
DIKU Rapport 88/21, October 1988

A Blond Primer

Olivier Danvy & Karoline Malmkjær

DIKU – University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen Ø, DENMARK

uucp: danvy@diku.dk & karoline@diku.dk

Abstract

This report describes how to use the reflective tower Blond. A reflective tower is a computational
architecture where programs are given access to representations of the current state of computation.
This models an infinite tower of interpreters interpreting each other, meta-circularly.

Blond is a Scheme interpreter extended to be reflective. This report concentrates on its reflec-
tive extension rather than on the standard Scheme characteristics. Reification, reflection, reified
environments, and reified continuations are described in detail. Each key point is illustrated with
scenarios. The first entries in a Blond library are assembled, and finally Blond is run in Blond,
achieving orthogonal reflective towers. A glossary and the Scheme source code are provided in
appendix.

This report informally describes its 1988 implementation, as specified in the article “Inten-
sions and Extensions in a Reflective Tower”, presented at the 1988 ACM Symposium on Lisp and
Functional Programming, where Blond is formally described.

Keywords

Procedural reflection, reflective towers, reification, reflection, reifiers.

1

Contents

Introduction 3

1 A Session with Blond 4

2 Blond as a Reflective Extension of Scheme 6

3 Reification and Reflection in Blond 6
3.1 Reification . 6
3.2 Reflection . 7
3.3 Conclusion . 9

4 Environments 10
4.1 Operations on the environments . 11
4.2 Reified environments . 11

5 Continuations 13

6 Elements for a Library 16

7 Blond in Blond, or the Orthogonality of Reflective Towers 24

Conclusion 25

Glossary 26

References 27

Appendix – The Blond Listing in Scheme 29

2

Introduction

Blond is the name of a reflective tower simulator developed at DIKU, the Institute of Datalogy at
the University of Copenhagen.

The abstract model is described in [Danvy & Malmkjær 88] and [Malmkjær 88]. This report
intends to be a manual. It is an informal, but self-contained presentation of Blond.

The basic idea of a reflective tower [Smith 82] is to have a series of interpreters interpret-
ing each other, and connected by two meta-level operations: “reification” and “reflection”
[Friedman & Wand 84]. Each interpreter processes the one below, and the tower is run by an
“ultimate machine” at its top. The tower is conceptually infinite.

At the beginning of a Blond session, all levels are interpreting the level below at the first itera-
tion of a print-eval-read loop. The final result of their efforts is the lowest level, with its interactive
print-eval-read loop, iterating over the input and output streams. We refer to it as the bottom
level loop.

. .

. .

. .
+---------+ 4 (<reifier><argument>∗)
| 2 | Reification
+---------+
| 1 | Reflection
+---------+ 5 (meaning <expression><expression><expression>)
| 0 |
+---------+

At each level, the computation is determined by the expression being evaluated, its environment
of evaluation, and the continuation to apply to the result.

Reification is achieved by applying a reifier: a ternary procedure which, when it is applied at one
level, is given the specified arguments, the current environment and the current continuation as
actual parameters (the arguments are reified in a list). The body of a reifier is evaluated at the
level above.

Reflection is obtained by applying the function meaning to three arguments. They are respectively
an expression to be evaluated, an environment in which to evaluate the expression and a continu-
ation to apply to the result of the evaluation.

When a reified continuation from level m is applied at level n, the computation of level m continues
with a result from level n. As the continuation is a closure, neither expression nor environment are
necessary – they are specified in the continuation itself.

Blond offers the third implementation of a reflective tower we know of. It comes after 3-
Lisp [Smith & des Rivières 84] and Brown [Friedman & Wand 84] [Wand, Friedman & Duba 86]
[Wand & Friedman 88]. 3-Lisp is implemented in InterLisp-D and runs on a Lisp Machine. It is
a complete system on its own. Brown is implemented in Scheme 84 and is a minimal reflective

3

system. With Blond, we have chosen to offer basically the language Scheme at each level of the
tower, and to enrich it with reification and reflection.

Blond is currently implemented in Scheme, meta-circularly to be able to run Blond in Blond.

With the Blond project, we hope to contribute to the general understanding of the reflective tower:
extensionally by describing it formally [Danvy & Malmkjær 88] [Danvy & Malmkjær 89]; and in-
tensionally by implementing it and document the implementation [Danvy & Malmkjær 88’].

Section 1 presents a session with Blond. At each level stands a Scheme interpreter with a print-
eval-read interactive loop. That language is briefly presented in section 2. Section 3 describes
the reflective extensions: reifiers and how to spawn new levels. Sections 4 and 5 address reified
environments and reified continuations. Section 6 describes the standard Blond library and how to
program in Blond. Section 7 discusses Blond in Blond and the construction of orthogonal reflective
towers. After a conclusion, a Blond glossary and the Scheme source code of Blond are provided in
appendix.

Blond has been developed in Scandinavia and is named after Brown, the reflective tower of
Indiana University.

1 A Session with Blond

The following scenario consists of (1) loading a file exit.bl defining a function to exit from the
current level with a result and (2) applying it. The most visible manifestation of the tower is
the prompt system: at each bottom level loop, a prompt indicates both the current level and the
current iteration. The latter point proves very useful when applying continuations that come back
to an earlier iteration of a bottom level loop.

The session is started at the level 0. Above it there is (conceptually) an infinity of levels
processing each other. Exiting from one level one arrives at the level above.

> (blond)
0-0: "bottom-level"
0-1> (load "exit.bl")
exit
0-1: "exit.bl"
0-2> (exit "good bye")
1-0: "good bye"
1-1> (load "exit.bl")
exit
1-1: "exit.bl"
1-2> (exit "farewell!")
2-0: "farewell!"
2-1> (blond-exit)
"farvel!"
>

Concretely:

• the first prompt is 0-0: to signal that we are at level 0 and that the number of iterations
since the beginning of the bottom level loop is 0: the level 0 has just started up;

• the next prompt is 0-1> to signal that we (still) are at level 0, that the current iteration in
the bottom level loop is 1 and that the system is ready to interact;

4

• we type (load "exit.bl") in order for the system to load the file exit.bl, containing the
definition of the function exit;

• the system loads the file, and gracefully displays some informations witnessing what is cur-
rently loaded;

• the prompt 0-1: signals that the following is the result of the iteration 1 of level 0; that
result is the name of the file;

• at the iteration 2 of level 0 we apply the function exit to some random expression "good
bye"; the net effect is to leave the level 0 and arrive to the level immediately above; as this
is a reflective tower, the level above is an identical Blond interpreter, which manifests itself
with the prompt 1-0:, signifying that we are now at level 1, that the number of iterations
since the beginning of the bottom level loop is 0 and that the current result is "good bye";

• the next prompt tells that this is the iteration number 1 of level 1;

• as we are at level 1, there is no reason to believe that the function exit is defined as it was
at level 0;1 we load the file exit.bl and exit from level 1;

• at level 2, we end the session with the predefined function blond-exit.

What do we learn in this session (apart that “good bye” is “farvel” in Danish)?
Essentially that we face a bottom level loop with a prompt displaying the level in the tower and

the number of iterations since the beginning of the bottom level loop. Otherwise, it is Scheme: we
can load a file and apply functions.

More fundamentally we learn that a session starts at level 0, and that above it there is (poten-
tially) an infinity of other identical levels, that preexist.

The next scenario illustrates that we can spawn new levels below the current one. We use the
predefined function openloop:

> (blond)
0-0: "bottom-level"
0-1> (openloop "hal")
hal-0: "bottom-level"
hal-1> (openloop "shalmaneser")
shalmaneser-0: "bottom-level"
shalmaneser-1> (load "exit.bl")
exit
shalmaneser-1: "exit.bl"
shalmaneser-2> (exit "cdb")
hal-1: "cdb"
hal-2> (blond-exit)
"farvel!"
>

What we learn here is that we can spawn new levels in the tower, and come back to them. This
points out that above the current level, there are pre-existing levels, and below, one can create as
many levels as he likes (or needs)2.

1Though it may be, as developed in section 4.
2This indicates that a reflective tower is actually a reflective tree with the root at the top, in the same way as a

5

2 Blond as a Reflective Extension of Scheme

At each level of the tower there is an interpreter. It is essentially a Scheme interpreter, that is
it processes an untyped λ-calculus applied to integers, strings and lists. It is higher-order and
properly tail-recursive.

In addition, Blond is properly tail-reflective [Danvy & Malmkjær 88]: tail-reflective calls are
performed iteratively. This extends Scheme’s proper tail-recursion.

Contrasting with Scheme, there is no implicit sequence of evaluation in Blond – it must be
made explicit with begin – and no “internal define”: local definitions are made using letrec,
for simplifying local definitions, global definitions and definitions common to all the levels in the
tower. Finally there are no special forms: functions, primitives, control structures, reifiers and by
extension reified environments and continuations are first-class – they can be passed as arguments
and returned as values. This design has been chosen on an experimental basis, to enforce the idea
that control structures actually are compiled reifiers.

3 Reification and Reflection in Blond

In Blond, reification is achieved with reifiers, that are abstractions. Reflecting spawns a new level
and is performed with the functions meaning and openloop.

3.1 Reification

The Blond reifiers are represented as ternary δ or γ-abstractions:

(delta (e r k) <body>)
(gamma (e r k) <body>)

Applying them has the effect to reify their arguments (in a list), the environment and the
continuation. Their body is evaluated at the level above, in an environment lexically extended with
the bindings of the three formal parameters to the list of reified expressions, the reified environment
and the reified continuation.

> (blond)
0-0: "bottom-level"
0-1> (add1 (openloop "marvin"))
marvin-0: "bottom-level"
marvin-1> ((delta (e r k) 41))
0-1: 42
0-2>

In this scenario, a new level is started as an argument of the successor function. At that level
a reifier is applied, its body consisting of the number 41. It is evaluated at the level above in place
of the expression (openloop "marvin") and, not that surprisingly, the answer is 42.

conventional control stack in an Algol or Lisp-like implementation merely represents the currently active branch in
the control tree.

6

The difference between δ and γ-abstraction is that the body of a δ-abstraction is evaluated in the
environment of the level above its application while the body of a γ-abstraction is evaluated in the
environment of the level above its definition3.

0-2> ((lambda (x) (openloop "foo")) 0)
foo-0: "bottom-level"
foo-1> ((delta (e r k) x))
0-2: 0
0-3>

In this scenario, the variable x is bound in the level above foo and can be referred to in the body
of a δ-reifier. Conversely, a γ-reifier defined at the level foo and applied at any other level would
remember of the level 0 environment. Blond offers these two sorts of reifiers which generalize the
concepts of static and dynamic scope to multiple levels of interpretation.

3.2 Reflection

Spawning a new level requires an expression to evaluate, an environment in which to evaluate it,
and a continuation to apply to the result of the evaluation.

We already know openloop: it takes a name (a string, a number, etc.) and spawns a new level.
We also know that it is the continuation that realizes the bottom level loop of the new level. Thus
there is not a single expression to evaluate at one level but all the expressions that will be read
along the bottom level loop. Finally, using openloop as above gives a new instance of the initial
environment to the new level. If one wants to spawn a new level with a predefined environment
(obtained by reification), he adds a second (optional) argument to openloop:

0-3> (let ((x 1))
((delta (e r k)

(openloop "fox" r))))
fox-0: "bottom-level"
fox-1> x
fox-1: 1
fox-2>

Note: the function reify-new-environment provides a new reified instance of the initial envi-
ronment, so that the form

(openloop "name")

is equivalent to

(openloop "name" (reify-new-environment))

But one does not always want to spawn a new level with a bottom level loop. The function
meaning offers a general way of spawning a new level: it has as arguments an expression, an
environment and a continuation. The expression is a standard Blond expression, the environment
must be a reified environment, and the continuation can be any unary applicable object. A standard
example is the identity function, where the reified environment and continuation are reinstalled:

3The name δ holds for dynamic. The logical letters for lexical or static would be λ or σ, which are already used in
[Church 41] and [Felleisen & Friedman 87]. Since Blond is already an applied λ-calculus, and because we can define
a σ-abstraction with a reifier to implement the language Λσ, we have choosen γ.

7

fox-2> ((delta (e r k)
(meaning (car e) r k)) "hello world")

fox-2: "hello world"
fox-3>

In this scenario, the argument of the δ-abstraction has been reified in a list. The body of the
reifier consists of querying the meaning of the argument in the reified environment, with the reified
continuation – that is to say, the reified expression, environment and continuations are reflected
back. This realizes the usual reflective definition of identity.

In the following interaction, the expression that is reified is not a string, but an identifier:

fox-3> (let ((x "hello world"))
((delta (e r k)

(meaning (car e) r k)) x))
fox-3: "hello world"
fox-4>

In that scenario, the argument of the δ-abstraction is x, which is bound to the string "hello
world" in the reified environment. The result is what we can expect from applying the identity
function.

The first argument of meaning must evaluate to a reified expression. For simplicity, we chose to
reify expressions as S-expressions, just as is expected in a Lisp-type setting:

• numerals and numbers are identified;

• syntactic and semantic strings are identified;

• identifiers and symbols are identified;

• any composed form written between parentheses is reified as the corresponding S-expression.

However, because of Scheme’s and Blond’s abstract syntax, we consider a restricted set of S-
expressions, without dotted pairs. Expressions are reified as pure polymorphic lists, built out of
the empty list.

This is for simplicity, because Blond is implemented in Scheme, where the identification be-
tween numerals and numbers, between syntactic and semantic strings, and between identifiers and
symbols, is already effective. Further, because Blond programs are actually Scheme lists for the
interpreter, reifying them as Blond lists is basically for free.

Thus in general, the first argument of meaning can be any well-formed list of atomic values4. The
second has to be a reified environment. But the third may be any unary function:

fox-4> (meaning 1 (reify-new-environment) (lambda (x) x))
fox-4: 1
fox-5>

In this scenario, the expression is the number 1, the environment is a fresh one and the contin-
uation is the identity function. The latter could be as well a primitive function:

4Examples of non-atomic values are function values, and more generally the operational value of any abstraction:
λ and δ-abstrations, reifiers and control structures.

8

fox-5> (meaning 1 (reify-new-environment) add1)
fox-5: 2
fox-6>

In Blond, the behaviour of the third argument of meaning obeys the following equation:

meaning ε ρ κ ' apply κ ε ρ

This makes it impossible to get “inside the implementation” (whatever this means) as in 3-Lisp
and in Brown, typically by specifying a reifier as a continuation. For example:

(meaning ’foobarbaz (reify-new-environment) quote)

merely returns foobarbaz at the same level, as it is the effect of quote-ing this identifier.
In 3-Lisp or in Brown, however, the expression is evaluated, and some continuation

λv.quote(v)

is is applied to the result, leading to the bewildering result v in Brown and various other results in
3-Lisp, depending on the expression.

However this hygiene is restricted to environments and continuations. First-class reifiers and control
structures offer a versatile access to expressions, as illustrated in the following scenario:

> (blond)
0-0: "bottom-level"
0-1> (define map

(lambda (f l) ; (Val -> Val) * List(Val) -> List(Val)
((rec self (lambda (l)

(if (null? l)
’()
(cons (f (car l)) (self (cdr l)))))) l)))

0-1: map
0-2> (map (lambda (x) x) ’(1 2 3))
0-2: (1 2 3)
0-3> (map quote ’(1 2 3))
0-3: ((car l) (car l) (car l))
0-4> (map (delta (e r k) e) ’(1 2 3))
1-0: ((car l))
1-1>

where one gets what he deserves (remembering that reified expressions are values).

3.3 Conclusion

The design of Blond makes it possible to:

• describe reification and reflection formally, without fearing a reflective program that could
get an insight in our semantics and process it (or why not side-effect it!);

• implement a reflective tower in something else than an interpreted Lisp-like language;

• finally it is a step towards compiling reflective programs.

9

This concludes the reflective capabilities offered in Blond. They are simple and formalizable
(see [Danvy & Malmkjær 88]). Reification is offered through δ and γ-abstractions, and reflection is
achieved by specifying either a one-shot evaluation, or a new interpreter with a bottom level loop.
Successive reifications and reflections neutralize, as can be expected:

> (blond)
0-0: "bottom-level"
0-1> (let ((x 1))

(meaning ’((delta (e r k) x))
(reify-new-environment)
(reify-new-continuation "dummy")))

0-1: 1
0-2> (let ((x 1))

((delta (e r k)
(meaning (car e) r k)) x))

0-2: 1
0-3> (blond-exit)
"farvel!"
>

This scenario illustrates that reflection followed by reification and reification followed by reflection
leave the meta-continuation intact. [Danvy & Malmkjær 88] points out why this holds modulo an
extension of the first environment in the meta-continuation. The reason is that such an environment
memorizes the bindings of the formal parameters of any reifier that is applied.

[Danvy & Malmkjær 88] also discusses the non-compositionality of meaning and proposes a
weaker, but compositional, function meaning’.

The two next sections analyze more precisely the properties of environments, continuations, and
their reified representations.

4 Environments

There are conceptually three environments:

• a common environment mapping predefined or commonly defined identifiers to their value;
this environment is called common because it is common to the levels: one common definition
is visible from all the other levels;

• a global environment mapping the global identifiers of one level to their value; there is one
global environment per level;

• the lexical extension, containing all the lexically bound identifiers – that is: the formal param-
eters of functions and the variables bound locally with the let construction and recursively
with the rec and letrec constructions.

Note: variables defined in the common and in a global environment are recursively bound. Also,
their scope is lexical.

Note’: the global and the common environment are dynamic, as in Scheme.

10

4.1 Operations on the environments

These operations address creating or modifying a binding in the common environment, the global
environment, and any lexical extension.

(define <ide> <val>) creates or modifies the binding of <ide> to <val> in the global envi-
ronment of one level and returns <ide>.

(common-define <ide> <val>) creates or modifies the binding of <ide> to <val> in the com-
mon environment and returns <ide>.

(let ((<ide-1> <val-1>) ... (<ide-n> <val-n>)) <body>) extends the lexical environ-
ment and evaluates <body>.

(letrec ((<ide-1> <val-1>) ... (<ide-n> <val-n>)) <body>) extends the lexical envi-
ronment recursively and evaluates <body>.

One can define a value recursively with (rec <ide> <value>), that returns this value.
(set! <ide> <val>) modifies an already existing binding and returns the previous R-value.

Worth to notice: set!-ting a binding of the common environment creates the modified binding
in the global environment of the current level. It does not side-effect the binding in the common
environment. Only common-define can create or modify a binding in the common environment of
all the levels.

One can note that there is no “internal define” and that define operates on the global environ-
ment of one level. This is for the sake of simplicity, and also for symmetry with common-define,
that operates on the common environment of all the levels.

4.2 Reified environments

They are obtained by applying a reifier, either a static one

(gamma (e r k) <body>)

or a dynamic one

(delta (e r k) <body>)

The second parameter is then bound to the reified environment, which is a functional object. Also,
the zero-ary operator reify-new-environment returns a reified instance of the initial environment.

The rest of this subsection describes all the possible operations with a reified environment.
They are similar in spirit to what environments are made for: they map identifiers to their R-value
or their L-value; and they can be lexically extended.

Applying a reified environment to an identifier returns the value it is bound to in that environ-
ment or the symbol ***undefined***:

reified-environment: Ide → Den-Val ∪ {***undefined***}

We can now define the function exit that exits from the current level. To define it simultane-
ously at all the levels of the tower, we use common-define:

(common-define exit ; transmits a value from level n to level n+1
(lambda (x) ; Val_n -> Val_n+1

((delta (e r k)
(r ’x)))))

11

exit is an unary function whose parameter is x. Its body consists of applying a reifier. The
result is the value of the variable x in the reified environment r. This definition contrasts with
Brown and [des Rivières 88] where the body of the reifier is evaluated in the environment of the
level of definition: there is no variable capture (shadowing) in Blond.

One could remark that applying a reified environment and spawning a new level are redundant.
This is true: when the identifier is bound, looking it up in the reified environment has the same
effect as spawning a new level to evaluate that identifier.

> (blond)
0-0: "bottom-level"
0-1> ((delta (e r k) (common-define env r)))
1-0: env
1-1> (env ’x)
1-1: ***undefined***
1-2> (let ((x ’foobar))

((delta (e r k)
(common-define env-x r))))

2-0: env-x
2-1> (env-x ’x)
2-1: foobar
2-2> (meaning ’x env-x (lambda (x) x))
2-2: foobar
2-3>

In this scenario, we start by commonly defining a reified environment. We find ourselves at level
1 with the variable env bound to a reified instance of the initial environment5. In this environment,
the variable x is not bound. If it was evaluated at the bottom level, an error would occur. Here the
reified environment is functional. Applying it to the identifier x returns the value ***undefined***.
We then commonly define a new reified environment, env-x, where the variable x is lexically bound
to foobar. Applying env-x to x has the same effect as spawning a new level to query the current
value of the variable x in the environment env-x with the identity continuation.

Reified environments are variadic [Strachey 67] in Blond: applying a reified environment to an
identifier and a value will modify the binding of the identifier in that environment.

reified-environment: Ide × Den-Val → (Den-Val)⊥

The effect is similar to spawning a new level and using set!:

2-3> (env-x ’x)
2-3: foobar
2-4> (env-x ’x ’foobarbaz)
2-4: foobar
2-5> (env-x ’x)
2-5: foobarbaz
2-6> (meaning ’(set! x ’foo) env-x (lambda (x) x))
2-6: foobarbaz
2-7> (env-x ’x)
2-7: foo
2-8>

5For the same effect, but without leaving the level 0 we could have used the function reify-new-environment.

12

Note: set!-ing a common identifier will bind it globally, without changing its common binding.
If one wants to redefine a common variable, he does it with common-define. This will not affect
the value of the variable at the level where it has been set!.

The operations above allow to consult a reified environment and to modify it. To extend its
global part, one needs an explicit new level:

2-8> (meaning ’(define y x) env-x (lambda (x) x))
2-8: y
2-9>

The lexical extension of a reified environment is achieved with the operation:

(extend-reified-environment <list-of-ide> <list-of-val> <reified-env>)

Finally, for the better or for the worse, applying a reified environment to zero argument returns
its underlying data structure: a list of dictionaries. Each element of the list pairs a list of names
and an isomorphic list of values.

To summarize, the domain of reified environments is defined as:

(Unit → (Ide∗ × Den-Val∗)∗) + (Ide → Den-Val ∪ {***undefined***}) + (Ide × Den-Val →
(Den-Val)⊥)

5 Continuations

They represent the “rest of the computation” at one level, and can be reified, in the similar
way as Scheme reifies continuations with call-with-current-continuation – [Talcott 85] calls
that reification noting since it notes the current program point [Landin 65]: in another context
[Smith & Hewitt 75] continuations were said to be unpacked or captured. This access to the implicit
continuation contrasts with the well-known “continuation-passing style” [van Wijngaarden 66]
[Fisher 72] [Reynolds 72] [Sussman & Steele 75] [Steele & Sussman 76] [Stoy 77] [Steele 78] where
the continuation is kept explicit.

Reified continuations are obtained by applying a reifier, either a static one

(gamma (e r k) <body>)

or a dynamic one

(delta (e r k) <body>)

The third parameter is then bound to the reified continuation, which is functional and unary – this
means that it can be applied to one argument, as in Scheme.

A major point: Blond keeps continuations “jumpy” [des Rivières 88]. That is, applying
a reified continuation replaces the continuation that was active at that moment. This is
the usual “black-hole” behaviour of Scheme, and contrasts with the usual “pushy” behaviour
[Danvy & Malmkjær 88] taken in 3-Lisp and Brown. There, the local continuation, rather than
being lost, is pushed onto the meta-continuation, to be reactivated next time the current level is
abandoned.

13

This means that the tower is involved not only at reification or reflection time – that is, when
a reifier is applied or when a new level is spawned – but also when a reified continuation is applied.

To separate clearly how the tower is managed and how reified objects are used, we have made
continuations jumpy in Blond. A continuation is reified at some level L, and applying it merely
substitutes the current level of processing with the level L.

But we do understand that this could be only a matter of taste. This is why, waiting for further
results in the semantic investigation of reflective towers, a predicate and a toggle are provided in
Blond:

(continuation-mode)

and

(switch-continuation-mode)

They return one of the two identifiers pushy or jumpy according to whether the mode is pushy or
jumpy (resp. made pushy or jumpy).

Note: by default it is jumpy.
Note’: changing of mode is of fundamental consequence for all the reflective programs that one

has written. The most reasonable compromises that we have found so far practising Blond are:

• either to maintain two separate versions of each program according to the selected mode;

• or to make polling versions, that are compatible with the two continuation modes and con-
tinuously test the current mode;

• or to fix one’s mind for a class of applications and simply program with one continuation
mode; after all, this is complicated enough in itself without adding a further unstability
factor.

To conclude: our main reason for keeping reified continuations jumpy is that we can push them
with a regular call to meaning. It allows to achieve reification and reflection uniquely with reifiers
and meaning.

Finally, for symmetry with having reify-new-environment, we provide the operator
reify-new-continuation, whose functionality is:

Den-Val + (Den-Val × Reified-Env) → Reified-Cont

It reifies an initial bottom level loop, with an optional reified environment. The argument is
the name of the new level. The optional reified environment will be the environment of the new
bottom level loop. Let us illustrate it with a scenario:

> (blond)
0-0: "bottom-level"
0-1> ((reify-new-continuation "rock"

(extend-reified-environment ’(foo)
’("bar")
(reify-new-environment))) "bottom")

rock-0: "bottom"
rock-1> foo
rock-1: "bar"

14

rock-2> ((reify-new-continuation "Multivac") "new bottom-level")
Multivac-0: "new bottom-level"
Multivac-1> ((delta (e r k) "bye"))
1-0: "bye"
1-1>

This session illustrates how level 0 is replaced successively by two other levels, by applying reified
continuations realizing new bottom level loops. Exiting from the last ends up at level 1.

Let us define openloop with the operator reify-new-continuation.

15

(define openloop
(delta (e r k) ; List(RExp) * REnv * RCont -> Val

(case (length e)
(1

(meaning (car e)
r
(lambda (level)

(meaning ’(meaning "bottom-level"
(reify-new-environment)
(reify-new-continuation level))

(extend-reified-environment ’(level) (list level) r)
k))))

(2
(meaning (car e)

r
(lambda (level)

(meaning (cadr e)
r
(lambda (env)

(meaning ’(meaning "bottom-level"
(reify-new-environment)
(reify-new-continuation level env))

(extend-reified-environment ’(level env)
(list level env)
r)

k))))))
(else

(meaning "openloop: arity mismatch" r k)))))

By defining openloop as a reifier rather than a function, we can handle its variable number of
arguments.

6 Elements for a Library

So far, there is no program written in Blond for any other purpose than practising it. So the Blond
library is still growing. For example here are a couple of definitions, in both jumpy and pushy
mode. The first is call-with-current-continuation, in jumpy mode:

(common-define call/cc
(lambda (f) ; (Val -> Val) -> Val

((delta (e r k)
(meaning ’(f dummy)

(extend-reified-environment ’(dummy) (list k) r)
k)))))

Its argument is evaluated, and is expected to be a function. A reification followed by a reflection
gives access to the continuation. The computation is continued with the application of the function
to the reified continuation. The form to be evaluated is the application. The identifier k in the
form is bound in a lexical extension of the reified environment. The identifier f is already bound in
the reified environment. As one can note, this definition relies on the fact that reified continuations
are already a proper sort of applicable values.

16

The following definition is only valid in pushy mode:

(common-define call/cc
(lambda (f) ; (Val -> Val) -> Val

((delta (e r k)
(k ((r ’f) k))))))

This definition is more compact because the outermost application pushes back the current
continuation on the meta-continuation, which is equivalent to spawning a new level. But it is
not equivalent since the captured continuation is pushy. [Bawden 88] analyzes through a series of
examples why pushy continuations are unsatisfactory, precisely because they push levels onto the
meta-continuation, and how these levels interfere with later reifications and reflections.

The following scenario illustrates some aspects of programming with (jumpy) continuations, as in
Scheme. What makes them quite clear are the Blond prompts: they witness the application of a
continuation, when it starts a new instance of an earlier iteration in a bottom level loop.

> (blond)
0-0: "bottom-level"
0-1> (load "scheme.bl")
exit the-environment call/cc call/ce
0-1: "scheme.bl"
0-2> (continuation-mode)
0-2: jumpy
0-3> (add1 (call/cc (lambda (k) 3)))
0-3: 4
0-4> (add1 (call/cc (lambda (k) (k 3))))
0-4: 4
0-5> (add1 (call/cc (lambda (k) (sub1 (k 3)))))
0-5: 4
0-6> (call/cc (lambda (k) (common-define cont-0-6 k)))
0-6: cont-0-6
0-7> ’dummy ; cont-0-6 is bound to the continuation of iteration 6 at level 0
0-7: dummy
0-8> (cont-0-6 "back to 0-6")
0-6: back to 0-6
0-7> (exit "exit from level 0")
1-0: "exit from level 0"
1-1> (cont-0-6 "back again to 0-6")
0-6: "back again to 0-6"
0-7> (exit "exit again from level 0")
2-0: "exit again from level 0"
2-1>

Let us analyze this interaction.

• First the noted continuation is not used. The effect is to return 3 to the function add1 – “to
return” meaning “to apply the implicit continuation”.

• Second the noted continuation is used. The effect is to explicitly apply the continuation to
3. The result again is 4. The only difference between these two expressions is in the implicit
and the explicit applications of the continuation.

17

• At the iteration 0-5, the noted continuation is composed with the function sub1. However the
effect of applying a continuation is to drop the continuation active at that moment. Applying
sub1 is not performed and 3 is directly passed to the continuation that starts with add1.
Again the result is 4.

• At the iteration 0-6 the continuation is commonly bound to the identifier cont-0-6. This
means that cont-0-6 is simultaneously defined at all the levels of the tower, where not
globally or lexically shadowed by an alias.

• Iteration 0-7 makes it explicit that the next iteration is 0-8.

• At iteration 0-8 the continuation bound to cont-0-6 is applied. The effect is to continue the
bottom level loop of level 0 at iteration 6.

• At the new instance of iteration 0-7, we exit from level 0. Because continuations are jumpy
we arrive at level 1. If they were pushy, we would come back to the last point where a
continuation has been applied, that is we would finish the iteration 0-8.

• At level 1 the identifier cont-0-6 is defined because it has been commonly defined and is not
shadowed. We apply again its R-value, that is, the continuation of level 0, iteration 6. The
effect is to continue the bottom level loop of level 0 at iteration 6.

• At the new instance of iteration 0-7, we exit again from level 0. Because continuations are
jumpy we arrive at level 2. If they were pushy, we would continue at level 0, iteration 9, and
the same scenario with pushy continuations confirms this:

0-1> (mute-load "scheme.bl")
0-1: "scheme.bl"
0-2> (switch-continuation-mode)
0-2: pushy
0-3> (add1 (call/cc (lambda (k) 3)))
0-3: 4
0-4> (add1 (call/cc (lambda (k) (k 3))))
0-4: 4
0-5> (add1 (call/cc (lambda (k) (sub1 (k 3)))))
0-5: 4
0-6> (call/cc (lambda (k) (common-define cont-0-6 k)))
0-6: cont-0-6
0-7> ’dummy ; cont-0-6 is bound to the continuation of iteration 6 at level 0
0-7: dummy
0-8> (cont-0-6 "back to 0-6")
0-6: "back to 0-6"
0-7> (exit "exit from level 0")
0-8: "exit from level 0"
0-9> (cont-0-6 "back again to 0-6")
0-6: "back again to 0-6"
0-7> (exit "exit again from level 0")
0-9: "exit again from level 0"
0-10> (exit 3)
0-5: 3
0-6> (exit 3)
0-4: 4

18

0-5> (exit "at last!")
1-0: "at last!"
1-1>

The point in this scenario is that each time a reified continuation is applied, the current contin-
uation is stacked onto the meta-continuation, and that each time a level is exited, this ex-current
continuation is popped from the meta-continuation and restored.

Jumping from branch to branch in the control tree can be compared with jumping from branch
to branch in the environment tree – which is basic to programming in a lexically-scoped language,
specially if it is higher-order (because abstractions close their environment of definition). In that
sense, dynamic scoping consists of composing environment extensions and functional continuations
[Felleisen et al. 87] consists of composing control extensions. Recent work proposes a more lexical
composition of control extensions [Danvy & Filinski 88]. With the present analysis we try to relate
the issues of control and environments, as [Landin 66] did for control and data.

Continuing to assemble elements for a Blond library, here is the function the-environment from
CScheme (mitscheme), valid both in pushy and jumpy mode (it does not matter here because we
do not apply any reified continuation):

(common-define the-environment
(delta (e r k) ; List(RExp) * REnv * RCont -> Val

(meaning ’dummy
(extend-reified-environment ’(dummy) (list r) r)
k)))

In pushy mode only, it looks like this:

(common-define the-environment
(delta (e r k) ; List(RExp) * REnv * RCont -> Val

(k r)))

A more functional view of that function could be call-with-current-environment. In both
jumpy and pushy mode:

(common-define call/ce
(delta (e r k) ; List(RExp) * REnv * RCont -> Val

(meaning (car e)
r
(lambda (f)

(meaning ’(f r)
(extend-reified-environment ’(f r) (list f r) r)
k)))))

In pushy mode only:

(common-define call/ce
(delta (e r k) ; List(RExp) * REnv * RCont -> Val

(meaning (car e) r (lambda (f)
(k (f r))))))

19

It clearly appears that definitions are shorter in pushy than in jumpy mode. This is of course
due to the explicit call to meaning to spawn a level back. Time will show which one will prevail.

Part of the solution probably lies in the way pushy reified continuations are applied: (1) should
their argument be evaluated with the current continuation stacked on the meta-continuation, as
it would happen with a call to meaning? (2) or should they be evaluated with a constant meta-
continuation and only when the reified continuation is applied, should the current continuation be
stacked on the meta-continuation? Blond currently follows (1), but in its last developments (2)
appears more appropriate [Danvy & Malmkjær 89].

Continuing to assemble elements for a Blond library, here is a function exiting as many levels as
specified by its argument:

(common-define nexit
(lambda (n) ; Num_m -> Str_m’

(if (<= n 0)
"home"
((delta (e r k)

(nexit (sub1 (r ’n))))))))

The functionality specifies that it takes an number n at level m and returns a string at level
m′ = m + n. The idea is to reify as many times as specified by its argument. It is interesting to
stress how nexit iterates.

This function is recursively defined in the common environment, and thus is visible from all the
levels of the tower. In particular it is defined at all the levels between the initial one and the target
one.

At each iteration, there is a tail-recursive call. The argument is found via the reified environ-
ment. The formal parameter n is bound to the current value. By applying the reified environment
to n, the current value is obtained, decremented, and passed to nexit.

Actually, these calls are tail-reflective, since nexit is applied tail-recursively at the level above.
The following scenario illustrates using nexit:

> (blond)
0-0: "bottom-level"
0-1> (load "nexit.bl")
nexit
0-1: "nexit.bl"
0-2> (nexit 256)
256-0: "home"
256-1> (nexit 64)
320-0: "home"
320-1> (nexit 8)
328-0: "home"
328-1> (nexit 0)
328-1: "home"
328-2>

Actually, we do not have to define nexit in the common environment. It is sufficient to define it
at one level, and pass it around as argument. Of course, at the target level, the function is not
defined.

This is achieved with the following definition:

20

(define lexit
(lambda (n) ; Num_m -> Str_m’

(let ((self (lambda (self n)
(if (<= n 0)

"home"
((delta (e r k)

((r ’self) (r ’self) (sub1 (r ’n)))))))))
(self self n))))

Now we are sufficiently acquainted to define a function that permutes two arbitrary levels above in
the tower. It is best illustrated by a scenario:

> (blond)
0-0: "bottom-level"
0-1> (load "swap.bl")
swap! get-up! got-up! got-down! get-down! kwote bye nexit
0-1: "swap.bl"
0-2> (swap! 2 1) ; permutes the first level and the second level above
0-2: "done!"
0-3> (bye) ; exit from level 0
2-0: "bye"
2-1> (bye) ; exit from level 2
1-0: "bye"
1-1> (bye) ; exit from level 1
3-0: "bye"
3-1> (bye) ; exit from level 3
4-0: "bye"
4-1>

given the reifier

(common-define bye
(delta (e r k) ; List(RExp) * REnv * RCont -> Str

"bye"))

This scenario can be expressed graphically by:

. . . .

. . . .
+---------+ +---------+
| 3 | | 3 |
+---------+ +---------+
| 2 | | 1 |
+---------+ ---- swap! ----> +---------+
| 1 | | 2 |
+---------+ +---------+
| 0 | | 0 |
+---------+ +---------+

The swap! operator generalizes the permute! operator from [Danvy & Malmkjær 88] since it
can permute any arbitrarily levels. Let us use nexit to illustrate it:

> (blond)
0-0: "bottom-level"

21

0-1> (load "swap.bl")
swap! get-up! got-up! got-down! get-down! kwote bye nexit
0-1: "swap.bl"
0-2> (swap! 85 133) ; permute the 85th level and the 133rd level above
0-2: "done!"
0-3> (bye) ; above level 0 there is still level 1
1-0: "bye"
1-1> (nexit 83) ; exit 83 levels
84-0: "home"
84-1> (bye) ; exit one level more, to level 133
133-0: "bye"
133-1> (bye) ; exit from level 133 to level 86
86-0: "bye"
86-1> (bye) ; above level 86 there is level 87
87-0: "bye"
87-1> (nexit 45) ; exit 45 levels
132-0: "home"
132-1> (bye) ; exit one level more, to level 85
85-0: "bye"
85-1> (bye) ; above level 85 there is level 134
134-0: "bye"
134-1> (nexit 166) ; and 166 levels above level 300 is present
300-0: "home"
300-1>

Roughly, the idea is to iterate upwards and collect the environments and continuations, up to
the higher level, and then to iterate downwards, restoring environments and continuations. We use
a set of common definitions and check first the consistency of the arguments:

(common-define swap!
(lambda (n o) ; Num * Num -> Str

(cond
((or (< n 0) (< o 0))

"foobar")
((< n o)

(get-up! n (- o n) ’()))
((> n o)

(get-up! o (- n o) ’()))
(else

"already done"))))

The function get-up! reifies iteratively up to the first level to permute:

(common-define get-up!
(lambda (n o l) ; Num * Num * List(Pair(REnv, RCont)) -> Str

(if (zero? n)
((delta (e r k)

(got-up! (r ’o) (cons (cons r k) (r ’l)) ’())))
((delta (e r k)

(get-up! (sub1 (r ’n)) (r ’o) (cons (cons r k) (r ’l))))))))

The arguments of get-up! are transmitted using the same device as for nexit. They are: the
number of levels to traverse for reaching the closest level to permute; the number of levels to traverse
for reaching the farthest level; a list of pairs mimicking the meta-continuation, i.e., holding the
reified environments and continuations of all the levels down to the original one. When the closest

22

level is reached, the function got-up! is applied to the number of other levels to traverse, the
list of all the environments and continuations of the levels down, starting with the environment
and continuation of the level to permute, and an empty list to hold all the environments and
continuations of the level above, up to the farthest level to permute.

(common-define got-up!
(lambda (o l ll) ; Num * List(Pair(REnv, RCont)) * List(Pair(REnv, RCont)) -> Str

(if (zero? o)
(meaning (list ’got-down! (kwote (cons (car ll) (cdr l))) (kwote (cdr ll)))

(caar l)
(cdar l))

((delta (e r k)
(got-up! (sub1 (r ’o)) (r ’l) (cons (cons r k) (r ’ll))))))))

The function got-up! iterates upwards up to the farthest level to permute, using the same strategy
as get-up!. When this level is reached, a new level is spawned with the environment and contin-
uation of the lowest level. The expression to evaluate is built up to call the function got-down!
with two arguments: the list of environments and continuations to restore down to the lowest level
to permute; and the list of environments and continuations to restore down to the original level.
We build the expression with quoted values for convenience:

(common-define kwote
(lambda (x) ; Val -> RExp

(list ’quote x)))

but the environment spawned could as well be extended with dummy identifiers bound to these
values. It does make a difference though since all these bindings will extend the environments in the
meta-continuation, shadowing the other bindings. The corresponding problems of compositionality
and referential transparency are discussed further in [Danvy & Malmkjær 89].

(common-define got-down!
(lambda (l ll) ; List(Pair(REnv, RCont)) * List(Pair(REnv, RCont)) -> Str

(if (null? ll)
(get-down! l)
(meaning (list ’got-down! (kwote l) (kwote (cdr ll))) (caar ll) (cdar ll)))))

The function got-down! spawns levels down to the lowest level to permute, restoring their envi-
ronments and continuations6. The function get-down! spawns levels down to the original level:

(common-define get-down!
(lambda (l) ; List(Pair(REnv, RCont)) -> Str

(if (null? l)
"done!"
(meaning (list ’get-down! (kwote (cdr l))) (caar l) (cdar l)))))

This concludes some first elements for a Blond library. What we have learned assembling them is
to practise meta-level facilities. Many other examples are to be found in [Danvy & Malmkjær 89],
in an extended dialect of Blond.

6Yes, it would be more concise to use backquote.

23

7 Blond in Blond, or the Orthogonality of Reflective Towers

Blond is specified in Scheme, and defines a Scheme interpreter. We have specified it in the non-
reflective part of the language it can interpret – that is, our specification of Blond is meta-circular.

Thus one can load the Blond interpreter in a Blond session, and start a new Blond session. The
effect is to create a reflective tower orthogonal to the current one. The process can be iterated, of
course at the price of speed.

However it illustrates the intensional view of primitive functions introduced in [Danvy 88]:

>>> (load "blond.scm")
t
>>> (blond)
0-0: "bottom-level"
0-1> (mute-load "scheme.bl")
0-1: "scheme.bl"
0-2> (mute-load "blond.scm")
0-2: "blond.scm"
0-3> (call/ce

(lambda (r)
(openloop "blond" r)))

blond-0: "bottom-level"
blond-1> (blond)
0-0: "bottom-level"
0-1> car
0-1: (subr 1 (subr 1 <CLOSURE>))
0-2> ’(1 2 3)
0-2: (1 2 3)
0-3> (car ’(1 2 3))
0-3: 1
0-4> (blond-exit)
blond-1: "farvel!"
blond-2> car
blond-2: (subr 1 <CLOSURE>)
blond-3> (blond-exit)
"farvel!"
>>> car
<CLOSURE>
>>>

This scenario illustrates a Blond session in a Blond session under Scheme.

• During a Scheme session, the file blond.scm is loaded. It contains the Scheme specification
of Blond.

• A Blond session is then started, by applying the function blond. We load the file scheme.bl,
defining in particular the call-with-current-environment described in the previous sec-
tion.

• At the second iteration, we load the file blond.scm in Blond. It is possible to load it and even
to process Blond in Blond because the system is written meta-circularly and non-reflectively.

• We start a new level blond, noting (or: capturing) the current environment, where Blond is
defined. This has no other purpose than changing the prompt.

24

• At the new level, we start a Blond session by applying the function blond. The effect is
to create a reflective tower orthogonal to the current one. Scheme, Blond and Blond form
a non-reflective tower, because Blond is specified non-reflectively. It is a simple tower of
interpreters whose height is three.

• We evaluate car. It is bound to the usual primitive function car, that is: the first projection
of a Blond pair. In the Blond model, the domain of applicable objects is a direct sum of the
domains of primitive functions, abstractions, etc. – car is a primitive function. The injection
tag is subr. The domain of primitive functions is itself a direct sum of zero-ary, unary and
binary functions. Presently, 1 is another injection tag indicating that car is unary. The
third component is the function itself: it is the function car at the level above. Since that
level is Blond, car belongs to the domain of unary primitive functions, which is mirrored by
its injection tags. The next processor running Blond presently is Scheme 84: it represents
primitive functions as <CLOSURE>.

• The session is ended by applying blond-exit. We come back to the first Blond interpreter.
We check whether car is bound to the primitive function car, which it is. The Blond session
is ended, to come back to Scheme.

• We finally check whether car is bound to the primitive function car, which it is.

This view of primitive functions alongside a tower of interpreters is intensional because it illus-
trates the operational connection between the levels of interpretation – that is:
(1) the request of processing a primitive operation from one interpreter to the one above; and
(2) the answer to that service.

The latter point is insured by the continuation of the level above, where it figures in the re-
maining part of the computation.

This intensional view, together with the tiling game of [des Rivières & Smith 84], points out the
cost of a meta-interpretation. It justifies the current efforts in the domain of partial evaluation for
breaking down the resulting orders-of-magnitude loss of efficiency. This is achieved by specializing
the meta-interpreters with respect to their programs.

[Danvy 88] analyzes further the relationships between reflection and partial evaluation, on the
basis that they both involve a program and its interpreter: reflective procedures in a program reify
internal structures in the interpreter; partial evaluation of an interpreter consists of specializing it
with respect to a program. The paper investigates the intriguing similarities between the identity
of the meta-circular interpreters at each level of the reflective tower and the identity of the subject
language and the base language in a partial evaluator. Both are essential: it is because the levels
of the tower are all alike that simple and reflective procedures are expressed in the same language7

and it is because a partial evaluator is written in the language it partially evaluates that it can
be self-applied and thus generate compilers and compiler generators rather than merely perform
compilations [Futamura 71] [Ershov 77] [Jones et al. 85] [Jones et al. 88].

Conclusion

Blond is a reflective dialect of Scheme, offering the standard, non-reflective, Scheme facilities and
the expressive power of a reflective tower. This primer provides a brief description of the general

7On the other hand, it is also because the levels are all alike that it is possible to implement an infinite tower with
a finite machine.

25

framework of meta-level capacities and a more detailed description of the Blond system and how
to use it. Summarizing the characteristics of Blond:

• control structures are pre-defined, and thus do not need to be defined reflectively;

• environments are kept separated; there is one environment common to all the levels of the
tower, one global environment per level, and as many lexical extensions as necessary;

• there are two sorts of reifiers: δ and γ-abstractions; their body is evaluated in the environment
of the level above their application or their definition (resp.);

• the Blond semantics is closed: a program cannot “get inside the implementation” by specifying
a reifier where functions could be expected;

• reification occurs in a correct environment, i.e., of the level above;

• the specification is meta-circular: this allows to build orthogonal reflective towers;

• the specification is non-reflective: this means that Blond running in Blond creates a non-
reflective tower of interpreters;

• the implementation is single-threaded [Schmidt 85], on a model similar to Brown;

• the specification is λ-lifted [Johnsson 85], whereas Brown is totally curried;

• Blond offers a system of prompts witnessing both the current level in the tower and the current
iteration in the bottom level loop; this proves valuable when programming with continuations.

Currently, we are translating Blond to other systems than Scheme, and practising it. We also
continue to investigate the semantics of reflective towers, in the line of [Danvy & Malmkjær 88]. In
[Danvy & Malmkjær 89], for example, we propose a new approach for formalizing computational
reflection.

Glossary

The following is a very sketchy review of the Scheme values that figure in the Blond initial environ-
ment. They are the usual Scheme primitive functions. In addition, control structures are present
in the initial environment since they are first-class. The last lines concern the reflective extension.

nil,
car, cdr, caar, cadr, cdar, cddr, caddr, cdddr, list,
cons, last-pair, list-tail, set-car! set-cdr!,
null?, atom?, pair?, number?, string?, symbol?, equal?, boolean?, procedure?
zero?, add1, sub1, +, -, *, =, negative?, positive?, <, <=, >=, >,
not, length, member,
if, ef, case, and, or, begin, cond,
display, print, pretty-print, newline, flush-output,
load, mute-load, read,
open-input-file, eof-object?, close-input-port,
common-define, define, set!,
let, letrec, rec, let*,
lambda, quote, delta, gamma, meaning, openloop,
reify-new-continuation, reify-new-environment, extend-reified-environment,
continuation-mode, switch-continuation-mode,
blond-exit

26

References

[Bawden 88] Alan Bawden: Reification without Evaluation, Proceedings of the 1988 ACM Sympo-
sium on Lisp and Functional Programming pp 342-351, Snowbird, Utah (July 1988)

[Church 41] Alonzo Church: The Calculi of Lambda-Conversion, Princeton University Press,
Princeton, New Jersey (1941)

[Danvy 88] Olivier Danvy: Across the Bridge between Reflection and Partial Evaluation, in Partial
Evaluation and Mixed Computation, D. Bjørner, A. P. Ershov and N. D. Jones (eds.),
North-Holland (1988)

[Danvy & Filinski 88] Olivier Danvy, Andrzej Filinski: A Functional Abstraction of Typed Con-
texts, article submitted for publication, DIKU, University of Copenhagen, Copenhagen,
Denmark (June 1988)

[Danvy & Malmkjær 88] Olivier Danvy, Karoline Malmkjær: Intensions and Extensions in a Re-
flective Tower, Proceedings of the 1988 ACM Symposium on LISP and Functional Pro-
gramming pp 327-341, Snowbird, Utah (July 1988)

[Danvy & Malmkjær 88’] Olivier Danvy, Karoline Malmkjær: A Blond Primer, DIKU Rapport
88/21, DIKU, University of Copenhagen, Copenhagen, Denmark (October 1988)

[Danvy & Malmkjær 89] Olivier Danvy, Karoline Malmkjær: Aspects of Computational Reflec-
tion in a Programming Language, article submitted for publication, DIKU, University of
Copenhagen, Copenhagen, Denmark (October 1988)

[des Rivières & Smith 84] Jim des Rivières and Brian C. Smith: The Implementation of Procedu-
rally Reflective Languages, Conference Record of the 1984 ACM Symposium on LISP and
Functional Programming pp 331–347, Austin, Texas (August 1984)

[des Rivières 88] Jim des Rivières: Control-Related Meta-Level Facilities in LISP, in Meta-Level
Architectures and Reflection, Patti Maes and Daniele Nardi (eds.), North-Holland (1988)

[Ershov 77] Andrei P. Ershov: On the Partial Computation Principle, Information Processing Let-
ters, Vol. 6, No 2 pp 38-41 (April 1977)

[Felleisen et al. 87] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, John Merrill: Beyond
Continuations, Technical Report No 216, Computer Science Department, Indiana Univer-
sity, Bloomington, Indiana (February 1987)

[Felleisen & Friedman 87] Matthias Felleisen, Daniel P. Friedman: A Syntactic Theory of Sequen-
tial State, Technical Report No 230, Computer Science Department, Indiana University,
Bloomington, Indiana (October 1987)

[Fisher 72] Michael J. Fisher: Lambda Calculus Schemata, Proceedings of the ACM conference
Proving Assertions about Programs pp 104-109, SIGPLAN Notices, Vol. 7, No 1 and
SIGACT News, No 14 (January 1972)

[Friedman & Wand 84] Daniel P. Friedman, Mitchell Wand: Reification: Reflection without Meta-
physics, Conference Record of the 1984 ACM Symposium on LISP and Functional Pro-
gramming pp 348–355, Austin, Texas (August 1984)

27

[Futamura 71] Yoshihiko Futamura: Partial Evaluation of Computation Process – an Approach to
a Compiler-Compiler, Systems, Computers & Control Vol. 2, No 5 pp 45-50 (1971)

[Johnsson 85] T. Johnsson: Lambda Lifting: Transforming Programs to Recursive Equations, Pro-
ceedings of the Conference on Functional Languages and Computer Architecture, Lecture
Notes in Computer Science No 201 pp 190-203, Jean-Pierre Jouannaud (ed.), Springer-
Verlag, Nancy, France (September 1985)

[Jones et al. 85] Neil D. Jones, Peter Sestoft, Harald Søndergaard: An Experiment in Partial Eval-
uation: the Generation of a Compiler Generator, Proceedings of the first International
Conference on Rewriting Techniques and Applications, Lecture Notes in Computer Sci-
ence No 202 pp 124-140, Jean-Pierre Jouannaud (ed.), Springer-Verlag, Dijon, France
(June 1985)

[Jones et al. 88] Neil D. Jones, Peter Sestoft, Harald Søndergaard: MIX: a Self-Applicable Partial
Evaluator for Experiments in Compiler Generation, Vol. 1, Nos 3/4 of the International
Journal LISP and Symbolic Computation (1988)

[Landin 65] Peter J. Landin: A Correspondance between ALGOL 60 and Church’s Lambda Nota-
tion, CACM Vol. 8, No 2 pp 89-101 & No 3 pp 158-165 (February & March 1965)

[Landin 66] Peter J. Landin: The Next 700 Programing Languages, CACM Vol. 9, No 3 pp 157-166
(March 1966)

[Malmkjær 88] Karoline Malmkjær: The Reflective Tower, student project ???, Computer Science
Department, University of Copenhagen, Copenhagen, Denmark (November 1988)

[Rees & Clinger 86] Jonathan Rees, William Clinger (eds): Revised3 Report on the Algorithmic
Language Scheme, Sigplan Notices, Vol. 21, No 12 pp 37-79 (December 1986)

[Reynolds 72] John Reynolds: Definitional Interpreters for Higher-Order Programming Languages,
Proceedings 25th ACM National Conference pp 717-740, New York (1972)

[Schmidt 85] David A. Schmidt: Detecting Global Variables in Denotational Definitions, ACM
Transactions on Programming Languages and Systems, Vol. 7, No 2 pp 299-310 (April
1985)

[Smith & Hewitt 75] Brian C. Smith, Carl Hewitt: A PLASMA Primer, rough draft, MIT-AIL,
Cambridge, Massachusetts (October 75)

[Smith 82] Brian C. Smith: Reflection and Semantics in a Procedural Language, Ph. D. thesis,
MIT/LCS/TR-272, Cambridge, Massachusetts (January 1982)

[Smith 84] Brian C. Smith: Reflection and Semantics in Lisp, Conference Record of the 14th
Annual ACM Symposium on Principles of Programming Languages pp 23-35, Salt Lake
City, Utah (January 1984)

[Smith & des Rivières 84] Brian C. Smith, Jim des Rivières: Interim 3-LISP Reference Manual,
Intelligent Systems Laboratory, Xerox PARC, Palo Alto, California (1984)

[Steele & Sussman 76] Guy L. Steele Jr., Gerald Jay Sussman: Lambda, the Ultimate Imperative,
MIT-AIL, AI Memo No 353, Cambridge, Massachusetts (March 1976)

28

[Steele 78] Guy L. Steele Jr.: RABBIT: a Compiler for SCHEME (A Study in Compiler Optimiza-
tion), MIT-AIL, TR 474, MIT, Cambridge, Massachusetts (May 1978)

[Stoy 77] Joseph E. Stoy: Denotational Semantics: the Scott-Strachey Approach to Programming
Language Theory, The MIT Press (1977)

[Strachey 67] Christopher Strachey: Fundamental Concepts in Programming Languages, Interna-
tional Summer School in Computer Programming, Copenhagen, Denmark (1967)

[Sussman & Steele 75] Gerald Jay Sussman, Guy L. Steele Jr.: SCHEME: an Interpreter for Ex-
tended λ-Calculus, MIT-AIL, AI Memo No 349, Cambridge, Massachusetts (December
1975)

[Talcott 85] Carolyn Talcott: The Essence of Rum: A Theory of the Intensional and Extensional
Aspects of Lisp-type Computation, Ph. D. thesis, Department of Computer Science, Stan-
ford University, Stanford, California (August 1985)

[van Wijngaarden 66] A. van Wijngaarden: Recursive Definition of Syntax and Semantics, from
Formal Languages Description Languages for Computer Programming pp 13-24, T. B.
Steel Jr. (ed.), North-Holland (1966)

[Wand, Friedman & Duba 86] Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba: Getting
the Levels Right, Preprints of the Workshop on Meta-Level Architectures and Reflection,
Patti Maes and Daniele Nardi (eds.), Vrije Universiteit Brussel, AI-Laboratory, Internal
Report, (October 1986)

[Wand & Friedman 88] Mitchell Wand, Daniel P. Friedman: The Mystery of the Tower Revealed:
a Non-Reflective Description of the Reflective Tower, Volume 1, No 1 pp 11-38 of the
International Journal Lisp and Symbolic Computation (June 1988)

Appendix – The Blond Listing in Scheme

The following is a Scheme-type interpreter in continuation-passing style. An extra argument –
the meta-continuation – is carried all along. It holds both environments and continuations of all
the levels above the current one. At reification time, the bottom-most ones are popped off and
activated. At reflection time, the current ones are pushed on. The illusion of having an infinite
meta-continuation is achieved by building it lazily.

Programs are represented as Scheme lists. Numbers, strings, and identifiers are represented as
Scheme numbers, strings, and identifiers. Control structures, functions, primitive functions, reifiers,
and reified environments and continuations are first-class applicable objects. The apply module
dispatches on their injection tag.

The environment is a series of pairs of series of identifiers and of values – that is, it is a series
of dictionaries. It is reified as its procedural abstraction. The common environment is represented
with two lists of common names and common values. The initial environment is the common
environment.

Syntactic correctness is generally not checked (apart the arities). It is assumed that all Blond
expressions are well-formed.

There are two classes of errors: the ones caught by the Blond interpreter and the ones caught
by the Scheme implementation. An example of Blond error is typically an arity error. An example
of Scheme error is to take the car of the empty list.

29

In case of Scheme error, the Blond session is interrupted and one is back to Scheme. In case of
Blond error, the function wrong is applied. It displays its complaints and stops the Blond session,
back to Scheme.

Recovering from an error is simple: restarting Blond. Only the common environment and the
continuation mode are persistent. The global environment of each level and the lexical extensions
are lost.

30

