
Theorems for free!Philip WadlerUniversity of Glasgow�June 1989AbstractFrom the type of a polymorphic function we can de-rive a theorem that it satis�es. Every function of thesame type satis�es the same theorem. This providesa free source of useful theorems, courtesy of Reynolds'abstraction theorem for the polymorphic lambda calcu-lus.1 IntroductionWrite down the de�nition of a polymorphic function ona piece of paper. Tell me its type, but be careful notto let me see the function's de�nition. I will tell you atheorem that the function satis�es.The purpose of this paper is to explain the trick. But�rst, let's look at an example.Say that r is a function of typer : 8X: X � ! X �:Here X is a type variable, and X � is the type \list of X ".From this, as we shall see, it is possible to conclude thatr satis�es the following theorem: for all types A and A0and every total function a : A! A0 we havea� � rA = rA0 � a�:Here � is function composition, and a� : A� ! A0� isthe function \map a" that applies a elementwise to a�Author's address: Department of Computing Science, Uni-versity of Glasgow, G12 8QQ, Scotland. Electronic mail:wadler@cs.glasgow.ac.uk.This is a slightly revised version of a paper appearing in: 4'thInternationl Symposium on Functional Programming Languagesand Computer Architecture, London, September 1989.Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the ACM copyright notice and thetitle of the publication and its date appear, and notice is giventhat copying is by permission of the Association for ComputingMachinery. To copy otherwise, or to republish, requires a feeand/or speci�c permission.

list of A yielding a list of A0, and rA : A� ! A� is theinstance of r at type A.The intuitive explanation of this result is that r mustwork on lists of X for any type X . Since r is providedwith no operations on values of type X , all it can do isrearrange such lists, independent of the values containedin them. Thus applying a to each element of a list andthen rearranging yields the same result as rearrangingand then applying a to each element.For instance, r may be the function reverse :8X: X � ! X � that reverses a list, and a may be thefunction code : Char ! Int that converts a character toits ASCII code. Then we havecode� (reverseChar [`a', `b', `c'])= [99 ; 98 ; 97]= reverseInt (code� [`a', `b', `c'])which satis�es the theorem. Or r may be the functiontail : 8X:X � ! X � that returns all but the �rst elementof a list, and a may be the function inc : Int ! Int thatadds one to an integer. Then we haveinc� (tailInt [1 ; 2 ; 3])= [3 ; 4]= tailInt (inc� [1 ; 2 ; 3])which also satis�es the theorem.On the other hand, say r is the function odds : Int� !Int� that removes all odd elements from a list of inte-gers, and say a is inc as before. Now we haveinc� (oddsInt [1 ; 2 ; 3])= [2 ; 4]6= [4]= oddsInt (inc� [1 ; 2 ; 3])and the theorem is not satis�ed. But this is not a coun-terexample, because odds has the wrong type: it is toospeci�c, Int� ! Int� rather than 8X: X � ! X �.This theorem about functions of type 8X:X � ! X � ispleasant but not earth-shaking. What is more excitingis that a similar theorem can be derived for every type.1

The result that allows theorems to be derived fromtypes will be referred to as the parametricity result, be-cause it depends in an essential way on parametric poly-morphism (types of the form 8X: T). Parametricity isjust a reformulation of Reynolds' abstraction theorem:terms evaluated in related environments yield relatedvalues [Rey83]. The key idea is that types may be readas relations. This result will be explained in Section 2and stated more formally in Section 6.Some further applications of parametricity are shownin Figure 1, which shows several types and the corre-sponding theorems. Each name was chosen, of course,to suggest a particular function of the named type, butthe associated theorems hold for any function that hasthe same type (so long as it can be de�ned as a term inthe pure polymorphic lambda calculus). For example,the theorem given for head also holds for last , and thetheorem given for sort also holds for nub (see Section 3).The theorems are expressed using operations on func-tions that correspond to operations on types. Corre-sponding to the list type A� is the map operation a�that takes the function a : A ! A0 into the func-tion a� : A� ! A0�. Similarly, corresponding to theproduct type A � B is the operation a � b that takesthe functions a : A ! A0 and b : B ! B 0 into thefunction a � b : A � B ! A0 � B 0; it is de�ned by(a � b) (x ; y) = (a x ; b y). As we shall see, it will benecessary to generalise to the case where a, b, a�, anda � b are relations.How useful are the theorems so generated? Only timeand experience will tell, but some initial results are en-couraging:� In general, the laws derived from types are of aform useful for algebraic manipulation. For exam-ple, many of the laws in Figure 1 allow one to \pushmap through a function".� Three years ago, Barrett and I wrote a paperon the derivation of an algorithm for compilingpattern-matching in functional languages [BW86].The derivation used nine general theorems abouthigher-order functions such as map and sort . Look-ing at the paper again now, it turns out that ofthe nine theorems, �ve follow immediately from thetypes.� Sheeran has developed a formal approach to thedesign of VLSI circuits that makes heavy use ofmathematical laws. She has found that many ofthe laws she needs can be generated from typesusing the methods described here, and has alreadywritten a paper describing how to do so [She89].Not surprisingly, using a more speci�c type system al-lows even more theorems to be derived from the type of

a function; this has already been explored to a certainextent by Sheeran [She89]. So there is reason to believethat further research will further extend the applicabil-ity of this method.Many functional languages, including Standard ML[Mil84, Mil87], Miranda1 [Tur85], and Haskell [HW88],are based on the Hindley/Milner type system [Hin69,Mil78, DM82]. This system is popular because typesneed not be given explicitly; instead, the principal (mostgeneral) type of a function can be inferred from its def-inition. However, for the purposes of this paper it ismore convenient to use the Girard/Reynolds type sys-tem [Gir72, Gir86, Rey74, Rey83] (also known as thepolymorphic lambda calculus, the second order lambdacalculus, and System F). In the Girard/Reynolds sys-tem it is necessary to give the types of bound vari-ables explicitly. Further, if a function has a polymorphictype then type applicationsmust be explicitly indicated.This is done via subscripting; for example, the instanceof the function r : 8X:X � ! X � at the type A is writtenrA : A� ! A�.Every program in the Hindley/Milner system canautomatically be translated into one in the Gi-rard/Reynolds system. All that is required is a straight-forward modi�cation of the type inference algorithm todecorate programs with the appropriate type informa-tion. On the other hand, the inverse translation is notalways possible, because the Girard/Reynolds system ismore powerful than Hindley/Milner.Both the Hindley/Milner and the Girard/Reynoldssystem satisfy the strong normalisation property: everyterm has a normal form, and every reduction sequenceleads to this normal form. As a corollary, it follows thatthe �xpoint operator,�x : 8X: (X ! X)! Xcannot be de�ned as a term in these systems. For manypurposes, we can get along �ne without the �xpointoperator, because many useful functions (including allthose shown in Figure 1) may be de�ned in the Gi-rard/Reynolds system without its use. Indeed, everyrecursive function that can be proved total in second-order Peano arithmetic can be written as a term inthe Girard/Reynolds calculus [FLO83, Gir72, GLT89].This includes, for instance, Ackerman's function (see[Rey85]), but it excludes interpreters for most languages(including the Girard/Reynolds calculus itself).If the power of unbounded recursion is truly required,then �x can be added as a primitive. However, adding�xpoints weakens the power of the parametricity the-orem. In particular, if �xpoints are allowed then the1Miranda is a trademark of Research Software Limited.2

Assume a : A! A0 and b : B ! B 0:head : 8X: X � ! Xa � headA = headA0 � a�tail : 8X: X � ! X �a� � tailA = tailA0 � a�(++) : 8X: X � ! X � ! X �a� (xs ++A ys) = (a� xs) ++A0 (a� ys)concat : 8X: X �� ! X �a� � concatA = concatA0 � a��fst : 8X: 8Y: X �Y ! Xa � fstAB = fstA0B 0 � (a � b)snd : 8X: 8Y: X � Y ! Yb � sndAB = sndA0B 0 � (a � b)zip : 8X: 8Y: (X � � Y �)! (X � Y)�(a � b)� � zipAB = zipA0B 0 � (a� � b�)�lter : 8X: (X ! Bool)! X � ! X �a� � �lterA (p 0 � a) = �lterA0 p 0 � a�sort : 8X: (X ! X ! Bool)! X � ! X �if for all x ; y 2 A; (x < y) = (a x <0 a y) thena� � sortA (<) = sortA0 (<0) � a�fold : 8X: 8Y: (X ! Y ! Y)! Y ! X � ! Yif for all x 2 A; y 2 B ; b (x � y) = (a x)
 (b y) and b u = u 0 thenb � foldAB (�) u = foldA0B 0 (
) u 0 � a�I : 8X: X ! Xa � IA = IA0 � aK : 8X: 8Y: X ! Y ! Xa (KAB x y) = KA0B 0 (a x) (b y)Figure 1: Examples of theorems from types3

theorems in Figure 1 hold in general only when thefunctions a and b are strict (that is, when a ? = ?and b ? = ?)2 . For this reason, the bulk of this pa-per assumes that �xpoints are not provided; but thenecessary adjustment to allow �xpoints is described inSection 7.The fundamental idea of parametricity is not new.A restricted version of it appears in Reynolds' origi-nal paper on the polymorphic lambda calculus [Rey74],where it is called the representation theorem, and aversion similar to that used here appears in [Rey83],where it is called the abstraction theorem. Otherversions include the logical relations of Mitchell andMeyer [MM85, Mit86]; and the dinatural transforma-tions of Bainbridge, Freyd, Girard, Scedrov, and Scott[BFSS87, FGSS88], from whom I have taken the name\parametricity".So far as I am aware, all uses of parametricity to datehave been \general": they say something about possibleimplementations of the polymorphic lambda calculus(e.g. that the implementation is correct independent ofthe representation used) or about its models (e.g. thatmodels should only be allowed that satisfy parametric-ity). The main contribution of this paper is to suggestthat parametricity also has \speci�c" applications: itsays interesting things about particular functions withparticular types3 .An updated statement and proof of the abstractiontheorem is presented. The main reason for includingthese is to make the paper self-contained. In the pro-cess, it is easy to repair a minor lacunae in Reynold'soriginal presentation [Rey83]. That version is expressedin terms of a \naive" set-theoretic model of the polymor-phic lambda calculus; Reynolds later proved that suchmodels do not exist [Rey84]. There is nothing wrongwith the theorem or the proof itself, just the contextin which it is set, and it is straightforward to transposeit to another context. This paper uses the frame mod-els of Bruce, Meyer, and Mitchell [BM84, MM85]. Forother models of the polymorphic lambda calculus, see[BTC88, Mes89, Pit87].The characterisation of parametricity given in this pa-per can be formulated more concisely in terms of cat-egory theory, where it can be re-expressed in terms oflax natural transformations. This will be the subject ofa further paper.The remainder of this paper is organised as follows.Sections 2 and 3 present the main new results: Section 22This is similar to the restriction to strict coercion functionsin [BCGS89], and is adopted for a similar reason.3Since this paper was written, I have learned that Peter de-Bruin has recently discovered similar applications [deB89], andthat John Reynolds already knew of the application in Section 3.8.

presents the parametricity theorem, and Section 3 givesfurther applications. Sections 4{6 �ll in the formali-ties: Section 4 describes the syntax of the polymor-phic lambda calculus, Section 5 shows how its syntaxcan be given using frame models, and Section 6 givesthe full statement of the parametricity theorem. Sec-tion 7 shows how the parametricity theorem should beadjusted to account for languages that use the �xpointoperator.Acknowledgements. I am grateful to Harold Sim-mons for helping to formulate and prove the resultabout map in Section 3.5, and to Samson Abramsky,Val Breazu-Tannen, Peter Freyd, John Hughes, JohnLaunchbury, John Reynolds, Andre Scedrov, and MarySheeran for their comments on this work.2 Parametricity explainedThe key to extracting theorems from types is to readtypes as relations. This section outlines the essentialideas, using a naive model of the polymorphic lambdacalculus: types are sets, functions are set-theoretic func-tions, etc. The approach follows that in [Rey83].Cognoscenti will recognise a small problem here|there are no naive set-theoretic models of polymorphiclambda calculus! (See [Rey84].) That's ok; the essen-tial ideas adopt easily to frame models [BM84, MM85].This section sticks to the simple but naive view; the i'swill be dotted and the t's crossed in Sections 4{6, whichexplain the same notions in the context of frame models.The usual way to read a type is as a set. The typeBool corresponds to the set of booleans, and the typeInt corresponds to the set of integers. If A and B aretypes, then the type A�B corresponds to a set of pairsdrawn from A and B (the cartesian product), the typeA� corresponds to the set of lists with elements inA, andthe type A! B corresponds to a set of functions fromAto B . Further, ifX is a type variable and A(X) is a typedepending on X , then the type 8X: A(X) correspondsto a set of functions that take a set B and return anelement in A(B).An alternative is to read a type as a relation. If Aand A0 are sets, we write A : A , A0 to indicate thatA is a relation between A and A0, that is, that A �A � A0. If x 2 A and x 0 2 A0, we write (x ; x 0) 2 Ato indicate that x and x 0 are related by A. A specialcase of a relation is the identity relation IA : A , A,de�ned by IA = f(x ; x) j x 2 Ag. In other words, ifx ; x 0 2 A, then (x ; x 0) 2 IA i� x = x 0. More generally,any function a : A! A0 may also be read as a relationf(x ; a x) j x 2 Ag. In other words, if x 2 A and x 0 2 A0,then (x ; x 0) 2 a i� a x = x 0.4

To read types as relations, we give a relational equiva-lent for constant types and for each of the type construc-tors A�B , A�, A! B , and 8X: A(X). Constant types,such as Bool and Int , may simply be read as identityrelations, IBool : Bool , Bool and IInt : Int , Int .For any relations A : A , A0 and B : B , B 0, therelation A � B : (A � B), (A0 � B 0) is de�ned by((x ; y); (x 0; y 0)) 2 A � Bi�(x ; x 0) 2 A and (y ; y 0) 2 B:That is, pairs are related if their corresponding com-ponents are related. In the special case where a andb are function, then a � b is the function de�ned by(a � b) (x ; y) = (a x ; b y).For any relation A : A, A0, the relation A� : A� ,A0� is de�ned by([x1 ; : : : ; xn]; [x 01 ; : : : ; x 0n]) 2 A�i�(x1 ; x 01) 2 a and : : : and (xn ; x 0n) 2 A:That is, lists are related if they have the same lengthand corresponding elements are related. In the specialcase where a is a function, a� is the familiar \map"function de�ned by a� [x1 ; : : : ; xn] = [a x1 ; : : : ; a xn].For any relations A : A , A0 and B : B , B 0, therelation A ! B : (A! B), (A0 ! B 0) is de�ned by(f ; f 0) 2 A ! Bi�for all (x ; x 0) 2 A; (f x ; f 0 x 0) 2 B:That is, functions are related if they take related argu-ments into related results. In the special case where aand b are functions, the relation a ! b will not neces-sarily be a function, but in this case (f ; f 0) 2 a ! b isequivalent to f 0 � a = b � f .Finally, we have to interpret 8 as an operation on re-lations. Let F(X) be a relation depending on X . ThenF corresponds to a function from relations to relations,such that for every relation A : A , A0 there is a cor-responding relation F(A) : F (A) , F 0(A0). Then therelation 8X: F(X) : 8X: F (X), 8X 0: F 0(X 0) is de�nedby (g ; g 0) 2 8X: F(X)i�for all A : A, A0; (gA; g 0A0) 2 F(A):That is, polymorphic functions are related if they takerelated types into related results. (Note the similaritiesin the de�nitions of A ! B and 8X: F(X).)Using the de�nitions above, any closed type T (onecontaining no free variables) can be read as a relationT : T , T . The main result of this paper can now bedescribed as follows:

Proposition. (Parametricity.) If t is aclosed term of type T , then (t ; t) 2 T , whereT is the relation corresponding to the type T .A more formal statement of this result appears in Sec-tion 6, where it is extended to types and terms contain-ing free variables.3 Parametricity appliedThis section �rst explains in detail how parametricityimplies some of the theorems listed in the introductionand then presents some more general results.3.1 RearrangementsThe result in the introduction is a simple consequenceof parametricity. Let r be a closed term of typer : 8X: X � ! X �:Parametricity ensures that(r ; r) 2 8X: X � ! X �:By the de�nition of 8 on relations, this is equivalent tofor all A : A, A0;(rA; rA0) 2 A� !A�By the de�nition of! on relations, this in turn is equiv-alent to for all A : A, A0;for all (xs; xs 0) 2 A�;(rA xs; rA0 xs 0) 2 A�This can be further expanded in terms of the de�nitionof A�. A more convenient version can be derived byspecialising to the case where the relationA is a functiona : A! A0. The above then becomesfor all a : A! A0;for all xs;a� xs = xs 0 implies a� (rA xs) = rA0 xs 0or, equivalently, for all a : A! A0;a� � rA = r 0A � a�:This is the version given in the introduction.3.2 FoldThe function fold has the typefold : 8X: 8Y: (X ! Y ! Y)! Y ! X � ! Y :5

Parametricity implies that(fold ; fold) 2 8X: 8Y: (X ! Y ! Y)! Y ! X � ! Y :Let a : A ! A0 and b : B ! B 0 be two functions. Ap-plying the de�nition of 8 on relations, twice, specialisedto functions, gives(foldAB ; foldA0B 0) 2 (a ! b ! b)! b ! a� ! bApplying the de�nition of ! on relations, twice, givesfor all (�;�0) 2 (a ! b ! b);for all (u; u 0) 2 b;(foldAB (�) u; foldA0B 0 (�0) u0) 2 a� ! b:Here (�) is just the name of a function of two argu-ments; by the usual convention, (�) x y may be writtenin the in�x form x � y . Further expansion shows thatthe condition (�;�0) 2 (a ! b ! b) is equivalent tofor all x 2 A; x 0 2 A0; y 2 B ; y 0 2 B 0;a x = x 0 and b y = y 0 implies b (x � y) = x 0 �0 y 0:The result as a whole may then be rephrased,for all a : A! A0; b : B ! B 0;if for all x 2 A; y 2 B ; b (x � y) = (a x) �0 (b y);and b u = u 0then b � foldAB (�) u = foldA0B 0 (�0) u0 � a�:The theorems derived from types can often be given areading with an algebraic
avour, and the result aboutfold provides an illustration of this. Let (A;B ;�; u)and (A0;B 0;�0; u 0) be two algebraic structures. Thefunctions a and b form a homomorphism betweenthese if b (x � y) = (a x) �0 (b y) for all x and y ,and if b u = u 0. Similarly, let (A�; B ; foldAB (�) u)and (A0�; B 0 ; foldA0B 0 (�0) u 0) also be two algebraicstructures. The functions a� and b form a homo-morphism between these if b (foldAB (�) u xs) =foldA0B 0 (�0) u0 (a� xs). The result about foldstates that if a and b form a homomorphism between(A;B ; c; n) and (A0;B 0; c0; n 0), then a� and b forma homomorphism between (A�;B ; foldAB (�) u) and(A0�;B 0; foldA0B 0 (�0) u0).3.3 SortingLet s be a closed term of the types : 8X :(X ! X ! Bool)! (X � ! X �)Functions of this type include sort and nub:sortInt(<Int)[3 ; 1 ; 4 ; 2 ; 5] = [1 ; 2 ; 3 ; 4 ; 5]nubInt (=Int)[1 ; 1 ; 2 ; 2 ; 2 ;1] = [1 ; 2 ; 1]

The function sort takes an ordering function and a listand returns the list sorted in ascending order, and thefunction nub takes an equality predicate and a list andreturns the list with adjacent duplicates removed.Applying parametricity to the type of s yields, for alla : A! A0,if for all x ; y 2 A; (x � y) = (a x �0 a y) thena� � sA(�) = sA0(�0) � a�(Recall that Bool as a relation is just the identity rela-tion of booleans.) As a corollary, we haveif for all x ; y 2 A; (x < y) = (a x <0 a y) thensortA0 (<) � a� = a� � sortA (<0)so maps commute with sort , when the function mappedpreserves ordering. (If < and <0 are linear orderings,then the hypothesis is equivalent to requiring that a ismonotonic.) As a second corollary, we haveif for all x ; y 2 A; (x � y) = (a x �0 a y) thennubA0 (�) � a� = a� � nubA (�0)so maps commute with nub, when the function mappedpreserves equivalence. (If � and �0 are equality on Aand A0, then the hypothesis is equivalent to requiringthat a is one-to-one.)3.4 Polymorphic equalityThe programming language Miranda [Tur85] provides apolymorphic equality function, with type(=) : 8X: X ! X ! Bool :Applying parametricity to the type of (=) yields, for alla : A! A0,for all x ; y 2 A; (x =A y) = (a x =A0 a y):This is obviously false; it does not hold for all a, butonly for functions a that are one-to-one.This is not a contradiction to the parametricity theo-rem; rather, it provides a proof that polymorphic equal-ity cannot be de�ned in the pure polymorphic lambdacalculus. Polymorphic equality can be added as a con-stant, but then parametricity will not hold (for termscontaining the constant).This suggests that we need some way to tame thepower of the polymorphic equality operator. Exactlysuch taming is provided by the eqtype variables of Stan-dard ML [Mil87], or more generally by the type classesof Haskell [HW88, WB89]. In these languages, we canthink of polymorphic equality as having the type(=) : 8(=)X : X ! X ! Bool :6

Here 8(=)X :F (X) is a new type former, where X rangesonly over types for which equality is de�ned. Corre-sponding to the type constructor 8(=) is a new relationconstructor: (g ; g 0) 2 8(=)X : F(X)i�for all A : A, A0 respecting (=); (gA; g 0A0) 2 F(A):A relation A : A , A0 respects (=) if A relates equalsto equals; that is, if whenever x =A y and (x ; x 0) 2 Aand (y ; y 0) 2 A then x 0 =A0 y 0, where (=A) is equalityon A and (=A0) is equality on A0. In the case where Ais a function a, this is equivalent to requiring that a beone-to-one.With this de�nition, we can prove that the polymor-phic equality operator, typed as above, satis�es theparametricity theorem. In our extended language wecan de�ne, for example, the functionnub : 8(=)X : X � ! X �and the corresponding parametricity condition is thesame as that for the previous version of nub.Thus, the more re�ned type structures of StandardML and Haskell add exactly the information necessaryto maintain parametricity. In Standard ML this trickworks only for equality (which is built into the lan-guage), whereas in Haskell it works for any operatorsde�ned using the type class mechanism.3.5 A result about mapSuppose that I tell you that I am thinking of a functionm with the typem : 8X :8Y :(X ! Y)! (X � ! Y �)You will immediately guess that I am thinking of themap function,m(f) = f �. Of course, I could be thinkingof a di�erent function, for instance, one that reverses alist and then applies f � to it. But intuitively, you knowthat map is the only interesting function of this type:that all others must be rearranging functions composedwith map.We can formalise this intuition as follows. Let m bea function with the type above. ThenmAB (f) = f � �mAA(IA) = mBB (IB) � f �where IA is the identity function on A. The functionmAA(IA) is a rearranging function, as discussed in thepreceding section. Thus, every function m of the abovetype can be expressed as a rearranging function com-posed with map, or equivalently, as map composed witha rearranging function.

The proof is simple. As we have already seen, theparametricity condition for m is thatif f 0 � a = b � f then mA0B 0(f 0) � a� = b� �mAB (f)Taking A0 = B 0 = B , b = f 0 = IB , a = f satis�es thehypotheses, giving as the conclusionmBB(IB) � f � = (IB)� �mAB (f)which gives us the second equality above, since (IB)� =IB� . The �rst equality may be derived by commutingthe permuting function with map; or may be deriveddirectly by a di�erent substitution.3.6 A result about foldAnalogous to the previous result about map is a similarresult about fold . Let f be a function with the typef : 8X :8Y :(X ! Y ! Y)! Y ! X � ! YThen fAB c n = foldAB c n � fAA� consA nilANote that fAA� consA nilA : A� ! A� is a function thatrearranges a list, so this says that every function withthe type of fold can be expressed as fold composed witha rearranging function.The proof is similar to the previous one. The para-metricity condition for f is thatif c0 � (a � b) = b � c and n 0 = b(n) thenfA0B 0 c0 n 0 � a� = b � fAB c nTaking A = A0, B = A�, a = IA, b = foldA0B 0 c0 n 0,c = consA, n = nilA satis�es the hypothesis, giving asthe conclusionfAB 0 c0 n 0 � I �A = foldAB 0 c0 n0 � fAA� consA nilAThe I �A term is just an identity, and so drops out, leavingus with the desired equality if we rename c0; n 0;B 0 toc; n;B .3.7 A result about �lterLet f be a function with the typef : 8X :(X ! Bool)! X � ! X �Three functions with this type are �lter , takewhile, anddropwhile. For example,�lter odd [3 ; 1 ; 4 ; 5 ;2] = [3 ; 1 ; 5]takewhile odd [3 ; 1 ; 4 ; 5 ;2] = [3 ; 1]dropwhile odd [3 ; 1 ; 4 ; 5 ;2] = [4 ; 5 ; 2]7

See [BW88] for the de�nitions of these functions.For every such f we can de�ne a corresponding func-tion of type g : 8X :(X � Bool)� ! X �such that f and g are related by the equationfA(p) = gA � hIA; pi (�)where hIA; pi x = (x ; p x). That is, fA is passed a pred-icate p of type A! Bool and a list of A, whereas gA ispassed a list of A � Bool pairs, the second componentof the pair being the result of applying p to the �rstcomponent. Intuitively, this transformation is possiblebecause the only values that p can be applied to are oftype A, so it su�ces to pair each value of type A withthe result of applying p to it.A little thought shows that a suitable de�nition of gis gA = fst� � fA�Bool(snd)We can use parametricity to show that f and g sat-isfy (�), for all functions f of the given type. Theparametricity conditions for f tells us that for anya : A ! A0 and any p : A ! Bool and p 0 : A0 ! Boolwe haveif p 0 � a = IBool � p then fA0(p 0) � a� = a� � fA(p)Take A0 = A � Bool and a = hIA; pi and p 0 = snd .Then the hypothesis becomes snd � hIA; pi = p, whichis satis�ed, yielding the conclusionfA�Bool(snd) � hIA; pi� = hIA; pi� � fA(p):Compose both sides with fst�, givingfst� � fA�Bool(snd) � hIA; pi� = fst� � hIA; pi� � fA(p):Then apply the de�nition of g , and observe that fst �hIA; pi = IA, resulting in the equationgA � hIA; pi� = fA(p)as desired.3.8 An isomorphismThe preceding applications can all be expressed in theHindley/Milner fragment of the polymorphic lambdacalculus: all universal quanti�ers appear at the outsideof a type. This section presents an application thatutilises the full power of the Girard/Reynolds system.Let A be an arbitrary type. Intuitively, this typeis isomorphic to the type 8X: (A ! X) ! X , which

we will abbreviate as ~A. The apparent isomorphismbetween A and ~A is expressed by the functions:i : A! ~Ai = �x : A: �X: �g : A! X: g xj : ~A! Aj = �h : ~A: hA (�x : A: x)That is, i takes an element x of A to the element of ~Athat maps a function g (of type A ! X) to the valueg x (of type X). The inverse function j recovers theoriginal element by applying a value in ~A to the identityfunction.To prove that this truly is an isomorphism, we mustverify that j � i and i � j are both identities. It is easyenough to verify the former:j (i x)= j (�X: �g : A! X: g x)= (�g : A! A: g x) (�x : A: x)= (�x : A: x) x= xHowever, the inverse identity is problematic. We canget as far asi (j h)= i (hA (�x : A: x))= �X: �g : A! X: g (hA (�x : A: x))and now we are stuck. Here is where parametricityhelps. The parametricity condition for h : 8X: (A !X)! X is that, for all b : B ! B 0 and all f : A! B ,b (hB f) = hB 0 (b � f)Taking B = A, B 0 = X , b = g , and f = (�x : A: x)gives �X: �g : A! X: g (hA (�x : A: x))= �X: �g : A! X: hX (g � (�x : A: x))= �X: �g : A! X: hX g= hwhich completes the second identity.The second identity depends critically on parametric-ity, so the isomorphism holds only for models in whichall elements satisfy the parametricity constraint. Alas,the parametricity theorem guarantees only that ele-ments of the model that correspond to lambda termswill be parametric; many models contain additional el-ements that are non-parametric. One model that con-tains only parametric elements is that in [BTC88].8

�X ;�x ; x : T ` x : T!I �X ;�x ; x : U ` v : V�X ;�x ` �x : U: v : U ! V!E �X ;�x ` t : U ! V �X ;�x ` u : U�X ;�x ` t u : V8I �X ;�x ` t : T�X ;X ;�x ` �X: t : 8X: T8E �X ;�x ` t : 8X: T�X ;�x ` tU : T [U =X]Figure 2: Typing rules4 Polymorphic lambda calculusWe now turn to a more formal development of theparametricity theorem. We begin with a quick reviewof the polymorphic lambda calculus.We will use X ;Y ;Z to range over type variables, andT ;U ;V to range over types. Types are formed fromtype variables, function types, and type abstraction:T ::= X j T ! U j 8X: TWe will use x ; y ; z to range over individual variables,and t ; u; v to range over terms. Terms are formed fromindividual variables, abstraction and application of in-dividuals, and abstraction and application of types:t ::= x j �x : U: t j t u j �X: t j tUWe write T [U =X] to denote substitution of U for thefree occurrences of X in T , and t [u=x] and t [U =X] sim-ilarly.A term is legal only if it is well typed. Typings areexpressed as assertions of the form�X ;�x ` t : Twhere �X is a list of distinct type variables X1 ; : : : ;Xm ,and �x is a list of distinct individual variables, with types,x1 : T1 ; : : : ; xn : Tn . This assertion may be read asstating that t has type T in a context where each xihas type Ti . Each individual variable that appears freein t should appear in �x , and each type variable thatappears free in T of �x should appear in �X . The typeinference rules are shown in Figure 2.

Two terms are equivalent if one can be derived fromthe other by renaming bound individual or type vari-ables (� conversion). In addition, we have the familiarreduction rules:(�) (�x : U: t) u) t [u=x](�X: t)U) t [U =X](�) �x : U: t x) t�X: tX) twhere in the � rules x and X do not occur free in t .As is well known, familiar types such as booleans,pairs, lists, and natural numbers can be de�ned as typesconstructed from just! and 8; see for example [Rey85]or [GLT89]. Alternatively, we could add suitable typesand individual constants to the pure language describedabove.5 Semantics of polymorphiclambda calculusWe will give a semantics using a version of the framesemantics outlined in [BM84] and [MM85]. We �rstdiscuss the semantics of types, and then discuss the se-mantics of terms.5.1 TypesA type model consists of a universe U of type values,and two operations, ! and 8 that construct types fromother types. There is a distinguished set [U ! U] offunctions from U to U. If A and B are in U, then9

A! B must be in U, and if F is in [U!U], then 8Fmust be in U.Let T be a type with its free variables in �X . We saythat �A is a type environment for �X if it maps each typevariable in �X into a type value inU. The correspondingvalue of T in the environment �A is written [[T]]�A and isde�ned as follows:[[X]]�A = �A[[X]][[T ! U]]�A = [[T]]�A! [[U]]�A[[8X: T]]�A = 8(�A: [[T]]�A[A=X])Here �A[[X]] is the value that �AmapsX into, and �A[A=X]is the environment that maps X into A and otherwisebehaves as �A. (The reader may �nd that the abovelooks more familiar if �A is replaced everywhere by aGreek letter such as �.)5.2 TermsAssociated with each type A in U is a set DA of thevalues of that type.For each A and B inU, the elements inDA!B repre-sent functions from DA to DB . We do not require thatthe elements are functions, merely that they representfunctions. In particular, associated with each A and Bin U there must be a set [DA !DB] of functions fromDA to DB , and functions�A;B : DA!B ! [DA !DB] A;B : [DA !DB]!DA!Bsuch that �A;B � A;B is the identity on [DA ! DB].We will usually omit the subscripts and just write � and .If F is a function in [U ! U], the elements in D8Frepresent functions that take a type A into an elementof DF (A). In particular, associated with each F theremust be a set [8A : U: DF (A)] of functions that mapeach A in U into an element of DF (A), and functions�F : D8F ! [8A :U: DF (A)]	F : [8A :U: DF (A)]!D8Fsuch that �F � 	F is the identity on [8A : U: DF (A)].Again, we will usually omit the subscripts and just write� and 	 .Let t be a term such that �X ;�x ` t : T . We say that�A;�a are environments respecting �X ;�x if �A is a typeenvironment for �X and �a is an environment mappingvariables to values such that for each �xi : Ti in �x , wehave that �a[[xi]] 2 D[[Ti]]�A . The value of t in the envi-ronments �A and �a is written [[t]]�A�a and is de�ned asfollows:

[[x]]�A�a = �a[[x]][[�x : U: v]]�A�a = (�a: [[v]]�A�a [a=x])[[t u]]�A�a = � ([[t]]�A�a) ([[u]]�A�a)[[�X: v]]�A�a = 	 (�A: [[v]]�A[A=X]�a)[[tU]]�A�a = � ([[t]]�A�a) ([[U]]�A)Here �a [[x]] is the value that �a maps x into, and �a [a=x]is the environment that maps x into a and otherwisebehaves as �a .A frame is a structure specifying U;!; 8 andD; �; ;�;	 satisfying the constraints above. A frameis an environment model if for every �X ;�x ` t : T andevery �A;�a respecting �X ;�x , the meaning of [[t]]�A�a asgiven above exists. (That is, a frame is a model if thesets [U ! U], [[DA ! DB], and [8A : U: DF (A)] are\big enough".)We write �X ;�x j= t : T if for all environments �A;�arespecting �X ;�x , we have [[t]]�A�a 2D[[T]]�A .Proposition. (Soundness of types.) For all�X ;�x ; t and T , if �X ;�x ` t : T then �X ;�x j= t :T.The type soundness result simply states that the mean-ing of a typed term corresponds to the meaning of thecorresponding type. The proof is a straightforward in-duction over the structure of type inferences. Para-metricity is an analogue of this result, as we shall see inthe next section.6 The parametricity theoremIn the previous section, we de�ned a semantics wherea type environment �A consists of a mapping of typevariables onto types, and the semantics of a type Tin the environment �A is a set denoted D[[T]]�A . In thissection, we de�ne an alternative semantics where a typeenvironment �A consists of a mapping of type variablesonto relations, and the semantics of a type T in theenvironment �A is a relation denoted [[T]] �A.We can then formally state the parametricity theo-rem: terms in related environments have related val-ues. We can think of environments �A and �A0 as specify-ing two di�erent representations of types, related by �A,which is why Reynolds' called his version of this result\the abstraction theorem". A key point of this paperis that this theorem has applications other than changeof representation, hence the change in name from \ab-straction" to \parametricity"A function type may be regarded as a relation as fol-lows. If A : A, A0 and B : B , B 0 are two relations,10

then we de�neA! B : (A! B), (A0 ! B 0)to be the relationA ! B = f (f ; f 0) j (a; a 0) 2 A implies(� f a; � f 0 a0) 2 B gIn other words, functions are related if they map relatedarguments into related results.A type abstraction may be regarded as a relation asfollows. Let F be a function from U to U, and F 0 be afunction from U0 to U0, and for each A in U and A0 inU0, let F be a function that takes a relation A : A, A0and returns a relation F(A) : F (A), F 0(A0). Then wede�ne 8F : 8F , 8F 0to be the relation8F = f (g ; g 0) j for all A, A0, and A : A, A0,(�(g)(A);�(g 0)(A0)) 2 F(A) gIn other words, type abstractions are related if they maprelated types into related results.A relation environment maps each type variable intoa relation. Let �A be a relation environment for �X , andlet �A; �A0 be two type environments for �X . We write�A : �A, �A0 if for each X in �X we have �A[[X]] : �A[[X]],�A0[[X]].Given a relation environment �A we can interpret atype T as a relation [[T]] �A as follows:[[X]] �A = �A[[X]][[U ! V]] �A = [[U]] �A! [[V]] �A[[8X: V]] �A = 8(�A: [[V]] �A[A=X])Let �A;�a respect �X ;�x and �A0;�a 0 respect �X ;�x . Wesay that �A; �A; �A0;�a;�a 0 respect �X ;�x if �A : �A , �A0 and(�a [[xi]];�a 0[[xi]]) 2 [[Ti]] �A for each xi : Ti in �x . It is easy tosee that if �A; �A; �A0;�a;�a 0 respect �X ;�x then �A;�a respect�X ;�x and �A0;�a 0 respect �X ;�x .We say that �X ;�x jj= t : T i� for every �A; �A; �A0;�a;�a 0that respect �X ;�x we have ([[t]]�A�a; [[t]]�A0�a 0) 2 [[T]] �A.Proposition. (Parametricity.) For all �X ,�x , t, and T , if �X ;�x ` t : T then �X ;�x jj= t : T.Proof. The proof is a straightforward induction overthe structure of type inferences. For each of the infer-ence rules in Figure 2, we replace ` by jj= and show thatthe resulting inference is valid. (End of proof.)

As mentioned previously, data types such as booleans,pairs, lists, and natural numbers can be de�ned in termsof ! and 8.As an example, consider the construction for pairs.The type X �Y is de�ned as an abbreviation:X � Y def= 8Z: (X ! Y ! Z)! ZEvery term of type X �Y is equivalent to a term of theform pairXY x y , where x : X and y : Y , and pair isde�ned bypair def= �X: �Y: �x : X: �y : Y:�Z: �p : X ! Y ! Z: p x yThe type of pair is, of course,pair : 8X: 8Y: X ! Y ! X � Ywhere X � Y stands for the abbreviation above. Itfollows from the parametricity theorem that if A : A!A0 and B : B ! B 0, and (a; a 0) 2 A and (b; b 0) 2 B,then ([[pairXY x y]][A=X ;B=Y] [a=x ; b=y];[[pairXY x y]][A0=X ;B 0=Y] [a 0=x ; b 0=y])2 [[X � Y]][A=X ;B=Y]:That is, pairs are related if their corresponding compo-nents are related, as we would expect.It can be shown similarly, using the standard con-struction for lists, that lists are related if they have thesame length and corresponding elements are related.Alternatively, suitable type constructors and individ-ual constants may be added to the pure polymorphiclambda calculus. In this case, for each new type con-structor an appropriate corresponding relation must bede�ned; suitable de�nitions of relations for pair and listtypes were given in Section 2. Further, for each newconstant the parametricity condition must be veri�ed:if c is a constant of type T , we must check that jj= c : Tholds. It then follows that parametricity holds for anyterms built from the new type constructors and con-stants.7 FixpointsEvery term in typed lambda calculus is strongly nor-malising, so if a �xpoint operator is desired it must beadded as a primitive. This section mentions the addi-tional requirements necessary to ensure that the �xpointprimitive satis�es the abstraction theorem.Frame models associate with each type A a set DA.In order to discuss �xpoints, we require that each sethave su�cient additional structure to be a domain: it11

must be provided with an ordering v such that eachdomain has a least element, ?, and such that limits ofdirected sets exist. Obviously, we also require that allfunctions are continuous.What are the requirements on relations? The obviousrequirement is that they, too, be continuous. That is,if A : A , A0, and xi is a chain in A, and x 0i is achain in A0, and (xi ; x 0i) 2 A for every i , then we requirethat (F xi ;F x 0i) 2 A also. But in addition to this, weneed a second requirement, namely that each relationA is strict, that is, that (?A;?A0) 2 A. If we restrictrelations in this way, then it is no longer true that everyfunction a : A! A0 may be treated as a relation; onlystrict functions may be treated as such.With this restricted view of relations, it is easy toshow that the �xpoint operator satis�es the parametric-ity theorem. As usual, for each type A de�ne �xA as thefunction �x : 8X: (X ! X)! Xsuch that �xA f = F f i ?A. Parametricity holds if(�x ; �x) 2 8A: (A ! A) ! A. This will be true iffor each A : A , A0 and each (f ; f 0) 2 A ! A wehave (�xA f ; �xA0 f 0) 2 A. Recall that the condition onf and f 0 means that if (x ; x 0) 2 A then (f x ; f 0 x 0) 2A. Now, since all relations are strict, it follows that(?A;?A0) 2 A; hence (f ?A; f 0 ?A0) 2 A; and, in gen-eral, (f i ?A; f 0i ?A0) 2 A. It follows, since all relationsare continuous, that (F f i ?A;F f 0i ?A0) 2 A, as re-quired.Note that the restriction to strict relations here issimilar to the restriction to strict coercion functions in[BCGS89], and is adopted for similar reasons.The requirement that relations are strict is essen-tial. For a counterexample, take A to be the domainf?; true; falseg, and take A : A! A to be the constantrelation such that (x ; true) 2 A for all x . The relationA is continuous but not strict. Let f be the constantfunction f x = false and let f 0 be the identity functionf 0 x = x . Then A ! A relates f to f 0, but A does notrelate �xA f = false to �xA f 0 = ?.The restriction to strict arrows is not to be takenlightly. For instance, given a function r of typer : 8A:A� ! A�parametricity implies thatrA0 � a� = a� � rAfor all functions a : A! A0. If the �xpoint combinatorappears in the de�nition of r , then we can only concludethat the above holds for strict a, which is a signi�cantrestriction.

The desire to derive theorems from types thereforesuggests that it would be valuable to explore program-ming languages that prohibit recursion, or allow onlyits restricted use. In theory, this is well understood; wehave already noted that any computable function that isprovably total in second-order Peano arithmetic can bede�ned in the pure polymorphic lambda calculus, with-out using the �xpoint as a primitive. However, practicallanguages based on this notion remain terra incognita.References[BCGS89] V. Breazu-Tannen, T. Coquand, C. A.Gunter, and A. Scedrov, Inheritance and ex-plicit coercion. In 4'th Annual Symposium onLogic in Computer Science, Asilomar, Cali-fornia, June 1989.[BFSS87] E. S. Bainbridge, P. J. Freyd, A. Scedrov, andP. J. Scott, Functorial polymorphism. In G.Huet, editor, Logical Foundations of Func-tional Programming, Austin, Texas, 1987.Addison-Wesley, to appear.[BM84] K. B. Bruce and A. R. Meyer, The seman-tics of second-order polymorphic lambda cal-culus. In Kahn, MacQueen, and Plotkin,editors, Semantics of Data Types, Sophia-Antipolis, France, 1984, pp. 131{144. LNCS173, Springer-Verlag.[BTC88] V. Breazu-Tannen and T. Coquand, Exten-sional models for polymorphism. TheoreticalComputer Science, 59:85{114, 1988.[BW86] G. Barrett and P. Wadler, Derivation of apattern-matching compiler. Manuscript, Pro-gramming Research Group, Oxford, 1986.[BW88] R. Bird and P. Wadler, Introduction to Func-tional Programming. Prentice Hall, 1988.[DM82] L. Damas and R. Milner, Principal typeschemes for functional programs. In Pro-ceedings of the 9'th Annual Symposium onPrinciples of Programming Languages, Albu-querque, N.M., January 1982.[deB89] P. J. deBruin, Naturalness of polymorphism.Submitted to Category Theory and ComputerScience, Manchester, 1989.[FGSS88] P. J. Freyd, J. Y. Girard, A. Scedrov, and P.J. Scott, Semantic parametricity in polymor-phic lambda calculus. In 3'rd Annual Sym-posium on Logic in Computer Science, Edin-burgh, Scotland, June 1988.12

[FLO83] S. Fortune, D. Leivant, and M. O'Donnell,The expressiveness of simple and second-order type structures. Journal of the ACM,30(1):151{185, January 1983.[Gir72] J.-Y. Girard, Interpr�etation functionelle et�elimination des coupures dans l'arithm�etiqued'ordre sup�erieure. Ph.D. thesis, Universit�eParis VII, 1972.[Gir86] J.-Y. Girard, The system F of variable types,�fteen years later. Theoretical Computer Sci-ence, 45, pp. 159{192.[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor,Proofs and Types. Cambridge UniversityPress, 1989.[Hin69] R. Hindley, The principal type scheme ofan object in combinatory logic. Trans. Am.Math. Soc. 146, pp. 29{60, December 1969.[HW88] P. Hudak and P. Wadler, editors, Reporton the Functional Programming LanguageHaskell. Technical Report YALEU/DCS/RR656, Yale University, Department of Com-puter Science, December 1988; also TechnicalReport, Glasgow University, Department ofComputer Science, December 1988.[Mes89] J. Meseguer, Relating models of polymor-phism. In 16'th ACM Symposium on Prin-ciples of Programming Languages, Austin,Texas, January 1989.[Mil78] R. Milner, A theory of type polymorphism inprogramming. J. Comput. Syst. Sci. 17, pp.348{375, 1978.[Mil84] R. Milner, A proposal for Standard ML. InACM Symposium on Lisp and FunctionalProgramming, Austin, Texas, August 1984.[Mil87] R. Milner, Changes to the Standard MLcore language. Report ECS-LFCS-87-33, Ed-inburgh University, Computer Science Dept.,1987.[Mit86] J. C. Mitchell, Representation independenceand data abstraction. In 13'th ACM Sym-posium on Principles of Programming Lan-guages, pp. 263{276.[MM85] J. C. Mitchell and A. R. Meyer, Second-orderlogical relations. In R. Parikh, editor, Log-ics of Programs, Brooklyn, New York, 1985.LNCS 193, Springer-Verlag.

[Pit87] A. M. Pitts, Polymorphism is set theoretic,constructively. In D. H. Pitt, et al., editors,Category Theory and Computer Science, Ed-inburgh, 1987. LNCS 283, Springer-Verlag.[Rey74] J. C. Reynolds, Towards a theory of typestructure. In B. Robinet, editor, Proc. Col-loque sur la Programmation, LNCS 19,Springer-Verlag.[Rey83] J. C. Reynolds, Types, abstraction, and para-metric polymorphism. In R. E. A. Mason, ed-itor, Information Processing 83, pp. 513{523.North-Holland, Amsterdam.[Rey84] J. C. Reynolds, Polymorphism is not set the-oretic. In Kahn, MacQueen, and Plotkin,editors, Semantics of Data Types, Sophia-Antipolis, France, 1984, pp. 145{156. LNCS173, Springer-Verlag.[Rey85] J. C. Reynolds, Three approaches to typestructure. In Mathematical Foundations ofSoftware Development, LNCS 185, Springer-Verlag, 1985.[She89] M. Sheeran, Categories for the working hard-ware designer. In Workshop on HardwareSpeci�cation, Veri�cation, and Synthesis:Mathematical Aspects, Cornell, July 1989.[Tur85] D. A. Turner, Miranda: A non-strict func-tional language with polymorphic types. InProceedings of the 2'nd International Confer-ence on Functional Programming Languagesand Computer Architecture, Nancy, France,September 1985. LNCS 201, Springer-Verlag,1985.[WB89] P. Wadler and S. Blott, How to make ad-hoc polymorphism less ad hoc. In 16'th ACMSymposium on Principles of ProgrammingLanguages, Austin, Texas, January 1989.
13

