'DO', '-(SP)');
end;
R P REE }
Now, let's take a |look at functions Add and Subtract. In the
ol der versions of these routines, we |let themcall code generator
routi nes PopAdd and PopSub. We'll continue to do that, which

makes the functions thensel ves extrenely sinple:

{ Recogni ze and Transl ate an Add }

function Add(T1l: char): char

begin

Mat ch(' +');

Add : = PopAdd(T1, Term);
end;
O AR R LR EEEEEE T }

{ Recogni ze and Transl ate a Subtract }

function Subtract(T1: char): char
begi n

Match('-");

Subtract := PopSub(Tl, Tern);
end;

The sinmplicity is deceptive, though, because what we've done is
to defer all the logic to PopAdd and PopSub, which are no |onger
just code generation routines. They must al so now take care of
the type conversions required.

And just what conversion is that? Sinple: Both argunents nust be
of the sanme size, and the result is also of that size. The
smal l er of the two argunments nust be "pronoted” to the size of



the | arger one.

But this presents a bit of a problem [If the argunent to be
pronmoted is the second argument (i.e. in the primary register
DO), we are in great shape. |If it's not, however, we're in a
fix: we can't change the size of the information that's already
been pushed onto the stack

The solution is sinple but a little painful: W nmust abandon that
lovely "pop the data and do sonmething wth it" instructions
t houghtfully provided by Mbtorol a.

The alternative is to assign a secondary register, which |'ve
chosen to be R7. (Why not R1? Because | have Ilater plans for
the other registers.)

The first step in this new structure is to introduce a Pop
procedure anal ogous to the Push. This procedure will always Pop
the top elenment of the stack into D7:

{ Pop Stack into Secondary Register }

procedure Pop(Size: char);
begi n

Move(Si ze, '(SP)+', 'D7');
end;

The general idea is that all the "Pop-Op" routines can <call this
one. When this is done, we will then have both operands in
regi sters, so we can pronote whi chever one we need to. To dea
with this, procedure Convert needs another argument, the register
nane:

{ Convert a Data Itemfrom One Type to Anot her }

procedure Convert(Source, Dest: char; Reg: String);

begi n
if Source <> Dest then begin
if Source = 'B' then
Em tLn(' AND. W #$FF,' + Reg);
if Dest = 'L" then
EmtLn('EXT.L ' + Regq);
end;
end;
R R T P R e PR PP P EE P LR T EPREEEETPEPPEE }

The next function does a conversion, but only if the current type
Tl is smaller in size than the desired type T2. It is a
function, returning the final type to let us know what it decided
to do:



{ Prompte the Size of a Register Value }

function Pronote(Tl, T2: char; Reg: string): char
var Typ: char;
begi n
Typ := T1;
if T1 <> T2 then
if (TL ="8B) or ((TL ="W) and (T2 = 'L")) then begin
Convert(T1l, T2, Reg);
Typ := T2;
end;
Pronote : = Typ;
end;

Finally, the followi ng function forces the two registers to be of
the sane type

{ Force both Argunents to Same Type }

functi on SameType(T1, T2: char): char
begi n
Tl := Pronote(T1, T2, 'D7");
SameType := Prompte(T2, T1, 'D0');
end;

These new routines give us the ammunition we need to flesh out
PopAdd and PopSub:

{ Generate Code to Add Primary to the Stack }

function PopAdd(T1, T2: char): char
begi n
Pop(T1);
T2 .= SaneType(Tl, T2);
GenAdd(T2);
PopAdd : = T2;
end;

{ Generate Code to Subtract Primary fromthe Stack }

function PopSub(T1, T2: char): char
begi n

Pop( T1) ;

T2 : = SameType(T1, T2);



GenSub(T2);
PopSub : = T2;

end;
e PR }
After all t he bui | dup, t he final results are al nost

anticlinmactic. Once again, you can see that the logic is quite
sinple. All the two routines do is to pop the top-of-stack into
D7, force the two operands to be the same size, and then generate
t he code.

Note the new code generator routines GenAdd and GenSub. These
are vestigial fornms of the ORI G NAL PopAdd and PopSub. That is,
they are pure code generators, producing a register-to-register
add or subtract:

{ Add Top of Stack to Primary }

procedure GenAdd(Size: char);
begi n

EmtLn(' ADD.' + Size + ' D7,D0");
end;

{ Subtract Primary from Top of Stack }

procedure GenSub(Size: char);

begi n
EmtLn('SUB.' + Size + ' D7,D0");
EmtLn('NEG' + Size + ' DO');

end;

{o }
OK, | grant you: |[|'ve thrown a lot of routines at you since we
| ast tested the code. But you have to admt that each new
routine is pretty sinple and transparent. |If you (like nme) don't

like to test so many new routines at once, that's OK You can
stub out routines |ike Convert, Pronote, and SaneType, since they
don't read any inputs. You won't get the <correct code, of
course, but things should work. Then flesh them out one at a
time.

When testing the program don't forget that you first have to
decl are some variables, and then start the "body" of the program
with an upper-case 'B (for BEGN). You should find that the
parser wll handle any additive expressions. Once all the
conversion routines are in, you should see that the correct code
is generated, wth type conversions inserted where necessary.
Try mixing up variables of different sizes, and also literals.
Make sure that everything's working properly. As wusual, it's a
good idea to try some erroneous expressions and see how the
conpi | er handl es them



VHY SO MANY PROCEDURES?

At this point, you may think 1've pretty much gone off the deep
end in ternms of deeply nested procedures. There is adnmttedly a
| ot of overhead here. But there's a nethod in ny madness. As in
the case of UnCp, |I'm Il ooking ahead to the tine when we're going
to want better code generation. The way the code is organized,
we can achieve this wthout major nodifications to the program
For exanple, in cases where the val ue pushed onto the stack does
_NOT_ have to be converted, it's still better to use the "pop and
add" instruction. If we choose to test for such cases, we can
enbed the extra tests into PopAdd and PopSub w thout changing
anyt hi ng el se much.

MULTI PLI CATI VE EXPRESSI| ONS

The procedure for dealing with nmultiplicative operators is nuch
the same. In fact, at the first |Ilevel, they are alnost
identical, so I'lIl just show them here wi thout nmuch fanfare. The

first one is our general form for Factor, which includes
par ent heti cal subexpressions:

{ Parse and Translate a Factor }
function Expression: char; Forward;

function Factor: char

begin
if Look = "'(' then begin
Match(' (');
Factor := Expression;
Match(')");
end
el se if IsAl pha(Look) then
Factor := Load(Get Nane)
el se
Factor := LoadNum( Get Nunj ;
end;
Rt AR EEEEEE R }

{ Recognize and Translate a Miultiply }

Function Multiply(T1: char): char
begi n

Mat ch(' *');
Mul tiply := PopMul (T1, Factor);
end;

{ Recogni ze and Transl ate a Divide }



function Divide(T1l: char): char
begi n

Match('/");

DI vi de : = PopDi v(T1, Factor);
end;

{ Parse and Translate a Math Term }

function Term char;
var Typ: char;
begi n
Typ := Factor,;
whil e I sMul op(Look) do begin
Push(Typ);
case Look of
"F Typ = Mltiply(Typ);
/' Typ := Divide(Typ);

end;

end;

Term : = Typ;
end;
{m }
These routines parallel the additive ones alnopst exactly. As
before, the conplexity is encapsul ated within PopMiul and PopDiv.
If you' d like to test the programbefore we get into that, you

can build dumry versions of them simlar to PopAdd and PopSub
Agai n, the code won't be correct at this point, but the parser
shoul d handl e expressions of arbitrary conplexity.

MULTI PLI CATI ON

Once you' ve convinced yourself that the parser itself is working
properly, we need to figure out what it will take to generate the
right code. This is where things begin to get a little sticky,
because the rules are nore conpl ex.

Let's take the case of nultiplication first. This operation is
simlar to the "addops" in that both operands should be of the
same size. It differs in two inportant respects:

0 The type of the product is typically not the same as that of
the two operands. For the product of two words, we get a
| ongword result.

0 The 68000 does not support a 32 x 32 nultiply, so a call to
a software routine is needed. This routine will becone part
of the run-time library.

o It also does not support an 8 x 8 multiply, so all byte
operands nust be pronoted to words.



The actions that we have to take are best shown in the follow ng
t abl e:

T --> | I I I
I I I I
I I B I w I L I
T2 VvV | I I I
I I I I
B | Convert DO to W| Convert DO to W| Convert DO to L
| Convert D7 to W | |
| MULS | MULS | JSR MJL32
| Result =W | Result =1L | Result =1L |
I I I I
I I I I
W | Convert D7 to W | | Convert DO to L
| MILS | MJLS | JSR MJL32
| Result =1L | Result =1L | Result =1L |
I I I I
I I I I
L | Convert D7 to L | Convert D7 to L | |
| JSR MJL32 | JSR MJL32 | JSR MJL32
| Result =L | Result =L | Result =L |
I I I I

This table shows the actions to be taken for each conbination of
operand types. There are three things to note: First, we assune
alibrary routine MJL32 which performs a 32 x 32 multiply,
|l eaving a >> 32-bit << (not 64-bit) product. If there is any
overflow in the process, we choose to ignore it and return only
the I ower 32 bhits.

Second, note that the table is symetric ... the two operands
enter in the same way. Finally, note that the product is ALWAYS
a longword, except when both operands are bytes. (It's worth
noting, in passing, that this neans that many expressions wll
end up being | ongwords, whether we |Iike it or not. Perhaps the
idea of just pronoting them all up front wasn't all that
outrageous, after all!)

Now, clearly, we are going to have to generate different code for
the 16-bit and 32-bit nultiplies. This is best done by having
separate code generator routines for the two cases:



{ Multiply Top of Stack by Primary (Word) }

procedure GenMult;
begi n

EmitLn(' MULS D7, DO')
end;

{ Multiply Top of Stack by Primary (Long) }

procedure GenLongMul t;
begi n

EmitLn(' JSR MJL32');
end;

An exam nation of the code bel ow for PopMil should convince you
that the conditions in the table are net:

{ Generate Code to Miultiply Primary by Stack }

function PopMul (T1, T2: char): char
var T: char;
begi n
Pop(T1) ;
T := SameType(T1, T2);
Convert (T, 'W, 'D7");
Convert (T, "W, 'D0");
if T="L then
GenLongMul t
el se
GenMul t;
if T ="'"B then
PopMul := "W
el se
PopMul . = "L";

As you can see, the routine starts off just |like PopAdd. The two
argurments are forced to the sane type. The two calls to Convert
take care of the case where both operands are bytes. The data
t henmsel ves are pronoted to words, but the routine remenbers the
type so as to assign the correct type to the result. Finally, we
call one of the two code generator routines, and then assign the
result type. Not too conplicated, really.

At this point, | suggest that you go ahead and test the program
Try all conbinations of operand sizes.



DI VI SI ON

The case of division is not nearly so symmetric. I also have
some bad news for you:

Al  nmodern 16-bit CPU s suppor t i nt eger di vi de. The
manufacturer's data sheet wll describe this operation as a
32 x 16-bit divide, neaning that you can divide a 32-bit dividend
by a 16-bit divisor. Here's the bad news:

THEY' RE LYI NG TO YOU! !

If you don't believe it, try dividing any large 32-bit nunber
(meaning that it has non-zero bits in the upper 16 bits) by the
integer 1. You are guaranteed to get an overfl ow exception

The problemis that the instruction really requires that the
resulting quotient fit into a 16-bit result. This won't happen
UNLESS the divisor is sufficiently |arge. When any number is
di vided by unity, the quotient will of course be the same as the
di vidend, which had better fit into a 16-bit word.

Since the beginning of time (well, conputers, anyway), CPU
architects have provided this little gotcha in the division
circuitry. It provides a certain amunt of symmetry in things,

since it is sort of the inverse of the way a nmultiply works. But
since wunity 1is a perfectly valid (and rather comron) nunber to
use as a divisor, the division as inplemented in hardware needs
some help from us programrers.

The inplications are as foll ows:

0 The type of the quotient nust always be the sane as that of
the dividend. It is independent of the divisor

o In spite of the fact that the CPU supports a |ongword
di vidend, the hardware-provided instruction can only be
trusted for byte and word dividends. For | ongword
di vi dends, we need another library routine that can return a
long result.

This looks like a job for another table, to summarize the
required actions:

T1 -->

I I
| Convert DO to W| Convert DO to W| Convert DO to L

| Convert D7 to L | Convert D7 to L | |
| DIVS | DIVS | JSR DI V32



| Result =B | Result =W | Result =1L

I I I I
W | Convert D7 to L | Convert D7 to L | Convert DO to L

| DIVS | DIVS | JSR DI V32

| Result =B | Result =W | Result =1L |

I I I I

I I I I
L | Convert D7 to L | Convert D7 to L | |

| JSR DI V32 | JSR DI V32 | JSR DI V32

| Result =B | Result = W | Result =1L |

I I I I

(You may wonder why it's necessary to do a 32-bit division, when
the dividend is, say, only a byte in the first place. Since the
nunber of bits in the result can only be as many as that in the
di vidend, why bother? The reason is that, if the divisor is a
[ ongword, and there are any high bits set init, the result of
the division nmust be zero. W might not get that if we only use
the |l ower word of the divisor.)

The foll owi ng code provides the correct function for PopDiv:

{ Generate Code to Divide Stack by the Primary }

function PopDi v(Tl, T2: char): char
begi n
Pop(T1);
Convert(T1, 'L', 'D7");
if (TL ="'L") or (T2 = 'L") then begin
Convert (T2, 'L', "D0");
GenLongDi v;
PopDiv :="L";
end
el se begin
Convert (T2, 'W, 'D0");
GenDi v;
PopDiv : = T1;
end;
end;

{ Divide Top of Stack by Primary (Word) }

procedure GenDiv;
begi n



Em tLn(' DI VS DO, D7');
Move('W, 'D7', 'DO');
end;

{ Divide Top of Stack by Primary (Long) }

procedure GenLongDi v;
begi n

Em tLn(' JSR DI V32');
end;

Note that we assunme that DI V32 | eaves the (longword) result in
DO.

K, install the new procedures for division. At this point you

shoul d be able to generate code for any kind of arithmetic
expression. Gve it a whirl

BEG NNI NG TO W ND DOWN

At last, in this installnent, we've learned how to deal wth
variables (and literals) of different types. As you can see, it

hasn't been too tough. In fact, in some ways nost of the code
| ooks even nore sinple than it does in earlier programns. Only
the multiplication and division operators require a little

t hi nki ng and pl anni ng.

The main concept that made things easy was that of converting
procedures such as Expression into functions that return the type
of the result. Once this was done, we were able to retain the
same general structure of the conpiler.

I won't pretend that we've covered every single aspect of the
issue. | conveniently ignored unsigned arithmetic. From what
we've done, | think you can see that to include them adds no new
chal l enges, just extra possibilities to test for

I'"ve also ignored the |logical operators And, O, etc. It turns
out that these are pretty easy to handle. All the |logica
operators are bitwise operations, so they are symmetric and
therefore work in the sane fashion as PopAdd. There is one

di fference, however: if it is necessary to extend the word
length for a logical variable, the extension should be done as an
UNSI GNED number . Fl oati ng poi nt number s, agai n, are
straightforward to handle ... just a few nore procedures to be

added to the run-tinme |ibrary, or perhaps instructions for a math
chi p.

Perhaps nore inportantly, | have also skirted the issue of type
CHECKI NG, as opposed to conversion. In other words, we've
al l owed for operations between variables of all conbinations of

types. In general this will not be true ... certainly you don't



want to add an integer, for exanple, to a string. Most |anguages
also don't allow you to mix up character and integer variabl es.

Again, there are really no new issues to be addressed in this
case. W are already checking the types of the two operands ...
much of this checking gets done in procedures 1|ike SaneType.
It's pretty straightforward to include a call to an error
handler, if the types of the two operands are inconpatible.

In the general case, we can think of every single operator as
bei ng handled by a different procedure, dependi ng upon the type
of the two operands. This is straightforward, though tedious, to
i mpl ement sinply by inplementing a junp table with the operand
types as indices. 1In Pascal, the equivalent operation would
i nvol ve nested Case statenents. Sone of the called procedures
could then be sinple error routines, while others could effect
what ever ki nd of conversion we need. As nore types are added,
the nunber of procedures goes up by a square-law rule, but that's
still not an unreasonably |arge nunber of procedures.

VWhat we've done here is to collapse such a junp table into far
fewer procedures, sinply by making use of symetry and other
sinmplifying rules.

TO COERCE OR NOT TO CCERCE

In case you haven't gotten this nmessage yet, it sure appears that
TINY and KISS will probably _NOT_ be strongly typed | anguages,
since I've allowed for automatic mixing and conversion of just
about any type. VWhich brings up the next issue:

Is this really what we want to do?

The answer depends on what ki nd of |anguage you want, and the way
you'd like it to behave. What we have not addressed is the issue
of when to all ow and when to deny the use of operations involving
different data types. In other words, what should be the
SEMANTI CS of our compil er? Do we want automatic type conversion
for all cases, for some cases, or not at all?

Let's pause here to think about this a bit nore. To do so, it
will help to look at a bit of history.

FORTRAN |l supported only two sinple data types: Integer and
Real . It allowed inplicit type conversion between real and

i nteger types during assignnment, but not within expressions. Al
data itenms (including literal constants) on the right-hand side
of an assignment statenent had to be of the same type. That nmmde
things pretty easy ... much sinpler than what we've had to do
here.

This was changed in FORTRAN IV to support "m xed- nmode"
arithnmetic. |If an expression had any real data itens in it, they
were all converted to reals and the expression itself was real

To round out the picture, functions were provided to explicitly
convert from one type to the other, so that you could force an



expression to end up as either type.

This led to two things: code that was easier to wite, and code
that was less efficient. That's because sl oppy programrers woul d

wite expressions with sinple constants |ike O and 1 in them
which the compiler would dutifully conpile to convert at
execution time. Still, the system worked pretty well, which

would tend to indicate that inplicit type conversion is a Good
Thi ng.

Cis also a weakly typed | anguage, though it supports a |I|arger
nunber of types. C won't conmplain if you try to add a character

to an integer, for example. Partly, this is helped by the C
convention of pronoting every char to integer when it is | oaded,
or passed through a paraneter list. This sinplifies the
conversions quite a bhit. In fact, in subset C conpilers that

don't support long or float types, we end up back where we were
in our earlier, sinple-mnded first try: every variable has the
same representation, once |loaded into a register. Makes life
pretty easy!

The wultimate |anguage in the direction of automatic type

conversion is PL/I. This |anguage supports a |arge nunber of
data types, and you can mix themall freely. If the inplicit
conversi ons of FORTRAN seened good, then those of PL/I should
have been Heaven, but it turned out to be nmore Iike Hell! The

probl emwas that with so many data types, there had to be a large
nunber of different conversions, AND a correspondingly |large
nunber of rul es about how mixed operands should be converted.
These rul es becane so conplex that no one could renenber what
they were! A lot of the errors in PL/lI progranms had to do wth
unexpected and unwanted type conversions. Too much of a Good
Thing can be bad for you!

Pascal, on the other hand, is a |anguage which is "strongly
typed," which neans that in general you can't mx types, even if
they differ only in _NAME , and yet have the sanme base type!

Ni kl aus Wrth made Pascal strongly typed to help keep programmers
out of trouble, and the restrictions have indeed saved many a
programer from hinself, because the conpiler kept himfrom doing
sonet hing dunb. Better to find the bug in conpilation rather
than the debug phase. The sane restrictions can also cause
frustration when you really WANT to mix types, and they tend to
drive an ex-C-programrer up the wall

Even so, Pascal does permt sone inplicit conversions. You can
assign an integer to a real value. You can also mx integer and
real types in expressions of type Real. The integers will be
automatically coerced to real, just as in FORTRAN (and wth the

sanme hidden cost in run-tine overhead).

You can't, however, convert the other way, fromreal to integer
wi t hout applying an explicit conversion function, Trunc. The
theory here is that, since the nunerical value of a real nunber
is necessarily going to be changed by the conversion (the
fractional part will be lost), you really shouldn't do it in
"secret."



In the spirit of strong typing, Pascal will not allow you to mx
Char and | nteger variables, wthout applying the explicit
coercion functions Chr and Ord.

Turbo Pascal also includes the types Byte, Wrd, and Longlnt.
The first two are basically the sane as unsigned integers. In
Turbo, these can be freely interm xed wth variables of type
Integer, and Turbo will automatically handle the conversion

There are run-tinme checks, though, to keep you from overfl ow ng
or otherwi se getting the wong answer. Note that you still can't
m x Byte and Char types, even though they are stored internally
in the sane representation.

The ultimate in a strongly-typed |anguage is Ada, which allows
~NO_ inplicit type conversions at all, and also will not all ow
m xed- node arithnetic. Jean | chbi ah's position is that
conversions cost execution tine, and you shouldn't be allowed to
build in such cost in a hidden manner. By forcing the progranmer
to explicitly request a type conversion, you nake it nore
apparent that there could be a cost involved.

I have been using another strongly-typed |anguage, a delightfu

little language called Whinsical, by John Spray. Al t hough
Whinsical is intended as a systens progranmm ng | anguage, it al so
requires explicit conversion EVERY tine. There are NEVER any
automati c conversions, even the ones supported by Pascal

Thi s approach does have certain advantages: The conpiler never
has to guess what to do: the programmer always tells it precisely
what he wants. As a result, there tends to be a nore nearly
one-t o-one correspondence between source code and conpil ed code,
and John's conpil er produces VERY tight code.

On the other hand, | sonetines find the explicit conversions to
be a pain. |If I want, for exanple, to add one to a character, or
AND it with a mask, there are a |ot of conversions to make. If |
get it wong, the only error nessage is "Types are not
conpatible.” As it happens, John's particular inplenentation of
the | anguage in his compiler doesn't tell you exactly WHI CH types
are not conpatible ... it only tells you which LINE the error is
in.

I nust admit that nost of nmy errors with this conpiler tend to be

errors of this type, and I've spent a lot of tine wth the
VWi nmsi cal conpiler, trying to figure out just WHERE in the line
I'"ve offended it. The only real way to fix the error is to keep

trying things until something works.

So what should we do in TINY and KISS? For the first one, | have

the answer: TINY wll support only the types Char and | nteger

and we'll use the C trick of pronoting Chars to Integers
internally. That nmeans that the TINY conpiler will be _MJCH_
sinmpler than what we've already done. Type conversion in
expressions is sort of noot, since none will be required! Si nce
| ongwords will not be supported, we also won't need the MJL32 and

DI V32 run-time routines, nor the logic to figure out when to cal



them | _LIKE_ it!
KISS, on the other hand, will support the type Long.

Shoul d it support both signed and unsigned arithnmetic? For the
sake of sinplicity I'd rather not. It does add quite a bit to
the conplexity of type conversions. Even N klaus Wrth has
elimnated wunsigned (Cardinal) numbers from his new [|anguage
Gberon, with the argunment that 32-bit integers should be |ong
enough for anybody, in either case.

But KISS is supposed to be a systens programm ng | anguage, which
means that we should be able to do whatever operations that can
be done in assenbler. Since the 68000 supports both flavors of
i ntegers, | guess KISS should, also. We've seen that |ogica
operations need to be able to extend integers in an unsigned
fashi on, so the unsigned conversion procedures are required in
any case.

CONCLUSI ON

That wraps up our session on type conversions. Sorry you had to
wait so long for it, but hope you feel that it was worth the
wai t .

In the next fewinstallnments, we'll extend the sinple types to
i nclude arrays and pointers, and we'll have a | ook at what to do
about strings. That should pretty well wap up the mainstream
part of the series. After that, 1'Il give you the new versions
of the TINY and KISS conpilers, and then we'll start to | ook at

optim zation issues.
See you then.
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| NTRODUCTI ON

Can it really have been four years since | wote install nent
fourteen of this series? Is it really possible that six |ong
years have passed since | began it? Funny how tinme flies when
you're having fun, isn't it?

I won't spend a |l ot of tinme making excuses; only point out that

t hi ngs happen, and priorities change. 1In the four years since
install ment fourteen, |'ve managed to get laid off, get divorced,
have a nervous breakdown, begin a new career as a witer, begin
anot her one as a consultant, nove, work on two real-tinme systens,
and raise fourteen baby birds, three pigeons, six possuns, and a
duck. For awhile there, the parsing of source code was not high
on ny list of priorities. Neither was witing stuff for free,
instead of witing stuff for pay. But | do try to be faithful



and | do recognize and feel ny responsibility to you, the reader
to finish what |'ve started. As the tortoise said in one of ny
son's old stories, | may be slow, but I'msure. |1'm sure that
there are people out there anxious to see the last reel of this
film and | intend to give it to them So, if you' re one of those
who's been waiting, nore or |less patiently, to see how this thing
cones out, thanks for your patience. | apologize for the del ay.
Let's nove on.

NEW STARTS, OLD DI RECTI ONS

Li ke many other things, programm ng | anguages and progranm ng
styles change with tinme. 1In 1994, it seens a little anachronistic
to be programmng in Turbo Pascal, when the rest of the world
seens to have gone bananas over C++. It also seens a little
strange to be progranmng in a classical style when the rest of
the world has switched to object-oriented methods. Still, in
spite of the four-year hiatus, it would be entirely too wenching
a change, at this point, to switch to, say, C++ with object-
orientation . Anyway, Pascal is still not only a powerfu
progranmm ng | anguage (nore than ever, in fact), but it's a

wonder ful medium for teaching. Cis a notoriously difficult

| anguage to read ... it's often been accused, along with Forth, of
being a "write-only language."” Wen | programin C++, | find
nmysel f spending at |east 50% of ny tinme struggling with |anguage
syntax rather than with concepts. A stray "&" or "*" can not only
change the functioning of the program but its correctness as
well. By contrast, Pascal code is usually quite transparent and
easy to read, even if you don't know the | anguage. \What you see is
al nost al ways what you get, and we can concentrate on concepts
rather than inplenmentation details. |[|'ve said fromthe begi nning
that the purpose of this tutorial series was not to generate the
world's fastest conpiler, but to teach the fundanental s of
conpi | er technol ogy, while spending the | east anpunt of tine
wrestling with | anguage syntax or other aspects of software

i mpl enentation. Finally, since a |lot of what we do in this course
amounts to software experimentation, it's inportant to have a
conpi l er and associ ated environment that conpiles quickly and with

no fuss. In ny opinion, by far the nost significant tine neasure
in software devel opnent is the speed of the edit/conpile/test
cycle. In this departnent, Turbo Pascal is king. The conpilation

speed is blazing fast, and continues to get faster in every

rel ease (how do they keep doing that?). Despite vast inprovenents
in C conpilation speed over the years, even Borland' s fastest

C/ C++ conpiler is still no match for Turbo Pascal. Further, the
editor built into their IDE, the nake facility, and even their
superb smart linker, all conplenent each other to produce a
wonder ful environment for quick turnaround. For all of these
reasons, | intend to stick with Pascal for the duration of this
series. W'll be using Turbo Pascal for Wndows, one of the
conpi l ers provided Borland Pascal with Objects, version 7.0. |If
you don't have this conpiler, don't worry ... nothing we do here
is going to count on your having the |latest version. Using the

W ndows version helps me a lot, by allowing ne to use the

Cli pboard to copy code fromthe conmpiler's editor into these
docunents. It should also help you at |east as much, copying the



code in the other direction.

I've thought |ong and hard about whether or not to introduce
objects to our discussion. |'ma big advocate of object-oriented
met hods for all uses, and such nethods definitely have their place
in conpiler technology. 1In fact, I've witten papers on just this
subject (Refs. 1-3). But the architecture of a conpiler which is
based on object-oriented approaches is vastly different than that
of the nore classical conpiler we've been building. Again, it
woul d seemto be entirely too much to change these horses in m d-
stream As | said, programm ng styles change. VWho knows, it may
be another six years before we finish this thing, and if we keep
changi ng the code every tinme programr ng style changes, we may
NEVER fi ni sh.

So for now, at least, |'ve determined to continue the classica
style in Pascal, though we m ght indeed discuss objects and object
orientation as we go. Likew se, the target machine will renmain

the Motorola 68000 famly. O all the decisions to be nmade here,
this one has been the easiest. Though | know that many of you
would Iike to see code for the 80x86, the 68000 has becone, if
anyt hing, even nore popular as a platformfor enbedded systens,
and it's to that application that this whole effort began in the
first place. Conpiling for the PC, MSDCOS platform we'd have to
deal with all the issues of DOS systemcalls, DOS linker formats,
the PC file system and hardware, and all those other conplications
of a DOS environnent. An enbedded system on the other hand, nust
run standalone, and it's for this kind of application, as an
alternative to assenbly | anguage, that |'ve always imagined that a
| anguage like KISS would thrive. Anyway, who wants to deal with
the 80x86 architecture if they don't have to?

The one feature of Turbo Pascal that |I'm going to be maki ng heavy
use of is units. In the past, we've had to nake conprom ses

bet ween code size and conplexity, and program functionality. A

| ot of our work has been in the nature of conputer
experimentation, |ooking at only one aspect of conpiler technol ogy
at atine. We did this to avoid to avoid having to carry around

| arge progranms, just to investigate sinple concepts. 1In the
process, we've re-invented the wheel and re-programed the sane
functions nore tines than I'd like to count. Turbo units provide
a wonderful way to get functionality and sinplicity at the sanme
time: You wite reusable code, and invoke it with a single |ine.
Your test programstays small, but it can do powerful things.

One feature of Turbo Pascal units is their initialization block

As with an Ada package, any code in the main begin-end block of a
unit gets executed as the programis initialized. As you'll see
later, this sometines gives us neat sinplifications in the code.
Qur procedure Init, which has been with us since Installnment 1,
goes away entirely when we use units. The various routines in the
Cradl e, another key features of our approach, will get distributed
anong the units.

The concept of units, of course, is no different than that of C
nmodul es. However, in C (and C++), the interface between nodul es
comes via preprocessor include statements and header files. As



sonmeone who's had to read a | ot of other people's C progranms, |'ve
al ways found this rather bewildering. It always seens that

what ever data structure you'd like to know about is in sone other
file. Turbo units are sinpler for the very reason that they're
criticized by sonme: The function interfaces and their

i npl emrentation are included in the sane file. While this

organi zati on may create problens with code security, it also
reduces the nunber of files by half, which isn't half bad.

Li nki ng of the object files is also easy, because the Turbo
conpiler takes care of it without the need for nake files or other
mechani sns.

STARTI NG OVER?

Four years ago, in Installnment 14, | prom sed you that our days of
re-inventing the wheel, and recodi ng the same software over and
over for each | esson, were over, and that fromnow on we'd stick
to more conplete programs that we would sinply add new features
to. | still intend to keep that prom se; that's one of the nain
purposes for using units. However, because of the long tinme since
Installment 14, it's natural to want to at |east do sone review,
and anyhow, we're going to have to nmake rather sweeping changes in
the code to nmake the transition to units. Besides, frankly, after
all this time | can't renenber all the neat ideas | had in ny head
four years ago. The best way for nme to recall themis to retrace
some of the steps we took to arrive at Installnment 14. So | hope
you' Il be understandi ng and bear with me as we go back to our
roots, in a sense, and rebuild the core of the software,
distributing the routines anong the various units, and
boot st rappi ng oursel ves back up to the point we were at |o, those
many noons ago. As has al ways been the case, you're going to get
to see me nmake all the m stakes and execute changes of direction
inreal time. Please bear with ne ... we'll start getting to the
new stuff before you know it.

Since we're going to be using nultiple nodules in our new
approach, we have to address the issue of file nmanagenment. |If
you've followed all the other sections of this tutorial, you know
that, as our progranms evolve, we're going to be replacing ol der
nmore sinple-mnded units with nore capabl e ones. This brings us to
an issue of version control. There will alnost certainly be tines
when we will overlay a sinple file (unit), but later wish we had
the sinple one again. A case in point is enbodied in our

predil ection for using single-character variable names, keywords,
etc., to test concepts without getting bogged down in the details

of a lexical scanner. Thanks to the use of units, we will be
doi ng much less of this in the future. Still, | not only suspect,
but amcertain that we will need to save sonme ol der versions of

files, for special purposes, even though they've been repl aced by
newer, nore capabl e ones.

To deal with this problem | suggest that you create different
directories, with different versions of the units as needed. |If
we do this properly, the code in each directory will remain self-
consistent. |1've tentatively created four directories: SINGE
(for single-character experinentation), MJLTI (for, of course,



mul ti-character versions), TINY, and KI SS.

Enough sai d about phil osophy and details. Let's get on with the
resurrection of the software.

THE I NPUT UNI'T

A key concept that we've used since Day 1 has been the idea of an
i nput streamwi th one | ookahead character. All the parsing

routi nes examne this character, w thout changing it, to decide
what they should do next. (Conpare this approach with the C/ Unix
approach using getchar and unget, and | think you'll agree that
our approach is sinpler). W'll begin our hike into the future by
translating this concept into our new, unit-based organization
The first unit, appropriately called Input, is shown bel ow.

oo }
unit I nput;

o }
interface

var Look: char; { Lookahead character }

procedure Get Char; { Read new character }

o o }
i mpl enent ati on

[ o o }

{ Read New Character From | nput Stream}

procedur e Get Char;
begin

Read( Look) ;
end;

{ Unit Initialization }
begi n
Get Char;

As you can see, there's nothing very profound, and certainly
not hi ng conplicated, about this unit, since it consists of only a
singl e procedure. But already, we can see how the use of units
gi ves us advantages. Note the executable code in the
initialization block. This code "prinmes the punp” of the input
stream for us, sonething we've always had to do before, by
inserting the call to GetChar in line, or in procedure Init. This
time, the call happens without any special reference to it on our
part, except within the unit itself. As | predicted earlier, this
mechani smis going to make our lives nmuch sinpler as we proceed.

| consider it to be one of the nobst useful features of Turbo
Pascal, and | lean on it heavily.



Copy this unit into your conpiler's IDE, and conpile it. To test
the software, of course, we always need a main program | used
the follow ng, really complex test program which we'll [later
evolve into the Main for our conpiler:

program Mai n;
uses W nCRT, I|nput;
begi n

W iteLn(Look);

Not e the use of the Borland-supplied unit, WnCRT. This unit is
necessary if you intend to use the standard Pascal |/O routines,
Read, ReadLn, Wite, and WitelLn, which of course we intend to do.
If you forget to include this unit in the "uses" clause, you wl|l
get a really bizarre and indeci pherable error nmessage at run time.

Note al so that we can access the | ookahead character, even though
it's not declared in the main program All variables decl ared
within the interface section of a unit are global, but they're

hi dden from prying eyes; to that extent, we get a nodi cum of
information hiding. O course, if we were witing in an object-
oriented fashion, we should not allow outside nodul es to access
the units internal variables. But, although Turbo units have a
ot in common with objects, we're not doing object-oriented design
or code here, so our use of Look is appropriate.

Go ahead and save the test programas Main.pas. To nmeke life
easier as we get nore and nore files, you might want to take this
opportunity to declare this file as the conpiler's Primary file.
That way, you can execute the programfromany file. O herw se
if you press Cntl-F9 to conpile and run fromone of the units,
you'll get an error nmessage. You set the primary file using the
mai n submenu, "Conpile,"” in the Turbo |DE

| hasten to point out, as |'ve done before, that the function of
unit Input is, and always has been, considered to be a dummy

version of the real thing. 1In a production version of a compiler,
the input streamwll, of course, conme froma file rather than
fromthe keyboard. And it will alnost certainly include line

buffering, at the very least, and nore likely, a rather |arge text
buffer to support efficient disk I/O  The nice part about the
unit approach is that, as with objects, we can nodify the code in
the unit to be as sinple or as sophisticated as we like. As |ong
as the interface, as enbodied in the public procedures and the

| ookahead character, don't change, the rest of the programis
totally unaffected. And since units are conpiled, rather than
merely included, the time required to link with themis virtually
nil. Again, the result is that we can get all the benefits of
sophi sticated inpl ementations, wi thout having to carry the code
around as so much baggage.

In later installments, | intend to provide a full-blown |IDE for



the KISS conpiler, using a true Wndows application generated by
Borl and's OAL applications framework. For now, though, we'll obey
ny #1 rule to live by: Keep It Sinple.

THE OUTPUT UNI T

O course, every decent program should have output, and ours is no
exception. Qur output routines included the Enmit functions. The
code for the correspondi ng output unit is shown next:

o }
unit CQutput;

R T R T R PR PP L R P PR PEE LT T EEPEEEEEP PR }

i nterface

procedure Emt(s: string); { EmMt an instruction }
procedure Em tLn(s: string); { EmMit an instruction line }

O R R EEE }

i mpl enent ati on
const TAB = ~Il;
{ EmMt an Instruction }
procedure Emt(s: string);
begi n

Wite(TAB, s);
end;

{ EmMt an Instruction, Followed By a Newine }

procedure Em tLn(s: string);

begi n
Emt(s);
Witeln;
end;
end
{o }

(Notice that this unit has no initialization clause, so it needs
no begi n-bl ock.)

Test this unit with the follow ng nmain program

program Test;
uses WnCRT, Input, CQutput, Scanner, Parser;
begin
WiteLn(' MAIN:");
EmtLn(' Hello, world!");
end.



Did you see anything that surprised you? You nay have been
surprised to see that you needed to type sonething, even though
the main programrequires no input. That's because of the
initialization in unit Input, which still requires sonmething to
put into the | ookahead character. Sorry, there's no way out of
that box, or rather, we don't WANT_ to get out. Except for sinple
test cases such as this, we will always want a valid | ookahead
character, so the right thing to do about this "problem is ...
not hi ng.

Per haps more surprisingly, notice that the TAB character had no
effect; our line of "instructions" begins at colum 1, sanme as the
fake label. That's right: WnCRT doesn't support tabs. We have a
probl em

There are a few ways we can deal with this problem The one thing
we can't do is to sinply ignhore it. Every assenbler |'ve ever
used reserves colum 1 for |abels, and will rebel to see
instructions starting there. So, at the very least, we must space
the instructions over one colum to keep the assenbl er happy.
That's easy enough to do: Sinply change, in procedure Ent, the
line:

Wite(TAB, s);
by:
Wite(' ', s);

I must admit that |'ve westled with this problem before, and find
nmysel f changing ny nmind as often as a chanel eon changes col or

For the purposes we're going to be using, 99% of which will be
exam ning the output code as it's displayed on a CRT, it would be
nice to see neatly blocked out "object" code. The line:

SUBL.: MOVE #4, DO

just plain | ooks neater than the different, but functionally
i denti cal code,

SUBL:
MOVE #4, DO
In test versions of my code, | included a nore sophisticated

versi on of the procedure PostlLabel, that avoids having | abels on
separate lines, but rather defers the printing of a label so it
can end up on the sane line as the associated instruction. As
recently as an hour ago, ny version of unit CQutput provided ful
support for tabs, using an internal colum count variable and
software to nanage it. | had, if | do say so nyself, sone rather
el egant code to support the tab nechanism wi th a mnimum of code
bloat. It was awfully tenpting to show you the "prettyprint”
version, if for no other reason than to show off the el egance.

Neverthel ess, the code of the "el egant” version was consi derably



nore conplex and larger. Since then, |I've had second thoughts. In
spite of our desire to see pretty output, the inescapable fact is
that the two versions of the MAIN: code fragnment shown above are
functionally identical; the assenbler, which is the ultimte
destination of the code, couldn't care |less which version it gets,
except that the prettier version will contain nore characters,
therefore will use nmore di sk space and take | onger to assenble.
but the prettier one not only takes nore code to generate, but
will create a larger output file, with many nore space characters
than the mni mum needed. Wen you |ook at it that way, it's not
very hard to deci de which approach to use, is it?

VWhat finally clinched the issue for me was a rem nder to consider
my own first commandment: KISS. Although | was pretty proud of

all nmy elegant little tricks to inplenent tabbing, | had to rem nd
nmysel f that, to paraphrase Senator Barry Col dwater, elegance in
the pursuit of conplexity is no virtue. Another w se man once
wrote, "Any idiot can design a Rolls-Royce. It takes a genius to
design a VW" So the elegant, tab-friendly version of Qutput is
hi story, and what you see is the sinple, conpact, VWversion

THE ERROR UNI'T

Qur next set of routines are those that handle errors. To refresh
your nmenmory, we take the approach, pioneered by Borland in Turbo
Pascal, of halting on the first error. Not only does this greatly
sinmplify our code, by conpletely avoiding the sticky issue of
error recovery, but it also nakes much nore sense, in ny opinion
in an interactive environment. | know this nay be an extrene
position, but | consider the practice of reporting all errors in a
programto be an anachronism a hol dover fromthe days of batch
processing. |It's time to scuttle the practice. So there.

In our original Cradle, we had two error-handling procedures:
Error, which didn't halt, and Abort, which did. But | don't think
we ever found a use for the procedure that didn't halt, so in the
new, |ean and nmean unit Errors, shown next, procedure Error takes
the place of Abort.

D R T e TR T P e PP R P PR PEE LT TR PEEEEEP PR }
unit Errors;
O e R P EEE }
i nterface

procedure Error(s: string);
procedure Expected(s: string);

{ Wite error Message and Halt }

procedure Error(s: string);
begi n
WitelLn;



WiteLn("G 'FError: ', s, ".");
Hal t ;

{ Wite "<sonething> Expected" }

procedure Expected(s: string);
begi n

Error(s + ' Expected');
end;

As usual, here's a test program

program Test;
uses WnCRT, Input, Qutput, Errors;

begi n

Expected(' I nteger');
end
{o }
Have you noticed that the "uses” line in our main program keeps
getting longer? That's OK. In the final version, the main program
will only call procedures in our parser, so its use clause wll

only have a couple of entries. But for now, it's probably best to
include all the units so we can test procedures in them

SCANNI NG AND PARSI NG

The cl assical conpiler architecture consists of separate nodul es
for the I exical scanner, which supplies tokens in the |anguage,
and the parser, which tries to make sense of the tokens as syntax
el ements. If you can still renmenber what we did in earlier
install nents, you'll recall that we didn't do things that way.
Because we're using a predictive parser, we can al nost always tel
what | anguage el enent is com ng next, just by exam ning the

| ookahead character. Therefore, we found no need to prefetch

t okens, as a scanner would do.

But, even though there is no functional procedure called
"Scanner," it still makes sense to separate the scanning functions
fromthe parsing functions. So |'ve created two nore units
cal |l ed, amazingly enough, Scanner and Parser. The Scanner uni't
contains all of the routines known as recogni zers. Sonme of these,
such as | sAl pha, are pure bool ean routines which operate on the

| ookahead character only. The other routines are those which
col l ect tokens, such as identifiers and nunmeric constants. The



Parser unit will contain all of the routines making up the
recursive-descent parser. The general rule should be that unit
Parser contains all of the information that is |anguage-specific;
in other words, the syntax of the | anguage should be wholly
contained in Parser. In an ideal world, this rule should be true
to the extent that we can change the conpiler to conpile a

di fferent |anguage, nerely by replacing the single unit, Parser

In practice, things are al nost never this pure. There's always a
smal | anpunt of "l eakage" of syntax rules into the scanner as
well. For exanmple, the rules concerning what nakes up a | ega
identifier or constant may vary from | anguage to | anguage. In
some | anguages, the rules concerning conments pernmt themto be
filtered by the scanner, while in others they do not. So in
practice, both units are likely to end up having | anguage-
dependent conponents, but the changes required to the scanner
shoul d be relatively trivial

Now, recall that we've used two versions of the scanner routines:
One that handl ed only single-character tokens, which we used for a
nunber of our tests, and another that provided full support for

mul ti-character tokens. Now that we have our software separated
into units, | don't anticipate getting much use out of the single-
character version, but it doesn't cost us nmuch to provide for

both. |[|'ve created two versions of the Scanner unit. The first
one, called Scannerl, contains the single-digit version of the
recogni zers:

[ }
unit Scanner1;
e }
i nterface

uses | nput, Errors;

function |IsAl pha(c: char): bool ean;
function IsDigit(c: char): bool ean
function IsAl Num(c: char): bool ean
function |IsAddop(c: char): bool ean
function IsMiul op(c: char): bool ean

procedure Match(x: char);
functi on Get Nanme: char
functi on Get Nunber: char

{ Recogni ze an Al pha Character }

function |IsAl pha(c: char): bool ean;
begi n

| sAl pha : = UpCase(c) in ['A.."Z];
end;



{ Recogni ze a Nuneric Character }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin["0.."9];
end;

{ Recogni ze an Al phanuneric Character }

function IsAl num(c: char): bool ean;
begi n

I SAlnum : = IsAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addition Operator }
function |IsAddop(c: char): bool ean;
begi n
IsAddop :=c in ["+,"'-"];
end;
{ Recognize a Multiplication Operator }
function IsMiulop(c: char): bool ean;
begi n
IsMulop :=cin ["*",'["'];
end;

{ Match One Character }

procedure Match(x: char);

begin
if Look = x then Get Char
el se Expected('''" + x + """");
end;
{ ______________________________________________________________

{ Get an ldentifier }

function Get Nane: char;

begi n
if not IsAlpha(Look) then Expected(' Nane');
Get Name : = UpCase( Look);
Get Char;

{ Get a Nunber }

function Get Nunber: char;

begi n
if not IsDigit(Look) then Expected('Integer');
Get Nunmber : = Look;



The foll owi ng code fragment of the main program provi des a good
test of the scanner. For brevity, I'll only include the

execut abl e code here; the rest remains the sane. Don't forget,
t hough, to add the name Scannerl to the "uses" cl ause.

Wite(Get Nane);
Match(' =");
Wite(Get Nunber);
Mat ch(' +');

Wi telLn(Get Nane);

This code will recognize all sentences of the form
X=0+y

where x and y can be any single-character variable names, and 0O
any digit. The code should reject all other sentences, and give a
meani ngful error nessage. If it did, you're in good shape and we
can proceed.

THE SCANNER UNI' T

The next, and by far the nost inportant, version of the scanner is
the one that handles the multi-character tokens that all real

| anguages nmust have. Only the two functions, GetNanme and

Get Nunber, change between the two units, but just to be sure there
are no mstakes, |'ve reproduced the entire unit here. This is
unit Scanner:

R R R }
unit Scanner;
o }
i nterface

uses | nput, Errors;

function |IsAl pha(c: char): bool ean;
function IsDigit(c: char): bool ean;
function IsAl Num(c: char): bool ean;
function |IsAddop(c: char): bool ean;
function IsMiul op(c: char): bool ean;

procedure Match(x: char);

function GetNane: string;
function Get Nunber: I ongint;

i mpl enent ati on



{ Recogni ze an Al pha Character }

function IsAl pha(c: char): bool ean;
begi n

| sAl pha := UpCase(c) in['A.."Z];
end;

{ Recogni ze a Nuneric Character }

function IsDigit(c: char): bool ean;
begi n

IsDigit :=cin["0.."9];
end;

{ Recogni ze an Al phanuneric Character }

function IsAl num(c: char): bool ean;
begi n

| SAlnum : = IsAl pha(c) or IsDigit(c);
end;

{ Recogni ze an Addition Operator }
function |IsAddop(c: char): bool ean;
begi n
IsAddop :=c in ["+,"'-"];
end;
{ Recognize a Multiplication Operator }
function IsMiulop(c: char): bool ean;
begi n
IsMulop :=cin ["*",'["'];
end;

{ Match One Character }

procedure Match(x: char);

begi n
if Look = x then Get Char
el se Expected('''" + x + """");
end;
{ ______________________________________________________________

{ Get an ldentifier }

function GetNane: string;
var n: string;
begi n
n:= ;
if not IsAlpha(Look) then Expected(' Nane');



whil e |1 sAl num Look) do begin

n :=n + Look;
Cet Char;
end;
Get Nanme : = n;
end;
o }

{ Get a Nunber }

function GetNunber: string;

var n: string;

begi n
n:= ;
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin

n:=n + Look;
Get Char;
end;
Get Nunber := n;
end;
end
R R PR PR PP R P PR PP L LT P EEPEEEEEP PR }
The sane test programw |l test this scanner, also. Sinply change

the "uses" clause to use Scanner instead of Scannerl. Now you
shoul d be able to type nmulti-character nanes and nunbers.

DECI SI ONS, DECI SI ONS

In spite of the relative sinplicity of both scanners, a | ot of

t hought has gone into them and a | ot of decisions had to be nmde.
I'd Ilike to share those thoughts with you now so you can make your
own educat ed deci sion, appropriate for your application. First,
note that both versions of GetName translate the input characters
to upper case. Obviously, there was a design decision made here,
and this is one of those cases where the | anguage syntax splatters
over into the scanner. |In the C language, the case of characters
inidentifiers is significant. For such a |anguage, we obviously
can't map the characters to upper case. The design |'m using
assunmes a | anguage |i ke Pascal, where the case of characters
doesn't matter. For such | anguages, it's easier to go ahead and
map all identifiers to upper case in the scanner, so we don't have
to worry later on when we're conparing strings for equality.

We coul d have even gone a step further, and map the characters to
upper case right as they come in, in GetChar. This approach works
too, and |I've used it in the past, but it's too confining.

Specifically, it will also map characters that nay be part of
gquoted strings, which is not a good idea. So if you're going to
map to upper case at all, GetName is the proper place to do it.

Note that the function GetNunber in this scanner returns a string,
just as GetNane does. This is another one of those things |I've



oscillated about al nost daily, and the |last swing was all of ten
m nutes ago. The alternative approach, and one |'ve used many
times in past installnments, returns an integer result.

Bot h approaches have their good points. Since we're fetching a
nunmber, the approach that imediately cones to mnd is to return
it as an integer. But bear in mind that the eventual use of the

nunber will be in a wite statenent that goes back to the outside
worl d. Someone -- either us or the code hidden inside the wite
statenent -- is going to have to convert the nunber back to a

string again. Turbo Pascal includes such string conversion

routi nes, but why use themif we don't have to? Wy convert a
nunber fromstring to integer form only to convert it right back
again in the code generator, only a few statenents |ater?

Furthernore, as you'll soon see, we're going to need a tenporary
storage spot for the value of the token we've fetched. |If we treat
the nunber in its string form we can store the value of either a
variable or a nunmber in the same string. Oherwise, we'll have to
create a second, integer variable.

On the other hand, we'll find that carrying the nunber as a string
virtually elimnates any chance of optimzation later on. As we
get to the point where we are beginning to concern ourselves with
code generation, we'll encounter cases in which we're doing
arithnetic on constants. For such cases, it's really foolish to
generate code that perfornms the constant arithmetic at run tine.
Far better to let the parser do the arithnmetic at conpile tine,
and nerely code the result. To do that, we'll w sh we had the
constants stored as integers rather than strings.

What finally swng me back over to the string approach was an
aggressive application of the KISS test, plus rem nding nyself
that we've studiously avoi ded i ssues of code efficiency. One of
the things that nakes our sinple-mnded parsing work, w thout the
conplexities of a "real" conpiler, is that we've said up front
that we aren't concerned about code efficiency. That gives us a
ot of freedomto do things the easy way rather than the efficient
one, and it's a freedom we nmust be careful not to abandon
voluntarily, in spite of the urges for efficiency shouting in our
ear. In addition to being a big believer in the KISS phil osophy,
I'malso an advocate of "lazy programmng,"” which in this context
means, don't program anything until you need it. As P.J. Plauger
says, "Never put off until tonorrow what you can put off
indefinitely." Over the years, nmuch code has been witten to
provi de for eventualities that never happened. 1've |earned that
| esson nyself, frombitter experience. So the bottomline is: W
won't convert to an integer here because we don't need to. It's
as sinple as that.

For those of you who still think we may need the integer version
(and indeed we may), here it is:

{ Get a Number (integer version) }



function Get Nunber: | ongint;
var n: |longint;
begi n
n:=0;
if not IsDigit(Look) then Expected('Integer');
while IsDigit(Look) do begin
n:=10 * n + (Od(Look) - Od('0"));
Get Char;
end;
Get Number : = n;

You might file this one away, as | intend to, for a rainy day.

PARSI NG

At this point, we have distributed all the routines that made up
our Cradle into units that we can draw upon as we need them
Qobviously, they will evolve further as we continue the process of
boot st rappi ng ourselves up again, but for the nost part their
content, and certainly the architecture that they inply, is
defined. What remains is to enbody the | anguage syntax into the
parser unit. W won't do rmuch of that in this installnment, but I
do want to do a little, just to leave us with the good feeling

that we still know what we're doing. So before we go, let's
generate just enough of a parser to process single factors in an
expression. In the process, we'll also, by necessity, find we

have created a code generator unit, as well
Remenber the very first installnment of this series? W read an
i nteger value, say n, and generated the code to load it into the
DO register via an i medi ate nove:

MOVE #n, DO
Shortly afterwards, we repeated the process for a variable,

MOVE X( PC), DO
and then for a factor that could be either constant or variable.

For old tinmes sake, let's revisit that process. Define the
foll owi ng new unit:

(o }
unit Parser;

{o }
interface

uses | nput, Scanner, Errors, CodeCen;
procedure Factor;



{ Parse and Translate a Factor }

procedure Factor;
begi n

LoadConst ant ( Get Nunber) ;
end;

As you can see, this unit calls a procedure, LoadConstant, which
actually effects the output of the assenbly-Ianguage code. The
unit also uses a new unit, CodeGen. This step represents the |ast
maj or change in our architecture, fromearlier installnments: The
renoval of the nachi ne-dependent code to a separate unit. If |
have ny way, there will not be a single |ine of code, outside of
CodeCGen, that betrays the fact that we're targeting the 68000 CPU
And this is one place | think that having nmy way is quite
feasi bl e.

For those of you who wish | were using the 80x86 architecture (or
any other one) instead of the 68000, here's your answer: Merely
repl ace CodeGen with one suitable for your CPU of choice.

So far, our code generator has only one procedure in it. Here's
the unit:

(o }
unit CodeCen;
O e P TP PEEE }
i nterface

uses CQut put;

procedure LoadConstant(n: string);

o }
i mpl enent ati on
e T EETRERETEE }

{ Load the Prinmary Register with a Constant }

procedure LoadConstant(n: string);
begi n

EmtLn(' MOVE # + n + ',D0" );
end;

Copy and conpile this unit, and execute the follow ng main
program

program Mai n;



uses WnCRT, Input, Qutput, Errors, Scanner, Parser
begi n
Fact or;

There it is, the generated code, just as we hoped it would be.

Now, | hope you can begin to see the advantage of the unit-based
architecture of our new design. Here we have a main program
that's all of five lines long. That's all of the program we need
to see, unless we choose to see nore. And yet, all those units
are sitting there, patiently waiting to serve us. W can have our
cake and eat it too, in that we have sinple and short code, but
powerful allies. What remains to be done is to flesh out the
units to match the capabilities of earlier installments. W'IlIl do
that in the next installment, but before | close, let's finish out
the parsing of a factor, just to satisfy ourselves that we stil
know how. The final version of CodeCen includes the new
procedure, LoadVari able:

i nterface

uses Cut put;

procedure LoadConstant(n: string);
procedure LoadVari abl e(Name: string);

{ Load the Prinmary Register with a Constant }

procedure LoadConstant(n: string);
begi n

EmtLn(' MOVE # + n + ',D0" )
end;

{ Load a Variable to the Primary Regi ster }

procedure LoadVari abl e(Name: string);
begi n

EmtLn(' MOVE ' + Name + ' (PC),D0");
end;

The parser unit itself doesn't change, but we have a nore conpl ex
versi on of procedure Factor:



{ Parse and Translate a Factor }

procedure Factor;
begi n
if IsDigit(Look) then
LoadConst ant ( Get Nunber)
el se if |sAl pha(Look)then
LoadVari abl e( Get Nane)
el se
Error (' Unrecogni zed character ' + Look);

Now, without altering the main program you should find that our
program wi || process either a variable or a constant factor. At
this point, our architecture is alnost conplete; we have units to
do all the dirty work, and enough code in the parser and code
generator to demonstrate that everything works. What remains is
to flesh out the units we' ve defined, particularly the parser and
code generator, to support the nore conplex syntax el ements that
make up a real |anguage. Since we've done this many tines before
in earlier installnments, it shouldn't take long to get us back to
where we were before the long hiatus. We'Ill continue this process
in Installnment 16, conming soon. See you then
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I NTRODUCTI ON

This series of tutorials prom ses to be perhaps one of the |ongest-
running mni-series in history, rivalled only by the delay in Volunme IV
of Knuth. Begun in 1988, the series ran into a four-year hiatus in 1990
when the "cares of this world," changes in priorities and interests, and
the need to nake a living seened to stall it out after Installnment 14.
Those of you with | oads of patience were finally rewarded, in the spring



of last year, with the long-awaited Installnent 15. 1In it, | began to
try to steer the series back on track, and in the process, to make it
easier to continue on to the goal, which is to provide you with not only
enough understanding of the difficult subject of conpiler theory, but

al so enough tools, in the formof canned subroutines and concepts, so
that you woul d be able to continue on your own and become proficient
enough to build your own parsers and translators. Because of that |ong

hiatus, | thought it appropriate to go back and review the concepts we
have covered so far, and to redo some of the software, as well. In the
past, we've never concerned ourselves nuch with the devel opnent of
production-quality software tools ... after all, | was trying to teach
(and | earn) concepts, not production practice. To do that, | tended to
gi ve you, not conplete conpilers or parsers, but only those snippets of
code that illustrated the particular point we were considering at the
nonent .

| still believe that's a good way to | earn any subject; no one wants to

have to nmake changes to 100,000 |ine programs just to try out a new
idea. But the idea of just dealing with code snippets, rather than
conpl ete programs, also has its drawbacks in that we often seened to be
witing the same code fragnents over and over. Although repetition has
been thoroughly proven to be a good way to learn new ideas, it's also
true that one can have too nmuch of a good thing. By the time | had
conpleted Installment 14 | seened to have reached the limts of ny
abilities to juggle multiple files and nmultiple versions of the sane
software functions. \Who knows, perhaps that's one reason | seened to
have run out of gas at that point.

Fortunately, the later versions of Borland's Turbo Pascal allow us to
have our cake and eat it too. By using their concept of separately

conpi |l able units, we can still wite small subroutines and functions,
and keep our main programs and test programs small and sinple. But,
once witten, the code in the Pascal units will always be there for us

to use, and linking themin is totally painless and transparent.

Since, by now, nobst of you are programring in either C or C++, | know
what you're thinking: Borland, with their Turbo Pascal (TP), certainly
didn't invent the concept of separately conpil able nodules. And of
course you're right. But if you' ve not used TP lately, or ever, you may
not realize just how painless the whole process is. Even in C or Ct+,

you still have to build a nake file, either manually or by telling the
conpiler howto do so. You nust also list, using "extern" statenents or
header files, the functions you want to inmport. In TP, you don't even

have to do that. You need only nane the units you wi sh to use, and al
of their procedures automatically beconme avail abl e.

It's not nmy intention to get into a | anguage-war debate here, so | won't
pursue the subject any further. Even | no |onger use Pascal on ny job

I use C at work and C++ for ny articles in Enbedded Systens
Programm ng and ot her magazi nes. Believe ne, when | set out to
resurrect this series, | thought |ong and hard about sw tching both
| anguages and target systens to the ones that we're all using these
days, C/ C++ and PC architecture, and possibly object-oriented nethods as
well. In the end, | felt it would cause nore confusion than the hiatus
itself has. And after all, Pascal still renmains one of the best possible
| anguages for teaching, not to nention production programming. Finally,



TP still conpiles at the speed of light, nuch faster than conpeting

C/ C++ conpilers. And Borland's smart |inker, used in TP but not in their
C++ products, is second to none. Aside frombeing nuch faster than

M crosoft-conpatible Iinkers, the Borland smart linker will cull unused
procedures and data itenms, even to the extent of trinmng them out of
defined objects if they' re not needed. For one of the few tines in our
lives, we don't have to conprom se between conpl et eness and efficiency.
When we're witing a TP unit, we can nmake it as conplete as we |iKke,

i ncl udi ng any nmenber functions and data items we may think we will ever
need, confident that doing so will not create unwanted bloat in the
conpil ed and |inked executabl e.

The point, really, is sinply this: By using TP's unit mechanism we can
have all the advantages and conveni ence of witing small, seem ngly
stand-al one test programs, W thout having to constantly rewite the
support functions that we need. Once witten, the TP units sit there,
quietly waiting to do their duty and give us the support we need, when
we need it.

Using this principle, in Installment 15 | set out to minimze our
tendency to re-invent the wheel by organizing our code into separate
Turbo Pascal units, each containing different parts of the conpiler. We
ended up with the follow ng units:

| nput
Qut put
Errors
Scanner
Par ser
CodeGen

b I R

Each of these units serves a different function, and encapsul ates
specific areas of functionality. The Input and Qutput units, as their
name i nplies, provide character stream|/O and the all-inportant

| ookahead character upon which our predictive parser is based. The
Errors unit, of course, provides standard error handling. The Scanner
unit contains all of our bool ean functions such as |sAl pha, and the
routi nes Get Name and Get Nunber, which process multi-character tokens.

The two units we'll be working with the nost, and the ones that nost
represent the personality of our conpiler, are Parser and CodeCen.
Theoretically, the Parser unit should encapsul ate all aspects of the
conpi l er that depend on the syntax of the conpiled | anguage (though, as
we saw last tinme, a small anount of this syntax spills over into
Scanner). Simlarly, the code generator unit, CodeGen, contains all of
the code dependent upon the target machine. 1In this installnent, we'l
be continuing with the devel opnent of the functions in these two all-

i mportant units.

JUST LI KE CLASSI CAL?

Bef ore we proceed, however, | think |I should clarify the relationship
between, and the functionality of these units. Those of you who are
famliar with conpiler theory as taught in universities will, of course,



recogni ze the nanmes, Scanner, Parser, and CodeGen, all of which are
conmponents of a classical conpiler inplementation. You may be thinking
that 1've abandoned nmy comritnent to the KISS phil osophy, and drifted
towards a nore conventional architecture than we once had. A closer

| ook, however, should convince you that, while the nanmes are sinmlar
the functionalities are quite different.

Toget her, the scanner and parser of a classical inplenmentation conprise
the so-called "front end," and the code generator, the back end. The
front end routines process the | anguage-dependent, syntax-rel ated
aspects of the source | anguage, while the code generator, or back end,
deals with the target nmachi ne-dependent parts of the problem In
classical conpilers, the two ends communicate via a file of instructions
witten in an internedi ate | anguage (IL).

Typically, a classical scanner is a single procedure, operating as a co-
procedure with the parser. It "tokenizes" the source file, reading it
character by character, recognizing | anguage el enents, translating them
into tokens, and passing themalong to the parser. You can think of the
parser as an abstract machi ne, executing "op codes,” which are the
tokens. Simlarly, the parser generates op codes of a second abstract
machi ne, whi ch nechani zes the IL. Typically, the IL file is witten to
di sk by the parser, and read back again by the code generator

Qur organi zation is quite different. W have no |exical scanner, in the
cl assical sense; our unit Scanner, though it has a simlar name, is not
a single procedure or co-procedure, but nmerely a set of separate
subroutines which are called by the parser as needed.

Simlarly, the classical code generator, the back end, is a translator
inits own right, reading an IL "source"” file, and em tting an object
file. Qur code generator doesn't work that way. |In our conpiler, there

IS no internmedi ate | anguage; every construct in the source | anguage
syntax is converted into assenbly |anguage as it is recognized by the
parser. Like Scanner, the unit CodeGen consists of individua
procedures which are called by the parser as needed.

This "code 'em as you find 'enm' philosophy nay not produce the world's
nost efficient code -- for exanple, we haven't provided (yet!) a
conveni ent place for an optimzer to work its magic -- but it sure does
sinmplify the conpiler, doesn't it?

And t hat observation pronpts ne to reflect, once again, on how we have
managed to reduce a conpiler's functions to such conparatively sinple

terms. |'ve waxed el oquent on this subject in past installnments, so
won't bel abor the point too much here. However, because of the tine
that's el apsed since those |ast soliloquies, | hope you'll grant me just

alittle time to remind nyself, as well as you, how we got here. W got
here by applying several principles that witers of comercial conpilers
sel dom have the luxury of using. These are:

o} The KISS phil osophy -- Never do things the hard way wi thout a
reason
o] Lazy coding -- Never put off until tonmorrow what you can put

of forever (with credits to P.J. Plauger)



o] Skepticism-- Stubborn refusal to do sonething just because
that's the way it's always been done.

o} Acceptance of inefficient code
o] Rej ection of arbitrary constraints
As |'ve reviewed the history of conpiler construction, |'ve | earned that

virtually every production conpiler in history has suffered from pre-

i mposed conditions that strongly influenced its design. The origina
FORTRAN compi | er of John Backus, et al, had to conpete with assenbly

| anguage, and therefore was constrained to produce extrenely efficient
code. The IBM conpilers for the m niconputers of the 70's had to run in
the very small RAM nenories then available -- as small as 4k. The early
Ada conpiler had to conpile itself. Per Brinch Hansen decreed that his
Pascal conpiler devel oped for the IBM PC nmust execute in a 64k nmachi ne.
Conpi | ers devel oped in Conputer Science courses had to conpile the

wi dest variety of |anguages, and therefore required LALR parsers.

In each of these cases, these preconceived constraints literally
domi nated the design of the conpiler

A good exanple is Brinch Hansen's conpiler, described in his excellent
book, "Brinch Hansen on Pascal Conpilers" (highly recommended). Though
his compiler is one of the nobst clear and un-obscure conpiler

i mpl enentations |'ve seen, that one decision, to conpile large files in
a small RAM totally drives the design, and he ends up with not just

one, but many intermediate files, together with the drivers to wite and
read them

In time, the architectures resulting from such decisions have found
their way into conputer science lore as articles of faith. In this one
man's opinion, it's time that they were re-exanmned critically. The
conditions, environnments, and requirenents that led to classica
architectures are not the sane as the ones we have today. There's no
reason to believe the solutions should be the same, either

In this tutorial, we've followed the | eads of such pioneers in the world
of small compilers for Pcs as Leor Zol man, Ron Cain, and James Hendri x,
who didn't know enough conpiler theory to know that they "couldn't do it
that way." W have resolutely refused to accept arbitrary constraints,
but rather have done whatever was easy. As a result, we have evolved an
architecture that, while quite different fromthe classical one, gets
the job done in very sinple and straightforward fashion

"Il end this philosophizing with an observation re the notion of an

i nternedi ate | anguage. While |'ve noted before that we don't have one
in our conpiler, that's not exactly true; we _DO_have one, or at |east
are evolving one, in the sense that we are defining code generation
functions for the parser to call. 1In essence, every call to a code
generation procedure can be thought of as an instruction in an

i nternedi ate | anguage. Should we ever find it necessary to formalize an
i nternedi ate | anguage, this is the way we would do it: emt codes from
the parser, each representing a call to one of the code generator
procedures, and then process each code by calling those procedures in a
separate pass, inplenented in a back end. Frankly, | don't see that
we'll ever find a need for this approach, but there is the connection



if you choose to followit, between the classical and the current
approaches.

FLESHI NG OQUT THE PARSER

Though | prom sed you, sonmewhere along about Installnent 14, that we'd
never again wite every single function fromscratch, | ended up
starting to do just that in Installment 15. One reason: that |ong

hi atus between the two installnents nade a review seem eninently
justified ... even inperative, both for you and for me. More

i mportantly, the decision to collect the procedures into nodul es
(units), forced us to | ook at each one yet again, whether we wanted to
or not. And, finally and frankly, |I've had sonme new ideas in the | ast
four years that warranted a fresh | ook at sonme old friends. Wen
first began this series, | was frankly amazed, and pl eased, to learn
just how sinple parsing routines can be nmade. But this last tine
around, |'ve surprised myself yet again, and been able to make them j ust
that last little bit sinpler, yet.

Still, because of this total rewite of the parsing nodules, | was only
able to include so much in the last installnment. Because of this, our
hero, the parser, when | ast seen, was a shadow of his forner self,

consi sting of only enough code to parse and process a factor consisting
of either a variable or a constant. The main effort of this current
installnment will be to help flesh out the parser to its forner glory.
In the process, | hope you'll bear with me if we sonetinmes cover ground
we' ve | ong since been over and dealt with.

First, let's take care of a problemthat we' ve addressed before: Qur
current version of procedure Factor, as we left it in Installnent 15,
can't handl e negative argunents. To fix that, we'll introduce the
procedur e Si gnedFact or

{ Parse and Translate a Factor with Optional Sign }

procedur e Si gnedFact or
var Sign: char;
begin
Sign : = Look;
i f IsAddop(Look) then
Get Char;
Fact or;
if Sign ='-' then Negate;

Note that this procedure calls a new code generation routine, Negate:

{ Negate Primary }



procedure Negate
begi n
Em tLn(' NEG DO');

end;

{ }

(Here, and el sewhere in this series, I'"'monly going to show you the new
routines. |I'mcounting on you to put theminto the proper unit, which

you should normally have no trouble identifying. Don't forget to add
the procedure's prototype to the interface section of the unit.)

In the main program sinply change the procedure called from Factor to
Si gnedFactor, and give the code a test. |Isn't it neat how the Turbo
linker and nmake facility handle all the details?

Yes, | know, the code isn't very efficient. |If we input a nunber, -3,
the generated code is:

MOVE #3, DO
NEG DO

which is really, really dumb. W can do better, of course, by sinply
pre-appending a mnus sign to the string passed to LoadConstant, but it
adds a few lines of code to SignedFactor, and |'m applying the KISS

phi | osophy very aggressively here. What's nore, to tell the truth,
think I'm subconsciously enjoying generating "really, really dumb" code,
so | can have the pleasure of watching it get dramatically better when
we get into optim zation nethods.

Most of you have never heard of John Spray, so allow me to introduce him
to you here. John's from New Zeal and, and used to teach conputer
science at one of its universities. John wote a conpiler for the
Mot or ol a 6809, based on a delightful, Pascal-like |anguage of his own
design called "Wiinsical." He later ported the conpiler to the 68000,
and for awhile it was the only conpiler | had for my homebrewed 68000
system

For the record, one of my standard tests for any new conpiler is to see
how t he conpiler deals with a null programlike:

program nai n;
begi n
end.

My test is to nmeasure the tinme required to conpile and |ink, and the
size of the object file generated. The undisputed LOSER in the test
is the DEC C conpiler for the VAX, which took 60 seconds to conpile, on
a VAX 11/780, and generated a 50k object file. John's conpiler is the
undi sputed, once, future, and forever king in the code size departnent.
G ven the null program Whinsical generates precisely two bytes of code,
i mpl enmenting the one instruction

RET

By setting a conpiler option to generate an include file rather than a
st andal one program John can even cut this size, fromtwo bytes to zerol!



Sort of hard to beat a null object file, wouldn't you say?

Needl ess to say, | consider John to be sonmething of an expert on code
optim zation, and | |ike what he has to say: "The best way to optim ze
is not to have to optimze at all, but to produce good code in the first
pl ace.”™ Words to live by. Wen we get started on optim zation, we'l

foll ow John's advice, and our first step will not be to add a peephol e
optim zer or other after-the-fact device, but to inmprove the quality of
the code enmtted before optim zation. So nmake a note of SignedFactor as
a good first candidate for attention, and for now we'll |eave it be.

TERMS AND EXPRESSI ONS

I'"msure you know what's conmi ng next: We must, yet again, create the
rest of the procedures that inplenment the recursive-descent parsing of
an expression. W all know that the hierarchy of procedures for
arithnmetic expressions is:

expression
term
factor

However, for now let's continue to do things one step at a tineg,
and consider only expressions with additive terns in them The
code to inplement expressions, including a possibly signed first
term is shown next:

{ Parse and Transl ate an Expression }

procedur e Expression;
begin
Si gnedFact or;
whi | e | sAddop(Look) do
case Look of
"+': Add;
'-': Subtract;

This procedure calls two other procedures to process the
operations:

{ Parse and Translate an Addition Operation }

procedure Add;
begi n
Mat ch(' +');
Push;
Fact or;
PopAdd;
end;



{ Parse and Translate a Subtraction Operation }

procedure Subtract;

begin
Match('-"');
Push;
Factor;
PopSub;
end;
{o }

The three procedures Push, PopAdd, and PopSub are new code generation
routines. As the name inplies, procedure Push generates code to push
the primary register (DO, in our 68000 inplenentation) to the stack.
PopAdd and PopSub pop the top of the stack again, and add it to, or
subtract it from the primary register. The code is shown next:

{ Push Primary to Stack }

procedure Push;
begi n

Em tLn(' MOVE DO, -(SP)');
end;

{ Add TOS to Primary }
procedur e PopAdd;
begi n

Em tLn(' ADD (SP) +, DO');
end;
{ Subtract TOS fromPrimary }

procedure PopSub;

begi n
EmitLn(' SUB (SP)+, DO');
Negat e;
end;
{ }

Add these routines to Parser and CodeGen, and change the main programto
call Expression. Voil al

The next step, of course, is to add the capability for dealing with
multiplicative terns. To that end, we'll add a procedure Term and code
generation procedures PopMiul and PopDiv. These code generation



procedures are shown next:

{ Multiply TOS by Primary }

procedure PopMul ;
begi n

Em tLn(' MULS (SP)+, D0");
end;

{ Divide Primary by TOCS }

procedure PopDiv;

begin
Em tLn(' MOVE (SP)+, D7');
Em tLn(' EXT.L D7');
Em tLn(' DI VS DO, D7');
Em tLn(' MOVE D7, DO')

| admit, the division routine is alittle busy, but there's no help for
it. Unfortunately, while the 68000 CPU allows a division using the top
of stack (TOS), it wants the argunments in the wong order, just as it
does for subtraction. So our only recourse is to pop the stack to a
scratch register (D7), performthe division there, and then nove the
result back to our primary register, DO. Note the use of signed multiply
and divide operations. This follows an inplied, but unstated,
assunption, that all our variables will be signed 16-bit integers. This
decision will cone back to haunt us later, when we start | ooking at

mul tiple data types, type conversions, etc.

Qur procedure Termis virtually a clone of Expression, and | ooks like
this:

{ Parse and Translate a Term}

procedure Term
begin
Fact or;
whi l e 1 sMul op(Look) do
case Look of
"xroo Ml tioply;
/' Divide;

Qur next step is to change some nanes. SignhedFactor now becones
Si gnedTerm and the calls to Factor in Expression, Add, Subtract and
Si gnedTerm get changed to call Term



{ Parse and Translate a Termw th Optional Leading Sign }

procedure SignedTerm
var Sign: char;
begi n
Sign : = Look;
i f IsAddop(Look) then

Get Char ;
Term
if Sign ="'-' then Negate;
end;
{rr }
R EEEEEEEE, }

{ Parse and Transl ate an Expression }

procedure Expression;
begi n
Si gnedTer m
whi | e | sAddop(Look) do
case Look of
"+ Add;
'-': Subtract;

If nmenory serves me correctly, we once had BOTH a procedure Si gnedFact or
and a procedure SignedTerm | had reasons for doing that at the tinme ...
they had to do with the handling of Bool ean al gebra and, in particul ar
the Bool ean "not" function. But certainly, for arithnmetic operations,
that duplication isn't necessary. In an expression like:

_X*y

it's very apparent that the sign goes with the whole TERM x*y, and not
just the factor x, and that's the way Expression is coded.

Test this new code by executing Main. It still calls Expression, so you
shoul d now be able to deal with expressions containing any of the four
arithnetic operators.

Qur last bit of business, as far as expressions goes, is to nmodify
procedure Factor to allow for parenthetical expressions. By using a
recursive call to Expression, we can reduce the needed code to virtually
nothing. Five lines added to Factor do the job:

{ Parse and Translate a Factor }

procedure Factor;
begi n



if Look ='(' then begin
Match(' (");
Expr essi on;
Match(')');
end
else if IsDigit(Look) then
LoadConst ant ( Get Nunber)
el se if |IsAl pha(Look)then
LoadVari abl e( Get Nane)
el se
Error (' Unrecogni zed character ' + Look);

At this point, your "conpiler" should be able to handle any |ega
expression you can throw at it. Better yet, it should reject al
illegal ones!

ASSI GNMVENTS

As long as we're this close, we nmght as well create the code to dea
with an assignment statenent. This code needs only to renenber the name
of the target variable where we are to store the result of an
expression, call Expression, then store the nunber. The procedure is
shown next:

{ Parse and Transl ate an Assi gnnent Statenment }

procedure Assi gnnent;
var Nane: string;
begi n
Name : = Get Nane;
Mat ch(' =");
Expr essi on;
St oreVari abl e( Nane) ;

The assignnent calls for yet another code generation routine:

{ Store the Primary Register to a Variable }

procedure StoreVariabl e(Nane: string);
begi n
EmtLn('LEA " + Name + ' (PC), A0');
Em tLn(' MOVE DO, (A0)');

Now, change the call in Main to call Assignment, and you should see a



full assignnment statement being processed correctly. Pretty neat, eh?
And painl ess, too.

In the past, we' ve always tried to show BNF relations to define the
syntax we're devel oping. | haven't done that here, and it's high tinme |
did. Here's the BNF:

<expressi on>
<assi ghnent >

<signed_ternr (<addop> <ternp)*

<factor> .. = <variable> | <constant> | '(' <expression> ')’
<signed_ternm> ::= [ <addop>] <ternp
<ternp 1= <factor> (<mul op> <factor>)*

<vari abl e> <expressi on>

BOOLEANS

The next step, as we've | earned several tinmes before, is to add Bool ean
algebra. In the past, this step has at |east doubled the anount of code
we've had to wite. As |'ve gone over this step in ny mnd, |'ve found
nysel f diverging nore and nore fromwhat we did in previous
installments. To refresh your menory, | noted that Pascal treats the
Bool ean operators pretty much identically to the way it treats
arithmetic ones. A Boolean "and" has the sane precedence |evel as

mul tiplication, and the "or" as addition. C, on the other hand, sets
them at different precedence |levels, and all told has a whopping 17
levels. In our earlier work, |I chose sonething in between, with seven
levels. As a result, we ended up with things called Bool ean
expressions, paralleling in nost details the arithmetic expressions, but
at a different precedence level. Al of this, as it turned out, cane
about because | didn't like having to put parentheses around the Bool ean
expressions in statenents |ike:

IF (¢ >>"A") and (¢ <="'Z") then ..

In retrospect, that seens a pretty petty reason to add many | ayers of
conplexity to the parser. Perhaps nore to the point, |'mnot sure | was
even able to avoid the parens.

For kicks, let's start anew, taking a nore Pascal -i sh approach, and just
treat the Bool ean operators at the sane precedence |evel as the
arithmetic ones. We'll see where it leads us. |If it seenms to be down
the garden path, we can al ways backtrack to the earlier approach

For starters, we'll add the "addition-level" operators to Expression
That's easily done; first, nodify the function IsAddop in unit Scanner
to include two extra operators: '|' for "or," and '~' for "exclusive
or":
(- - - }
function |sAddop(c: char): bool ean;
begin

I'sAddop :=c in ["+","-", "', "~"];
end;



Next, we nust include the parsing of the operators in procedure
Expressi on:

procedure Expression;
begi n
Si gnedTer m
whi | e |1 sAddop(Look) do
case Look of

"+': Add;
'-': Subtract;
N © g
'~'": _Xor;
end;
o }

(The underscores are needed, of course, because "or" and "xor" are
reserved words in Turbo Pascal.)
Next, the procedures _Or and _Xor:
SRR }
{ Parse and Translate a Subtraction Operation }
procedure _O;
begi n

Match(' |");

Push;

Term

PopOr;
end;
R }
{ Parse and Translate a Subtraction Operation }
procedure _Xor;
begi n

Mat ch(' ~');

Push;

Term

PopXor ;
end;
{ }
And, finally, the new code generator procedures:
{o }

{ O TOS with Primary }



procedure PopOr;
begi n

EmtLn(' OR (SP)+, D0");
end;

{ Exclusive-Or TOS with Primary }

procedure PopXor;
begi n
Em tLn(' EOR (SP) +, DO ) ;

Now, let's test the translator (you m ght want to change the cal
in Main back to a call to Expression, just to avoid having to type
"x=" for an assignnent every tine).

So far, so good. The parser nicely handl es expressions of the
form

x| y~z

Unfortunately, it also does nothing to protect us from m xi ng
Bool ean and arithnetic algebra. It will merrily generate code
for:

(a+b)*(c~d)

We' ve tal ked about this a bit, in the past. 1In general the rules
for what operations are |egal or not cannot be enforced by the
parser itself, because they are not part of the syntax of the

| anguage, but rather its semantics. A conpiler that doesn't allow
m xed- node expressions of this sort nust recognize that ¢ and d
are Bool ean variabl es, rather than nunmeric ones, and bal k at

mul tiplying themin the next step. But this "policing" can't be
done by the parser; it must be handl ed somewhere between the
parser and the code generator. W aren't in a position to enforce
such rul es yet, because we haven't got either a way of declaring
types, or a synbol table to store the types in. So, for what
we've got to work with at the nmonent, the parser is doing
precisely what it's supposed to do.

Anyway, are we sure that we DON' T want to allow m xed-type
operations? W nmade the decision some tine ago (or, at |east, |
did) to adopt the value 0000 as a Bool ean "false," and -1, or
FFFFh, as a Boolean "true." The nice part about this choice is
that bitw se operations work exactly the sane way as | ogi cal ones.
In other words, when we do an operation on one bit of a |ogica
variable, we do it on all of them This means that we don't need
to di stinguish between |ogical and bitw se operations, as is done
in Cwith the operators & and &&, and | and ||. Reducing the
nunber of operators by half certainly doesn't seemall bad.

From the point of view of the data in storage, of course, the
conmput er and compiler couldn't care | ess whether the nunmber FFFFh



represents the logical TRUE, or the nuneric -1. Should we? |
sort of think not. | can think of nmany exanples (though they

m ght be frowned upon as "tricky" code) where the ability to mx
the types might cone in handy. Exanple, the Dirac delta function
whi ch coul d be coded in one sinple line:

- (x=0)
or the absolute value function (DEFIN TELY tricky code!):
x*(1+2*(x<0) )

Pl ease note, |'m not advocating coding like this as a way of life.
I'd alnost certainly wite these functions in nore readable form
using IFs, just to keep fromconfusing later maintainers. Still

a noral question arises: Do we have the right to ENFORCE our

i deas of good coding practice on the programer, but witing the

| anguage so he can't do anything else? That's what N cklaus Wrth
did, in many places in Pascal, and Pascal has been criticized for
it -- for not being as "forgiving" as C

An interesting parallel presents itself in the exanple of the

Mot orol a 68000 design. Though Mdtorola brags | oudly about the
orthogonality of their instruction set, the fact is that it's far
fromorthogonal. For exanple, you can read a variable fromits
addr ess:

MOVE X, DO (where X is the name of a variable)

but you can't wite in the same way. To wite, you must |oad an
address register with the address of X. The sane is true for PC
relati ve addressing:

MOVE X( PC), DO (legal)
MOVE DO, X( PC) (illegal)

VWhen you begi n aski ng how such non-orthogonal behavi or came about,
you find that someone in Mdtorola had sone theories about how
software should be witten. Specifically, in this case, they

deci ded that self-nodifying code, which you can inplenment using
PC-relative wites, is a Bad Thing. Therefore, they designed the
processor to prohibit it. Unfortunately, in the process they also
prohibited _ALL_ writes of the forns shown above, however benign
Note that this was not something done by default. Extra design
work had to be done, and extra gates added, to destroy the natura
orthogonality of the instruction set.

One of the lessons I've learned fromlife: If you have two
choices, and can't decide which one to take, sometines the best
thing to do is nothing. Wy add extra gates to a processor to
enforce some stranger's idea of good programm ng practice? Leave
the instructions in, and |l et the progranmers debate what good
programm ng practice is. Simlarly, why should we add extra code
to our parser, to test for and prevent conditions that the user

m ght prefer to do, anyway? 1|1'd rather |eave the compiler sinple,
and let the software experts debate whether the practices should
be used or not.



Al'l of which serves as rationalization for ny decision as to how
to prevent mxed-type arithnetic: | won't. For a |anguage

i ntended for systens progranmm ng, the fewer rules, the better. If
you don't agree, and want to test for such conditions, we can do
it once we have a synbol table.

BOOLEAN " AND"
Wth that bit of phil osophy out of the way, we can press on to the

"and" operator, which goes into procedure Term By now, you can
probably do this without me, but here's the code, anyway:

I n Scanner,
N EEaEEEEEEEEEEEE TP EEEE }
function IsMiul op(c: char): bool ean;
begin
IsMulop :=c in ["*"' '/, "&];
end;
{o }
I n Parser,
oo }
procedure Term
begi n
Fact or;
whi l e 1 sMul op(Look) do
case Look of
"R Ml tioply;
"/': Divide;
"& : _And;
end;
end;
o o o oo }

{ Parse and Translate a Bool ean And Operation }

procedure _And;

begin
Mat ch(' & );
Push;
Fact or;
PopAnd;
end;
{o }

{ And Primary with TGOS }

procedure PopAnd;
begi n



EmitLn(' AND (SP) +, DO");

Your parser should now be able to process al nost any sort of |ogica
expression, and (should you be so inclined), mxed-node expressions as
wel | .

Way not "all sorts of |ogical expressions"? Because, so far, we haven't
dealt with the logical "not" operator, and this is where it gets tricky.
The | ogical "not" operator seens, at first glance, to be identical in
its behavior to the unary m nus, so ny first thought was to let the

excl usive or operator, '~', double as the unary "not." That didn't
work. In ny first attenpt, procedure SignedTermsinply ate ny '~',
because the character passed the test for an addop, but SignedTerm

i gnores all addops except '-'. It would have been easy enough to add
another line to SignedTerm but that would still not solve the problem
because note that Expression only accepts a signed termfor the _FIRST_
argunent .

Mat hemati cal |y, an expression like:
-a* -b

makes little or no sense, and the parser should flag it as an error
But the sanme expression, using a logical "not," makes perfect sense:

not a and not b

In the case of these unary operators, choosing to nake them act the sane
way seens an artificial force fit, sacrificing reasonable behavior on
the altar of inplenentational ease. While I'"'mall for keeping the

i mpl enentation as sinple as possible, | don't think we should do so at
the expense of reasonabl eness. Patching |ike this would be m ssing the
mai n point, which is that the logical "not" is sinply NOT the sanme kind
of animal as the unary mnus. Consider the exclusive or, which is nost
naturally witten as:

a~b ::= (a and not b) or (not a and b)

If we allow the "not" to nodify the whole term the last termin
par ent heses would be interpreted as:

not (a and hb)

which is not the sane thing at all. So it's clear that the |ogica
"not" rmust be thought of as connected to the FACTOR, not the term

The idea of overloading the '~ operator also makes no sense froma
mat hemati cal point of view The inplication of the unary mnus is that
it's equivalent to a subtraction from zero:

-X <=> 0-X
In fact, in one of ny nore sinple-mnded versions of Expression, |

reacted to a | eadi ng addop by sinply preloading a zero, then processing
the operator as though it were a binary operator. But a "not" is not



equi valent to an exclusive or with zero ... that would just give back
the original number. Instead, it's an exclusive or with FFFFh, or -1

In short, the seem ng parallel between the unary "not" and the unary

m nus falls apart under closer scrutiny. "not" nodifies the factor, not
the term and it is not related to either the unary m nus nor the
exclusive or. Therefore, it deserves a synbol to call its own. What
better synbol than the obvious one, also used by C, the '!' character?
Using the rul es about the way we think the "not" should behave, we
shoul d be able to code the exclusive or (assum ng we'd ever need to), in
the very natural form

a&'!b]|] 'aé&hb

Note that no parentheses are required -- the precedence |evels we've
chosen automatically take care of things.

If you're keeping score on the precedence |evels, this definition puts

the '!'" at the top of the heap. The |evels becone:
1. !

2. (unary)

3. &

4. + -, |, ~

Looking at this list, it's certainly not hard to see why we had trouble

using '~' as the "not" synbol!
So how do we mechanize the rules? In the sane way as we did with

Si gnedTerm but at the factor level. W'II| define a procedure
Not Fact or:

{ Parse and Translate a Factor with Optional "Not" }

procedur e Not Factor;

begi n
if Look ="!" then begin
Match('!");
Fact or;
Notit;
end
el se
Fact or;
end;
{o }
and call it fromall the places where we fornerly called Factor, i.e.,

fromTerm Miltiply, Divide, and _And. Note the new code generation
procedure:

{ Bitwise Not Primary }



procedure Notlt;
begi n

EmtLn(' EOR #-1,D0");
end;

Try this now, with a few sinple cases. In fact, try that exclusive or
exanpl e,

a&! b|!a&b

You shoul d get the code (without the conments, of course):

MOVE A(PC), DO ; load a

MOVE DO, - ( SP) ; push it
MOVE B( PC), DO ; load b

EOR #-1, DO ;onot it

AND ( SP) +, DO ; and with a
MOVE DO, - ( SP) ; push result
MOVE A(PC) , DO . load a

EOR #-1, D0 ; not it

MOVE DO, - (SP) . push it
MOVE B( PC), DO ; load b

AND ( SP) +, DO ; and with la
OR (SP) +, DO ;or with first term

That's precisely what we'd |like to get. So, at |least for both
arithmetic and | ogi cal operators, our new precedence and new, slinmer
syntax hang together. Even the peculiar, but legal, expression with
| eadi ng addop:

~X

makes sense. SignedTermignores the leading '~', as it should, since
t he expression is equivalent to:

0~x,
which is equal to x.
VWhen we | ook at the BNF we've created, we find that our bool ean al gebra

now adds only one extra line:

<not _f act or > [!] <factor>

<factor> <variable> | <constant> | '(' <expression> ')’
<si gned_terne [ <addop>] <terne
<ternmp <not _factor> (<nul op> <not_factor>)*

<expressi on>
<assi gnnent >

<si gned_ternr (<addop> <ternp)*

<variable> '=" <expression>

That's a big i nprovenent over earlier efforts. WII our luck continue
to hold when we get to relational operators? W' Il find out soon, but



it will have to wait for the next installment. W're at a good stopping
pl ace, and |I'm anxious to get this installment into your hands. It's
al ready been a year since the release of Installment 15. | blush to
admt that all of this current installnment has been ready for al nobst as
long, with the exception of relational operators. But the information
does you no good at all, sitting on nmy hard disk, and by holding it back
until the relational operations were done, |'ve kept it out of your
hands for that long. It's time for ne to let go of it and get it out
where you can get value fromit. Besides, there are quite a nunmber of
serious phil osophical questions associated with the rel ationa
operators, as well, and |I'd rather save them for a separate installnent
where | can do them justice.

Have fun with the new, |eaner arithnmetic and | ogical parsing, and I'l
see you soon with relationals.
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